
A Novel Group Coordination Protocol for Collaborative Multimedia Systems

H.-P. Dommel and J. J. Garcia-Luna-Aceves
fpeter j jj g@cse.ucsc.edu

Computer Communication Research Group
Baskin School of Engineering

University of California
Santa Cruz, CA 95064, USA

ABSTRACT

Group collaboration in distributed multimedia environments ex-
tends gradually to larger groups and wide-area networks. While
reliable multicasting has made significant advancements in re-
cent years, effective mechanisms to synchronize and coordinate
work within large multicast groups and across long distances are
still lacking. Group coordination is here understood as the me-
diated access to shared remote resources in synchronous group-
work, as for example in telecollaboration and distributed simu-
lation environments, complementing protocols for group mem-
bership, media synchronization and reliable ordered multicast. A
comparative analytic model for known classes of group coordina-
tion mechanisms, ranging from socially mediated control to floor
control in ring and tree topologies, is presented. It is shown that
hierarchical group coordination is the most efficient and scalable
approach to date. Based on these findings, a novel protocol is
described, which dynamically organizes participants in a multi-
level control tree and aggregates resource sharing directives on
the paths between interacting stations.

1 INTRODUCTION

Increasing deployment of IP-multicast [6] has brought a new gen-
eration of collaborative multimedia applications to mainstream
computing. While previous collaboration tools were proprietary,
monolithic, and designed for small-scale collaboration in local
area networks, newer applications are geared towards larger ses-
sions with wide geographic range. For example, distributed in-
teractive simulations and distance learning sessions can easily in-
volve hundreds of participants. Although reliable multicasting
and multicast routing technology have advanced considerably, ef-
ficient group coordination support for applications characterized
by synchronous and wide-area groupwork is still lacking.

Our goal is to extend support for dynamic group coordina-
tion to wide-area networks and large multicast groups, character-
ized by intermittent connectivity and heterogeneous multimedia
information. The central idea behind group coordination pro-
tocols is to establish a resource-sharing discipline, counter end-
application misbehavior, and incorporate end-user demand for a
specific Quality-of-Service, allowing to throttle bandwidth uti-
lization and impacting informed resource allocation. It is still a
subject of controversy, whether group coordination services are to
be tailored to the application-level, or whether they should be of-
fered as a middleware component, which a variety of applications
demanding for resource cooperation can tap into. To this date, a
variety of group coordination protocols have been proposed un-
der different names, but have not been specified in more detail,
compared, or placed in a consistent methodological framework.

We regard coordination of group activities on shared resources
as a distributed middleware service tailored toward the semantics
of the media involved, rather than specific applications. We focus
in this paper on a particular form of group coordination, known as
floor control. By being granted a “floor”, a user attains a permis-
sion for exclusive usage of a resource. Floor allocation establishes
clear rules for turn-taking, and prevents race conditions, indefinite
resource holding, and unfairness in resource access patterns. Par-
ticipating stations agree on a specific floor policy, concerning ser-
vice order and priorities. The spectrum of control can range from

lenient to strict, reflecting characteristics of tasks and interaction
styles, such as user roles, usage quotas, or resource contention pe-
riods. As a component within a general coordination architecture
for many-to-many groupwork, floor control coexists with proto-
cols for reliable ordered multicast and media synchronization at
a sub-application level. Orchestration of multiparty groupwork
with fine-grained and fair floor control is an open research prob-
lem. In this paper, we offer a fresh look on this topic by making
the case for hierarchical floor control.

The remainder of the paper is organized as follows: Section 2
discusses cornerstones of related work. Section 3 presents a brief
overview and comparison of existing classes of group coordina-
tion protocols. We find that floor control over a shared propa-
gation tree, corresponding to the underlying end-to-end reliable
multicast tree, represents the most scalable and efficient way to
store and forward control information. In particular, it allows to
exploit the hierarchical nature of multicast groups, supports se-
lective control packet dissemination to multicast subgroups, and
distributes load about floor state keeping across the multicast tree,
without compromising ease of implementation. Section 4 de-
scribes the operation of the Hierarchical Group Coordination Pro-
tocol (HGCP), a novel approach for floor control in shared prop-
agation trees. Section 5 concludes the paper.

2 RELATED WORK

Coordination problems such as initiation conflicts and resource
competition in multimedia conferencing have been reported in
[9]. Early efforts on coordination of group activities led to the
conception of floor control for networked databases and telecol-
laboration systems [20]. Various precursors of collaborative ap-
plications [2, 5, 21, 23] contained some form of proprietary floor
control for small sessions with broadcast of control information
and centralized coordination. The centralized method is compara-
ble to a sender-initiated multicast solution, which severely limits
the capacity of a group coordination system. First, one station
must maintain and process a large amount of state information
associated with each resource and floor contender. Second, the
sender as the floor controller must process many floor requests
in a short time and may corrupt the entire session, if failing. An
alternate mechanism has been proposed in the teleconferencing
architecture by Aguilaret al. [1], in which a distributed, task-
activated floor control for teleconferencing is used, as a high-level
analogy to collision-sensing in channel access. In Yavatkar and
Lakshman’s approach [25], floor control is understood as a trans-
port level service, realized as a token-based concurrency control
scheme for media flows, which has been implemented on top
of the reliable multicast protocol XTP. Lately, floor control has
appeared in a variety of commercial and experimental systems.
For example, the MBone application suite has been enriched by
a moderated bulletin board [15], which allows users in a larger
scaled conference to post questions and receive attention from
specific participants. Amiret al. [3] suggest to intertwine floor
control with a rate-adaptation mechanism, which throttles media
stream transmission according to the interest or capabilities of a
heterogeneous receiver set. Only sources being granted the floor
are allowed to consume bandwidth, and floor control directives
can be used to reserve future bandwidth shares.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
A Novel Group Coordination Protocol for Collaborative Multimedia
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3 GROUP COORDINATION PARADIGMS

We propose a basic taxonomy which divides known group coor-
dination algorithms into two classes:implicit group coordination
(IGC) andexplicit group coordination(EGC) algorithms.

Taxonomy
IGC algorithms mark the state of resource usage with assertions
on local variables determined through one or more rounds of mes-
sages or probing of remote resources’ states. Since no token en-
tity is explicitly exchanged, such algorithms are also referred to as
“permission-based”. The challenge for this class lies in the glob-
ally consistent state keeping of local assertions. IGC schemes are
inherently contention-based, since sites must actively compete for
a floor. Disadvantages of IGC are the need for continuous sensing
and the failure-prone observation of remote resource states, either
by man or machine, with a strong likelihood of collisions due
to network latency, or lack of coordination. As a consequence,
contending stations, being unaware of each others’ immediate ac-
tions, may experience collisions by trying to access a resource at
the same time.

In contrast, EGC algorithms explicitly exchange a unique to-
ken among sites. Obtaining this token symbolizes the right to ac-
cess a resource, thereby dispersing floor contention by regulated
passing of permission place-holders. Hence, this class is also re-
ferred to as “token-based”. In addition to the token being passed
among sites, control messages are exchanged to request, deny, re-
serve, or grant the token, depending on the control scheme used.
A shortcoming of EGC schemes is the higher cost of token track-
ing, in order to ensure token uniqueness and authenticity. EGC
schemes generally operate on a defined infrastructure, which log-
ically organizes the receiver set.

Both classes operate based on the dichotomy between afloor
holder(FH), which designates the current legitimate user of a re-
source, and afloor coordinator(FC) for that resource, which de-
termines the legitimate floor holder at a given time. Often, the
FH is also the FC. We assume that a generic group coordination
protocol uses the following basis set of control messages: a sta-
tion sends aFRQ(floor request) to the FC to demand access to
a resource; the FC either replies withFGT (floor grant) to grant
permission to access the resource (when the floor is free), orFDY
(floor deny) to signal that the floor is taken or reserved; a station
transmits aFRL (floor release) message to relinquish the floor.

P1

P2

P3

P4 R4

R3

R1

R2

P1 R1

P3 R3

P4
R4CR2

P2

P1 R1

P3 R3

P4
R4R2

P2

P1 R1

P3 R3

P4
R4R2

P2

P1 P2 P3

R

(c) (d) (e)(b)(a)

Figure 1: Group coordination geometries.

The crucial difference between algorithms lies in the assign-
ment of these roles to various nodes during a session, which im-
pacts the routing of control messages. Figure 1 depicts typical
coordination scenarios, where a circled entity marks the FC or
FH: (a) several participantsPi try to gain control of a centralized
resourceR with limited or no coordination; (b)Pi communicate
directly with each other in order to obtain a consensus about floor
holdership; (c) a ring structure linearizes interaction and control
passing between pairs of nodes; (d) one centralized station serves
as FC in a star-topology, which is a one-level subcase of (e); (e)
control messages are propagated along branches of a multi-level
tree topology towards the current FH.

The goal for all algorithms is the correct and efficient deter-
mination of the FC and FH per resource at every turn in a col-
laborative session. The taxonomy in Figure 2 corresponds to the
constellations in Figure 1.

Comparative Analysis
Our analytic comparison of known classes of group coordination
protocols is a first attempt to characterize the efficacy of interac-
tive behavior of people and processes from a resource contention

Group Coordination
Mechanisms

ActivitySocialIncoordination
Mediation

Tree-
based
Ring-

Implicit Coordination

(FC)

(IC) (EC)

Fully-

(RB) (TB)(SM)
Sensing

(AS)
(IC) Connected based

Explicit Coordination

Figure 2: Group coordination mechanisms.

perspective. The goal is to assess how much overhead is intrinsic
to the various protocols with regard to control state management,
based on topology and signaling. We take into consideration an
average floor request arrival rate, task length, and network prop-
agation delay. In our model, a collaboration sessionCs = (S; L)
in a computer network consists of a set of stationsS (sites, nodes)
and a set of linksL � S � S. Each station, in an intranetwork
or internetwork, hosts a session member (user, process), serves
remote stations with local resources, and is client for remote re-
sources. Links are either reliable (no loss, but possibly delayed
delivery), resilient (timely delivery, but likely some loss), or with-
out service guarantees.

For reasons of tractability, we make the following assump-
tions: the underlying dissemination model is broadcast, i.e., a host
sends each message only once to the network interface, where it
is IP-multicast to the receivers; message delivery between hosts is
FIFO, and no station failures occur; user interface and host pro-
cessing overhead are negligible for each station; the interarrival
rate of floor requests is Poisson, given that there is no indication
for cross-correlations between subsequent floor requests; floor al-
location is greedy, that is, the first registered request is fulfilled,
and others are discarded and may be resubmitted later; finally, the
floor holding time to execute a task is on the average the same and
normalized to unity.

�1 average “think” time before floor token arrival
�2 average “think” time at floor token presence
 average processing time for a floor directive
� duration of average activity period
n� processing and unicasting overhead to n receivers
� efficacy of a floor control protocol
G average offered floor request load
� average duration of idle time
� floor request interarrival rate
m average number of stations in session
n average number of active stations in session
� average vulnerability period
� average propagation delay

Table 1: Analysis parameters.

Table 1 summarizes the notation.� is the time, during which
a station’s attempt to access a resource can be intercepted by an-
other station. We assume for all protocols that� signifies the
average propagation delay for multiple routing hops between sta-
tions coalesced into one hop. A packet must hence traverse on the
average the same number of hosts on the path from the sender to a
group of receivers.G = ��� is the offered request load on floors,
including new and previously denied, and resubmitted floor re-
quests. For IGC schemes, denotes the average contention pe-
riod, whereas for EGC schemes, is the average processing time
per control packet.

t

Busy (B)

Turn (T)

Contention (X) Activity (A) Idle (I)

successfail

FDY FGT
FRLFRQFRQ

Figure 3: Conceptual turn-taking model.

A turn-taking model, shown in Figure 3, serves as the concep-
tual foundation for our analysis. A turn consists of three stages, a

contention periodX, an activity periodA, and an idle timeI. A
timeline for a turn shows how long it takes on the average for an
individual station to acquire a specific floor. The various schemes
allocate these periods differently to grant and revoke floors on re-
sources. Based on this model, we define theefficacy� of a group
coordination protocol with multicast support as the ratio of floor
usage time vs. overall turn length, given by Eq. 1:

� =
�U

�T
=

�U

�X + �A + �I
(1)

Incoordination(ICIC) refers to unawareness about other sta-
tions’ activities, caused by minimal user interface feedback or
high-latency networks, and may lead to completely unsynchro-
nized resource access. This is the case for early collaboration
systems such as [20] and long-distance conferencing with unpre-
dictable delays.

Theorem 1 The efficacy of ICIC is

�ICIC = ��e
�2�� (2)

A
t

δ

X X

T

I

collides with
start of A

collides with
end of A

Figure 4: ICIC timeline.

Proof: Figure 4 shows a prototypical turn under incoordina-
tion. The proof is the same as for medium access in an ALOHA
channel [4]. Messages can intercept each other during contention,
hence the vulnerability interval is twice the task length. There-
fore, because request arrivals are Poisson, the probability that a
task is successful ise�2��. The success probability times the
number of arrivals in one activity period results in Eq. 2.2

Social Mediation(ICSM) leaves floor negotiation to social
conformities among session members using available awareness
cues. If there is remote activity, a user contending for the floor
withdraws for a random time and reclaims the floor, when the re-
mote activity subsides. This is the case for modern POTS confer-
encing systems. Both ICIC and ICSM incur no implementation
cost with regard to system-aided coordination, however, reliabil-
ity is low and likelihood of conflict is high. It is possible that a
single host and user become moderator and floor controller for
all other hosts, creating a bottleneck system-wise and user-wise
for reasons mentioned above, if many receivers demand control
decisions from this one host at the same time.

Theorem 2 The efficacy of ICSM is

�ICSM =
�

� + e2�
0

h
e�

0
�1��0

�0(1�e��
0
)
+ 0 + � + � + 1

�

i (3)

Lf + γ δ+nε
t

T

τ

Xs

γ τ

A

τ

Xf I

ι+1/ λ’’

Figure 5: ICSM timeline.

Proof: A prototypical timeline of ICSM is depicted in Figure
5. The success probability is denoted asPs, the failure prob-
ability is Pf = 1 � Ps. The average utilization period lasts
�U = �Ps, and the length of the average busy period�B = �X + �A
is determined by the time needed to handle unsuccessful floor re-
quests in the failed contention periodXf and successful requests
in Xs, with �B = (1 � Ps)Xf + PsXs. 0 is the time needed
to sense and react to resource states. An average failed turn at-
tempt consists of a geometrically-distributed indefinite number

(L) of interarrival times of floor requests with durationf sec (av-
erage time between failed floor-request arrivals), plus the dura-
tion of any given floor request (0). The values forL andf have
been derived in [22]. Substituting our notation in these results,
we obtainL = e�� andf = (��)�1 � e���=(1 � e���), re-
spectively. Accordingly, the average time of a failed turn attempt

equalsXf =
h

e�
0

�1��0

�0(1�e��
0
)

i
+0+� . Ps equals the probability

that no activity packet arrives in a vulnerability period� of 20

sec., i.e.,Ps = P [0 packets in �] = e�2�� . A successful turn is
Xs = 0 + � + � . Finally, the expected idle time is�I = � + 1

�
.

Substituting into Eq. 1, we obtain Eq. 3.2

Activity Sensing(ICAS) is a special class of floor control pro-
posed in [8], where shared activities on resources are monitored
by a background process at the session layer, in order to sense
which site currently operates on the resource. This mechanism is
comparable to collision sensing in medium access control. If an
ICAS process at a local site detects remote activity on a resource,
it denies the local user the floor, until remote activity subsides. In
that way, a distributed collective of activity sensing agents ensures
better tracking of resource states, and helps to prevent conflicts.
The disadvantage of this scheme is its high implementation cost
and its reliance on short link latencies, which makes it usable only
in LANs.

Theorem 3 The efficacy of ICAS is

�ICAS =
�

� + � + 1
�
+ e�� (+ 2� + �)

(4)

t
fX

γ

T

ττγ δ

AsX

τ+Y

I

ι+1/λ

Figure 6: ICAS timeline.

Proof: The timeline is shown in Figure 6. The average uti-
lization period is�U = �Ps, with Ps = P [0 packets in �] =

e��� . The average length of a successful busy period is sim-
ply � + + 2� . The length of an average unsuccessful activ-
ity period consists of one truncated activity lasting sec, fol-
lowed by one or more similarly truncated activities sent within
time Y sec, where0 � Y � � . The expected value ofY is
�Y = � � 1

�
(1 � e���) [22]. The length of the average busy

period is then�B = +2� � 1
�
+ e���(�+ � + 1

�
). The average

idle interval is again�I = � + 1
�

. Substitution into Eq. 1 yields
Eq. 4.2

The class of explicit group coordination comprises three pro-
tocol families, as well. Common to all families is the exchange of
a floor token symbolizing exclusive access to the shared resource.
It must be assured that token transmission is reliable and that all
sites execute the same protocol correctly to avoid conflicts based
on duplicated, lost or forged tokens.

In Fully-connected Group Coordination(ECFC), each station
is directly connected to every other station. In the simplest case,
a station acquires the floor by sending aFRQto the othern � 1
stations, which send aFGTmessage back if they do not hold the
floor. If a station is FH for this floor, it sends aFDYmessage, and
follows up with aFGTas soon as it releases the floor. If several
stations ask for the same floor from each other, control packet se-
quence numbers (or another election mechanism) determine the
next FH. The complexity of ECFC grows quadratically with the
number of hosts. For each floor transaction,2(n � 1) messages
are required, following the Ricart-Agrawala mutual exclusion so-
lution [19]. Newer quorum or tree-based [18] algorithms for ob-
taining an exclusive token can reduce the number of messages to
O(logn), wheren is the session size. However, these schemes do

not scale well, since the network can easily be flooded with too
many control messages, and significant delay variations between
hosts can eventually deadlock collaborative turn-taking.

Theorem 4 The efficacy of ECFC is

�ECFC =
�

� + 3(+ �) + (n � 1)� + � + 1
�

(5)

t

γ γ τ τ ι+1/

A

τ δ

T

IXXr g

λ

Figure 7: ECFC timeline.

Proof: The timeline for ECFC is shown in Figure 7. The time
per station to send, receive, and update floor information with
every other station is3(+ �). An extra processing time� from
n � 1 stations must be added. Substitution into Eq. 1 results in
Eq. 5.2

In Ring-based Coordination(ECRB), a token rotates in a well-
defined sequence among sites and holding the token determines
the current floor holder, with two subcases: (a) a token claim can
be decided upon before arrival, or during the arrival hold-time, or
only while it visits the local station, and (b) a token can be trans-
ferred immediately after a forward from a station to the next one
in the ring, or only after the releasing station received an acknowl-
edgment. ECRB is particularly suited to ensure totally ordered
and atomic delivery, but does not scale well, since the token walk
time is proportional to the receiver set. In addition, the prede-
fined traversal order may cause artificial delays in the interactions
between particular stations. A token-ring based collaboration sys-
tem has been evaluated by Pendergast [17].

Theorem 5 The efficacy of ECRB is given by

�ECRB =
�(1 � e��(�1+�2))

n
2
(� + + �2) + �(1 � e��(�1+�2)) + � + 1

�

(6)

t

Tt-1 tT

δ τ

X

γ+ δ

t

β2 1β1β τ

At-1 At

Figure 8: ECRB timeline.

Proof: The timeline for ECRB is depicted in Figure 8. The
average utilization is again�U = �Pc, with Pc as the probability
that the token is available in the periodX = �1+�2. This period
includes the time needed to transfer the token to the neighbor
station. The token cycle time is a function of the session size.
On the average, a floor token has to cycle through half the ring
to be transferred. The probability that a floor can be claimed by
a user isPc = 1 � e��(�1+�2). Accordingly, the average turn
lasts �T = n

2
(� + + �2) + �U . The idle time is again� + 1

�
.

Substituting�T , �U and �I into Eq. 1 yields Eq. 6.2

Tree-based Coordination(ECTB) algorithms conduct floor
management in a logical tree structure. Such a tree may reflect
the actual multicast routing tree, or mirror the end-to-end reliable
multicast tree. Control messages are passed along branches of
the tree in a parent-child relation, which reflects multicast group
membership. No specific site alone is hence burdened with the
obligation to make floor allocation decisions, and tokens can wan-
der freely across the tree branches, without being cast into a spe-
cific traversal order other than what multicast group membership
expresses. While various tree-based reliable multicast protocols
have been proposed for highly scalable conferencing [12, 14, 24],
no group coordination mechanism or applications have been de-
veloped yet. The goal for such a protocol is to keep the tree depth

minimal, in order to keep the number of hops for control trans-
missions low. A special case of ECTB is a star-topology, which
is a tree of depth one with a root andn � 1 descendants. The
moderator-driven question board [15] exemplifies this scheme.
Such a centralized scheme suffers as a communication bottleneck
primarily from overload when the request rate increases. In our
analysis, focused on multicast support for turn-taking, we did not
account for this additional individual host processing cost.

Theorem 6 The efficacy of ECTB is

�ECTB =
�

� + 2 + 3� + � + 1
�

(7)

t

T

Xr A

δ

Xg

(γ+τ)(γ+τ) PP Pτ ι

I

+1/ λ

Figure 9: ECTB timeline.

Proof: The timeline for ECTB is depicted in Figure 9. With
multicasting, a request-reply pair takes two and� , plus another
� to signal completion of the turn. A close correlation between
the control tree and the end-to-end multicast tree is assumed. The
idle period is again� + 1

�
. Substituting into Eq. 1 gives Eq. 7.

Note that we normalize the pathlength for a generic tree coordi-
nation protocol to�P = 1, assuming that the host tree mirrors the
multicast routing tree. Under this assumption, each of the dis-
cussed protocols must on the average traverse the same number
of hosts on the path from the sender to a group of receivers.2

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a
cy

:
E

ta
 (

M
C

)

Offered load: G

Comparison for large sessions / high latency

ICIC
ICSM
ICAS

ECFC
ECRB
ECTB

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a
cy

:
E

ta
 (

M
C

)

Offered load: G

Comparison for large sessions / high latency

ICIC
ICSM
ICAS

ECFC
ECRB
ECTB

Figure 10: Efficacy for large groups and high link latency.

Results
Traces from MBone sessions [13], sampled over a period of sev-
eral hundred hours, indicate a group size ranging from 150 to
over 550 participants. As a snapshot to indicate the advantages
of tree-based group coordination, Figure 10 plots the efficacy of
discussed schemes for a large session,n = 300, and wide-area
collaboration,� = 400ms. Such a scenario can occur for Inter-
net collaboration, with an assumed latency that has been observed
to be the minimum for acceptable audio conferencing quality [9].

We can see that a generic tree-based floor-control protocol
exhibits superior stability and scalability with regard to higher
loads. With an aggregated control scheme, floor control remains
effective despite a large number of directives being exchanged
among participants. Since such a protocol taps into the given
infrastructure of a pre-built host tree, there is no additional setup
cost. A more comprehensive analysis and thorough discussion of
other scenarios, varying group size and latency, can be found in
Ref. [7].

4 PROTOCOL DESCRIPTION

We outline the basic operation of the Hierarchical Group Coor-
dination Protocol (HGCP). For a more detailed description and
proof of correctness for HGCP we refer to [7]. Our goal is to ex-
ploit the best-effort delivery mechanism of IP multicast in a scal-
able and efficient tree protocol for reliable group coordination.
The protocol consists of two stages: (1) control tree construction,
and (2) control message dissemination. In order to consistently
account for floor control messaging, we assume ordered message
delivery between hosts. Ordering in multicast trees has been tack-
led for example by Jia [10].

We distinguish between four types of nodes in a propagation
tree: the source node is the current FH and transmits information
to the receiver set; hop nodes are positioned on the path from the
source to the receivers, and are called extra nodes, if they are not
contained in the receiver set; destination nodes are members of
the receiver set. Each of these nodes can contend for any floor
at any time and become FH. In a multicast collaboration session
with multiple floors and floor holders, it is not practical to man-
age separate control trees, one per floor. Similar to the concurrent
reliable multicast scheme proposed in [12], we hence assume a
single shared control tree with a branching factorB, which can
be re-hung as a control tree with any other node as the root and
FH, while preserving the property that all nodes haveB children.
Ideally, the control tree correlates closely to the multicast rout-
ing tree, as built by multicast routing protocols such as DVMRP,
CBT, or PIM [16].

We focus on an approach comparable to receiver-initiated mul-
ticast [12], which lets contending stations in the group-coordinated
session maintain state information about a particular floor. Floor
state information can hence be passed along between contend-
ing stations, without requiring the controller station to contact
each station. For this purpose, each station maintains two timers.
Timer one is employed to detect whether a floor control message
has been lost. Timer two is used to delay repetitive control mes-
saging to the controller, in the hope that a near-by station is able to
report an update from the controller station. The collective state
information about all floors is hence distributed across the control
tree. Note that HGCP is independent of a particular reliable mul-
ticast implementation, but relies on the failure-free transmission
of control packets rendered by such a protocol. Transmission of
control packets concerning floor states is based on the abstrac-
tion of apropagation group, which consists of processes (users,
hosts) scattered in the network, which are interested in coordi-
nating their activities on a particular resource set. Propagation
groups can be built by tapping into the information provided by a
session directory service.

The control tree of HGCP organizes group participants into a
hierarchy of subgroups orcoteries. Each such coterie has agroup
manager, which acts as a representative for all other members in
the group. The group manager is responsible for querying control
states of floors for its group members. For reasons of simplicity
and more efficient group coordination, it can be assumed that FC
and FH are identical for a particular floor at all times. If multiple
FH are allowed in parallel for a particular resource, it is necessary
to separate the FC and FH roles.

A construction method for a control tree for group coordi-
nation on top of a multicast routing tree is outlined in [12]. A
nodex in the resulting hierarchical acknowledgment tree, whose
edges are directed from children to their parents, is labeled with a
unique labell(x), which is the prefix of all children ofx. Label-
ing is top-down, and the maximal length of labels in a tree reflects
its depth. The label alphabet can consist of any set of symbols
with a defined order (in the simplest case integers). Note that
labels in the tree remain constant for the lifetime of the session,
except in cases when nodes fail or new nodes join a subtree. Rare
cases when relabeling is necessary are discussed in [12]. Adding
a node in the tree involves only the new node as a child and its par-
ent, while deletions require relabeling of the subtree of the deleted
node. The labeling scheme allows forimplicit routing of control
messages, nodes can remain anonymous in the interaction, yet
address each other efficiently by using label prefix comparison,

and only a single tree is needed for concurrent multicast. Sup-
port for implicit labeling and routing at the multicast router level
has been proposed by Levine and Garcia-Luna in [11]. A sample
scenario is shown in Figure 11. In this scenario, a ternary control
tree is labeled from alphabetf0; 1; 2g, with FH = d located at
l(d) = 110.

��
��
��

��
��
�����

���
���
���

10

100

1010 1011

b

c

1

FHa 1001

111

112

11

110d
101

GRANTREQUEST

MC Routing
RMCast

Session Ctrl
FLOOR CTRL

Collab Apps

1000

100
10
1
11
110

a

d

Figure 11: Sample HGCP scenario.

An example, how control relegation works, is the following:
at all times, nodes maintain a local record about the labeled posi-
tion of the FH in the tree. Any node can assume this role, when
being granted the floor. A control directive (CD) is a tuple of the
format

(flsg, fldg, t, TTL, ID, f)

containing an ordered list of source labelsflsg, a list of destina-
tion labelsfldg, a sequence number or timestampt, a time-to-live
TTL, an identifierID, and a floorf . The floor fieldf allows
to discern media types, priorities, and the operational semantics
(e.g., access control) of a resource. This format allows to send
and receive composite floor directives and reduce the amount of
control traffic, which is particularly critical for large and highly-
interactive sessions with many floors and resources.

Assume that node a withl(a) = 1001 wants to submit aFRQ
CD, and findsFH = d, with l(FH) = 110, in its local record.
The request percolates up in the tree across the root node and
down on the right branch according to the label prefix semantics.
The label format allows for self-routing of control directives and
addressing of specific nodes in the multicast group, simply by
knowing their logical address, and without nodes having to iden-
tify themselves otherwise. Until FH receives aFRQ, it multicasts
resource state updates to its immediate neighbors, which forward
the information to the session remainder. CDs areaggregated
at hop or extra nodes, by coalescing requests or responses from
neighbor nodes into single CDs and forwarding them accordingly.
Concurrent submissions are resolved by attaching a timestamp to
each control packet, which gives preference to the earliest submit-
ted request. Noded, after completion of its resource operation,
multicasts back aFGTmessage to nodea, which also informs all
other nodes in the session via flooding about the new position of
FH = a. Each node maintains an entry for each floor on the rela-
tive path direction (next hop) in the tree, where FHs are currently
to be found. An FH also may keep a record that indicates the
number and type of floors granted to each receiver, and establish
a fairness policy based on service priorities. Furthermore, denied
requests may be queued at FH and held pending, until they can be
fulfilled, or are timed out. Implicit routing allows also to address
coterie members in a floor-controlled multicast group by listing
individual labels as destinations, which is also an elegant solu-
tion to the anycasting problem. No updates regarding the position
of the FC and FH are disseminated, if these role assignments are
static.

On the average, leaf nodes must compare more bits in the
control routing procedure, than nodes close to the root. The label
cardinality depends on the tree branching factor and the session
size. A tree withn session participants and branching factorB
haslogBn levels, withlog2n bits needed for node labels. The
virtual re-hanging procedure on the tree may cause imbalances
with regard to the average pathlength and create unfairness in the
time-based allocation of floors. However, since spatio-temporal
information regarding control message origin is available to the
respective FH, floor allocation can include also criteria such as

distance and promote uniform treatment of stations. A basic al-
gorithm for labeling and routing of floor control messages, in-
cluding onlyFRQandFRLcases and separation of FC and FH, is
shown in Figure 12.

set session graphS CS ;
set floorfi � F state(resourcerj);

/* initialize floors, i natural, for each resource */

protocol HGCP ();
start sessionCS ;
LABEL CONTROL TREE (S);
whileCS is running
begin

foreachfi do
ROUTE CONTROL MESSAGE ();

end

LABEL CONTROL TREE (graph G)
begin

construct tree T� E from G with rootr;
setl(r) = 1;
LABEL SUBTREE(r, T, l(r));

end

LABEL SUBTREE (node s, tree T, integer�)
begin

set� = 0;
foreach child c of s do

setl(c) = � � �;
increment�;
LABEL SUBTREE(c, T, l(c));

end

ROUTE CONTROL MESSAGE (tree T, node x, node c, directive p)
begin

if jl(x)j > jl(c)j
or if jl(x)j 6= prefix of jl(c)j

then route p to parent of x;
else ROUTECONTROL MESSAGE

(subtree(T), children(x), node c, directive p);
/* multicast to the children ofx with matching prefix */
HANDLE FLOOR DIRECTIVE(node x, node c, directive p);
/* if local node is destination, handle floor directive */

end

HANDLE FLOOR DIRECTIVE (node x, node c, directive p)
begin /* for floor f */

case p
FRL: if c == FC

then set FH= nil;
FRQ: if c == FC and FH== nil

then c sendsFGTto x;
else ifc == FH
or if FH 6= nil

then FH sendsFDYto coterie;
/* percolate floor busy message back along tree */

end case
end

Figure 12: Basic HGCP Specification

5 CONCLUSION

Software to support multiparty interactivity and coordination be-
comes more important with improvements in networking technol-
ogy, allowing more sophisticated ways of telepresence and real-
time collaboration. The current state-of-the-art of reliable mul-
ticast uses single shared acknowledgment trees to warrant scal-
able and failure free message dissemination within large multicast
groups. A primary application area for such protocols is telecol-
laboration, however, protocols to coordinate large groups with re-
gard to resource access are lacking. This paper compared known
solutions for permission- and token-based floor control and de-
scribed the first tree-based floor control protocol embedded with
reliable hierarchical multicast. An implementation and further
performance assessment are under way.

6 ACKNOWLEDGMENTS

This work was supported by the Defense Advanced Research
Projects Agency (DARPA) under grant F19628-96-C-0038.

7 REFERENCES

[1] L. Aguilar, J. J. Garcia-Luna-Aceves, D. Moran, E.J. Craighill, and
R. Brungardt. Architecture for a multimedia teleconferencing system.
In Proc. ACM SIGCOMM, pages 126–136, Aug. 1986.

[2] S. R. Ahuja and J. R. Ensor. Coordination and control of multimedia
conferencing.IEEE Comm. Mag., 30(5):38–43, May 1992.

[3] E. Amir, S. McCanne, and R. Katz. Receiver-driven bandwidth adap-
tation for light-weight sessions. InProc. ACM Multimedia, Seattle,
WA, Nov. 1997.

[4] D. Bertsekas and R. Gallager.Data networks. Prentice Hall, Engle-
wood Cliffs, N.J., 2nd edition, 1992.

[5] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson.
MMConf: An infrastructure for building shared multimedia applica-
tions. InProc. ACM CSCW, pages 637–650, Los Angeles, CA, Oct.
1990.

[6] S. Deering. Host extensions for IP multicasting. RFC-1112, August
1989.

[7] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Efficacy of floor control
protocols in distributed multimedia collaboration.Cluster Computing,
submitted for publication 1999.

[8] J. J. Garcia-Luna-Aceves, E. Craighill, and R. Lang. Floor manage-
ment and control for multimedia conferencing. InProc. IEEE Mul-
timedia, 2nd COMSOC Int. Multim. Comm. Worksh., Ottawa, Can.,
Apr. 1989.

[9] E. A. Isaacs and J. C. Tang. What video can and cannot do for col-
laboration: a case study.Multimedia Systems J., 2(2):63–73, Aug.
1994.

[10] X. Jia. A total ordering multicast protocol using propagation trees.
IEEE Trans. Par. and Dist. Sys., 6(6):617–627, June 1995.

[11] B. N. Levine and J. J. Garcia-Luna-Aceves. Improving internet multi-
cast with routing labels. InProc. IEEE ICNP, pages 241–250, Atlanta,
GA, Oct. 1997.

[12] B. N. Levine, D. Lavo, and J. J. Garcia-Luna-Aceves. The case for
concurrent reliable multicasting using shared ack trees. InProc. ACM
Multimedia, Boston, MA, Nov. 1996.

[13] J. Liebeherr and B. S. Sethi. A scalable control topology for multicast
communication. InProc. IEEE Infocom, San Francisco, Mar./Apr.
1998.

[14] J. C. Lin and S. Paul. RMTP: A reliable multicast transport protocol.
In Proc. IEEE Infocom, pages 1414–1425, Mar. 1996.

[15] R. Malpani and L. Rowe. Floor control for large MBone seminars. In
Proc. ACM Multimedia, pages 155–163, Seattle, WA, Nov. 1997.

[16] T. Maufer and C. Semeria. Introduction to IP multicast routing. Inter-
net Draft, URL http://www.ietf.org/internet-drafts/draft-ietf-mboned-
intro-multicast-03.txt, July 1997.

[17] M. O. Pendergast. Multicast channels for collaborative applications:
design and performance evaluation.Computer Communication Re-
view, 23(2):25–38, April 1993.

[18] K. Raymond.A tree-based algorithm for distributed mutual exclusion.
ACM Trans. on Comp. Sys., 7(1):61–77, Feb. 1989.

[19] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual ex-
clusion in computer networks.Comm. ACM, 24(1), 1981.

[20] S. Sarin and I. Greif. Computer-based real-time conferences.IEEE
Computer, 18(10):33–45, Oct. 1985.

[21] K. Srinivas, R. Reddy, et al. MONET: A multimedia system for con-
ferencing and application sharing in distributed systems. Technical
report, Concurrent Engineering Research Center, West Virginia Uni-
versity, Morgantown, WV, Feb. 1992. CERC-TN-RN-91-009.

[22] H. Takagi and L. Kleinrock. Output processes in contention packet
broadcasting systems.IEEE Trans. Commun., COM 33(11):1191–
1199, 1985.

[23] K. Watabe, S. Sakata, K. Maeno, H. Fukuoka, and K. Marbara. Dis-
tributed multiparty desktop conferencing system: MERMAID. In
Proc. ACM CSCW, pages 27–38, Los Angeles, CA, Oct. 1990.

[24] R. Yavatkar, J. Griffioen, and M. Sudan. A reliable dissemination pro-
tocol for interactive collaborative applications. InProc. ACM Multi-
media, pages 333–344, San Francisco, Nov. 1995.

[25] R. Yavatkar and K. Lakshman.Communication support for distributed
collaborative applications.Multimedia Systems J., 2(2):74–88, Aug.
1994.

