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Abstract

We extend the numerical methods of [10], known as the Markov chain
approximation methods, to controlled general nonlinear delayed reflected
diffusion models. The path and the control can both be delayed. For the
no-delay case, the method covers virtually all models of current interest.
The method is robust, the approximations have physical interpretations
as control problems closely related to the original one, and there are many
effective methods for getting the approximations, and for solving the Bell-
man equation for low-dimensional problems. These advantages carry over
to the delay problem. It is shown how to adapt the methods for get-
ting the approximations, and the convergence proofs are outlined for the
discounted cost function. Extensions to all of the cost functions of cur-
rent interest as well as to models with Poisson jump terms are possible.
The paper is particularly concerned with representations of the state and
algorithms that minimize the memory requirements.

Key words: Optimal stochastic control, numerical methods, delay stochastic equa-

tions, numerical methods for delayed controlled diffusions, Markov chain approxima-

tion method.

Introduction

The aim of this paper is to extend the numerical methods of [10], known as the
Markov chain approximation methods, to controlled delayed diffusion models.
We work with a general reflected controlled diffusion model with delays. The
basic idea is the approximation of the control problem by a control problem
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with a suitable approximating Markov chain model, solve the Bellman equation
for the approximation, and then prove the convergence of the optimal costs to
that for the original problem as the approximation parameter goes to zero. The
method is robust, the approximations have physical interpretations as control
problems closely related to the original one, and there are many effective meth-
ods for getting the approximations, and for solving the Bellman equation if the
dimension is not too large. For example, for the no-delay case, the code [5, 11]
exploits multigrid, accelerated Gauss-Seidel, and approximation in policy space
methods.

The applications in [10] cover virtually all of the usual (non-delay) models
and cost functions, including jump-diffusions, controlled variance and jumps,
singular controls, etc. But to focus on the issues that are different for the
delay case and not excessively repeat the development in the reference, we will
consider only the diffusion case without variance control. The extensions to the
more general cases cited above adapt the methods in the reference similarly to
what is done for the simpler case treated here.

Models for many physical problems have reflecting boundaries. They occur
naturally in models arising in queueing/communications systems [8], where the
state space is often bounded owing to the finiteness of buffers and nonnegativity
of their content, and the internal routing determines the reflection directions on
the boundary. Numerical analysis for state-space problems is usually done in
a bounded region. A standard way of bounding a state space is to impose a
reflecting boundary, if one does not exist already. One selects the region so that
the boundary plays a minor role. Alternatively, one can stop the process on exit
from a bounded given set. In order to focus on the concepts that are new and
essential in the delay case, most of the development will be for one-dimensional
problems. As in [10] dimensionality is an issue only in that the computational
time increases very rapidly as the dimension increases. Some comments on
higher dimensional models are given at the end of Section 5.

Reference [7] has a brief discussion showing how the Markov chain approx-
imation applies to uncontrolled delay equations. Only the simplest procedure
was discussed, and there was no concern with the control problem, or with
computationally efficient representations of the state. There is an extensive lit-
erature on the delayed linear system, quadratic cost, and white Gaussian noise
case [2, 4, 9, 12, 15]. As for the no-delay case, this is essentially the same whether
there is a driving noise or not. The problem reduces to the study of an abstract
Ricatti equation. The paper [15] develops a “dual variable” approach to the
problem where the control and the path variables are delayed. The develop-
ment depends heavily on the linear structure and as yet has not been extended
to the general nonlinear stochastic reflected diffusion problem.

The next section introduces the model and assumptions. In much of the
development, for pedagogical purposes we divide the discussion into a part where
only the path is delayed in the dynamics and a part where both the control and
path are delayed. The cost function is confined to the discounted case. The
existence of an optimal control is proved in Section 2. This is of interest for
its own sake, but is also an introduction to the weak convergence methods used
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for the proof of convergence of the numerical procedure as the approximation
parameter goes to zero.

The basic ideas and proofs of the Markov chain approximation method are
extensions of those for the no-delay case in [10], yet are not obvious. Due to this
a review of the no-delay case is useful to set the stage and refresh familiarity
with the basic concepts. This is done in Section 3. The fundamental assumption
required for the convergence of the numerical procedure is the so-called “local
consistency condition” [10]. This says no more than that the conditional mean
change (resp, variance) in the state of the approximating chain is proportional
to the drift (resp, covariance), modulo small errors. This would seem to be
a minimal condition. In general, it need not hold everywhere (see. e.g., [10,
Section 5.5]). To help focus ideas in the later discussion of the delay system, a
simple example of construction of the chain is given and various related matters
discussed. There are two types of construction that are of interest, called the
“explicit” and “implicit” methods, owing to the similarity of one particular
way of constructing them to methods of the same names for solving parabolic
PDE’s. Each has an interesting role to play for the delay model. In Section
4, we extend the concepts of Section 3 to the delay case. The notion of local
consistency is still fundamental. The approximating chains are constructed
almost exactly as they are for the no-delay case. The proofs of convergence in
[10] are purely probabilistic, being based on weak convergence methods. The
idea is to interpolate the chain to a continuous-time process in a suitable manner,
show that the Bellman equation for the interpolation is the same as for the chain,
and then show that the interpolated processes converge to an optimal diffusion
as the approximating parameter goes to zero. The interpolations of interest are
introduced and the convergence theorems are stated in Section 4. We try to
bring the delay case into a form where the results of [10] can be appealed to for
the completion of the algorithm or proof. The proof of convergence is in Section
8, where mainly the parts of the convergence proof that are different for the
delay case are given. We have tried to present the minimal details that yield a
coherent picture of the convergence proofs.

The state of the problem, as needed for the numerical procedure, consists
of a segment of the path (over the delay interval) and of the control path as
well (if the control is also delayed). This can consume a lot of memory. Sec-
tion 5 is concerned with efficient representations of the state data for chains
constructed by the “explicit” method. Sections 6 and 7 are concerned with the
“implicit”method,” which can be advantageous as far as memory requirements
are concerned. In these sections, attention is confined to to the case where only
the path is delayed. If the control is also delayed, then the problem is more
complicated and reasonably efficient representations are not yet available.
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1 The Model

The model. The maximum delay is denoted by τ > 0. The solution path is
denoted by x(·). Let U denote the compact control-value space. The controls
u(·) are U-valued, measurable and nonanticipative with respect to the driving
Wiener process (this defines the set of admissible controls). x̄(t, θ) is used to
denote the path segment x(t+ θ), θ ∈ [−τ, 0], τ > 0, and we write x̄(t) = x̄(t, ·).
The function ū(t) is defined analogously from u(·). The solution x(t) is confined
to a finite interval G = [0, B] by reflection The reflection process is denoted
by z(·). Its purpose is to assure that x(t) does not escape from the interval
G, and is the minimum “force” necessary. For more information on reflected
(non-delay) SDE’s see [10] or [8].

Delay in the path only. First consider systems where the control is not de-
layed and we use the reflected controlled delayed stochastic differential equation
model, where w(·) is a standard Wiener process:1

dx(t) = b(x̄(t), u(t))dt + σ(x̄(t))dw(t) + dz(t), x̄(0) given. (1.1)

We can write z(t) = y1(t) − y2(t), where y1(·) (resp. y2(·)) is a continuous and
nondecreasing processes that can increase only at t where x(t) = 0 (resp., when
x(t) = B). Except for the LQG problem (without a reflection term) (see., e.g.,
[2]), little is known about the control of such systems. An example of (1.1) is

dx(t) = b1(x(t), u(t))dt + b2(x(t− τ), u(t))dt + σ(x(t))dw(t) + dz(t).

For a set S in some metric space and t1 < t2, let D[S; t1, t2] denote the
set of S-valued functions that are right continuous on [t1, t2), have left-hand
limits on (t1, t2], and with the Skorohod topology [1, 3]. If S is the set of real
numbers, then we write just D[t1, t2], or D[t1,∞) if t2 = ∞. Since b(·) depends
on the “segment” of the x(·)-process over an interval of length τ , its domain is a
function space and we need to define the space of such segments. In work on the
mathematics of delay equations it is common to use the path spaces C[−τ, 0]
(with the sup norm topology) or L2[−τ, 0]. Any of these could be used here.
But the Skorohod space D[−τ, 0] is more appropriate for the approximation
and weak convergence analysis of concern and involves no loss of generality. If
the model is extended to include a Poisson-type jump term, then the use of
D[−τ, 0] is indispensable. Note that if fn(·) converges to f(·) in D[t1, t2] and
f(·) is continuous, then the convergence is uniform on any finite interval.

We will use x̂, ŷ (or x̂(·), ŷ(·)) to denote the canonical point in D[G;−τ, 0].
A shortcoming of the Skorohod topology is that the function defined by f(x̂) =
x̂(t), for any fixed t ∈ [−τ, 0], is not continuous (it is measurable). But it is

1By adapting the techniques in [10], a driving Poisson jump process and controlled variance
can also be treated, as can singular controls, boundary absorption and optimal stopping. But
here we aim to concentrate on the issues arising due to the delay without overly complicating
the development.
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continuous at all points x̂(·) that are continuous functions. In our case, all the
solution paths x(·) will be continuous. The following assumption covers the
common case where b(x̄(t), α) =

∑
i bi(x(t− τi), α), 0 ≤ τi ≤ τ , where the bi(·)

are continuous.

A1.1. b(·) is bounded and measurable and is continuous on D[G;−τ, 0] × U at
each point (x̂(·), α) such that x̂(·) is continuous. The function σ(·) is bounded
and measurable and is continuous on D[G;−τ, 0] at each point x̂(·) that is
continuous.

Relaxed controls. For purposes of proving approximation and limit theo-
rems, it is usual and very convenient to work in terms of relaxed controls.
Recall the definition of a relaxed control m(·) [10]. It is a measure on the
Borel sets of U × [0,∞), with m(A × [0, ·]) being measurable and nonantic-
ipative with respect to w(·) for each Borel A ∈ U , and satisfying m(U ×
[0, t]) = t. Write m(A, t) = m(A× [0, t]). The left-hand derivative2 m′(dα, t) =
lim0<δ→0[m(dα, t) −m(dα, t− δ)]/δ is defined for almost all (ω, t). By the def-
initions, m(dα ds) = m′(dα, s)ds. For 0 ≤ v ≤ τ , we write m(dα, ds − v) for
m(dα, s − v) − m(dα, s − ds − v). The weak topology is used on the relaxed
controls. Thus mn(·) converges to m(·) if and only if

∫ ∫
φ(α, s)mn(dα ds) →∫ ∫

φ(α, s)m(dα ds) for all continuous functions φ(·) with compact support.
With this topology, the space of relaxed controls is compact. An ordinary
control u(·) can be written as the relaxed control m(·) defined by its derivative
m′(A, t) = I{u(t)∈A}, where IK is the indicator function of the set K. Then
m(A, t) is the amount of time that the control takes values in the set A by time
t.

Rewriting (1.1) in terms of relaxed controls yields

x(t) = x(0) +
∫ t

0

∫
U
b(x̄(s), α)m(dα ds) +

∫ t

0

σ(x̄(s))dw(s) + z(t)

= x(0) +
∫ t

0

∫
U
b(x̄(s), α)m′(dα, s)ds +

∫ t

0

σ(x̄(s))dw(s) + z(t).
(1.2)

Delays in the control. We will also consider the problem where the control as
well as the path is delayed. Let B[U ;−τ, 0] be the space of measurable functions
on [−τ, 0] with values in U , and let û(·) denote a canonical element of B[U ;−τ, 0].
Then the dynamical term b(·) becomes a function of both x̂, û. Depending on
the applications of interest, there are a variety of choices for the way that the
control appears in b(·). We will use the following quite general assumption,
where ū(t) denotes the function u(t + θ), θ ∈ [−τ, 0].

A1.2. Let µ(·) be a bounded measure on the Borel sets of [−τ, 0] and let b(·) be
a bounded measurable function on D[G;−τ, 0]×U×[−τ, 0]. For each v ∈ [−τ, 0],

2In [10] mt was used to denote the derivative. But this notation would be confusing in the
context of the notation required to represent the various delays in this paper.
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b(x̂, α, v) is continuous in (x̂, α) at each point x̂ that is a continuous function.
For ordinary controls u(·), the drift term at time t is assumed to have the form
(replacing b(x̄(t), u(t)) in (1.1))

b̄(x̄(t), ū(t)) =
∫ 0

−τ

b(x̄(t), u(t + v), v)µ(dv).

For a relaxed control m(·), the integral of the drift term then has the form∫ t

0

∫ 0

−τ

∫
U
b(x̄(s), α, v)m′(dα, s + v)µ(dv)ds

=
∫ 0

−τ

[∫ t

0

∫
U
b(x̄(s), α, v)m(dα, ds + v)

]
µ(dv).

(1.3)

An example of the general form covered by (A1.2) is, for 0 ≤ τi ≤ τ ,

dx(t) = x(t)x(t− τ1)u(t− τ2)dt+ u2(t− τ3)dt+ b0(x̄(t))dt+ σ(x̄(t))dw + dz(t),

in which case µ(·) is concentrated on the two points {−τ2,−τ3}. What is not
covered are “cross” terms in the control such as u(t−τ1)u(t−τ2), where τ1 �= τ2.
The full system equation is

x(t) = x(0)+
∫ 0

−τ

[∫ t

0

∫
U
b(x̄(s), α, v)m(dα, ds + v)

]
µ(dv)+

∫ t

0

σ(x̄(s))dw(s)+z(t),

(1.4)
and the initial data is (x̄(0), ū(0)). Let m̄(t) denote the segment of m(·) on
[t− τ, t].

Weak-sense solutions. If w(·) is a Wiener process on [0,∞) and m(·) is
a relaxed control on the same probability space and it is defined on either
[−τ,∞) or [0,∞), and is nonanticipative with respect to w(·), then we say
that the pair is admissible or, if w(·) is understood, that m(·) is admissible.
Suppose that, given any admissible pair w1(·),m1(·), and x̄1(0) defined on the
same probability space, (m1(·), x̄1(0)) is nonanticipative with respect to w1(·),
and there is a probability space on which is defined a set (x(·), w(·),m(·), z(·))
solving (1.1) or (1.4), where (x(·),m(·), z(·)) is nonanticipative with respect
to the Wiener process w(·), (w(·),m(·), x̄(0)) has the same probability law as
(w1(·),m1(·), x̄1(0)), and the probability law of the solution set does not depend
on the probability space. Then we say that there is a solution in the weak sense
[6]. If the control is delayed, then it will be defined on the interval [−τ,∞). Thus
the nonanticipativity of (m(·), x̄(0)) implies the independence of (m̄(0), x̄(0))
and w(·). Such independence will always hold. We always assume the following
condition.

A1.3. There is a weak-sense unique weak-sense solution to (1.1) and (1.4) for
each admissible relaxed control and initial data.
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The techniques that are used to prove existence and uniqueness for the no-delay
problem can be adapted to the delay problem. For example, use (A1.2) and
the Lipschitz condition |b(x̂, α, v)− b(ŷ, α, v)| ≤ K sup−τ≤s≤0 |x(s)− y(s)|, and
a standard Picard iteration. Alternatively, one can use the Girsanov measure
transformation methods [8, 10]. See also [13, Section 1.7] for the uncontrolled
problem.

The discounted cost function. To simplify the discussion, throughout the
paper we focus on a discounted cost function. Let β > 0, let c = (c1, c2) be a
given constant, and let Em

x̂ denote the expectation under the initial condition
x̂ = x̄(0), when the relaxed control m(·) is used. Then the cost function for
(1.1) is

W (x̂,m) = Em
x̂

∫ ∞

0

∫
U
e−βt [k(x̄(t), α)m′(dα, t)dt + c′dy(t)] , (1.5)

V (x̂) = inf
m

W (x̂,m),

where the inf is over the admissible relaxed controls, and k(·) is assumed to
satisfy the conditions on b(·) in (1.1).

For a relaxed control m(·), let m̄(0) denote the segment m(·, s), s ∈ [−τ, 0].
Write m̂ for the canonical value of m̄(0). For (1.4), the cost function is, where
k(·) is assumed to satisfy the conditions on b(·) in (A1.2),

W (x̂,m) = Em
x̂

∫ ∞

0

∫ 0

−τ

∫
U
e−βt [k(x̄(t), α, v)m′(dα, t + v)µ(dv)dt + c′dy(t)] ,

(1.6)
V (x̂, m̂) = inf

m
W (x̂,m),

where the infimum is over all relaxed controls with initial segments m̄(0) = m̂.3

Recall that, in our notation, for v ≥ 0, m′(dα, t− v)dt = m(dα, dt− v).

2 Preliminary Results: Existence of an Optimal
Control

Theorem 2.1 establishes the existence of an optimal relaxed control. Since (1.1)
is a special case of (1.4), we work with (1.4). The proof of existence closely
follows the standard procedure for the no-delay problem, say that of [10, The-
orem 10.2.1], and we will only outline the procedure and note the differences.

3Since we are working with weak-sense solutions, the Wiener process might not be fixed.
For example, if Girsanov measure transformation methods are used, then the Wiener process
will depend on the control. Then the inf in (1.5) or (1.6) should be over all admissible pairs
(m(·), w(·)), with the given initial data. But to simplify the notation, we write simply infm.
This is essentially a theoretical issue. The numerical procedures give feedback controls and all
that we need to know is that there is an optimal value function to which the approximating
values will converge.
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Theorem 2.2 says that approximations to the controls give approximations to
the cost, and the proof is nearly identical to that of Theorem 2.1. Theorem 2.3
asserts that the use of relaxed controls does not affect the infimum of the costs.
The no-delay form is [10, Theorem 10.1.2] and the proof is omitted since the
adjustments for the present case are readily made, given the comments in the
proof of Theorem 2.1.

Theorem 2.1 Assume (A1.2)–(A1.3). Then there is an optimal control for any
fixed initial condition x̂, m̂, where x̂ is continuous on [−τ, 0]. I.e., there is a
set (x(·), w(·),m(·), z(·)) solving (1.4), where (x(·),m(·), z(·)) is nonanticipative
with respect to the Wiener process w(·), m̄(0) = m̂, x̄(0) = x̂, and W (x̂,m) =
V (x̂, m̂).

Proof. Let mn(·) be a minimizing sequence of relaxed controls, with associated
solutions xn(·), zn(·), with x̄n(0) = x̂, Wiener processes wn(·), and m̄n(0) = m̂.
Write zn(·) = yn1 (·) − yn2 (·). Thus

xn(t) = x̂(0)+∫ 0

−τ

[∫ t

0

∫
U
b(x̄n(s), α, v)mn(dα, ds + v)

]
µ(dv) +

∫ t

0

σ(x̄n(s))dwn(s) + zn(t).

(2.1)
The sequence (xn(·),mn(·), yn(·), wn(·)) is tight and all weak-sense limit pro-
cesses are continuous, as follows. The tightness of the (wn(·),mn(·)) and the
continuity of their weak-sense limits are obvious, as is the Wiener property
of any weak-sense limit of wn(·). The processes defined by the ordinary and
stochastic integral terms of (2.1) are also tight and all weak-sense limits are
continuous. The tightness and asymptotic continuity of the yn(·) can be proved
by contradiction. If it is false, then there will be a jump of xn(·), asymptotically,
into the interior of [0, B], which is impossible, since the yn(·) can change only on
the boundary. Thus the asymptotic continuity assertion holds for (xn(·), yn(·)).

Now, take a weakly convergent subsequence with limit (x(·),m(·), y(·), w(·)),
index it by n also, and use the Skorohod representation [3, page 102], so that
we can assume that the convergence is w.p.1 in the topologies of the spaces of
concern. By the weak convergence, we must have x(t) ∈ [0, B], and that y1(·)
(resp., y2(·)) can change only at t where x(t) = 0 (resp., where x(t) = B). Since
sups≤t |xn(s) − x(s)| → 0 for each t > 0, x̄n(t) → x̄(t), uniformly on any finite
interval, all w.p.1. Then, (A1.2) implies that, for all v ∈ [−τ, 0],

sup
s≤t,α

|b(x̄n(s), α, v) − b(x̄(s), α, v)| → 0

w.p.1, and also for σ(·), k(·) replacing b(·). The last sentence and the continuity
and boundedness assumptions (A1.2) yield

∫ t

0

∫
U
b(x̄n(s), α, v)mn(dα, ds− v) →

∫ t

0

∫
U
b(x̄(s), α, v)m(dα, ds− v)

8



for all t ≥ 0, v ∈ [−τ, 0], w.p.1. From this it follows that the first integral in
(2.1) converges to the process obtained when the superscript n is dropped.

Nonanticipativity is shown as follows, also following the reference. Let
gj(·), j ≤ J, be continuous functions with compact support and write

〈m, gj〉 (t) =
∫ t

0

∫
U
gj(α, s)m(dα ds).

For arbitrary t > 0 and integer I > 0, let si ≤ t for i ≤ I, and let h(·) be an
arbitrary bounded and continuous function. By the nonanticipativity for each
n,

Eh (xn(si), wn(si), yn(si), 〈mn, gj〉 (si), i ≤ I, j ≤ J)×

(wn(t + τ) − wn(t)) = 0.
(2.2)

By the weak convergence and the continuity of the limit processes, (2.2) holds
with the superscript n dropped. Now, the arbitrariness of h(·), I, J, si, t, gj(·)
implies that w(·) is a martingale with respect to the sigma-algebra generated
by (x(·), w(·), z(·),m(·)). Hence the nonanticipativity of the limit processes.

The convergence of the stochastic integral is obtained by an approximation
argument. For a measurable function f(·) and κ > 0, let fκ(·) be the ap-
proximation that takes the value f(nκ) on [nκ, nκ + κ). Then, by the weak
convergence, ∫ t

0

σ(x̄n
κ(s))dwn(s) →

∫ t

0

σ(x̄κ(s))dw(s),

The left side can be made arbitrarily close to the stochastic integral in (2.1),
in the mean square sense, uniformly in n, by choosing κ small enough. By the
nonanticipativity, as κ → 0 the right hand term converges to the stochastic
integral with x̄(·) replacing x̄κ(·). Finally, by the weak convergence and the
minimizing property of mn(·), W (x̂,mn) → W (x̂,m) = V (x̂), the infimum of
the costs.

Theorem 2.2. Assume (A1.2)–(A1.3). Let admissible (x̄n(0), m̄n(0)) converge
weakly to (x̂, m̂). Then V (x̄n(0), m̄n(0)) → V (x̂, m̂).

The next theorem asserts that the use of relaxed controls does not change
the minimal values. See [10, Theorem 10.1.2] for the no-delay case. The proof
depends on the fact that for any relaxed control m(·) one can find a sequence
of ordinary controls un(·), each taking a finite number of values in U , such that
(x̂,mn(·), w(·)) converges weakly to (x̂,m(·), w(·)) where mn(·) is the relaxed
control representation of un(·).

Theorem 2.3. Assume (A1.2)–(A1.3). Fix the initial control segment u1(θ), θ ∈
[−τ, 0], and let m̄1(0) be the relaxed control representation of this ordinary con-
trol segment ū1(0). Then

inf
u(·)

W (x̂, u) = inf
m

W (x̂,m),

9



where the infu (resp., infm) is over all controls (resp., relaxed controls) with
initial segments ū1(0) (resp., m̄1(0).

3 A Markov Chain Approximation: The No-
Delay Case

Local consistency. In this section we review the basic ideas for the no-delay
case as preparation for the treatment of the delay case in the next section.
Keep in mind that the restriction to one dimension is for expository simplicity
only. The numerical method is based on a Markov chain approximation to the
diffusion [10]. For an approximation parameter h > 0, and B assumed to be an
integral multiple of h, discretize the interval [0, B] as Gh = {0, . . . , B − h,B}.
At 0 or B, the process (1.1) or (1.4) is still a diffusion and the drift or stochastic
integral terms might try to force it out of [0, B]. But then the reflection process
cancels those effects and prevents exit. For the approximation, the analog is
to still approximate the diffusion at 0 and B, as at any interior point of Gh.
But if the chain goes from 0 to −h or from B to B + h, it will be immediately
reflected back to Gh. The full state space, including the reflecting boundary
points, is denoted by G+

h = {−h, 0, h, . . . , B,B + h}. Let Uh be a finite set
such that the Hausdorff distance between Uh and U goes to zero as h → 0. Let
{ξhn, n < ∞} be a controlled discrete parameter Markov chain on the discrete
state space G+

h with transition probabilities denoted by ph(x, y|α). The α is the
control parameter and takes values in Uh. We use uh

n to denote the random
variable which is the actual control action for the chain at discrete time n. In
addition, suppose that we have an “interpolation interval” ∆th(x, α) such that
supx,α ∆th(x, α) → 0 as h → 0, but ∆th(x, α) > 0 for each h > 0 and x ∈ Gh.
As will be seen, getting such an interval is always an automatic byproduct of
getting the transition probabilities. Define ∆thn = ∆th(ξhn, u

h
n).

The distribution of ξhn+1, conditioned on ξhi , u
h
i , i ≤ n, will depend only on

ξhn, u
h
n, and not on n otherwise. Thus, let Eh,α

x denote the conditional expec-
tation given uh

0 = α, ξh0 = x. Define ∆ξhn = ξhn+1 − ξhn and the martingale
difference4

βh
n =

[
∆ξhn − E

{
∆ξhn

∣∣∣∣ξhi , uh
i , i ≤ n

}]
I{ξhn∈Gh}.

The key condition for convergence of the numerical procedure is the following
“local consistency” condition for ξhn,∆thn. The equalities define bh(·), ah(·). For

4Here and in the sequel, when we say that some process derived from the chain is a
martingale or martingale difference, the relevant filtration is that generated by the path and
control data.
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x ∈ Gh we require:

Eh,α
x ∆ξh0 = bh(x, α)∆th(x, α) = b(x, α)∆th(x, α) + o(∆th(x, α)),

Eh,α
x βh

0 [βh
0 ]′ = ah(x)∆th(x, α) = a(x)∆th(x, α) + o(∆th(x, α)),

a(x) = σ(x)σ′(x),

supω,n |ξhn+1 − ξhn|
h→ 0, supx,α ∆th(x, α) → 0.

(3.1)

Set ph(−h, 0|α) = ph(B + h,B|α) = 1 and ∆th(−h, α) = ∆th(B + h, α) = 0, so
that the states −h,B + h are instantaneously reflecting.

An example of construction of the transition probabilities. Straight-
forward and automatic procedures for getting the ph(·) are discussed in ∆th(·)
[10]. To facilitate understanding the general method of adapting the algorithms
to the delay case in the next section, we will work with one particular simple
approximation. This method is used for illustrative purposes only and any of
the procedures for getting the approximating chain in [10] could be used in-
stead. The method to be discussed gets suitable approximations whether or not
the W (·) introduced below has any derivatives. Its use of finite differences is
only a formal device. The proofs of convergence are all probabilistic, somewhat
analogous to that of Theorem 2.1. Let W (·) be a purely formal solution to the
PDE

1
2
σ2Wxx(x) + bWx(x) + k(x, α) = 0,

where Wx(·) and Wxx(·) denote the first and second derivatives with respect
to x. Suppose that σ2(x) ≥ h|b(x, α)| for all x, α, and use the finite difference
approximations

fxx(x) → f(x + h) + f(x− h) − 2f(x)
h2

,

fx(x) → f(x + h) − f(x− h)
2h

.
(3.2)

For x ∈ Gh, this leads to the finite difference approximation

Wh(x) =

ph(x, x + h|α)Wh(x + h) + ph(x, x− h|α)Wh(x− h) + ∆th(x, α)k(x, α),

where

ph(x, x± h|α) =
σ2(x) ± hb(x, α)

2σ2(x)
, ∆th(x, α) =

h2

σ2(x)
, x ∈ Gh. (3.3)

Condition (3.1) clearly holds, so that the terms in (3.3) can serve as the tran-
sition probabilities and interpolation interval for the approximating chain.5 In

5If σ2(x) < h|b(x, α)| at some x, α, then one-sided difference approximations can be used
there to get the appropriate ph(·),∆th(·) [10].
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the delay case, the correct functional dependence of b(·), σ(·), k(·) on the path
segment will need to be used.

The Bellman equation. After getting the approximating chain, one approx-
imates the cost and writes the Bellman equation, which is

V h(x) = inf
α∈Uh

{
e−β∆th(x,α)

∑
y

ph(x, y|α)V h(y) + k(x, α)∆th(x, α)

}
, x ∈ Gh,

(3.4a)
and, for the boundary states,

V h(−h) = V h(0) + c1h, V h(B + h) = V h(B) + c2h. (3.4b)

The form (3.4a) shows why the ∆th(x, α) were called interpolation intervals.
The procedure just used might be referred to henceforth as the “explicit” method,
in analogy to the procedure of the same name based on the approximation (3.2)
for solving parabolic PDE’s by finite differences. A special case of the results in
[10, Chaper 10] is that V h(x) → V (x), the minimal cost, as h → 0.

A continuous-time approximating Markov process. The following fact
will be useful later. Suppose that the ξhn were replaced by a continuous-time
Markov chain ψh(·) with transition probabilities ph(x, y|α) and whose mean
holding times, when in state x with control value α used, are ∆th(x, α). Let the
cost function be just the no-delay form of (1.5). Then the Bellman equation is
still (3.4), modulo an asymptotically negligible difference in the cost rate and
discount factor [10, Section 4.3]. Thus, either model (ξhn or ψh(·)) could be used
to study the convergence of the numerical procedure.

Constant interpolation interval. For simplicity of coding and consider-
ations of memory requirements in the next section, it will be useful to have
∆th(·) not depending on the state or control. This is easily arranged and the
desired transition probabilities and interpolation interval are readily obtained
from the ph(·),∆th(·) above, as follows. Define the new interpolation interval
∆

h
= infα,ξ∈Gh

∆th(ξ, α). The possibility that ∆
h
< ∆th(x, α) at some x, α

is compensated for by allowing the state x to communicate with itself at that
point. Let p̄h(x, y|α) denote the new transition probabilities. Conditioned on
the event that a state does not communicate with itself on the current transi-
tion, the transition probabilities are as in (3.3). Thus, the general formula for
getting them from the ph(·) is ([10, Section 7.7])

p̄h(x, y|α) = ph(x, y|α)(1 − p̄h(x, x|α)), for x �= y,

p̄h(x, x|α) = 1 − ∆
h

∆th(x, α)
.

(3.5)

Continuous-time interpolations. The proofs of convergence in [10] depend
on continuous-time interpolations of the ξhn process. The simplest interpolation,
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called ξh(·), is piecewise constant with intervals ∆thn. For any t, the interval
[t, t) is considered to be empty. Define thn =

∑n−1
i=0 ∆thi . and define ξh(t) = ξhn

and uh
ξ (t) = uh

n for t ∈ [thn, t
h
n+1). Suppose that ξhn = −h or B + h, a reflecting

state. Then ∆thn = 0 and the interval [thn, t
h
n + ∆thn) is empty. This implies the

important fact that the values of the reflecting states are ignored in constructing
the continuous-time interpolation. This will always be the case. Let mh

ξ (·)
denote the relaxed control representation of uh

ξ (·). It is constant on the intervals
[thn, t

h
n+1) and the derivative on that interval is defined by mh′(A, t) = I{uh

n∈A}.
Then, by (3.1),

ξhn+1 = ξhn + bh(ξhn, u
h
n)∆thn + βh

n + δzhn, (3.6)

where δzhn = δyh1,n − δyh2,n, where δyh1,n = hI{ξhn=−h} and δyh2,n = hI{ξhn=B+h}.
For each t ≥ 0, define the stopping time, where

∑−1
0 = 0,

dh(t) = max

{
n :

n−1∑
i=0

∆thi = thn ≤ t

}
.

Note that dh(t) will never be the index of a reflecting state, since the time
intervals for those are zero. Then

ξh(t) = ξh(0) +
dh(t)−1∑

i=0

bh(ξhi , u
h
i )∆thi + Bh(t) + zhξ (t), (3.7)

where

Bh(t) =
dh(t)−1∑

i=0

βh
i , zhξ (t) =

dh(t)−1∑
i=0

δzhi .

In interpolated and relaxed control form,

ξh(t) = x(0) +
∫ t

0

∫
Uh

bh(ξh(s), α)mh
ξ (dα ds) + Bh(t) + zhξ (t).

Although the fact will not be used in the sequel, it is interesting to note that
Bh(·) is an “approximation to a stochastic integral in the following sense. There
are martingale differences δwh

n whose continuous-time interpolation (intervals
∆thn) converges weakly to a standard Wiener process and βh

n ≈ σ(ξhn)δwh
n in the

sense that [7, Section 6.6]

dh(t)−1∑
n=1

βh
n =

dh(t)−1∑
n=1

σ(ξhn)δwh
n + asymptotically negligible error.

There is another continuous-time interpolation that will be important. Re-
call the comment in the paragraph below (3.4) concerning the equivalence of the
Bellman equations for the sequence ξhn and the continuous-time Markov process
ψh(·). In the proofs of convergence in [10, Chapter 10], this latter process was

13



used since it simplified the proof. It will also be used here for that purpose. For
the delay case, both interpolations ξh(·) and ψh(·) play a role due to the presence
of the segment x̄(t) in the dynamics and the need to approximate it in the dy-
namics of the approximating chain. Let us now formalize the definition of ψh(·).
Let νhn be i.i.d. exponentially distributed variables with unit mean, and inde-
pendent of {ξhn, uh

n}. Define the intervals ∆τhn = νhn∆thn. Then ψh(·) denotes the
continuous-time interpolation of the sequence {ξhn} with intervals {∆τhn}. Let
uh
ψ(·) denote the continuous-time interpolation of the controls {uh

n} with inter-
vals {∆τhn}, and let mh

ψ(·) be its relaxed control representation.6 Analogously,
let Mh(·) (resp., zhψ(·), yhi,ψ(·)) be the continuous-time interpolation of {βh

n}
(resp., of {δzhn, δyhi,n}) with intervals {∆τhn}. Write yhψ(·) = (yh1,ψ(·), yh2,ψ(·)) and
zhψ(·) = yh1,ψ(·) − yh2,ψ(·).

By the definition, ψh(·) is a continuous-time controlled Markov chain. We
have, where now all processes are interpolated with the intervals ∆τhn ,

ψh(t) = x(0) +
∫ t

0

∫
Uh

bh(ψh(s), α)mh
ψ(dα ds) + Mh(t) + zhψ(t). (3.8)

The process Mh(·) can be represented as [10, Section 10.4.1 ]

Mh(t) =
∫ t

0

σh(ψh(s))dwh(s) =
∫ t

0

σ(ψh(s))dwh(s) + εh(t),

where εh(·) converges weakly to the zero process and wh(·) is a martingale with
quadratic variation It and which converges weakly to a standard Wiener process.
In the proofs in [10, Chapter 10] it is shown that ψh(·) converges to an optimal
limit process, with optimal cost V (x) = limh V

h(x). The analog of these facts
will also be true when there are delays.

The interpolations ξh(·) and ψh(t) are asymptotically identical. They are
both continuous-time scalings of the basic chain ξnn , and the scalings are asymp-
totically identical. This fact was not needed in the proof of the classical no-delay
case, but will be important in treating the delay case. The following theorem
holds for the delay case in the next section as well.

Theorem 3.1. Recall the definition of dh(·) below (3.6). Then, for each t > 0,

lim
h→0

E sup
s≤t


dh(s)∑

i=0

(∆τhi − ∆thi )




2

= 0. (3.9)

Proof. Owing to the mutual independence of the exponential random variables
{νhn} and their independence of everything else, the discrete parameter process

6In [10], these were called just uh(·) and mh(·). But for the delay case both interpolations
ξh(·) and ψh(·) are used and we need to distinguish them.
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Ln =
∑n

i=0(∆τhi − ∆thi ) is a martingale. Hence, the conditional expectation of
the squared term in (3.9) given the {∆thi } equals

E


dh(t)∑

i=0

[
∆τhi − ∆thi

]2 ∣∣∣∣∆thi , i < ∞


 =

dh(t)∑
i=0

[∆thi ]2 ≤ (t+ sup
n

∆thn) sup
n

∆thn
h→ 0,

which yields the desired result since E supj≤n |Lj |2 ≤ 4E|Ln|2.

The “implicit” approximation. An alternative to the method of obtain-
ing a Markov chain approximation that was illustrated by the use of (3.2) uses
what has been called an “implicit” method of approximation [10, Chapter 12],
again owing to its similarity to the implicit method of dealing with numeri-
cal solutions of parabolic PDE’s via finite differences, although it is used here
only as a heuristic guide to the construction and no assumption concerning
differentiability is made. The fundamental difference between the explicit and
implicit approaches to the Markov chain approximation lies in the fact that in
the former the time variable is treated differently than the state variables: It
is a true “time” variable, and its value increases by either (depending on the
interpolation used) ∆thn or νhn∆thn at step n. In the implicit approach, the time
variable is treated as just another state variable. It is discretized in the same
manner as are the other state variables: For the no-delay case, the approximat-
ing Markov chain has a state space that is a discretization of the (x, t)−space,
and the component of the state of the chain that comes from the original time
variable does not necessarily increase its value at each step. The idea is anal-
ogous when there are delays, and leads to some interesting and possibly more
efficient numerical schemes. Let δ > 0 be the discretization level for the time
variable. For the no-delay case, the “implicit procedure” analog of the transi-
tion probabilities of (3.3), obtained via use of (3.2), would start with the finite
difference approximations of the form

ft(x, t) → f(x, t + δ) − f(x, t)
δ

fx(x, t) → f(x + h, t) − f(x− h, t)
2h

fxx(x, t) → f(x + h, t) + f(x− h, t) − 2f(x, t)
h2

.

(3.10)

Note that the approximations for fx and fxx are made at t and not t+δ. Denote
the chain by ζh,δn = (φh,δ

n , ξh,δn )= (time, space) variables. 7

The general implicit method. Analogously to the method of going from the
formal approximation to the PDE above (3.2) to (3.3), the transition probabili-
ties and interpolation interval can be determined by substituting (3.10) into the

7Again, if σ2(x) < h|b(x, α)| at some x, α, then one-sided difference approximations can be
used there to get the appropriate ph(·),∆th(·) [10].

15



PDE Wt(x, t) + [σ2/2]Wxx(x, t) + bWx(x, t) + k(x, t) = 0 and collecting coeffi-
cients. But there is a general method that starts with the ph(·),∆th(·). Suppose
that at the current step the time variable does not advance. Then, conditioned
on this event and on the value of the current spatial state, the distribution of
the next spatial state is just the ph(x, y|α) used previously. So one needs only
determine the conditional probability that the time variable advances, condi-
tioned on the current state. This is obtained by a “local consistency” argument
and no matter how the ph(·) were derived, the (no-delay) transition probabili-
ties ph,δ(·) and interpolation interval ∆th,δ(·) for the implicit procedure can be
determined from the ph(·),∆th(·) by the formulas [10, Section 12.4], for x ∈ Gh,

ph(x, y|α) =
ph,δ(x, nδ; y, nδ|α)

1 − ph,δ(x, nδ;x, nδ + δ|α)
,

ph,δ(x, nδ;x, nδ + δ|α) =
∆th(x, α)

∆th(x, α) + δ
,

∆th,δ(x, α) =
δ∆th(x, α)

∆th(x, α) + δ
.

(3.11)

These formulas hold provided only that no state communicates with itself under
the ph(·). The reflecting states x = −h and B + h are treated as before. In
the no-delay case, the implicit procedure was used in [10] mainly to deal with
control problems that were defined over a fixed finite time interval. It will be
used in a quite different way in the delay case.

4 The System With Delays: Consistency and
Convergence

Local consistency conditions; delay in path only. The approach is analo-
gous to what was done for the no-delay case. The main issues concern accounting
for the fact that b(·), σ(·) and k(·) depend on the solution path over an interval
of length τ . We will construct a controlled process ξhn, n ≥ 0, and interpolation
intervals ∆thn, n ≥ 0, in much the same way as was done in Section 3. Details of
a construction analogous to that of (3.2) and (3.3) are in the next section. The
initial condition x̄(0) for (1.1) is an arbitrary continuous function. The numerics
work on a discrete space. so this function will have to be approximated. The
exact form of the approximation is not important at this point, and we simply
assume that we use a sequence ξ̄h0 ∈ D[Gh;−τ, 0], that is piecewise constant and
that converges to x̄(0) uniformly on [−τ, 0].

Given the ξhn,∆thn, define thn =
∑n−1

i=0 ∆thi . Define ξh(·) such that on [0,∞),
it is the continuous-time interpolation of {ξhn} with intervals {∆thn}, as in Section
3, and the segment on [−τ, 0] is ξ̄h0 , where ξh0 = ξ̄h0 (0). Define

ξ̄h(t, θ) = ξh(t + θ), for θ ∈ [−τ, 0],
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and set ξ̄hn(·) = ξ̄h(thn, ·), the interpolated path on [thn− τ, thn]. We will also write
ξ̄hn = ξ̄hn(·). Note that ξ̄hn(·) is discontinuous at t = 0. The value there will be
ξhn if that is in Gh. If ξhn is a reflecting state, then the value is the closest one
on Gh. We need to define a path segment that plays the role of x̄(t). There
is some flexibility in the way that this approximation is constructed from the
{ξhn}. The choice influences the computational complexity, and we return to
this issue later. Until further notice, we use ξ̄hn.

Analogously to the no-delay case, the chain and intervals are assumed to
satisfy the following properties (an example is given below). There is a function
∆th(·) on D[Gh;−τ, 0]×Uh such that ∆thn = ∆th(ξ̄hn, u

h
n) where uh

n is the control
applied at time n. Recall the definitions of ∆ξhn and of βh

n above (3.1). The
distribution of ξhn+1, given the initial data and ξhi , u

h
i , i ≤ n, will depend only

on ξ̄hn, u
h
n and not otherwise on n, analogously to the case in Section 3. Thus,

let Eh,α

ξ̂
denote the expectation under control value uh

0 = α and ξ̄h0 = ξ̂ ∈
D[Gh;−τ, 0] and is piecewise constant. Analogously to the no-delay case, local
consistency for ξhn,∆thn is said to hold if, for ξh0 = ξ̂(0), ((4.1) defines bh(·), ah(·))

Eh,α

ξ̂
∆ξh0 = bh(ξ̂, α)∆th(ξ̂, α) = b(ξ̂, α)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

Eh,α

ξ̂
βh

0 [βh
0 ]′ = ah(ξ̂)∆th(ξ̂, α) = a(ξ̂)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξhn+1 − ξhn|
h→ 0, supξ̂,û ∆th(ξ̂, û) h→ 0.

(4.1)

The reflecting boundary is treated exactly as for the no-delay case below (3.1).
In particular, if ξhn = −h (resp., B + h), then ξhn+1 = 0 (resp., B) and the
interpolation interval is zero.

Let Eh,uh

ξ̂
denote the expectation given initial condition ξ̂ = ξ̄h0 and control

sequence uh = {uh
n, n < ∞}. The cost function for the chain is

Wh(ξ̂, uh) = Eh,uh

ξ̂

∞∑
n=0

e−βthn
[
k(ξ̄hn, u

h
n)∆th(ξ̄hn, u

h
n) + c′δyhn

]
,

V h(ξ̂) = inf
uh

Wh(ξ̂, uh).
(4.2)

Let yh(·) denote the continuous-time interpolation of {δyhn} with intervals {∆thn}.
By [10, Theorem 11.1.3], for any T < ∞

lim sup
h

sup
t

E
∣∣yh(t + T ) − yh(t)

∣∣2 < ∞, sup
t

E |y(t + T ) − y(t)|2 < ∞. (4.3)

This implies that the costs are well defined. Recall the definitions of the inter-
polations ψh(·), uh

ψ(·),Mh(·),mh
ψ(·) and of dh(s) = max{n : thn ≤ s} in Section

3. Define τhn =
∑n−1

i=0 ∆τhi , d
h
τ (s) = max{n : τhn ≤ s} and set qhτ (s) = thdh

τ (s). For
ξh0 = ξ̄h0 (0), we have

ψh(t) = ξh0 +
∫ t

0

∫
Uh

bh(ξ̄h(qhτ (s)), α)mh
ψ(dα ds) + Mh(t) + zhψ(t), (4.4)
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where Mh(·) is a martingale with quadratic variation process∫ t

0

[σh(ξ̄h(qhτ (s)))]2ds.

Modulo an asymptotically negligible error due to the “continuous time” approx-
imation of the discount factor, the cost function (4.2) can be written as

Wh(ξ̂, uh) = Eh,uh

ξ̂

∫ ∞

0

∫
Uh

e−βt
[
k(ξ̄h(qhτ (s)), α)mh

ψ(dα ds) + c′dyhψ(s)
]
. (4.5)

The transition probabilities. The approach of the simple example in Section
3 or, indeed, of any of the methods in [10] for obtaining the transition proba-
bilities for the no-delay case can be readily adapted to the delay case. In all
cases in [10], the transition probability for the chain in the no-delay case can be
represented as a ratio; i.e., for x ∈ Gh,

P{ξh1 = y|ξh0 = x, uh
0 = α} = ph(x, y|α) = Nh(x, y, α)/Dh(x, α),

and ∆th(x, α) = h2/Dh(x, α), where Nh(·), Dh(·) are functions of b(·), σ2(·):

Nh(x, y, α) = N̄h(b(x, α), σ2(x), y), Dh(x, α) = D̄h(b(x, α), σ2(x)).

For the delay case, for the same ratios, simply use the forms

P{ξh1 = y|ξ̄h0 = ξ̂, uh
0 = α} =

N̄h(b(ξ̂, α), σ2(ξ̂), y)

D̄h(b(ξ̂, α), σ2(ξ̂))
. (4.6)

Consider, in particular, the delay case analog of the approach that led to
(3.3). Suppose that σ2(ξ̂) ≥ h|b(ξ̂, α)|. Write ξ̂ = ξ̄h0 , ξ0 = ξh0 = ξ̂(0). and
Ph,α

ξ̂
{ξh1 = ξ0 ± h} = P{ξh1 = ξ0 ± h|ξ̄h0 = ξ̂, uh

0 = α}. The analog for the delay

case is (which defines N̄h(·), D̄h(·))

Ph,α

ξ̂
{ξh1 = ξ0 ± h} =

σ2(ξ̂) ± hb(ξ̂, α)

2σ2(ξ̂)
=

N̄h(b(ξ̂, α), σ2(ξ̂), ξ0 ± h)

D̄h(b(ξ̂, α), σ2(ξ̂))
,

∆th(ξ̂, α) =
h2

σ2(ξ̂)
.

(4.7)

The cost rate becomes k(ξ̂, α). If σ(·) is a constant, then the intervals ∆thn are
all h2/σ2. The following assumption obviously holds for our special example. It
is unrestrictive in general.

A4.1. The transition probabilities and interpolation intervals are given in the
form (4.6).

The proof of the next two theorems for the convergence of the numerical method
is in Section 8.
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Theorem 4.1. Let ξhn,∆thn be locally consistent with the model (1.1), whose
initial condition is x̄(0), a continuous function. Let ξ̄h0 ∈ D[Gh;−τ, 0] be any
piecewise constant sequence that converges to x̄(0) uniformly on [−τ, 0]. Assume
(A1.1), (A1.3), and (A4.1). Then V h(ξ̄h0 ) → V (x̄(0)).

Delay in the path and control. As for the case where only the path is
delayed, one constructs a chain ξhn, n ≥ 0, and interpolation intervals ∆thn, n ≥ 0.
The initial data for (1.4) is x̄(0) = x̂ and ū(0) ∈ L2[U ;−τ, 0]. The initial
control data for the chain is slightly different. For the process (1.4), either
u(s), s ∈ [−τ, 0] or u(s), s ∈ [−τ, 0) will do for the initial control data. But for
the chain, the control uh

0 is to be determined at time 0, and should not be given
as part of the initial data. This fact accounts for some of the definitions below.

Let ξ̄h0 (·), ξh(·), ξ̄h(·) be as above Theorem 4.1. Let ūh
0 be any piecewise

constant sequence in D[Uh;−τ, 0] whose intervals are those of the ξ̄h0 , and that
converges to ū(0) in the L2-sense. Let uh

ξ (·) denote the function on [−τ,∞) that
equals ūh

0 on [−τ, 0), and on [0,∞) equals the continuous-time interpolation of
the uh

n with intervals ∆thn. Let ūh
n(s), s ∈ [−τ, 0], denote the segment of uh

ξ (·)
on [thn − τ, thn]: ūh

n(θ) = uh(thn + θ), θ ∈ [−τ, 0]. Let ûh
n denote the segment on

the half open interval [thn − τ, thn).
Recall the definition of b̄(·) in (A1.2). The distribution of ξhn+1, given the

initial data and ξhi , u
h
i , i ≤ n, depends only on ξ̄hn, ū

h
n and not on n otherwise.

Thus, let Eh,ū0

ξ̂
denote the expectation given ξ̄h0 = ξ̂, ūh

0 = ū0. The local con-
sistency condition for the chain and interpolation intervals is that there exists
a function ∆th(·) such that ∆thn = ∆th(ξ̄hn, ū

h
n) and

Eh,ū0

ξ̂
∆ξh0 = b̄h(ξ̂, ū0)∆th(ξ̂, ū0) = b̄(ξ̂, ū0)∆th(ξ̂, ū0) + o(∆th(ξ̂, ū0)),

Eh,ū0

ξ̂
βh

0 [βh
0 ]′ = ah(ξ̂)∆th(ξ̂, ū0) = a(ξ̂)∆th(ξ̂, ū0) + o(∆th(ξ̂, ū0)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξhn+1 − ξhn|
h→ 0, supξ̂,ū0

∆th(ξ̂, û) h→ 0.

(4.8)

The reflecting boundary is treated exactly as it was when only the path is
delayed.

Now extend the definition of uh
ψ(·) to the interval [−τ,∞) by letting it equal

ūh
0 (s) for s ∈ [−τ, 0), and let mh

ψ(·) denote the relaxed control representation of
uh
ψ(·). For ξh0 = ξ̄h0 (0), (4.4) is replaced by

ψh(t) = ξh0 +
∫ 0

−τ

[∫ t

0

∫
Uh

bh(ξ̄h(qhτ (s)), α, v)mh
ψ(dα, ds + v)

]
µ(dv)+Mh(t)+zhψ(t).

(4.9)
Let û denote the restriction of the canonical value ū0 to the half open interval
[−τ, 0). Let Eh,û,uh

ξ̂
denote the expectation under initial data ξ̄h0 = ξ̂ and control

sequence uh = {uh
n, n ≥ 0}, with initial control segment (on [−τ, 0)) û. Recalling
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the definition of k̄(·) in A1.2, the cost function can be written as

Wh(ξ̂, û, uh) = Eh,û,uh

ξ̂

∞∑
n=0

e−βthn
[
k̄(ξ̄hn, ū

h
n)∆th(ξ̄hn, ū

h
n) + c′δyhn

]
,

V h(ξ̂, û) = inf
{uh

n}
Wh(ξ̂, û, uh),

(4.10)

In integral and relaxed control form, and modulo an asymptotically negligible
error due to the approximation of the discount factor, (4.10) equals

Wh(ξ̂, û, uh) =

Eh,û,uh

ξ̂

∫ 0

−τ

[∫ ∞

0

∫
Uh

e−βt
[
bh(ξ̄h(qhτ (t)), α, v)mh

ψ(dα, dt− v) + c′dyhψ(t)
]
µ(dv)

]
.

(4.10)
In general, the transition probabilities are given by a ratio as in (4.6) and we
formalize this as follows.

A4.2. The transition probabilities and interpolation intervals are given in the
form (4.6), where b̄(·) replaces b(·).

Theorem 4.2. Let ξhn,∆thn be locally consistent with (1.4), which has the initial
data x̄(0), a continuous function, and ū(0) ∈ L2[U ;−τ, 0]. Let ξ̄h0 ∈ D[Gh;−τ, 0]
be piecewise constant, and converge to x̄(0) uniformly on [−τ, 0]. Let ūh

0 ∈
D[Uh;−τ, 0] be piecewise constant with the same intervals as ξ̄h0 , have values
ūh

0 (θ) ∈ Uh, and converge to ū(0) in the sense of L2. Let ûh denote the segment
of ūh

0 on [−τ, 0). Assume (A1.2), (A1.3) and (A4.2). Then V h(ξ̄h0 , û
h) →

V (x̄(0), ū(0)).

5 Computational Procedures

The Bellman equation. Path only delayed. Let ∆
h

= infα,ξ̂ ∆th(ξ̂, α),

where α ∈ Uh, ξ̂ ∈ D[Gh;−τ, 0], and suppose (w.l.o.g.) that τ/∆
h

= Kh is an
integer. The interpolated time interval [thn − τ, thn] is covered by at most Kh

intervals of length ∆̄h. The ξ̄hn can be represented in terms of a finite state
Markov process as follows. Recall that the reflection states do not appear in the
construction of ξh(·). Let ξhn,i, i > 0, denote the ith nonreflection state before
time n, and ∆thn,i the associated interpolation interval. We can represent ξ̄hn
in terms of {(ξhn,Kh ,∆thn,Kh), . . . , (ξhn,1,∆thn,1), ξ

h
n}. This new representation is

clearly a (2Kh +1)-dimensional controlled Markov chain. Let ξ̂ be an arbitrary
element of D[Gh;−τ, 0] that is piecewise constant and ξ̂(0) = ξ0. Then, if there
are no delays in the control the Bellman equation for the process defined by
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either this chain or (4.9) with cost (4.2) can be written as

V h(ξ̂) =

inf
α∈Uh

[
e−β∆th(ξ̂,α)

∑
±

Ph,α

ξ̂
{ξh1 = ξ0 ± h}V h(ŷ±) + k(ξ̂, α)∆th(ξ̂, α)

]
,

(5.1a)

The terms ŷ± denote the functions on [−τ, 0] with values

ŷ±(θ) = ξ̂(θ + ∆th(ξ̂, α)), −τ ≤ θ < −∆th(ξ̂, α),

ŷ±(θ) = ξ0, −∆th(ξ̂, α) ≤ θ < 0, ŷ±(0) = ξ0 ± h.

If ξ̂(0) = ξ0 = −h, and the other values of ξ̂(·) are in Gh, then, ∆th(ξ̂, α) = 0
and

V h(ξ̂) = V h(ŷ+) + c1h. (5.1b)

If ξ̂(0) = ξ0 = B+h, and the other values of ξ̂(·) are in Gh, then, ∆th(ξ̂, α) = 0
and

V h(ξ̂) = V h(ŷ−) + c2h. (5.1c)

Owing to the contraction due to the discounting, there is a unique solution to
(5.1).

Simplifying the state representation. Path only delayed. If the in-
terpolation interval ∆th(ξ̂, α) is not constant, then the construction of the ξ̄hn
requires that we keep a record of the values of both the ξhi ,∆thi , for the indices i
that contribute to the construction. The use of constant interpolation intervals
simplifies this problem. Suppose that the intervals are constant with value ∆

h
).

It is then apparent from the form of the Bellman equation (5.1) that the state
space for the control problem for the approximating chain consists of functions
ξ̂(·) that are constant on [−τ + i∆

h
,−τ + i∆

h
+ ∆

h
), i ≤ M , with values in Gh

there and with ξ̂(0) ∈ G+
h . In addition, ξ̄hn is a piecewise constant interpolation

of the Kh + 1 values ξ̂hn ≡ (ξhn,Kh , · · · , ξhn,1, ξhn) and we can identify ξ̄hn with this

vector without ambiguity. If ξhn ∈ Gh, then ξ̂hn+1 = (ξhn,Kh−1, . . . , ξ
h
n,1, ξ

h
n, ξ

h
n+1).

If ξhn = −h, then ξ̂hn+1 = (ξhn,Kh , · · · , ξhn,1, 0), and analogously if ξhn = B + h.
Thus the full state vector is (Kh +1)-dimensional and the maximum number of
possible values can be very large, up to (B/h + 3)(B/h + 1)K

h

.
The analog of the procedure (3.5) for getting an approximating chain with

a constant interpolation interval is obvious. Let P̄ denote the transition prob-
abilities for the constant interpolation interval case. For the delay case with
ξ̂(0) = ξh0 = ξ0 ∈ Gh, and ξh1 = ξ0 + {±h, 0}, use

P̄h,α

ξ̂
{ξh1 = ξ0 ± h} = Ph,α

ξ̂
{ξh1 = ξ0 ± h}(1 − P̄h,α

ξ̂
{ξh1 = ξ0}),

P̄h,α

ξ̂
{ξh1 = ξ0} = 1 − ∆

h

∆th(ξ̂, α)
.

(5.2)
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Simplification of the state space. We only need to keep track of ξhn and the
differences between successive components of ξ̂hn. This gives the representation

ξ̂hn = (chn,Kh , · · · , chn,1, ξhn), where, for 1 < i ≤ Mh, chn,i = ξhn,i − ξhn,i−1 (5.3)

and chn,1 = ξhn − ξhn,1. Suppose now that σ2(·) is constant and non-zero and
that (4.7) is used, so that ∆th(ξ̂, α) = h2/σ2 is constant. Then the chn,i take
at most two values and the number of values in the state space is reduced to
(B/h + 3)2K

h

. The two values and the reconstruction of the ξhn,i from them
are easily determined by an iterative procedure. For example, if ξhn = −h, then
ξhn,1 = 0. If ξhn = 0 then ξhn,1 ∈ {0, h}. If ξhn is not a reflecting or boundary
value then ξhn,1 = ξhn−1 = ξhn ± h. If ξhn,i = 0, then ξhn,i−1 ∈ {0, h}. If ξhn,i is not
a boundary value then ξhn,i−1 ∈ {−h, h}, and so forth.

If σ2(·) is not constant, then use the form (5.2) to get a chain with a constant
interval. Now ξhn+1 − ξhn ∈ {−h, 0, h}, each of the chn,i can take as much as three
values and we have at most (B/h+3)3K

h

values in the state space. The approach
in the next section uses fewer intervals to cover [−τ, 0] and has the promise of
being more efficient in terms of memory requirements.

Delay in path and control. Now suppose that both the control and the
path are delayed. The memory state at time n for the discrete-time dynamic
program is ξ̄hn, û

h
n, the value of ξh(·) on the closed interval [thn − τ, thn], together

with the path of the interpolated control (intervals ∆thn) on the half open interval
[thn − τ, thn). The canonical value of ûh

0 is û. The transition probabilities at time
n depend on the memory variables and the new control value uh

n. Thus, write
(û, α) for the canonical value of the control on [−τ, 0], where α denotes the value
at time 0. We can then use terms such as b̄(ξ̂, û, α) without ambiguity. The
form (4.6) still applies, with b̄(ξ̂, û, α) used in lieu of b(ξ̂, α).

Analogously to what was done at the beginning of the section for the case
where the control is not delayed, the memory variables can be imbedded into a
Markov process, with values at time n{

(ξhn,Kh , u
h
n,Kh ,∆thn,Kh), . . . , (ξhn,1, u

h
n,1,∆thn,1), ξ

h
n

}
.

Then for the transition probabilities that are the analogs of those in (4.7) for
the present case, the analog of (5.1a) is

V h(ξ̂, û) =

inf
α∈Uh

[
e−β∆th(ξ̂,û,α)

∑
±

Ph,α

ξ̂,û
{ξh1 = ξ0 ± h}V h(ŷ±, ûα) + k(ξ̂, û, α)∆th(ξ̂, û, α)

]
,

(5.4)
where the following definitions are used. Ph,α

ξ̂,û
denotes the transition probability

with memory variables ξ̂, û and new control value α used. The ŷ± denotes the
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new “path memory sections” defined below (5.1a), with ∆th(ξ̂, û, α) used in lieu
of ∆th(ξ̂, α). The new “control memory section” ûα is defined by

ûα(θ) = û(θ + ∆th(ξ̂, û, α)), −τ ≤ θ < −∆th(ξ̂, û, α),

ûα(θ) = α, −∆th(ξ̂, û, α) ≤ θ < 0.

The reflecting states are treated as for the no-delay case. Because of the con-
traction due to the discounting there is a unique solution to (5.4).

We can use the more efficient representation (5.3) for the path variable. But
the total memory requirements might still be too large, unless U itself can be
effectively “approximated” by only a few values.

A comment on higher-dimensional problems. We have concentrated on
one-dimensional models. But the ideas concerning approximation and the con-
vergence results all extend to quite general higher-dimensional problems. The
solution to the reflected diffusion is confined to a compact region G by a bound-
ary reflection. The conditions on G and the reflection directions are exactly as
in [10] and there is no need to say more. The Markov chain approximations
for the delay problem in higher dimensions adapts the methods of the reference
in the same way as was done for the one-dimensional problem considered in
this paper, using the comments of this paper as a guide to the substitutions.
For the no-delay problem, the required memory grows rapidly as the dimension
increases, and that also holds here. Two-dimensional problems are feasible at
present.

Representations analogous to (5.3) can also be used for the higher-dimensional
problem. Consider a two-dimensional problem in a box [0, B1] × [0, B2], with
the same path delay in each coordinate, no control delay, and discretization
level h in each coordinate. The ξhn in (5.3) is replaced by vector containing the
current two-dimensional value of the chain. The difference ci = ξhn,i − ξhn,i−1 is
now a two dimensional vector. The values can be computed iteratively, as for
the one-dimensional case, but the details will not be presented here.

6 The Implicit Approximation: Path Only De-
layed

Let δ > 0 with h2/δ → 0 as h → 0, δ → 0, and suppose that τ/δ = Q is an
integer. The process ζh,δn = (φh,δ

n , ξh,δn ) = (temporal variable, spatial variable)
whose transition probabilities were defined by (3.11) leads to some intriguing
possibilities for efficient representation of the memory data for the delay prob-
lem. Recall that either the spatial variable ξh,δn changed or the time variable
φh,δ
n advanced at each iteration, but not both. We will construct the analog

of ζh,δn for the delay case. There are several choices for the time scale of the
continuous-time interpolations. One can use the analog of the ∆th,δ defined in
(3.11), and proceed as in the last section. Another possibility, which we will
pursue, is to let the value of φh,δ

n determine the interpolation. More precisely,
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at the nth step the interpolated time would be φh,δ
n and not thn. Then the time

variable for the interpolation does not necessarily advance at each step of the
chain. It will be seen that both interpolations are the same asymptotically.

Suppose that ξ̄h,δn denotes the part of the path that represents the memory
state at iterate n for the chain. It will be defined precisely after writing the
transition probabilities. Now, adapting the procedure that led to (3.11) to the
delay case yields the transition probabilities and interpolation intervals for the
ζh,δn = (φh

n, ξ
h,δ
n ) process in terms of those for the ξhn process as:

P
{
ξh,δ1 = ξ0 ± h

∣∣ξ̄h,δ0 = ξ̂, φh,δ
0 = φ0, ξ

h,δ
0 = ξ0, u

h,δ
0 = α

}
= Ph,α

ξ̂,φ0

{
ξh,δ1 = ξ0 ± h

} (
1 − Ph,δ,α

ξ̂,φ0

{
φh,δ

1 = φ0 + δ
})

,

Ph,δ,α

ξ̂,φ0

{
φh,δ

1 = φ0 + δ
}

=

P
{
φh,δ

1 = φ0 + δ
∣∣ξ̄h,δ0 = ξ̂, φh,δ

0 = φ0, u
h,δ
0 = α

}
=

∆th(ξ̂, α)

∆th(ξ̂, α) + δ
,

(6.1)

∆th,δ(ξ̂, α) =
δ∆th(ξ̂, α)

∆th(ξ̂, α) + δ
. (6.2)

Define

∆th,δn = ∆th,δ(ξ̄hn, u
h
n), th,δn =

n−1∑
i=0

∆th,δi .

Interpolations. One could base the continuous-time interpolation used to
get ξ̄h,δn on the intervals ∆th,δn . But then the issues concerning the number
of required values of the memory variable would be similar to those of the
last section. Consider the alternative where the time variables φh,δ

n determine
interpolated time, in that real (i.e., interpolated) time advances (by an amount
δ) only when the time variable is incremented and it does not advance otherwise.
To make this precise, consider ξh,δn at only the times that φh,δ

n changes. Define
µh,δ

0 = 0, and, for n > 0, set

µh,δ
n = inf{i > µh,δ

n−1 : φh,δ
i − φh,δ

i−1 = δ}.

Define the “memory” path segment ξ̄h,δn (θ), θ ∈ [−τ, 0], as follows. For any l

and n satisfying µh,δ
l ≤ n < µh,δ

l+1, set

ξ̄h,δn (0) = ξh,δn ,

ξ̄h,δn (θ) = ξh,δ
µh,δ
l

, θ ∈ [−δ, 0),
...
ξ̄h,δn (θ) = ξh,δ

µh,δ
l−Q+1

, θ ∈ [−τ,−τ + δ).

(6.3)
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Let ξ̂ denote the canonical value of ξ̄h,δ0 . It can be represented as the piecewise
constant right continuous interpolation with interval δ of its values

(ξ̂(−τ), . . . , ξ̂(−δ), ξ̂(0))

with a discontinuity at t = 0, as usual. The possible transitions are as follows.
Let ξ̂(0) ∈ Gh. Then ξ̂ transits as either (if the time variable does not advance)

ξ̂ = (ξ̂(−τ), . . . , ξ̂(−δ), ξ̂(0)) → (ξ̂(−τ), . . . , ξ̂(−δ), ξ̂(0) ± h)

or (if the time variable advances)

(ξ̂(−τ), . . . , ξ̂(−δ), ξ̂(0)) → (ξ̂(−τ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)).

For the reflecting points, we have the immediate transition

(ξ̂(−τ), . . . , ξ̂(−δ),−h) → (ξ̂(−τ), . . . , ξ̂(−δ), 0),

(ξ̂(−τ), . . . , ξ̂(−δ), B + h) → (ξ̂(−τ), . . . , ξ̂(−δ), B).

Thus ξ̄h,δn (θ) ∈ Gh for θ �= 0.

Local properties and the dynamical equations. Define δzh,δn , βh,δ
n analo-

gously to the definitions used in Sections 3 and 4. By (6.1) and (6.2),

E
[
φh,δ
n+1 − φh,δ

n

∣∣ζh,δi , uh,δ
i , i ≤ n, ξh,δn ∈ Gh

]
= ∆th,δn .

Define the martingale difference βh,δ
0,n =

(
φh,δ
n+1 − φh,δ

n

)
−∆th,δn . With the defini-

tions (6.1), (6.2), and ξ̂ = ξ̄h,δ0 , ξ̂(0) ∈ Gh, we have Eh,δ,α

ξ̂,φ0
∆ξh,δ0 = bh(ξ̂, α)∆th,δ(ξ̂, α),

and the conditional covariance of the martingale difference term βh,δ
0 is

σh(ξ̂)σh(ξ̂)∆th,δ(ξ̂, α).

Analogously to the expression below (3.6), define the stopping time

dh,δ(t) = max

{
n :

n−1∑
i=0

∆th,δi = th,δn ≤ t

}
.

As in Theorem 4.1, approximate the initial condition x̄(0) by ξ̄h,δ0 (in the sense
of uniform convergence as h → 0, δ → 0), and let it be constant on the intervals
[−τ + kδ,−τ + kδ + δ), k = 0, . . . , Q − 1, with the values at −kδ, k = 0, . . . , Q,
being in Gh. Let ξh,δ(·) and φh,δ(·) denote the continuous-time interpolations
of the {ξh,δn } and {φh,δ

n } with the intervals {∆th,δn }. With ξh,δ0 = ξ̄h,δ0 (0), we can
write

ξh,δ(t) = ξh,δ0 +
dh,δ(t)−1∑

i=0

bh(ξ̄h,δi , uh,δ
i )∆th,δi +

dh,δ(t)−1∑
i=0

βh,δ
i +

dh,δ(t)−1∑
i=0

δzh,δi , (6.4)
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φh,δ
n+1 = φh,δ

n + ∆th,δn + βh,δ
0,n. (6.5)

Next let us get the analog of the process (4.4). Define the random vari-
ables νh,δn , n = 0, 1 . . . , i.i.d., exponentially distributed, and independent of the
{ζh,δn , uh

n}. Then set ∆τh,δn = νh,δn ∆th,δn , τh,δn =
∑n−1

i=0 ∆τh,δn . Define dh,δτ (s) =
max{n : τh,δn ≤ s}. Define ξ̄h,δ(s) = ξ̄h,δ

dh,δ
τ (s)

and qh,δτ (s) = th,δ
dh,δ
τ (s)

. With these

definitions, ξ̄h,δ
dh,δ
τ (s)

= ξ̄h,δ(qh,δτ (s)). Let ψh,δ(·) denote the interpolation with the

random intervals ∆τh,δn . Then, analogously to (4.4),

ψh,δ(t) = ξh,δ0 +
∫ t

0

∫
Uh

bh(ξ̄h,δ
dh,δ
τ (s)

, α)mh,δ
ψ (dαds) + Mh,δ(t) + zh,δψ (t), (6.6)

where the quadratic variation of the martingale Mh,δ(·) is

∫ t

0

σh(ξ̄h,δ(qh,δτ (s)))σh(ξ̄h,δ(qh,δτ (s)))ds.

It follows from the proof of Theorem 3.1 that the time scales used in the
ξh,δ(·) and the ψh,δ(·) processes coincide asymptotically. I.e., qh,δ(s) − s → 0,
τh,δ(s)− th,δ(s) → 0, qh,δτ (s)− s → 0. The following theorem asserts this result
and the fact that φh,δ(t) converges to t.

Theorem 6.1. Let φh,δ(·) denote the interpolation of the φh,δ
n with the intervals

∆th,δn . Then φh,δ(·) converges weakly to the process with value t at time t. Also,

lim
h→0,δ→0

sup
uh,δ

E sup
s≤t


dh,δ(s)∑

i=0

(∆τh,δi − ∆th,δi )




2

= 0.

The last assertion holds with dh,δτ (·) replacing dh,δ(·).

Proof. By (6.5),

φh,δ(t) =
dh,δ(t)−1∑

i=0

∆th,δi +
dh,δ(t)−1∑

i=0

βh,δ
0,i .

The first sum equals t, modulo supn ∆th,δn . The variance of the martingale term
is δt, modulo δ+supn ∆th,δn , and the term converges weakly to the zero process.
The proof of the second assertion of the theorem is just that of Theorem 3.1.
The last assertion of the theorem follows from the second.

It follows from Theorem 6.1 that

sup
−τ≤θ≤0,t≤T

∣∣∣ξh,δ(t + θ) − ξ̄h,δ
dh,δ
τ (t)

(θ)
∣∣∣ → 0. (6.7)
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The cost function. Consider the cost function

Wh,δ(ξ̂, uh) = Eh,δ,uh

ξ̂,φ0

∞∑
i=0

e−βφh,δ
n

[
k(ξ̄h,δn , uh

n)δI{φh,δ
n+1 �=φh,δ

n } + c′δyh,δn

]
. (6.8)

By using (6.1) and (6.2) and a conditional expectation, the term δI{φh,δ
n+1 �=φh,δ

n }
can be replaced by ∆th,δn . We next show that (6.8) is well defined.

Theorem 6.2. For small h, δ, (6.8) is asymptotically equal to (uniformly in
such h, δ)

Eh,δ,uh

ξ̂,φ0

∞∑
i=0

e−βth,δ
n

[
k(ξ̄h,δn , uh,δ

n )∆th,δn + c′δyh,δn

]
. (6.9)

Proof. To show that the term involving k(·) in (6.8) is well defined first note
that it can be bounded by a constant times the expectation of

∫ ∞
0

e−βφh,δ(s)ds.
By the computations in Theorem 6.1, for each K > 0 there are εi > 0, that do
not depend on the controls, such that for small enough h, δ

P
{
φh,δ(T + K) − φh,δ(T ) ≥ ε1

∣∣data to T
}
> ε2

w.p.1 for each T . Hence, there is ε3 > 0, not depending on the controls, such
that for small enough h, δ

E
[
e−β(φh,δ(T+K)−φh,δ(T ))

∣∣data to T
}
≤ e−ε3

w.p.1 for each T . This implies that the “tail” of the sum (6.8) can be neglected
and we need only consider the sum

∑Nh,δ(t)
i=0 where Nh,δ(t) = min{n : th,δn ≥ t}

for arbitrary t. But, by Theorem 6.1, for such a sum the asymptotic values are
the same if φh,δ

i , i ≤ Nh,δ(t), is replaced by th,δi , i ≤ Nh,δ(t). Hence the terms
involving k(·) in (6.8) and (6.9) are asymptotically equal. The above estimates
and the inequality (4.3) yield the same result for the terms involving δyh,δn .

The Bellman equation. With the form (6.9), the effective canonical cost rate
is just k(ξ̂, α) times δ times the probability that the time variable advances,
namely k(ξ̂, α)∆th,δ(ξ̂, α). This can be seen from (6.9), or from (6.8) with the
replacement noted below it.

The Bellman equation can be based on either (6.8) or (6.9). They will yield
different results, but will be asymptotically equal by Theorem 6.2. For (6.8)
and ξ̂(0) = ξh,δ0 ∈ Gh, the Bellman equation is (the time variable φ does not
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appear in the state since the dynamical terms are time independent)

V h,δ(ξ̂) = inf
α∈Uh

[ ∑
±

Ph,δ,α

ξ̂,φ0

{
ξh,δ1 = ξ̂(0) ± h

}
V h,δ

(
ξ̂(−τ), . . . , ξ̂(−δ), ξ̂(0) ± h

)

+e−βδPh,δ,α

ξ̂,φ0

{
φh,δ

1 = φ0 + δ
}
V h,δ

(
ξ̂(−τ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)

)

+k(ξ̂, α)∆th,δ(ξ̂, α)

]
.

(6.10)
If ξ̂(0) is a reflecting point −h or B + h, then

V h,δ(ξ̂) = V h,δ

(
ξ̂(−τ), . . . , ξ̂(−δ), 0

)
+ c1h for ξ̂(0) = −h,

V h,δ(ξ̂) = V h,δ

(
ξ̂(−τ), . . . , ξ̂(−δ), B

)
+ c2h for ξ̂(0) = B + h.

These equations make it clear that the full state at iterate n is ξ̄h,δn , namely,
the current value of the spatial variable ξh,δn , together with its value at the last
Q = τ/δ times that the time variable advances.

Since we can use (6.9) for the cost function when proving convergence, the
proof of the next theorem is nearly identical to that of Theorem 4.1 which is
given in Section 8.

Theorem 6.3. Let ξh,δn ,∆thn be locally consistent with the model (1.1), whose
initial condition is x̂ = x̄(0), a continuous function. Let ξ̄h,δ0 approximate x̂
as in Theorem 4.1. Assume (A1.1), (A1.3), and the analog of (A4.1) for the
implicit procedure. With either (6.10) or the Bellman equation for (6.9) used,
V h(ξ̄h,δ0 ) → V (x̂).

7 The Number of Points for the Implicit Method-
State Delay Only

Comment on the value of δ. Consider solving a parabolic PDE on a finite
time interval, and with the classical estimates of rate of convergence holding.
Typically δ = O(h) and the rate of convergence is O(h2)+O(δ2) for the implicit
procedure, vs. O(h2) + O(max time increment) for the explicit procedure [14,
Chapter 6]. But, for the explicit procedure the value of the time increment is
O(h2). Thus, for δ = O(h), the rates of convergence would be of the same order.
There is no proof that such estimates hold for the control problem of concern
here. But numerical data for the no-delay problems suggests that one should
use δ = O(h).
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The implicit procedure actually updates the path values using the time in-
crement ∆th,δn (see (6.1) and (6.2)), which is close to ∆thn when δ = O(h) and
∆thn = O(h2). After some random number of updates of the path component,
the time component advances. Thus the interpolation defined by (6.3) is es-
sentially a sampling of the process ξh,δn at random intervals. Since the average
sum of the ∆th,δn between advances of time is approximately δ, the sampling is
approximately at time intervals δ. This would give a more accurate construc-
tion than would a process ξδn constructed with the much larger discretization
interval δ. Additionally, the implicit procedure allows us to use the original time
intervals ∆th,δn ≈ ∆thn, and not the minimal value ∆

h
. This is computationally

advantageous when the values ∆th(ξ̂, α) vary a great deal, for example when the
upper bound on the control is large. It will next be argued that when δ = O(h),
the implicit procedure can be approximated such that it has a much smaller
memory requirement than the explicit procedure.

Reduced memory requirements. The vector ξ̂ can be represented in terms
of the vector

d̂ =
(
ξ̂(−τ) − ξ̂(−τ + δ), . . . , ξ̂(−δ) − ξ̂(0), ξ̂(0)

)
= (d(Q), . . . , d(0)).

If ξ̂(0) is a reflection point, then it moves immediately to the closest point in Gh.
Otherwise, with this representation, the transitions are to (if the time variable
does not advance)

(d(Q), . . . , d(2), d(1) ∓ h, d(0) ± h)

or to (if the time variable advances)

(d(Q− 1), . . . , d(2), 0, d(0)).

The variable d(0) takes B/h + 3 possible values. Since there are a potentially
unbounded number of steps before the time variable increases, the differences
d(i), i ≥ 2, can take values in the set Gh − Gh, which is the set of points
{B,B − h, . . . ,−B}. Hence there are 2B/h + 1 possible values. The d(1) can
take values in Gh−G+

h = {B+h,B,B−h, . . . ,−B−h}, since ξ̂(0) takes values
in G+

h . But over the number of steps that are required for the time variable to
advance, with a high probability the sample number of values taken by the d(i)
will be much less due to cancellations of positive and negative steps. This idea
can be exploited by truncating the possible values of the d(i), i ≥ 1, by some
N1 < 2B/h+1 such that the probability that d(i) takes more than N1 values is
smaller than some predetermined number.8 The maximum required number of
points is (B/h+3)(2B/h+3)(2B/h+1)τ/δ−1. Comparing this with the number

(B/h + 3)2τ/∆
h

, or (B/h + 3)3τ/∆
h

,

8More generally, one can approximate the range of the d(i), i ≥ 1, by allowing them to
take some prespecified values that might not be integral multiples of h.
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for the explicit procedure, we see that there might be considerable saving even
without truncation, since typically ∆

h
= O(h2) and δ = O(h). This saving

is due to the fact that, for the implicit procedure the memory consists of the
differences in the values attained over many steps, and not set of differences in
the values for each of those steps.

We next present some computations concerning the value of N1.

An example. For illustrative purposes, first consider the simplest example.
Let σ(·) be constant and b(·) zero. There is no delay, but it will be seen that
the estimates are typical even with a drift and delay. Then ξhn is a simple
symmetric random walk with reflection and ∆th = h2/σ2. Then use δ = h/σ,
which is very close to the probability that the time variable advances at each
step if h is small. Let v be the number of steps required for the time variable
to advance, and define Mh,δ

n =
∑n

i=0 β
h,δ
i . Then Ev2 ≈ σ2/h2 and

P

{
sup
n≤v

∣∣Mh,δ
n

∣∣ ≥ ε

}
≤ E|Mh,δ

v |4
ε4

≈ h4Ev2

ε4
. (7.1)

Let N1 = 2N + 1, ε = hN . Then the probability above is bounded by σ2/N4h2.
Thus we need N to increase slightly faster than 1/

√
h to have an asymptotically

negligible error. The number of memory points needs is approximately (B/h+
3)[2/f(h)+1]τ/δ =(B/h+3)[2/f(h)+1]στ/h, where f(h)/

√
h → 0, as compared

to the much larger number (B/h + 3)2σ
2τ/h2

for the explicit procedure. The
best way of getting N or of efficiently approximating the range of the d(i), i ≥ 1,
is not clear and much further work and numerical experience is required. But
the idea is very appealing.

Now, extend the above case by letting b(·) be non-zero, with delayed argu-
ments and satisfying |b(ξ̂, α)|h ≤ σ2/2. We still have ∆th = h2/σ2. The number
of points needed for the explicit method was noted above. Write bhn = b(ξ̄hn, u

h
n)

and b0 = sup |b(ξ̂, α)|. Now estimate supn≤v

∑n
i=0[b

h
n∆th,δ + βh,δ

i ] by splitting
the terms. For the drift term, we have the estimate

P{sup
n≤v

b0

n∑
i=0

∆th,δi ≥ Nh/2} ≤ 4
b20[h

4/σ4]Ev2

N2h2
≈ 4b20

N2σ2
.

The estimate (7.1) continues to hold for the martingale term. Thus the martin-
gale term dominates and conclusions of the simpler case continue to hold.

8 Comments on the Proof of Theorems 4.1 and
4.2

Proof. For notational simplicity, let us start with the case where the control is
not delayed. The proof is close to that for the no-delay case and the structure
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will be outlined. Let uh = {uh
n, n < ∞} be the optimal control sequence for the

chain.
The main new issue over the no-delay case is that the process ξ̄h(t) appears

in the dynamical terms b(·), σ(·), k(·). Recall the definitions, for s ≥ 0, qhτ (s) =
max{n : τhn ≤ s} and qhτ (s) = thqhτ (s). Recall (4.4):

ψh(t) = ξh0 +
∫ t

0

∫
Uh

bh(ξ̄h(qhτ (s)), α)mh
ψ(dα ds) + Mh(t) + zhψ(t), (8.1)

where ψh(·) is the continuous-time interpolation with intervals νhn∆thn, Mh(·) is
a martingale with quadratic variation process∫ t

0

[
σh(ξ̄h(qhτ (s)))

]2
ds,

and can be written as [10, Section 10.4.1]

Mh(t) =
∫ t

0

σh(ξ̄h(qhτ (s)))dwh(s), (8.2)

where wh(·) is a martingale with quadratic variation process It. The discon-
tinuities of wh(t) go to zero as h → 0, and it converges to a standard Wiener
process. The proofs of these assertions are the same as for the no-delay case in
[10, Section 10.4]. Keep in mind that in all cases, ξh(·) and ψh(·) are constructed
from the basic ξhn, via the appropriate interpolation. Theorem 3.1 applies and
shows that the time scales for ξh(·) and ψh(·) are asymptotically equal.

The sequence {ψh(·), ξh(·),mh
ψ(·), wh(·), yhψ(·), qhτ (·)}, where zhψ(·) = yh1,ψ(·)−

yh2,ψ(·), is tight and all weak sense limits are continuous. Take a weakly conver-
gent subsequence, also indexed by h and with limit denoted by (x(·), ξ(·),m(·),
w(·), y(·), q(·)), with z(·) = y1(·) − y2(·). The asymptotic continuity of qhτ (·) is
implied by Theorem 6.1, and that of yhi,ψ(·) is similar to the proof of a similar
result in Theorem 2.1. See also the reference (Chapter 10). Assume the Skoro-
hod representation so that the limits can be assumed to be w.p.1. By Theorem
6.1, x(·) = ξ(·) and q(t) = t. Thus the process ξ̄h(·) converges to x̄(·). Now, by
the continuity conditions on b(x̂, α) and σ(x̂) in (A1.1),

∫ t

0

∫
Uh

bh(ξ̄h(qhτ (s)), α)mh
ψ(dα ds) →

∫ t

0

∫
U
b(x̄(s), α)m(dα ds), (8.3)

∫ t

0

σh(ξ̄h(qhτ (s)))dwh(s) →
∫ t

0

σ(x̄(s))dw(s). (8.4)

Equation (8.3) follows directly due to the weak convergence and the con-
tinuity properties of b(·). To prove (8.4), due to the “stochastic integral,” we
need to discretize as in the proof of Theorem 2.1. For any function of a real
variable g(·) and κ > 0, let gκ(s) = g(nκ), nκ ≤ s < nκ + κ. By the martingale
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and quadratic variation properties of wh(·), the mean square value of∫ t

0

σh(ξ̄h(qhτ (s)))dwh(s) −
∫ t

0

σh(ξ̄hκ(qhτ (s)))dwh(s)

=
∫ t

0

[
σh(ξ̄h(qhτ (s))) − σh(ξ̄hκ(qhτ (s)))

]
dwh(s)

is just the mean value of the square of the term in brackets in the right hand
integrand, and it goes to zero as κ → 0, uniformly in h. The integral in the
right side of the first line can be written as a sum and the weak convergence
implies that its limit as h → 0 is

∫ t

0
σ(xκ(s))dw(s). The nonanticipativity of

(x(·), y(·),m(·)) with respect to the Wiener process w(·) is proved by using the
analog of (2.2), namely,

Eh
(
ψh(si), ξh(si), wh(si), yh(si),

〈
mh

ψ, gj
〉
(si), i ≤ I, j ≤ J

)
×(

wh(t + τ) − wh(t)
)

= 0,

and proceeding as below (2.2). Now, with the nonanticipativity proved, let
κ → 0 in

∫ t

0
σ(xκ(s))dw(s) to get (8.4). Thus we have proved that the limit

satisfies (1.2) for some relaxed control m(·).
Since mh

ψ(·) is the relaxed control representation of the interpolation of the
optimal control sequence uh

n with intervals ∆τhn , by the definitions of Wh(·) and
V h(·) we have V h(ξ̄h0 ) = Wh(ξ̄h0 , u

h). By the weak convergence and the conti-
nuity properties of k(·) in (A1.1), Wh(ξ̄h0 , u

h) → W (x̂,m). By the minimality
of V (x̂), we must have lim infh V h(ξ̄h0 ) ≥ V (x̂). We need only prove that

lim sup
h

V h(ξ̄h0 ) ≤ V (x̂). (8.5)

The proof of (8.5) for the no-delay case in [10, Chapter 10] can be readily
adapted to the delay case. The proof depends on getting a piecewise constant
approximation to the optimal control for (1.2) in terms of past samples of the
driving Wiener process and control. The details of this approximation are a
little more complicated for the present case, but the method in [10, Theorem
3.1, Chapter 10] carries over with some notational changes. The construction
depended only on the continuity of the dynamical terms and weak-sense unique-
ness as (A1.3). One needs to add the full initial condition of interest, including
the initial control segment, where applicable. With this in hand, The converse
inequality (8.5) is obtained as in the book. Owing to lack of space, the details
will not be given here.

The proof of Theorem 6.3 is the same. Just use the interpolations ξh,δ(·)
and ψh,δ(·) defined by (6.4) and (6.6), resp.

Delay in the control. Now consider Theorem 4.2, where the control is also
delayed. The bracketed term in (4.9) converges to∫ t

0

∫
U
b(x̄(s), α, v)m(dα, ds + v)
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for all v ∈ [−τ, 0]. The rest of the details of the convergence proof are as for the
case where only the state is delayed.
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