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Abstract

Consider the problem of value iteration for solving Markov stochastic
games. One simply iterates backwards, via a Jacobi-like procedure. The
convergence of the Gauss-Seidel form of this procedure is shown for both
the discounted and ergodic cost problems, under appropriate conditions,
with extensions to problems where one stops when a boundary is hit or if
any one of the players chooses to stop, with associated costs. Generally,
the Gauss-Seidel procedure accelerates convergence.
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1 Introduction

We consider two-player, zero-sum, finite-state, Markov stochastic games. There
are N states and, unless noted otherwise, we suppose that the controls are
feedback and not randomized. In state i, player 1’s (the minimizing player)
control is denoted by ui and that of player 2 (the maximizing player) is denoted
by vi. The convergence of the value iteration procedure (see (2.2) below) for
Markov stochastic games for a discounted cost function (or where there is an
absorbing boundary) was established in [7, 11]. The convergence of the Gauss-
Seidel procedure was first established for the control problem in [10]. It is
widely used and is generally faster than the Jacobi procedure; see, for example,
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[5, 10, 9], where the role of the ordering of the states and preferred orderings
are discussed. Indeed, it can be much faster–depending on the ordering of the
states in the iteration. The references [5, 10] discuss the nature of the modified
transition probability that Q represents (for the control problem) and shows
why it is faster.

The convergence of the Gauss-Seidel form has not yet been established for
the game problem. Under appropriate conditions, the convergence will be estab-
lished for the discounted and ergodic cost functions, and for related problems
such as where there is an absorbing boundary or optional stopping.

The ui, vi take values in compact sets that might depend on i. Define the con-
trol vectors u = {ui, i ≤ N}, v = {vi, i ≤ N}. Let P (u, v) = {pij(ui, vi); i, j ≤
N} denote the transition probabilities under controls u, v. For notational sim-
plicity, it is assumed, when dealing with the discounted problem, that the dis-
count factor ρ ∈ (0, 1) is included in the pij(ui, vi). Hence P (u, v) is degenerate
in that case: the row sums are 1 − ρ. The cost rate when in state i and under
ui, vi is the function ki(ui, vi). Let {Xn} denote the random variables of chain.
Then the discounted cost under u, v is

Ci(u, v) = Eu,v
i

∞∑
n=1

ρnkXn(uXn , vXn),

where Eu,v
i denotes the expectation under u, v and with initial state i. It is

always supposed that the pij(ui, vi) and ki(ui, vi) are continuous in the ui, vi.
Define the vector K(u, v) = {ki(ui, vi); i ≤ N}.

In addition, unless noted otherwise, we assume that the Isaacs condition
holds; namely, that for any N -vector H = {hi, i ≤ N},

sup
v

inf
u

[P (u, v)H + K(u, v)] = inf
u

sup
u

[P (u, v)H + K(u, v)] . (1.1)

In vector forms such as (1.1), it is always supposed that the inf and sup are
taken line by line, so that the ith line is supvi infui

[
∑

j pij(ui, vi)hi + ki(ui, vi)]
and involves the inf and sup over ui and vi only. The condition (1.1) is used
for notational simplicity. Otherwise, one must randomize the controls. Then,
when the number of control values is finite, the control is replaced by the vector
of probabilities, and the analog of (1.1) holds. If the controls take values in a
continuum and (1.1) does not hold, then the randomization is more complicated,
but the results can be readily extended. The condition (1.1) commonly holds for
the games arising as numerical approximations to stochastic differential games
under the conditions of [4, 6].

Section 2 concerns the discounted cost problem and also remarks on cases
where there is forced stopping on hitting a boundary or with optional stopping.
The ergodic cost problem is dealt with in Section 3 and the cost under u, v is

γ(u, v) = lim
n

1
n
Eu,v

i

n∑
l=1

kXl
(uXl

, vXl
). (1.2)
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In Section 3, it is first shown that the game version of a classical value iteration
method converges. Then this is adapted to the Gauss-Seidel procedure. If con-
trols ûn, v̂n are used at time n, then write p

(n)
ij (ûn, v̂n; ûn−1, v̂n−1; · · · ; û1, v̂1) for

the n-step transition probabilities. The ergodic cost problem uses the additional
assumption that there is an ε > 0, a state j0, and an integer m ≤ N , such that

p
(m)
ij0

(ûm, v̂m; ûm−1, v̂m−1; · · · ; û1, v̂1) ≥ ε (1.3)

for all possible controls. This is a standard condition for the ergodic cost prob-
lem in the control literature [12]. See also [1, Vol 2] and [5, pp156–158]. Of
particular interest are Markov chain games that arise as numerical approxima-
tions of games with diffusion models as in [4, 6], where (1,3) will commonly hold
under the assumptions on the nondegeneracy of the diffusion in [4].

To date, there have not been proofs of the convergence of the Gauss-Seidel
method for either the game or the control problem with ergodic cost criteria.
Indeed, it does not always converge, even under (1.3) for ergodic models. But,
it will converge if (1.3) holds for a modified transition probability. This will
be discussed further in Section 3. The modified condition holds for the chains
obtained as approximations in [4] under the nondegeneracy conditions used
there. These chains are obtained via the Markov chain approximation methods
of [9]. The book [2] discusses other numerical procedures, based on nonlinear
programming methods. The paper [3] discusses what might be called a type of
combined value iteration and approximation in policy space method.

2 The Discounted Cost Problem and Extensions

Until further notice, we consider the discounted cost case. Let C̄i denote the
value of the game when starting in state i and define C̄ = {C̄i; i ≤ N}. In vector
form, the equation for the value is

C̄ = sup
v

inf
u

[
P (u, v)C̄ + K(u, v)

]
= inf

u
sup
v

[
P (u, v)C̄ + K(u, v)

]
. (2.1)

In all such vector equations, The inf sup is taken by line; the ith line is over
ui, vi. Recall that the discounting is incorporated into the P (u, v), Hence, for
any integer m ≥ 1, Pm(ûm, v̂m; · · · ; û1, v̂1) is a contraction (in the Euclidean
norm sense) uniformly in the choices of the controls {ûn, v̂n}. A unique solution
C̄ exists and is the value [2, Theorem 3.1.1]. Let ū, v̄ denote any controls that
realize (2.1).

Our aim is the computation of C̄, hence of optimizing controls as well. A
variety of computational methods are available. In [7, 8, 11] it was shown that,
for any C0, the Cn in the iteration in value space algorithm

Cn+1 = sup
v

inf
u

[P (u, v)Cn + K(u, v)] (2.2)

converge to C̄.
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The Gauss-Seidel procedure for the game problem is the iteration in value
space with successive substitutions, taken in the order i = 1, 2, . . .,

Cn+1
i = sup

vi

inf
ui




i−1∑
j=1

pij(ui, vi)Cn+1
j +

N∑
j=i

pij(ui, vi)Cn
j + ki(ui, vi)


 . (2.3)

The convergence proof in Theorem 2.1 adapts the method of [5, 10]. The order-
ing of the states can vary with n.

Before proceeding, it is convenient to define a transition probability and cost
vector that appears in the analysis. Consider the set of linear equations, where
the vector C is given, solved by successive substitution in the order i = 1, 2, . . . :

Di =




i−1∑
j=1

pij(ui, vi)Dj +
N∑
j=i

pij(ui, vi)Cj + ki(ui, vi)


 , 1 ≤ i ≤ N. (2.4)

This uniquely defines a matrix Q(u, v) = {qij(u, v); i, j ≤ N} and vector K̂(u, v) =
{k̂i(u, v); i ≤ N} such that D = Q(u, v)C+K̂(u, v). In detail, by successive sub-
stitutions in (2.4), we find that

q1j(u, v) = p1j(u1, v1), 1 ≤ j ≤ N,

q21(u, v) = p21(u2, v2)q11(u, v),

q2j(u, v) = p2j(u2, v2) + p21(u2, v2)q1j(u, v), 2 ≤ j ≤ N.

In general,

qij(u, v) = pij(ui, vi) +
i−1∑
k=1

pik(ui, vi)qkj(u, v), j ≥ i,

qij(u, v) =
i−1∑
k=1

pik(ui, vi)qkj(u, v), 1 ≤ j < i.

(2.5)

Q(u, v) can also be defined from (2.4) in terms of the upper and lower triangular
matrices formed from P (u, v), but we prefer to write the details. Also,

k̂1(u, v) = k1(u1, v1),

k̂2(u, v) = p21(u2, v2)k̂1(u, v) + k2(u2, v2),

and, in general,

k̂i(u, v) =
i−1∑
k=1

pij(ui, vi)k̂j(u, v) + ki(ui, vi). (2.6)

Note that, for the discounted cost problem where the discount factor is incorpo-
rated into the pij(ui, vi), Q(u, v) is a degenerate transition matrix since the row
sums satisfy

∑
j qij(u, v) ≤ ρ for all i and controls. If there is no discounting,
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then the row sums are always unity. These facts are easily proved by induction,
starting with i = 1.

Theorem 2.1. For any C0, the Cn in (2.3) converges to C̄.

Proof. Since

C̄i = sup
vi

inf
ui




i−1∑
j=1

pij(ui, vi)C̄j +
N∑
j=i

pij(ui, vi)C̄j + ki(ui, vi)


 , (2.7)

by successive substitutions, we can write (2.1) in the equivalent form

C̄ = sup
v

inf
u

[
Q(u, v)C̄ + K̂(u, v)

]
= Q(ū, v̄)C̄ + K̂(ū, v̄). (2.8)

Similarly, with un, vn realizing (2.3), the following is equivalent to (2.3):

Cn+1 = sup
v

inf
u

[
Q(u, v)Cn + K̂(u, v)

]
= [Q(un, vn)Cn + K̂(un, vn). (2.9)

In (2.8) and (2.9), it is understood that the inf and sup are again taken line by
line, in the order i = 1, 2 . . .. The inf and sup in line 1 are over u1 and v1, and
in turn, that in line i are over ui, vi.

For any u, v, and i = 1, . . . , N , (2.1) yields

i−1∑
j=1

pij(ūi, vi)C̄j +
N∑
j=i

pij(ūi, vi)C̄j + ki(ūi, vi)

≤ C̄i = sup
vi

inf
ui




i−1∑
j=1

pij(ui, vi)C̄j +
N∑
j=i

pij(ui, vi)C̄j + ki(ui, vi)




=
i−1∑
j=1

pij(ūi, v̄i)C̄j +
N∑
j=i

pij(ūi, v̄i)C̄j + ki(ūi, v̄i)

≤
i−1∑
j=1

pij(ui, v̄i)C̄j +
N∑
j=i

pij(ui, v̄i)C̄j + ki(ui, v̄i).

(2.10)
In vector notation, this can be written as

P (ū, v)C̄ + K(ū, v) ≤ C̄ ≤ P (u, v̄)C̄ + K(u, v̄).

It can also be written as

Q(ū, v)C̄ + K̂(ū, v) ≤ C̄ ≤ Q(u, v̄)C̄ + K̂(u, v̄). (2.11)

For any u, v, (2.3) or, equivalently, (2.9) yields

Q(un, v)Cn + K̂(un, v)

≤ Cn+1 = sup
v

inf
u

[
Q(u, v)Cn + K̂(u, v)

]
≤ Q(u, vn)Cn + K̂(u, vn).

(2.12)
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Selecting (u, v) = (un, vn) in (2.11) and (u, v) = (ū, v̄) in (2.12) yields

Q(un, v̄)
(
Cn+1 − C̄

)
=

[
Q(un, v̄)Cn+1 + K̂(un, v̄)

]
−

[
Q(un, v̄)C̄ + K̂(un, v̄)

]

≤ Cn+1 − C̄

≤
[
Q(ū, vn)Cn + K̂(ū, vn)

]
−

[
Q(ū, vn)C̄ + K̂(ū, vn)

]

= Q(ū, vn)
(
Cn − C̄

)
.

.

(2.13)
Iterating yields
[
Q(un, v̄) · · ·Q(u1, v̄)

] (
C1 − C̄

)
≤ Cn+1−C̄ ≤

[
Q(ū, vn) · · ·Q(ū, v1)

] (
C1 − C̄

)
.

(2.14)
For the discounted problem the row sums of Q(u, v) satisfy

∑
j qij(u, v) ≤ ρ

for all i and controls. Hence Cn → C̄ as n → ∞.

Stopping when hitting a boundary set. Now, we allow ρ ∈ (0, 1], so that
the discounting can be dropped if desired. Suppose that the process stops when
a boundary set is hit and that the mean time to reach the boundary set is
bounded, uniformly in the controls and initial condition. Thus we can suppose
that the boundary set is absorbing and has zero cost. Without loss of generality,
let 0 denote the boundary state. Let P (u, v) still denote the matrix of transition
probabilities among the states 1, . . . , N only. With C̄ = {C̄i; 1 ≤ i ≤ N} and
Cn = {Cn

i ; 1 ≤ i ≤ N} the products on either side of (2.14) go to zero. Thus
Cn → C̄. It is preferable if state 1 is connected to the boundary and the states
are ordered so that the “mean flow” is toward the boundary as one goes from
the lower to the higher numbered states, where possible.

Optional stopping problems. As in the above paragraph, let ρ ∈ (0, 1].
Various forms of optional stopping can be handled. There are now three ways
that the process can be stopped. One is by hitting a predefined stopping set,
denoted by state 0, as in the previous paragraph. Call the time τ0. Otherwise,
either player can decide to have the game stopped. The associated times are
called τi for player i. After stopping for whatever reason, the state goes to
absorbing 0, with zero holding cost there. The P (u, v) represents the transition
probabilities only among the states 1, . . . , N . For given functions gi(·), the cost
is now

Ci(u, v) = Eu,v
i

τ0∧τ1∧τ2−1∑
n=0

kXn(uXn , vXn)

+Eu,v
i g1(Xτ1)I{τ1≤τ2,τ1<τ0} + Eu,v

i g2(Xτ2)I{τ2<τ1∧τ0}.

(2.15)

The controls ui, vi can now take the new value stop as well as the original values
used in Theorem 2.1. Let ki(ui, vi) ≥ ε > 0 for all i, ui, vi values other than
the value stop, and suppose that g1(·) �= g2(·) but g1(i) ≥ g2(i). Extend the
definition of the ki(·) to include the control value stop, by writing ki(stop, vi) =
g1(i) and let ki(ui, stop) = g2(i) if ui �= stop and let it be zero otherwise. Then
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the Gauss-Seidel algorithm can be written as (2.3). We have g2(i) ≤ Cn
i ≤ g1(i).

Similarly (2.1) holds and g2(i) ≤ C̄i ≤ g1(i).
Let (un, vn) satisfy (2.3) and (ū, v̄) satisfy (2.1). Due to the positivity of

ki(ui, vi), for ui and/or vi not equal to stop, if player 1 uses un and player 2 uses
some v̂n at time n, then P (un, ṽn) · · ·P (u0, v̂0) → 0 and Q(un, ṽn) · · ·Q(u0, v̂0) →
0 as n → ∞ uniformly in the {v̂n} choices. Analogously, Q(ū, ṽn) · · ·Q(ū, v̂0) →
0 for all {v̂n} choices. Using these facts and following the logic of the proof of
Theorem 2.1 yields the convergence Cn → C̄ for this problem.

3 The Ergodic Cost Problem

Now P (u, v) is the transition matrix for a controlled Markov chain which is
ergodic under any u, v. We adapt the procedure of [5, pp156–158], originally
due to White [12]. Let e denote the N -vector, all of whose components are
unity.

A Jacobi procedure. We first consider the analog of the simple backwards
iteration (Jacobi) procedure (2.2), whose convergence for the game with ergodic
payoffs has not been proved to date in the literature. For arbitrary W 0, define
the vectors Wn, wn recursively by

Wn = supv infu
[
P (u, v)wn−1 + K(u, v)

]

wn = Wn −Wn
j0e,

(3.1)

where j0 is defined above (1.3). There is a value for the game [2, Section 5.2].
The value γ̄ is given by

W̄ + γ̄e = sup
v

inf
u

[
P (u, v)W̄ + K(u, v)

]
. (3.2)

As for the control problem, the value of W̄ is unique, up to the addition of a
vector with constant components, and the value of γ̄ is unique. An alternative
way of writing (3.2) is as

W̄ = supv infu [P (u, v)w̄ + K(u, v)]

w̄ = W̄ − W̄j0e.
(3.2a)

Theorem 3.1. wn converges to the value γ̄ of the game.

Proof. Recall the condition (1.3) and the definitions of m and j0 there. Let
un, vn be the selected controls in (3.1). Define cn = Wn

j0
e. Then, for any u, v,

P (un, v)wn−1 + K(un, v)

≤ Wn = P (un, vn)wn−1 + K(un, vn) ≤ P (u, vn)wn−1 + K(u, vn).
(3.3)
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Let (u, v) = (un−1, vn−1) in (3.3) and use the definition of wn in (3.1) to get

P (un, vn−1)wn−1 + K(un, vn−1) − cn

≤ wn ≤ P (un−1, vn)wn−1 + K(un−1, vn) − cn.

Replacing n with n− 1 in (3.3) and letting (u, v) = (un, vn) yields, for i ≤ N ,

P (un−1, vn)wn−2 + K(un−1, vn) − cn−1

≤ wn−1 ≤ P (un, vn−1)wn−2 + K(un, vn−1) − cn−1.

The last two inequalities yield

P (un, vn−1)
(
wn−1 − wn−2

)
− (cn − cn−1) ≤ wn − wn−1

≤ P (un−1, vn)
(
wn−1 − wn−2

)
− (cn − cn−1) .

(3.4)

Iterating (3.4) m− 1 times leads to

P (un, vn−1) · · ·P (un−m+1, vn−m)(wn−m − wn−m−1) − (cn − cn−m)

≤ wn − wn−1

≤ P (un−1, vn) · · ·P (un−m, vn−m+1)(wn−m − wn−m−1) − (cn − cn−m).
(3.5)

Define δwn = wn − wn−1 = {δwn
i ; i ≤ N}. Then the right hand inequality of

(3.5) yields, for i ≤ N ,

δwn
i ≤∑

j

pij(un−1, vn;un−2, vn−1; · · · ;un−m, vn−m+1)δwn−m
j −

[
Wn

j0 −Wn−m
j0

]
.

(3.6)
Since wn

j0
= 0 for all n, we have δwn

j0
= 0. This, with (3.6) and (from (1.3))

p
(m)
ij0

(un−1, vn;un−2, vn−1; · · · ;un−m, vn−m+1) ≥ ε > 0

for all i, n, and controls, yields for i ≤ N

max
i

δwn
i ≤ (1 − ε) max

j
δwn−m

j −
[
Wn

j0 −Wn−m
j0

]
.

Analogously, using the fact that mini w
n
i ≤ 0 and that

pij0(u
n, vn−1;un−1, vn−2; · · · ;un−m+1, vn−m) ≥ ε

for all i, n, the left hand inequality of (3.5) yields, for i ≤ N ,

min
i

δwn
i ≥ (1 − ε) min

j
δwn−m

j −
[
Wn

j0 −Wn−m
j0

]
.

Hence, for all i,
[
max

i
−min

i

]
δwn

i ≤ (1 − ε)
[
max

i
−min

i

]
δwn−m

i , (3.7)
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which implies that wn converges to, say, w̄. Hence Wn converges to, say, W̄ ,
and the limits satisfy (3.2a). Hence, (3.2) holds with γ̄ = w̄j0 .

The Gauss-Seidel procedure. The Gauss-Seidel form of (3.1) is, in order
i = 1, 2, . . . ,

Wn
i =

sup
vi

inf
ui




i−1∑
j=1

pij(ui, vi)Wn
j +

N∑
j=i

pij(ui, vi)
[
Wn−1

j −Wn−1
j0

]
+ ki(ui, vi)


 ,

.

(3.8)
Recall the definition of Q(u, v) and K̂(u, v) from Section 2. Then, in matrix
notation, (3.8) can be written as

Wn = supv infu
[
Q(u, v)wn−1 + K̂(u, v)

]
,

wn = Wn −Wn
j0e.

(3.9)

The condition (1.3) is no longer sufficient for convergence. For arbitrary controls
{ûn, v̂n}, let q(n)

ij (ûn, v̂n; · · · ; û1, v̂1) denote the i, jth element of Q(ûn, v̂n) · · ·Q(û1, v̂1).
We now require the additional condition that there are ε > 0, j0, and an integer
m, such that for all controls {ûn, v̂n} and all i,

q
(m)
ij0

(ûm, v̂m; ûm−1, v̂m−1; · · · ; û1, v̂1) ≥ ε > 0. (3.10)

The condition is discussed below the theorem.

Theorem 3.2. wn converges to the value γ̄ of the game.

Proof. The proof is just an adaptation of that of Theorem 3.1, analogously to
the way that the proof of Theorem 2.1 is an adaptation of the proof of the con-
vergence of the classical procedure (2.2) of value iteration for the discounted cost
problem. Let un, vn be the selected values in (3.8) or (3.9). Then the inequal-
ities (3.3) hold with (Q, K̂) replacing (P,K). Analogously to the development
in Theorem 3.1, this and (3.10) imply (3.7) and the theorem.

Discussion of (3.10). Consider a one dimensional reflected diffusion on the
finite interval [A,B], B > A, and let the variance be strictly positive. Approx-
imate this by an N -dimensional Markov chain via the methods of [9]. The
reflecting states are 1 and N , which correspond to A and B, resp. If the dis-
cretization interval is small enough, then each state communicates with its im-
mediate neighbors only, with probabilities that are bounded away from zero,
uniformly in the controls. Then infu,v,i qi,2(u, v) > 0 and we can use any m ≥ 1
and j0 = 2 in (3.10). This is a consequence of the form of the Gauss-Seidel iter-
ation, which connects states to those that are lower in the order of the iteration.
An analogous result holds for the multidimensional case, if the diffusion being
approximated is non-degenerate. See [9] for details concerning the approxima-
tion, which is the same for the game problem.
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