


Adaptive Optoelectronic Eyes:
Hybrid Sensor/Processor Architectures

University of Southern California
(Principal Investigator:  Armand R. Tanguay, Jr.)

A DDR&E/ARO FY 98 Multidisciplinary University Research Initiative

Final Progress Report

ARO Proposal Number:  P-38565-EL-MUR

ARO Grant Number:  DAAG55-98-1-0293

Research Period 1 June, 1998 – 31 May, 2004

Submitted To:

Dr. Michael Gerhold
U. S. Army Research Office

4300 South Miami Boulevard
P. O. Box 12211

Research Triangle Park, North Carolina 27709-2211

Submitted By:

Prof. Armand R. Tanguay, Jr.
520 Seaver Science Center

University of Southern California
University Park, MC-0483

Los Angeles, California 90089-0483



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 2
Final Progress Report (1 June, 1998 – 31 May, 2004)

Table of Contents

Title Page 1

Table of Contents 2

Abstract 5

Executive Summary 5

Program Goals and Objectives 5

Technical Approach 6

Densely Integrated Hybrid Electronic/Photonic Multichip Module 7

Program Component Interactions 10

Interactions With Other MURI Efforts 12

Significant Accomplishments 14

Significant Accomplishments:
Vision Algorithms, Models, and Architectures 14

Introduction 14

Development of an Invariant Object Recognition System:
A Correspondence-Based Recognition Architecture 15

Improved Robustness of Object Recognition Using a Representation
Based on Gabor-Wavelet Magnitudes 18

Modeling Object Recognition and Shape Classification:
Model Robustness and Human Psychophysics 22

Recognition in the Presence of Image Variations, Particularly Pose 24

Recognition of Objects in the Presence of Variations in Distance (Scale):
Learning from Human Recognition 26

Recognition of Objects in the Presence of Rotations in Depth:
Learning from Human Recognition 32

Visual Representations:  Analysis of Tradeoffs and Feature Learning 33

Extraction of Shape-Defining Contours 34



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 3
Final Progress Report (1 June, 1998 – 31 May, 2004)

Extraction of Shape-Defining Contours:  The PD Edge Detector 35

Extraction of Shape-Defining Contours:
The Contour-Extraction Network 36

Adaptive Fusion of Cues 42

Development of a Bayesian Vision Model from the Mapping
Perspective 42

Investigation of Space-Time Tradeoffs in the Adaptive Optoelectronic
Eye Hardware System 47

Development of Spatio-Temporal Multiplexing Techniques 48

Enumeration of Issues for Mapping of Vision Algorithms onto the
Optoelectronic Multichip Module Hardware 50

Development of a Nature/Nurture Algorithm for Visual Adaptation 50

Significant Accomplishments:
Hybrid Electronic/Photonic Hardware Implementation 56

Evaluation of Dual-Input, Dual Output Silicon VLSI
Neuron Unit Arrays 56

Development of a Single-Sided Flip-Chip Bonding Process 65

Development of High Refractive Index Diffractive Optical Elements
(DOEs) 68

Development of High-Performance Antireflection Coatings for
High Refractive Index DOEs 69

Design and Fabrication of Low Threshold Vertical Cavity
Surface Emitting Laser Arrays 71

VCSEL Structure 72

VCSEL Fabrication 74

Bottom-Emitting 980 nm VCSEL Array Results 78

Photonic Multichip Module (PMCM) Integration 85

Implementation of Variable-Kernel-Size Sobel Transformations 88

PMCM Optical Power Budget 90



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 4
Final Progress Report (1 June, 1998 – 31 May, 2004)

References 94

MURI Faculty Honors and Awards 97

Scientific Personnel 100

Key Faculty Investigators 100

Affiliated Faculty Investigators 101

MURI Postdoctoral Fellows, Graduate Research Assistants,
Undergraduate Research Assistants, and Administrative Staff 102

Degrees Conferred 104

List of Publications 106

Journal Publications 107

Conference Presentations (Published Proceedings) 111

Conference and Technical Presentations 113

Report of Inventions 122

Technology Transfer 122

Multidisciplinary Education 125



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 5
Final Progress Report (1 June, 1998 – 31 May, 2004)

Abstract

The goal of this research program was to develop novel algorithms,
architectures, and hardware for a truly smart camera, with inherent capability for
semi-autonomous object recognition as well as optimal image capture.  In this
research, we combined striking advances in the understanding of the
mechanisms of biological vision systems with similar advances in hybrid
electronic/photonic packaging technology, in order to develop adaptive,
artificial, biologically-inspired vision systems.  A key research program objective,
therefore, was to establish and address the fundamental scientific and
technological issues that currently inhibit the implementation of such adaptive
optoelectronic eyes.  Several novel approaches to the vertical integration of
multiple silicon VLSI vision chips into a hybrid electronic/photonic multichip
module by means of dense 3-D photonic interconnections were pursued.  In this
approach, local and quasi-local connectivity between layers is accomplished by
using novel diffractive optical structures that provide for both point-to-point
interconnections and weighted fan-out within a local neighborhood.  During this
research program, significant progress was achieved in the definition of scientific
and technological hurdles; the establishment of commonalities among several
low-level, intermediate-level, and high-level vision models; the mapping of key
functionalities onto the hybrid electronic/photonic architecture; the
characterization of key components such as vertical cavity surface-emitting laser
arrays (VCSELs) and diffractive optical elements (DOEs); and key steps in the
integration of hybrid electronic/photonic multichip modules that are capable of
implementing these vision models.

Executive Summary

This section presents an overview of the completed MURI research program
“Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures”,
detailing the program goals and objectives as well as the technical approach, and
includes schematic diagrams of the envisioned adaptive optoelectronic eye
module.

Program Goals and Objectives

The development of an intimately coupled sensor/processor module with
architectural characteristics and capabilities similar to those found in the
multilayer retina and early stages of vision in the mammalian visual system was
a primary program goal, and represents the instantiation of biologically-inspired
vision models, algorithms, and architectures in a compact multilayer, vertically
integrated, multichip module that provides both sensing (image acquisition) and
processing functions (for image recognition and feature extraction, for example).
The proposed intimate coupling of the sensor and processor is a key
differentiating feature, and has close biological analogs.

 Preprocessing optics are also envisioned for pre-focal-plane image
acquisition efficiency (to solve the traditional fill-factor problem), color
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differentiation, resolution pyramid pre-image-structuring, and mapping of both
foveal and peripheral regions of the sensor field-of-view [Veldkamp, 1993].

The development of a hybrid electronic/photonic multilayer chip
packaging technology, integrating hybrid analog/digital VLSI chips with dense
optical interconnections was also an important program goal [Tanguay and
Jenkins, 1996].  This research program proved to be an excellent test vehicle for
demonstration of the added value provided by the emerging photonic
technology toolbox in compact image processors, and for the elucidation of
remaining unresolved scientific and technological issues in the hybrid
integration of optical and photonic components with mixed representation
analog/digital VLSI technology.  In addition, the development of this integrated
hybrid packaging technology has potential for a wide range of applications
beyond those that are vision-related (for example, in optical fiber
communications).

The incorporation of environmental adaptivity (both short term and long
term) into these adaptive optoelectronic eye modules represents the capability
for optimization of image acquisition (for example, under different illumination
conditions) as well as for optimization of target recognition (for example, based
on the most recently observed examples of a given type of target, or taking into
account the changes in image acquisition conditions (such as lighting) since the
last observation).  As such, this program component represents the investigation
of how to best incorporate learning (based on both short term and long term
memory) into a combined sensor/processor architecture that is thereby adaptive
to the local environment.

Technical Approach

One key aspect of the technical approach is the development, test, and
evaluation of biologically-inspired vision algorithms and architectures that
extract key features from existing biological paradigms, but at the same time
respect the differences in capabilities, characteristics, and implementation
densities between the original biological toolbox (wetware) and the emerging
hybrid electronic/photonic toolbox (electronic/photonic hardware).

Therefore, a second key aspect of the technological approach is the mapping
of vision algorithms onto hybrid electronic/photonic hardware, such that the
performance successes demonstrated by the developing vision models on
workstations with relatively long computation times can be replicated on an
advanced technological substrate with far shorter computation times (greatly
reduced latency and increased frame rate capability).  The major thrust is to start
with the biological paradigm (implemented in wetware), extract key conceptual
algorithms and architectures for certain visual tasks, demonstrate the
effectiveness of these models (implemented in software at the workstation level)
by direct comparison with results obtained using human observers, and then re-
map the key algorithmic and architectural features (such as dense fan-out/fan-in
interconnections in a multilayered configuration) onto multiple planes of VLSI
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chips interconnected with dense optical/photonic/electronic fan-out/fan-in
interconnections.

Finally, the third key aspect of the technical approach is to design, fabricate,
and test densely integrated, compact, low-power 3-D electronic/photonic
multichip modules (MCMs) that incorporate the desired functionalities of
adaptive optoelectronic eyes for a wide range of applications.

Densely Integrated Hybrid Electronic/Photonic Multichip Module

The basic architectural concept envisioned for an adaptive optoelectronic
eye, based on a densely integrated hybrid electronic/photonic multichip module,
is illustrated schematically in Fig. 1.  This conceptual diagram shows the
integration of multiple VLSI chip layers that are optically interconnected with
dense fan-out/fan-in interconnections between each of the layers.

The example shown represents a pixellated structure in each layer of the
sensor/processor stack, with each layer comprising a 2-D array of processing
elements.  Each such processing element may include, for example, analog
neuron-like signal processing functions, digital functions such as sample-and-
hold, local memory, and in some cases may also contain communication between
neighboring pixels as well as additional control functions.  Specific
configurations in each layer may also include analog, digital, or hybrid
analog/digital mixed representation processors; shifting circuitry for lateral
scrolling functions; and the actual sensor elements (photodetectors and
preamplifier circuitry) themselves.

Figure 2 schematically illustrates a cross-sectional view of one possible
implementation of the dense optical fan-out/fan-in interconnections between
each pair of layers in the multichip module, and hence illustrates the region
identified by the highlighted rectangle in Fig. 1 (described above).  In this case,
the silicon VLSI chip combines both detectors (illuminated with image-bearing or
previous layer information from above in a through-substrate configuration) and
processing electronics within each pixel [Jenkins and Tanguay, 1992].  A multiple
quantum well (MQW) modulator array is shown flip-chip bonded to the silicon
pixel array on a pixel-by-pixel basis (with either three or four flip-chip bonds per
pixel, in particular for the case of dual modulators representing both positive and
negative output signals, comprising two signal channels and at least one if not
two ground connections).

An optical power bus (an integrated optical component) delivers pixellated
readout beams to each modulator element in the array by employing a
combination of a rib waveguide array with vertical outcoupling gratings that are
fabricated on top of each rib waveguide within the array.  The center-to-center
spacings of the rib waveguides and of the outcoupling gratings as well are
designed to match the pitch of the individual modulator elements.

The diffractive optical element (DOE) array is designed to provide weighted
fan-out interconnections from each individual modulator element in the upper
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silicon VLSI chip to a number of neighboring photodetectors within pixels
located on the lower silicon VLSI chip, also back-side illuminated.  Appropriate
focal power can be included either within the design of the DOE array itself (at
the cost of space-bandwidth product), or by incorporating an in-diffused
refractive microlens array, or by incorporating a separate microlens array
fabricated on an additional substrate.

Fig. 1.   Conceptual diagram of 3-D optoelectronic structure, showing silicon
analog/digital VLSI chips and optical fan-out/fan-in interconnections.

Silicon
Electronics

Optics/
Photonics
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Fig. 2.   Schematic diagram of a multilayer hybrid electronic/photonic
computation/ interconnection element, showing the novel optical power bus, as
well as the MQW modulator and diffractive optical element arrays.

Fig. 3.   Schematic diagram of a multilayer hybrid electronic/photonic
computation/ interconnection element, showing the vertical cavity surface
emitting laser and diffractive optical element arrays.



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 10
Final Progress Report (1 June, 1998 – 31 May, 2004)

Figure 3 schematically illustrates a cross-sectional view of another possible
implementation of the dense optical/photonic/electronic fan-out/fan-in
interconnections between each pair of layers in the multichip module.  In this
case, the optical power bus and 2-D MQW modulator array have been replaced
by a 2-D vertical cavity surface-emitting laser (VCSEL) array, shown flip-chip
bonded to the silicon pixel array on a pixel-by-pixel basis (also with either three
or four flip-chip bonds per pixel, as described above).  The use of VCSEL arrays
simplifies the architecture and eliminates the need for the optical power bus.
However, as will be discussed further below, the use of VCSEL arrays is
currently restricted to either sparse arrays or low duty cycle operation as a result
of power dissipation limitations.

Program Component Interactions

The various key program components and subcomponents as well as the
interactions among the various elements are shown schematically in Fig. 4.  All
of the key program components are focused on the development of an adaptive
optoelectronic eye, and as such are defined by a combination of system
integration issues and hardware integration and packaging issues.

The critical importance of multidisciplinary contributions is evident in this
figure, as no one faculty member’s expertise spans such a wide range of scientific
and technological approaches, including experience with the capabilities of the
human visual system (including access to and protocols for human subjects);
theoretical capabilities; system analysis and modeling skills; breadth of
simulation tools and computer-aided design tools; experience with device
design, characterization, and testing; and system-level (or sub-system-level)
experimental facilities.

The academic disciplines represented by the various faculty members range
from Neuroscience, Computational Neurobiology, and Psychology to Biomedical
Engineering, Computer Science, Electrical-Engineering-Electrophysics, Electrical
Engineering-Systems, Materials Science, Chemical Engineering, and Physics, as
shown in the Scientific Personnel Section below.  The collective academic
expertise within the MURI team spans the psychology of vision, the physiology
of vision, neurobiology, computational neuroscience, neural networks, the
development and modeling of vision algorithms, VLSI device design and
fabrication (both analog and digital, including photosensor arrays), optical
device design and fabrication (including diffractive optical elements, stratified
volume holographic optical elements, integrated optical devices, rib waveguide
arrays, and optical power buses), photonic device design and fabrication
(including both 2-D MQW modulator arrays and vertical cavity surface-emitting
laser arrays), hybrid electronic/photonic packaging, and flip-chip bonding.
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Fig. 4.   Schematic diagram of the key components of the research program,
depicting the inherent program multidisciplinarity as well as the interactions
among the various components.
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Interactions With Other MURI Efforts

The envisioned adaptive optoelectronic eye sensor system is targeted for
image information in the visible spectrum, within the spectral sensitivity range of
the first (top-most) silicon photodetector/processor array, as shown
schematically in Figs. 1, 2, and 3.  However, it is of considerable interest to
extend the capabilities of such adaptive optoelectronic eyes to complementary
spectral regions, such as the mid-, near-, and far-IR regions.  As such, the focal
plane array envisioned in the current effort can conceivably be replaced by an
appropriate sensor array that is optimized for one or more of these spectral
regions, as shown in Fig. 5.

To this end, we developed a strong interaction with a second MURI effort
that was focused on IR detector arrays based on emerging quantum dot
technology (“Stress-Engineered Quantum Dots for Multispectral Infrared
Detector Arrays”, FY 98 MURI Program, Contract No. F49620-98-1-0474;
Principal Investigator:  Prof. Anupam Madhukar, University of Southern
California; Program Manager:  Maj. Daniel K. Johnstone, Air Force Office of
Scientific Research).  The goal of this related research program was to develop IR
focal plane arrays with enhanced sensitivity and quantum efficiency by making
use of the significant increase in absorption cross section that results from 2-D
quantum confinement.

As shown in Fig. 5, predetection optics developed under MURI I (Adaptive
Optoelectronic Eyes for short) and redesigned for use in the infrared focus and
disperse the incoming image illumination onto a focal plane array that
incorporates stress-engineered quantum dot detectors that are both pixellated
and multi-wavelength, as developed under MURI II (Detector Array Technology
for short).  Outputs from the quantum dot detectors are fed in parallel to a
postdetection processor based on the technology described herein (incorporating
a hybrid electronic/photonic multichip module that implements advanced
adaptive detection and vision-related functions), again as developed under the
current MURI I program.  Coupling between the IR focal plane array and the
postdetection processor is envisioned to comprise the same type of dense flip-
chip bonding that is described herein as key to the MURI I effort.
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Fig. 5.   Schematic diagram of an augmented adaptive focal plane array system.
A set of predetection optics modifies the incoming image before it is detected,
potentially increasing detection efficiency and color discrimination.  Adaptive,
localized gain control is provided to the focal plane array, in turn providing
improved utilization of detector dynamic range and enhancing detection of
objects in the presence of nonuniform illumination.  The postdetection processor
provides on-board computation of these adaptation signals, as well as region-of-
interest localization for pointing and zoom control (if appropriate).  The primary
research focuses of the two interacting MURI efforts described in the text are also
shown herein.

Predetection Optics

Focal Plane Array

Postdetection Processor
(For Adaptation)

MURI  Ι:
Adaptive Optoelectronic Eye

MURI  Ι:
Adaptive Optoelectronic Eye

MURI  ΙΙ:
Detector Array Technology
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Significant Accomplishments

This MURI grant was awarded under the FY-98 Multidisciplinary Research
Program of the University Research Initiative, with a start date of 1 June, 1998.
In the sections that follow, a summary of significant accomplishments during the
research program period (1 June, 1998 through 31 May, 2004) is provided.

Accomplishments in the general area of vision algorithms, models, and
architectures, on the one hand, and in the general area of hybrid
electronic/photonic hardware implementations, on the other, are described
separately below for clarity.  Extensive interactions between these two principal
components of the efforts proved crucial to the success of the research program.

Significant Accomplishments:
Vision Algorithms, Models, and Architectures

Introduction

The main difficulty in the development of vision algorithms, models, and
architectures stems from the tremendous variation of natural scenes.  No two
scenes are ever alike in any superficial sense.  Even a concrete, individual object
never looks the same in two images.  This variation defies rigidly constructed
vision mechanisms, although this is the traditional approach of computer vision.
In order to make progress, we can learn some valuable lessons from biological
vision systems.  One of these lessons is the importance of adaptivity on all time
scales.  Besides the slower time scale of learning from example, it has become
more and more evident that adaptation is also necessary (and taking place in
animal visual systems) during the process of scene interpretation, for instance to
retune individual visual cues in the light of information from other cues.

It has been the classical style of computer vision to “construct” vision
mechanisms on the basis of physical and mathematical insight.  It is becoming
increasingly clear that the battle cannot be won in this manner.  Biology teaches
us that “learning from examples” is a much more successful strategy.  Once we
have developed techniques to apply this style on all levels of the visual
hierarchy, from low-level features via feature arrangements, to object parts,
whole objects, and to entire scenes, the rest of the work can be done
automatically by adaptive visual systems of which only the general architecture
has been constructed.  To make progress towards this architecture, both on the
hardware and software level, was the central goal of our project.

Thus, our vision algorithm, model, and architecture effort addressed, in
part, two key problems facing the implementation of a useful and generalizable
eye/vision module: first, the recognition of scenes and objects in a manner that is
robust with respect to typical image-to-image and object-to-object variations,
which include rotations (laterally and in depth), scaling and translation,
occlusion, scene illumination, and distortion of objects; and second, the
implementation of these algorithms in parallel hardware that provides
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sufficiently fast computation to yield results in at least real time [Tanguay, et al.,
2000].

Toward these ends, we designed the research effort to cope with several
levels of the visual hierarchy.  On the lowest level, an effort led by
A. R. Tanguay, Jr. and B. K. Jenkins focused on developing the technology to
implement feature extraction (e.g., of Gabor-type wavelets) in an efficient
parallel, partially optical, partially or wholly analog technology, based on a
paradigm first described in [Tanguay and Jenkins, 1996].  On a higher level, an
effort led by B. Mel examined families of mid-level feature types and
combinations of features, among them edges and edge combinations, e.g., [Mel,
1997]; this work includes the consideration of techniques for learning efficient
and useful sets of feature types from examples.  In addition, an effort led by C.
von der Malsburg made strides in the development of representations of objects
that are particularly robust in the presence of changes in such parameters as pose
and distortion.  On the level of object components (geons), an effort led by I.
Biederman exploited the rich treasure of biological information, gleaned by his
group and interpreted using their psychophysical methods, in order to better
model the object recognition process of the human visual system, thus providing
us with pertinent biological inspiration.

On still higher levels of whole objects and scenes, it is necessary for artificial
and natural visual systems to absorb enormous quantities of sample material
(children do this for more than a decade before their visual systems reach full
competence), and it is necessary to both condense that sample material as much
as possible and ready it for generalization, interpolation, and extrapolation.  In
addition it will be necessary to develop means to merge that domain knowledge
in an efficient way with visual inputs in order to decipher them.  Efforts led by C.
von der Malsburg made progress on that front by constructing statistical object
models that are parameterized by such variances as pose or deformation, and by
developing efficient matching mechanisms to compare such models to image
components.

Finally, we also describe below progress in our effort to achieve techniques
for mapping useful vision algorithms and models onto the photonic multichip
module hardware, in order to implement them in a fast, highly parallel, adaptive
module.

Development of an Invariant Object Recognition System:
A Correspondence-Based Recognition Architecture

One key element of the vision of this collaborative project was to recreate
the fantastic functionality of biological vision systems as a new technology.  This
is a tremendous challenge on two levels.  On the one hand, we had to come up
with clear concepts of a system architecture, and on the other hand an
appropriate implementation technology had to be developed.  These two issues
are not independent of each other at all, and required close collaboration and
intensive discussion.  The biological model is not perfectly understood itself, and
even if it was, the constraints under which electronic and photonic technology
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operate are fundamentally different from those reigning in biology, so that
creative approaches are required.

One of our key strategies in the context of this research project was to
develop an invariant object recognition system that is competitive in the
technological domain and at the same time can be taken seriously as a model of
the biological vision system.  It is our conviction that, if done right, this system
will act as a paradigm for vision in general.  “Doing it right” means addressing a
number of critical aspects:

Attention Control
The system has to select subregions in the image or scene that are of interest

in the context of current system goals.  This can be driven bottom-up (by
features, such as local movement, that signal significance) or top-down, in a
search mode, to select from among the candidates offered bottom-up.  Top-down
attention control already presupposes a system for object representation and for
mapping between an invariant domain and the image domain, as described
further below.

Figure-Ground Separation
The object at the focus of attention needs to be clearly separated from the

background and from potential occluders.  This is especially important if the
contour of the object is to be extracted with some precision.

Invariance
Depending on viewing conditions, the image of an object in an eye or

camera is subject to variance in terms of position, size, orientation, pose (rotation
of the object in depth), deformation, surface marking, illumination, partial
occlusion, background, and noise.

Feature Definition
From the images as delivered by a camera or the eye, features are to be

extracted that are sensitive to the differences that are important during
recognition, and insensitive to differences that are irrelevant.

Object Representation
For many applications, it is important to have explicit representations of the

structure of objects (admitting that the mere classification of objects may be
possible without such, based on appropriate features).

Subsystem Integration
For object recognition, subsystems for shape, surface markings, contour

form or object parts (to name a few examples) need to be combined.  In figure-
ground separation, subsystems have to deal with motion, texture, color, form,
and contour shape, among other features.

Single-Example Learning
A system must be able to learn from single examples of a new object.
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Speed
The system needs to be highly parallel.  The biological system recognizes

objects within the time of a few neural transmission delays.

This project, combined with support from other sources, permitted our
research effort to make decisive progress on essentially all of the above aspects.
The basis of the architecture that has emerged is a system for correspondence-
based recognition.  The system is composed of two domains, an image domain I
and a model domain M.  The image domain has the form of a two-dimensional
sheet of nodes (in the biological version, the nodes are local sets of neurons of
different specificity).  Nodes express information on local features.  In the
conceptually simplest version of the system, the model domain consists of a
collection of sheets of nodes, each very similar to the image domain, one such
sheet per recognizable object.  The task of the system is to find a correspondence
map, that is, a set of links between points in I and models in M.  In an acceptable
correspondence, there is high similarity between corresponding points in I and
M, and neighboring nodes in I map to neighboring nodes in M.

One of the key thrusts of this part of the overall project was the
optimization of the object recognition performance of the system.  This led to
publications [Okada, et al., 1998; Triesch and von der Malsburg, 2001; Triesch and
von der Malsburg, 2002; Serrano, et al., 2003; Huesken, et al., 2004; and Eckes, et
al., 2006].  In [Okada, et al., 1998], it was shown in competitive tests with other
leading groups that our correspondence-based approach combined with Gabor
wavelet features is highly competitive.  In [Triesch and von der Malsburg, 2001;
Triesch and von der Malsburg, 2002], we tested the system on another type of
objects, human hands, whose posture was to be recognized.  In [Serrano, et al.,
2003], we explored possibilities for compressing object representation data under
the constraint of undiminished recognition rate.  In [Huesken, et al., 2004], we
devoted some effort to improved face recognition rates in the presence of head
pose differences.  In [Eckes, et al., 2006], we recently showed that the system is
able to analyse cluttered scenes and direct its attention sequentially to different
objects.

A second thrust of this project was directed at better understanding of
Gabor wavelet features.  These are directly inspired by the biological model.
One of their virtues is their robustness against small object deformations and
small image shifts.  The latter necessitates, however, abolishing the Gabor phase,
by taking the magnitude of the signal (square root of the sum of squares of the
sine and cosine responses).  We were able to show [von der Malsburg, et al., 1998;
Shams and von der Malsburg, 2002; Wundrich, et al., 2004] that the only
ambiguity incurred by abolishing phase information is that between the original
and the photographic negative.  This research direction is described in further
detail in a subsequent section.  In [Kalocsai, et al., 2000], we studied the relative
contributions of different Gabor components to the recognition success, and
found that some components are more important than others by factors of
several thousand.

Central to the success of the comprehensive project was coming up with a
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mechanism of rapid correspondence map formation.  In technical
implementations, as now used for face recognition in several leading companies,
a number of trial maps are tried out in sequence, using first large, then smaller
and smaller steps in parameter space (e.g., relative position), finally permitting
the map to deform slightly, while optimizing the overall similarity between
correspondence points in the image and the model.  As a biological model, this is
unacceptable; in the technical domain, this is too slow and ill-adapted to parallel
implementation.  An early version [Wiskott, et al., 2002] may apply in the
biological case early in ontogenesis (and was and is discussed by us as a possible
technical implementation); it is not realistic, however, to explain object
recognition in the adult animal, being too slow by orders of magnitude.  The
basic issues involved are discussed in [von der Masburg, 2002a; von der
Malsburg, 2002b].

In a series of papers [von der Malsburg and Zhu, 2000; Zhu and von der
Malsburg, 2001; Zhu and von der Malsburg, 2002a; Zhu and von der Malsburg,
2002b; Zhu and von der Malsburg, 2003; Zhu and von der Malsburg, 2004], we
were able to show, however, that if there was a mechanism for direct interaction
between links, very rapid map establishment and recognition is possible (within
a few iterations).  That early implementation of the dynamic link mechanism still
suffered from some technical difficulties (feature similarities had to be computed
off-line).  In [Luecke, et al., 2002] we overcame those difficulties with the help of a
macrocolumnar realization of nodes in the image and model domains.  We have
recently shown that object recognition can be realized in a fully parallel system
[Luecke and von der Malsburg, ICANN06, submitted].  Under separate funding,
we are now collaborating with R. Douglas, Zurich, on a VLSI implementation of
that system, thus coming very close to one of the original goals of the project
reported here.

A final thrust partially supported under this project was directed at
learning.  In [Luecke and von der Malsburg, 2004] we developed a novel system
for feature learning, with which it has been possible since then to show learning
of Gabor wavelets from natural inputs.  In [Prodoehl, et al., 2003] we showed that
feature relations can be realistically learned from natural image sequences.
These relations are important for the extraction of contours from images, an
ability highly developed by our colleague B. Mel within this project.  In [Shams
and von der Malsburg, 1999; Shams and von der Malsburg, 2002] we were able to
show learning of shape primitives (geons), as described in psychophysical
experiments by our colleague I. Biederman.  In [Zhu and von der Malsburg, 2002;
Zhu and von der Malsburg, 2006] we were able to demonstrate generation by
learning of the link-to-link associations that are necessary for rapid
correspondence finding.  Finally, in [Loos and von der Malsburg, 2002] we
demonstrated one-shot learning of object models from natural visual scenes.

Improved Robustness of Object Recognition Using a Representation
Based on Gabor-Wavelet Magnitudes

One of the most fundamental and difficult issues of image understanding
and visual object recognition is the attainment of invariance or robustness to
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variations in the appearance of objects and scenes from image to image.  The
geometrical variations of translation, scaling, and rotation within the image
plane can be dealt with in a systematic and comprehensive way.  Other changes,
however, cannot be modeled practically.  Among these sources of variation are
changed illumination, object distortion, and (at least in the absence of precise 3-D
shape information) changes in perspective.

Described herein is work on the use of Gabor-wavelet magnitudes (without
phase information) to represent an object.  Evidence is given that the use of these
Gabor magnitudes provides robustness with respect to many parameters,
including slight variances in pixel positions of features within an object or scene,
and to contrast reversals of parts of the object.  A vision model based on Gabor-
wavelet representation and elastic graph matching, Christoph von der
Malsburg’s dynamic link architecture model [von der Malsburg, 1981], has been
used very successfully in the past to model faces and to recognize people by
pictures of their faces.  This new work using Gabor magnitudes only, without the
phases, allows for increased robustness of the model, and has the potential to
significantly reduce the complexity of instantiating vision models of this kind in
the emerging hybrid electronic/photonic hardware.

Von der Malsburg’s dynamic link architecture vision model uses graphs
labeled with Gabor-based wavelets to represent objects and recognize them by
elastic graph matching in a way that is invariant to the geometrical
transformations listed above, and robust with respect to deformations [Lades, et
al., 1993; Wiskott, et al., 1998].  Gabor wavelets are two-dimensional sampling
functions (receptive field profiles or convolution kernels in biological or
mathematical parlance, respectively) in the form of sinusoidal waves multiplied
by suitably scaled Gaussian envelope functions.  Gabor wavelets can differ both
in orientation and in scale (or spatial frequencies); we typically sample the image
on five scales and eight orientations.  Each individual kernel type comes in two
varieties, sinusoidal or cosinusoidal, depending on whether the wave is centered
on the Gaussian with its zero or its maximum, respectively.  From this pair of
numbers (one from the sine kernel and one from the cosine kernel), which can be
extracted from a given kernel type and on each image point, an equivalent pair
of numbers can be computed:  the magnitude (as the square root of the sum of
the squares of the sine and cosine component) and the phase (as the arctangent of
the ratio of sine and cosine components).

Gabor phases contain important information as to the location of image
features (especially of edges).  However, it turns out that the inclusion of phases
is cumbersome for elastic graph matching, leading to many distracting local
optima.  When ignoring Gabor phases and working with Gabor amplitudes
alone, on the other hand, elastic graph matching proved in our hands to be very
successful for object identification purposes [Wiskott, et al., 1998].  However,
prior to the work reported here it was unclear what ambiguities arise when
phases are ignored, and correspondingly what false matches to wrong objects or
patterns are to be expected.
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We are now able to characterize the ambiguities of image representation by
Gabor magnitudes.  By applying a theorem [Hayes, 1982] about ambiguities of
Fourier magnitudes, we were able to prove that when the recorded Gabor
magnitudes are precise (in terms of amplitude and recorded position), the only
image ambiguity left is that of global contrast inversion (which would let a
positive image be confused with its photographic negative).  However, if the
limited precision of actual image data is taken into account, a much wider range
of image ambiguities is opened, and this range proves to be a boon rather than a
disadvantage.  A theoretical argument shows that these ambiguities correspond
to small local image distortions (especially, small shifts in the position of edges)
and to contrast inversions of local regions of the image.

In order to corroborate this argument we developed an algorithm to
reconstruct images from Gabor magnitude information only.  The algorithm
starts from an arbitrary seed image, which is iteratively modified to reduce the
deviation between the Gabor magnitudes of a target image and the reconstructed
image.  We show that this deviation can be made arbitrarily small.  In accordance
with the theoretical result, all accurate reconstructed images are either a detailed
reconstruction of the original pixel values, or a reconstruction of the negative of
the original.  However, if the reconstruction procedure is stopped when the
median error in Gabor magnitudes is a few percent, an interesting variety of
reconstructed images is obtained.  (Examples are shown in Fig. 6.)  In these
images, local contrast can be reversed in some regions and not in others, edges
change their polarity or their profile (even such that edges are sometimes
changed into lines or vice versa), and close scrutiny shows that the exact position
of edges is sometimes shifted.  Thus, both theoretical argument and experimental
work show that there is a variety of images that agree in Gabor magnitudes up to
a certain precision but differ considerably in pixel values.

It is a remarkable fact of high biological significance that the objects or
scenes can always be easily recognized by our eye from the reconstructed images
(indeed it is very difficult to remember differences between reconstructed
images).  In an ongoing collaboration with Prof. Biederman in the context of this
MURI research program, we were able in psychophysical experiments to show
that object identification is not affected by local contrast reversals at all.
Preliminary results are reported in [Subramaniam and Biederman, 1997].  Our
visual system contains as a very important component a class of cells (“complex
cells”) whose response characteristics are those of Gabor magnitudes, showing
that evolution has found it advantageous to use them as well [Shams and von
der Malsburg, 2002].

The functional significance of the stated properties of Gabor magnitudes,
especially relevant to a number of military and civilian applications, is that the
range of actual image variations that a recognition system has to deal with are of
the kind to which Gabor magnitudes are insensitive.  Among these are small
distortions of objects (due to perspective changes or intrinsic distortion), changes
in lighting (which can reverse the contrast of edges) or, in the case of infrared
images, changes in the temperature profile of an object.
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Fig. 6.   Reconstruction of images from Gabor magnitudes.  Left column: target
images.  These images are filtered such as to contain all and only such
information as captured by our set of Gabor kernels.  Middle and right columns:
reconstruction obtained using different seed images.  Note the local contrast
inversions and changes in the profiles of rendered edges.  Note also that the
objects or scenes can be effortlessly recognized by our eye.
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Modeling Object Recognition and Shape Classification:  Model
Robustness and Human Psychophysics

A more fundamental way to test model robustness (i.e., to assess how robust
the model is with respect to the appropriate image variations, and to the
appropriate degree) is to compare it to the performance of human beings on
similar tasks.  We have also performed experiments on von der Malsburg’s
vision model that compare its performance with that of trained observers, with
results that show striking similarity in performance, as described in more detail
below.

During the research program, we addressed the question of whether a
neurally inspired Gabor-kernel based model, specifically von der Malsburg’s
dynamic link architecture, provides a promising basis for modeling shape
recognition, by performing tests that compare the robustness of the model with
that of human subjects.  The general methodology we used in this set of
experiments was to measure recognition performance under difficult viewing
conditions (e.g., brief exposures, noise, low contrast, small size) designed to lead
to variations in the speed and accuracy of performance.

The first phase of this set of experiments was performed by Prof. Irving
Biederman in conjunction with Prof. Christoph von der Malsburg, and uses FLIR
images of military vehicles in realistic scenarios under variations of size
(distance) and noise (e.g., Fig. 7).  The test assesses how often vehicle A is
confused with vehicle B, resulting in a “confusion matrix”.  Recognition was
performed by trained human observers and by von der Malsburg’s vision model.
Remarkable similarity (correlation of 0.89) was observed in the types of errors
made by humans and in those made by von der Malsburg’s model.

In further experiments, subjects performed a match-to-sample task in which
they judged which of two comparison stimuli, presented briefly, was identical to
the sample.  The stimuli were either faces (Fig. 8) or unfamiliar, smooth,
asymmetric, complex 3D blobs (Fig. 9) produced by varying the orientations of
the second and third harmonics of a sphere and then adding these orientations to
the sphere and fourth harmonic.  The (dis)similarity between the matching and
distracting blobs was assessed by four measures: (a) subjective pair-wise ratings
made by human subjects, (b) Euclidean distances in a 2D stimulus space defined
by the differences in the angles of rotation of the orientation-varying harmonics,
(c) mean pixel luminance energy differences between pairs of images, and (d)
von der Malsburg's Gabor-jet model (Lades, et al., 1993), designed to model
aspects of V1 simple-cell filtering.

The last measure is based on a wavelet-like filtering of the image by a lattice
of Gabor jets, each composed of kernels over multiple scales and orientations.
Similarity in the model is a function of the correlation of the activation values
between corresponding kernels in corresponding jets.  When matching faces (Fig.
8), the error rates correlated almost perfectly with the Gabor-jet similarity of the
distractor:  r = 0.943.  For objects (such as those illustrated in Fig. 9), all four
measures correlated positively with error rates on the match-to-sample trials:
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Euclidean distance = –0.804, judged similarity = –0.846, pixel energy = –0.891,
and Gabor jet = –0.910.  In the absence of salient nonaccidental differences (e.g.,
differences in parts or whether contours are straight vs. curved), Gabor jets, a
model based on V1 computations, does remarkably well in scaling the
psychophysical similarity of faces as well as complex, novel shapes.  To our
knowledge this is the first time that psychophysical similarity has been
successfully predicted by a theoretical model.

This humanlike behavior of an autonomous model indicates the potential of
the model in other difficult areas of visual recognition.  Furthermore, such
comparisons against comparable human visual capabilities can provide valuable
tests of the evolving vision models, as well as of their instantiations in hardware.

Fig. 7.   Sample infrared images showing variations in size and contrast from an
experiment on the identification of 15 military vehicles from infrared imagery.
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An intriguing prospect that potentially accrues to such direct comparisons
between human observer performance and vision model performance is the
elucidation and specification of the confusion or illusion spaces that characterize
both.  This suggests the potential design of complementary vision models and
corresponding hardware instantiations that can break the degeneracy, so to
speak, and exhibit recognition capabilities that complement rather than mimic
those of human observers.

Recognition in the Presence of Image Variations, Particularly Pose

The image of a three-dimensional object varies according to position,
orientation, and scale, as well as according to pose, illumination, deformation,
and other sources of variation.  In this section we will discuss our results on
techniques for handling variations in pose that have application to automated
visual recognition systems.  In the subsequent two sections, we will describe
several pertinent lessons we have learned from studying the recognition process
in human vision systems.  These lessons relate to: first, perception at various
orientations in depth, which has application to changes in pose; and second,
perception at various distances, which has application to changes in scale.

Our approach for many of these issues is a technique based on an object
description in terms of labeled graphs, with nodes referring to points on the face
of the object in the image, and with labels in the form of sets of Gabor-based
wavelet components centered on the node positions.  Object recognition is then
implemented by a process of graph matching.  In this model, the three issues of
object position, in-plane orientation, and scale are dealt with explicitly and
simply with the help of transformations performed on stored model graphs
during the matching process, the transformation acting on node positions and
attached Gabor wavelet sets.

Pose variation, on the other hand, must be handled with the help of many
views from different vantage points.  A simple and straightforward strategy
would be to cover the viewing sphere (the domain of all pose angles) with stored
aspects and search them all during the recognition process.  As a background
study, we have made efforts to cover the viewing sphere with as few views as
possible while still being able to reconstruct all intervening views with a given
accuracy as a weighted mean of neighboring stored views [Peters, et al., 1999a,
1999b; Peters and von der Malsburg, 2001a, 2001b].

Working with individual stored aspects of an object is a method of limited
applicability, especially when variations along more than just pose angle are at
issue.  We are therefore pursuing the goal of capturing variation along several
dimensions in terms of a coherent object model X(P), where X refers to the object
model (the vector of data describing the labeled graph) and P  is a set of
parameters (e.g. , position, orientation, scale, pose, illumination, and
deformation).  If a collection of images is given that covers a small volume in P-
space, principal component analysis (PCA) or independent component analysis
(ICA) can be used to find a local linear basis for X (P) within the restricted
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Fig. 8.   Illustration of match-to-sample trials on faces with distractors that are
either of high similarity (left panel) or low similarity (right panel) to the
matching stimulus.  The greater the similarity, the greater the chance of an error.

Fig. 9.   Illustration of match-to-sample trials on blobs with distractors that are
either of high similarity (left panel) or low similarity (right panel) to the
matching stimulus.
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volume in P-space.  As X (P) will in general define a curved manifold, several
partially overlapping linear descriptions have to be combined (e.g., by weighted
averaging) to represent X(P) over larger volumes in parameter space.  We have
worked with images of human heads in a range of pose angles, complete with
pose angle information (provided by a magnetic tracking system).  Our system
allows us to recognize pose angles from a given image of a person or to
reconstruct images of the person for given pose angles [Okada, et al., 2000].

Ground truth in terms of the underlying parameter values (pose angles, for
instance) is rarely given.  In a further study [Wieghardt and von der Malsburg,
2000] we have taken a large set of images of a given object from different viewing
angles, without those angles being given to the system. We first collected images
into “viewing bubbles”: sets of images with high similarity to a central image.
For each viewing bubble we erected a linear data model.  We then erected a
coherent three-dimensional P-space by arranging the viewing bubbles with the
help of multi-dimensional scaling on the basis of pair-wise distances between the
centers of partially overlapping bubbles (we derive these distances from the local
coordinate frames).  Finally, we aligned the linear model frames in neighboring
viewing bubbles relative to each other.  The resulting manifold is a coherent
description of the object from all viewing angles, as shown in Fig. 10.

Recognition of Objects in the Presence of Variations in Distance (Scale):
Learning from Human Recognition

Two fundamental problems in the design of a visual system that can
achieve shape recognition comprise how to handle variations of an image of an
object when it is viewed (1) at various distances and (2) at various orientations in
depth.  We consider variations in distance in this section and variations in depth
orientations in the subsequent section.  In the case of scale, humans and animals
can identify objects appearing at a variety of sizes in their visual field without
much apparent cost.  This problem has assumed significant import in our efforts
to adapt the Gabor jet recognition system developed by von der Malsburg to
human object recognition.  The system assumes a spatially distributed array of
Gabor filters at multiple scales and orientations that would roughly correspond
to primate cortical hypercolumns in V1.

This apparent invariance over size changes poses a challenge to
computational theories of visual recognition, because the early cortical
representation of object features appearing at different sizes will vary greatly.
For example, a slightly rounded L-shaped vertex when the object is shown at a
small size will activate feature detectors sensitive to sharp curves at a given scale.
The image of the same object at a larger size might not activate curve detectors at
that scale at all.  (L-vertices are of particular importance in segmenting the
objects in a scene, as they provide a strong constraint signaling the end of a
surface.)
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Fig. 10.   Representation of an object from all angles in the upper viewing
hemisphere [Wieghardt and von der Malsburg, 2000].  The representation was
constructed from an unlabeled set of 2500 images taken at 3.6 degree intervals.
Circles correspond to center images of viewing bubbles.  For each of them the
corresponding view of the object is printed to the lower right.  Overlapping
viewing bubbles are connected by a line. The upper pole of the viewing sphere is
not a point but a circle (the outer circle in the perspective figure), because during
image comparison in-plane rotations were not permitted.
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Because of an advantage in identification of low pass over high pass filtered
patterns as well as large patterns over small, a number of theorists have assumed
that size-independent recognition is achieved by spatial frequency (SF) based
coarse-to-fine tuning.  A specific proposal for implementing this idea was the
assumption of a “shifter circuit”.  The shifter circuit selects the most salient
information on the lowest scale, and adjusts the size and sampling of the input
window to higher processing centers based on this scale to achieve a size-
normalized representation of a given object in the scene. Such a tuning
mechanism can accommodate voluntary attentional as well as involuntary
mechanisms for size and position invariant recognition.

During the research program, Prof. Biederman [Fiser, et al., 2001] and his co-
investigators investigated this assumption of spatial frequency-based size tuning
as a model of human object recognition.  Specifically, they addressed the
question as to whether efficient response to images of different size requires
information to be represented at different scales.  Would the pattern of results
obtained in tasks that required processing images of various sizes be different if
the spatial frequency content of the images was held restricted to different
limited bands?

The experiments of Fiser, et al. employed the Rapid Serial Visual
Presentation (RSVP) protocol, in which a time sequence of images is presented,
each very briefly (e.g., 72 msec).  Subjects of the experiments were given a
verbally specified target, e.g., “chair”, and were asked to detect whether or not
the target was present in the image sequence.  Figure 11 shows examples of the
various conditions of their eight experiments.   A sample experiment is shown in
Fig. 12.

We have discovered that the advantage of large sizes or low spatial
frequencies apparent in the viewing of individually presented images is lost
when human subjects attempt to identify such a verbally-prespecified target
object somewhere in the middle of a sequence of 40 images of objects (each
shown for only 72 msec) as long as the target and distractor objects are the same
size or spatial frequency (unfiltered, low bandpassed, or high bandpassed).  Such
sequences were termed homogeneous.  When targets (which were present in
only half the sequences) were of a different size or scale than the distractors
(heterogeneous sequences), a marked advantage (pop out) was observed for
large (unfiltered) and low spatial frequency targets against small (unfiltered) and
high spatial frequency distractors, respectively, and a marked decrement for the
complementary condition, as in the example shown in Fig. 13.  Importantly, this
pattern of results for large and small images was unaffected by holding absolute
(Expt. 7) or relative (Expt. 8) spatial frequency content constant over the different
sizes, and it could not be explained by simple luminance- or contrast-based
pattern masking.  These results suggest that size/scale tuning in object
recognition was accomplished over the first several images (< 576 msec) in the
sequence (within which a target never appeared), and that the size tuning,
contrary to expectations of the Scaling Hypothesis, was implemented by a
mechanism sensitive to spatial extent rather than to variations in spatial
frequency.
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Fig. 11.   The stimuli used in the different experiments.  Size changes (maximum
extent of the object, in degrees) are represented on the horizontal axis, changes in
spatial frequency filtering (center frequency, in cycles per degree) on the vertical
axis.  The first single presentation naming experiment, the Pure Size RSVP, and
the two masking RSVP experiments (Expts. 1, 3, 5, 6) used unfiltered large and
small images.  The second single presentation verification experiment and the
Pure Scale RSVP experiments (Expts. 2, 4) used large size images filtered at two
center frequencies with a 1.5 octave wide bandwidth.  The Absolute RSVP
experiment (Expt. 7) used large and small images filtered around 10 cpd,
whereas the Relative RSVP experiment (Expt. 8) used different center frequencies
in proportion with the size changes between large and small images.  The only
untested condition, small images filtered around 2 cpd, would create
unidentifiable blobs.
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Target

Fig. 12.   A heterogeneous trial example from the Pure Scale RSVP experiment
(Expt. 4 in Fig. 11).  In a sequence of high bandpassed images, a low bandpassed
image, which might or might not be the target, appeared in half of the
heterogeneous trials.  All images in all conditions had the same size.  Each image
was shown for 72 msec.  (The arrow represents time).
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Fig. 13.   A heterogeneous trial example from the Pure Size RSVP experiment
(Expt. 3).   In a sequence of small images there is one large image in a random
position which might or might not be the target.  In the other type of
heterogeneous sequence, one image would be small and all the others large.  The
arrow represents the time axis (there were no visible frames around the images).
In other experiments, the target and distractors could vary in spatial frequency.
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Recognition of Objects in the Presence of Rotations in Depth: Learning
from Human Recognition

Another challenge to implementing a vision system is how to achieve the
invariance that people demonstrate in recognizing objects at different
orientations in depth (up to parts occlusion).  Biederman [Biederman, 2000]
reviewed the literature and concluded that many of the phenomena of object
classification can be derived from a viewpoint-invariant representation of an
object's parts (geons) and relations, termed a geon structural description (GSD)
(Fig. 14).  The viewpoint invariance derives from a specification of the orientation
and depth discontinuities in an image surface in terms of differences in
properties that are invariant over orientation, such as whether an edge is straight
or curved, pairs of edges parallel or not, or the kind of vertices that are formed
from the cotermination of edges.  Such a representation:  (a) enables the facile
recognition of depth-rotated objects, even when they are novel, (b) provides the
information that is employed not only to distinguish basic-level but also highly
similar members of subordinate-level classes, and (c) enables mapping onto
verbal and object-reasoning structures.  This work has defined a critical set of
subgoals in adapting the Gabor jet model:  (a) extraction of the orientation and
depth discontinuities, (b) characterization of these discontinuities in terms of
viewpoint invariant properties, and (c) segmentation of the object from its
background and the different parts of an object from each other.

Fig. 14.   Five geons (from a vocabulary of < 50) and five objects.  Note that the
pail and the bucket are composed of the same geons but in different relations.
TOP-OF is a defined spatial relationship.  If the page is rotated 180˚, the pail will
resemble a cap and the lamp a trowel or shovel.
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Visual Representations: Analysis of Tradeoffs and Feature Learning

In order to recognize a diverse set of objects in realistic environments, a
vision system will need to use a variety of features in its decision making
process.  We describe work below on an object recognition model that
incorporates features similar to those believed to be used in mammalian vision
systems, and includes among these features a set based on Gabor wavelets.  A
key feature of this model, besides its ability to recognize diverse sets of objects
with high accuracy, is that it is readily parallelizable, and has the potential of
relatively efficient mapping onto the photonic multichip module architecture
described herein.

During the research grant period, as explained below, an effort was
undertaken to analyze the tradeoffs that apply to visual representations, based
on combinations of detected features like those of the human visual system.
Bartlett Mel’s SEEMORE model [Mel, 1997] and its extensions involve taking
combinations (e.g., conjunctions and disjunctions) of detected features (e.g.,
edges, line segments, and blobs), and is inspired by similar operations in the
human visual system.  Parameters traded off in this investigation included the
number of objects in a scene, the amount of clutter, the object complexity, and the
number of features and combinations of features needed for accurate recognition.
This work provides direction toward developing an efficient processing model
and mid-level representation for the optoelectronic eye hardware.

The visual object recognition system in the brain appears to be organized in
a hierarchy within which cells at higher levels respond to more complicated
combinations of features than cells at lower levels, and simultaneously are more
invariant to translation, rotation, and distortions.  An architecture that builds
both feature complexity and invariance gradually is evidently capable of solving
the enormously difficult problems of invariant object recognition in a real world
environment.  Similar architectures have been proposed for machine vision [e.g.,
Fukushima, et al., 1983], and have had limited success in some domains.  We
believe that such systems can potentially be extended to solve some of the much
more difficult problems that biological systems can – if a better way of designing
the feature detectors is found.

To this end, we studied several design tradeoffs governing visual
representations based on learned, spatially-invariant conjunctive feature
detectors, with an emphasis on buffering such systems against false-positive
recognition errors – von der Malsburg's classical “binding” problem.  We then
derived an analytical model that makes explicit how recognition performance is
affected by the number of objects that must be distinguished, the number of
features included in the representation, the visual complexity of individual
objects, and the clutter load, i.e., the amount of visual material in the field of view
in which multiple objects must be simultaneously recognized, independent of
pose, and without explicit segmentation.

Using a complex artificial visual domain to model object recognition in
cluttered scenes, we have shown that this analytical model achieves good fits to
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measured recognition rates in simulations involving a wide range of clutter
loads, object complexities, and feature counts.  We have further developed a
novel “greedy” algorithm for feature learning, derived from the analytical
model, which grows a representation by choosing those conjunctive features that
are most likely to distinguish objects from the cluttered backgrounds in which
they are embedded.  We have shown that the representations produced by this
algorithm are compact, decorrelated, and heavily weighted toward features of
low conjunctive order.  Our results provide a more quantitative basis for
understanding when spatially invariant conjunctive features can support
unambiguous perception in multi-object scenes, and lead to several insights
regarding the properties of visual representations optimized for specific
recognition tasks.

These results further suggest not only optimized combinations of features,
and hence feature detectors, for efficient mapping onto the emerging hybrid
electronic/photonic hardware platform, but also a potential generalizable
algorithm for developing such optimized combinations based on either
assumptions or empirical data regarding both the objects to be detected, and the
backgrounds in which they are likely to be embedded.

Extraction of Shape-Defining Contours

Automatic recognition of objects in visual scenes is critically needed if
machines are to locate, identify, and manipulate objects autonomously in the
human world.  In collaboration with our ARO-sponsored MURI partners at USC,
one of our principal long-range goals has been to develop neuromorphic
algorithms that transform image sequences into a contour-based format –
expressing information similar to that contained in an artist’s line drawings (see,
for example, Figs. 18 and 19 in the section below on the contour extraction
network).  Visual representations of this kind are extremely data-compressed,
but remain intelligible to human observers [Biederman and Ju, 1988].  Realtime
hardware systems capable of automatically generating line-drawing-like contour
representations of images will have many applications, include intelligent remote
sensing/surveillance, visual control of autonomous mobile agents, and optical
object/scene recognition.

Over the course of the entire funding period, we have taken two significant
steps towards the development of hardware-mappable algorithms for visual
contour-extraction.  First, we developed a high-performance local oriented edge
detector called the pairwise-difference-of-gaussian (PD) detector, with excellent
edge-analyzing properties and an underlying nonlinear structure designed to be
directly mappable onto a layered optoelectronic substrate.  Second, we
developed a neuromorphic contour-extraction network that takes local oriented
PD edge filters as inputs and produces line-drawing-like representations at the
output.
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Extraction of Shape-Defining Contours:  The PD Edge Detector

We developed a local oriented edge operator, called the Pairwise-DOG (PD)
detector, that combines the outputs of several pairwise products of center-
surround filters straddling a candidate edge (Fig. 15).  Though based exclusively
on local intensity cues, the PD operator has proven to be a highly effective
oriented edge detector, emphasizing those contours that are most related to
object identification, and outperforming the venerated Canny detector (Fig. 16).
Furthermore, most images acquired outside a well-lit office environment exhibit
a large dynamic range of intensity values, and thus contain both very strong and
very weak edges and contours.  In such cases, the PD detector exhibits a distinct
advantage over other oriented linear (e.g., Gabor functions, as used by [Lades, et
al., 1993]) or nonlinear filters [Iverson and Zucker, 1995], in that the edge-
detected images are far less sensitive to variations in the detection threshold.

Examples of PD filter outputs applied to images are shown in Fig. 16, in
which a black pixel indicates that a PD filter of any orientation exceeded the
display threshold at that pixel.

Fig. 15.   Pairwise-difference (PD) edges were computed as follows: At each of 8
neighboring locations along the edge axis (only 4 are shown), a pair of center-
surround filter outputs is multiplied and passed through a sigmoidal
nonlinearity, and then summed.  PD values were computed at 8 orientations at
each pixel.
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Extraction of Shape-Defining Contours:
The Contour-Extraction Network

A line drawing, including the main occluding boundaries, orientation
discontinuities, and pigment contours, contains most of the shape information
needed to recognize objects and scenes (Biederman & Ju 1988).  The primate
visual cortex is a high-performance image processor designed in part to solve
this problem through long-range, multi-scale, dynamical interactions needed for
contour completion and grouping [Grossberg and Mignolla, 1985; Peterhans and
von der Heydt, 1989; and Kapadia, et al., 1995].  The non-classical surrounds of
V1 receptive fields appear to be the first stage in the visual-cortical stream to
carry out these computations.  For example, contour elements that are aligned
with the orientation of the classical receptive field of a neuron can facilitate the
cell’s response.  This effect likely depends on the extensive network of long-
range horizontal connections among cortical cells.

To address the problem of contour extraction, we developed a
neuromorphic contour extraction network as shown schematically in Fig. 17.
The model was implemented as follows:  Let gi represent the probability that a
contour exists at location (x, y) with orientation q and scale s (see Fig. 17).  Our
approach assumes that the influences that determine gi can be expressed in terms
of 5 quantities present in, or derived from, the N-dimensional input vector x =
{x1, ...xN}, in which the input components xi represent local PD edge filters (as
shown in Figs. 15 and 16).  The network schematic shows the input features
represented at the bottom and the contour-hypothesis output units at the top.
Four derived quantities appear in between the input units and the outputs.  The
objective of this massively parallel network is to arrive at a valid binary contour
interpretation for the whole image in a small number of iterations.

Though the network is dynamical, we assume that its job is to reach a stable
contour interpretation quickly.  Here, we have no concern for the state-space
trajectory of the network.  We therefore formulate its update rule in terms of the
steady-state relationship between each contour hypothesis g i and the five
influences that determine its value:

gi = nonmaxt modul
αt xi + βei
1+ γtni

2 ,gi
↓s









,ci











in which the terms are defined as follows:

• xi is the response of the local-edge unit in the input layer corresponding in
position, orientation, and scale to contour hypothesis gi.

• at is a time-dependent coefficient that depresses the influence of xi through
time.
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Fig. 16.   Comparison of original images and outputs of three low-level edge
detectors; circles facilitate detailed comparisons of corresponding regions of
images.  First row:  Original images.  Second row: Canny edge results include
hysteretic thresholding.  Third row:  A linear sine-wave Gabor filter produces
somewhat better results, especially for elongated contours.  Gabor filters tend to
produce thick lines at high contrast edges, and often miss lower contrast edges
which are perceptually salient.  We found that small changes in the threshold
setting led to large changes in the resulting edge-detected image—a serious
drawback when automated processing is required.  Fourth row:  Results from
our PD filter.  Output is much less sensitive to the absolute value of the final
threshold, leading to good representation of fine details over entire dynamic
range of edge contrasts.  The PD filter provided the input to our contour
extraction network (see Fig. 17).
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Fig. 17.   Schematic illustration of the contour detection network.  The input layer
contains a large bank of local oriented edge features xi corresponding to PD filter
outputs.  The output layer contains contour hypothesis units gi.  Dashed lines
denote feedback pathways leading back to the g layer.  Long-range contour
shape subnetwork (in green) contains high-threshold sigmoidal subunits sij that
receive input from surrounding contour hypothesis units; the overall long-range
evidence signal ei is computed as the MAX of all subunit responses.  Inhibitory
interneurons are shown in red.  Feedforward inhibition acts divisively on gi and
is mediated by the interneuron labeled ni.  Feedback inhibition in the output
layer represents the spatial mutual-exclusion among groups of incompatible
contour hypotheses; non-maximum suppression is mediated by inhibitory
interneuron ci.
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• ei is the output of the long-range contour detection sub-network, whose
goal is to detect any well-formed contour that includes contour hypothesis
gi.  The sub-network contains 250 contour prototypes derived from a
training set of 30 silhouette images of common objects.  Each prototype is
represented by a high-threshold sigmoidal subunit sij(g) with 100 inputs
from other contour units originating in the 60 ×  60 pixel region
surrounding gi.  Evidence from the set of contour prototypes is combined
using a max operation, namely, ei = max(sij).  We use this disjunction-like
form, because summing evidence over mutually incompatible prototypes
is statistically nonsensical; b is a constant.

• ni provides a measure of the overall “edginess” of the surround of contour
hypothesis gi, and is thus monotonically related to the probability of false-
positive contour recognition in that region of the image.  ni combines
inputs from local edge units of all orientations in a 60 × 60 surround.
However, ni contains an iso-orientation bias towards the orientation of gi.
Scaled by t, n i acts to normalize the strength of the positive contour
evidence provided by ei.  The normalizing signal is feedforward, carried
by inhibitory interneurons projecting from the input to the output layers.

• gi
^s represents the corresponding contour hypothesis in the output layer

but at a lower spatial resolution.  This variable allows the incorporation of
coarse-scale contour cues (e.g., from color or texture) into the network
iteration.

• The function “modul,” in turn, represents our best guess from first
principles as to the conditional probability of contour i given both high-
resolution evidence (first term) and low-resolution evidence (gi

^s).  It
shows that strong evidence for a contour at low-resolution, by itself,
provides only weak evidence for any particular high-resolution contour
hypothesis gi.  However, low-resolution evidence dramatically boosts the
believability of even small quantities of high-resolution evidence.

• ci represents a second type of inhibitory influence that captures the notion
of spatial mutual exclusivity among physically incompatible contours.
Thus ci = maxj∈Ci(gj) is the maximum response among g units in the
“conflict” set Ci of gi.  In its simplest form (which we have so far
implemented), Ci includes contours at the same position with very similar
orientation.  This set also  includes  contours  of identical orientation at
nearly the same position.  Ci is thus strongly orientation tuned, and is
communicated between incompatible contour hypotheses through lateral
inhibitory connections in the output layer.

• “nonmax” implements non-maximum suppression with nonmax(a, b) = a
if a > b, and 0 otherwise.  This function mediates spatial-mutual-exclusion
inhibition in the output layer, since it allows only one contour hypothesis
to survive in each conflict set.
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The results of applying the contour network to a complex scene are shown
in Fig. 18.  A dense local edge map is converted through a few network iterations
into a sparse line-drawing-like representation.  Subtracting the contours from the
dense edge map shows local edges rejected by the network.  Little shape
information survives this operation, supporting the idea that shape information
critical for human and machine object recognition is contained in the network
output.  Additional examples of network output are shown in Fig. 19.

Fig. 18.   Local edges compared with long-range shape-defining contours.
A.  Original image.  B.  Local edges used to seed long-range contour network.
C.  Contours approximate line drawing of scene.  D.  Contours subtracted from
local edge map leaves only amorphous texture remnants.
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Fig. 19.   More contour-extraction network results.  From left to right: originals,
local PD edge maps, and resulting contour images.  Examples illustrate
extremely dense texture-sensitive local edge maps and their conversion by the
network to a sparse contour representation emphasizing object shapes.
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Adaptive Fusion of Cues

While many models and vision algorithms focus on one important aspect of
the vision problem, such as those for detecting edges as discussed above, robust
and general object recognition and scene segmentation stands to benefit greatly
from employing a combination of cues.  In fact, another lesson we can learn from
biology is the necessity to flexibly use a rich array of such independent cues
(including color, motion, stereo and many more) by combining them in a
situation-dependent way.  Only with adaptive cue fusion does it seem possible to
reduce the enormous unreliability and ambiguity inherent in each single cue.
We have proceeded here on two fronts.  For one, we have developed specific
hardware architectures to extract and fully exploit rich sensor signals.  Reliable
motion extraction, for instance, necessitates signals with high spatial and
temporal resolution and very efficient motion extraction mechanisms.  Secondly,
we have developed techniques to adaptively combine different cues with each
other in a situation-dependent way.

For example, target detection and tracking is difficult in realistic
conditions due to the enormous variability of target properties, illumination
conditions, trajectory characteristics, changes in background, and partial or
temporary occlusion.  Any one cue thus is highly unreliable.  As an easily
available sample domain we set ourselves the goal of detecting the head (the
“target'”) of a person walking across the field of a video camera.  As cues we
have used skin color, pixel intensity change, contrast range, shape, and motion
continuity.  Cues all vote for head positions in the scene, and a consensus is
created as a weighted average.  Each cue computes its own confidence level on
the basis of its agreement or lack thereof with the consensus.  This confidence
level is turned into dynamically changing relative cue weights.  In addition,
individual cues adapt their internal parameters so as to reach optimal agreement.
Thus, the shape cue (which is initially totally blank) adapts to the gray level
distribution around the consensus point, or the color cue shifts its concept of skin
color.  The only cues with an initial prejudice are skin color and pixel change.  All
other cues acquire their parameters only during a given trial.  The system
performs with remarkable reliability in the presence of active attempts to
frustrate it by changing the color of illumination, by having the person change
motion direction, by having another person cause occlusion, or by changing
backgrounds in order to create a loss of contrast [Triesch and von der Malsburg,
2000].

Development of a Bayesian Vision Model from the Mapping Perspective

We have developed a Bayesian vision model, of which the computation can
be formulated such that it maps onto, and computes efficiently on, the photonic
multichip module (PMCM) structure.  This model can be briefly described as
follows.  To reflect the statistics of visual scenes, at the lowest level, the
underlying image takes on a Markov Random Field (MRF) prior that promotes
smoothness while allowing for discontinuities (i.e., edges).  The observed image
is a noisy version of this underlying image.  (Additional modules, such as the
prior for contours and the prior for texture, can be factored in at succeeding
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levels.)  The smoothness is embodied by coupling between nearby pixels, which,
if broken, would tolerate abrupt changes (Fig. 20).

The visual computation thus deals with inferring the underlying
image—including its features such as contours and texture—given an observed
image.  As this MRF formulation is what is called a “stiff” problem, if one
exclusively relies on iterative lateral propagation of data between adjacent pixels,
as typically done in the literature, the convergence time is unfortunately
proportional to L2 or L4 [Blake and Zisserman, 1987], depending on the specific
model, in which L describes the spatial extent, measured in number of pixels, of
data communication.

Inspired by principles of primate visual systems, we have developed an
approach to reformulate the above visual inference problem into a non-iterative
feedforward fan-in and fan-out computation [Huang and Jenkins, 2006], which
can be readily mapped onto, and compute efficiently on, the PMCM structure.
We have shown that the inferred image consists of two terms: x0 = WT y, and x1 =
W1 H W1

T y, in which y is the input image, W  is a matrix representing the
spatially-invariant fan-in weights, W1  is a subset of W , and H is a matrix
pertaining to edges in the image (Fig. 21); x0 is an intermediate result that is the
estimated hidden state (pixel value) resulting from a spatially invariant filter; x1
is the correction term which takes into account edge information.  The resulting
image estimate is x0 + x1.

The full matrices W  and H  are large (N2 × N2 and E × E, respectively, in
which N is the number of image pixels and E is the number of edge-detected
pixels).  By using their block-circulant properties and suitable approximation
techniques, they can be represented by much smaller matrices while retaining
excellent results.  The resulting algorithm then can be implemented with
reasonable hardware resources while still providing fast computation.

Examples of this model used for image de-noising are shown in Fig. 22.  It is
evident that better results are attained with the edge-preserving model (fourth
row in Fig. 22) than with a more straight-forward space-invariant filter (third
row in Fig. 22).

The above-described work demonstrates how a neurobiologically inspired
vision algorithm can be re-expressed in terms of non-iterative feedforward fan-in
and fan-out computations.  Once the algorithm has been expressed in these
terms, the tools described in previous reports can be used to map it onto the
PMCM hardware architecture.
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Fig. 20.   Schematic diagram of the Markov Random Field (MRF) prior.

Left:  A portion of the MRF.  Solid and broken lines denote intact and broken
coupling, respectively.  Open circles denote hidden states and filled circles
denote observed image pixels.

Right:  Two examples of 1-D slices of the MRF, each based on the same intensity
values of observed image pixels (filled circles).  In the upper slice, all hidden
states (open circles) are tightly coupled and therefore feature a smooth profile.  In
contrast, the lower slice contains a “broken” coupling (dashed line), across which
the hidden states are no longer constrained to be of similar values. Consequently,
the estimated hidden states can retain the sharp transition (shaded strip).
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Fig. 21.   Flow chart of probabilistic inference based on the MRF.

Left:  The inference of hidden states (i.e., restored image) without the presence of
broken couplings in the MRF.  This is a convolution, which can be implemented
by space-invariant fan-in operations on our photonic multichip module (PMCM)
structure.

Right: The computation of the correction terms – due to edges – to the inferred
hidden states.  This is achieved by passing through three layers of weights:  (1) a
set of fan-in weights; (2) connection weights H (in green); and (3) fan-out weights
(which are identical in value to the fan-in weights).  This feedforward flow of
computation can also be readily implemented on our PMCM structure.
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Fig. 22.   (Previous Page)  Image denoising results.

Top row:  Original images.

Second row:  Images corrupted with Laplacian (left column) and Gaussian (right
column) noise, respectively.  (Laplacian  noise has a heavier tail than the
Gaussian counterpart.)

Third row:   Estimate of the original images given the noisy input images,
disregarding edge information.  These are produced by convolving the input
images with a fan-in kernel that characterizes a bell-shaped weighting profile,
which amounts to spatially invariant blurring of the input noisy image.

Fourth row:  Estimate of the original images given the noisy input images, with
considerations of possible abrupt changes in intensity levels between adjacent
pixels.  It can be understood as the results in the third row (i.e., uniformly blurred
versions of the noisy input images) plus correction terms aiming to restore the
sharpness of edges.  The correction terms can also be computed in a fan-in and
fan-out style.

Investigation of Space-Time Tradeoffs in the Optoelectronic Eye
Hardware System

  We have initiated the development of implementation modes that trade off
hardware space and computation time in different ways.  These modes are
geared toward implementation of low- and mid-level vision algorithms.  Because
the human visual system, as compared with our projected optoelectronic
hardware system, is 5 orders of magnitude larger in number of processing
elements (neurons), approximately the same factor higher in number of
interconnections, and approximately 6 orders of magnitude slower in response
time, the understanding and utilization of techniques that can trade off space for
time and vice versa is crucial for optoelectronic-hardware implementations of
robust neurally inspired vision models.

One technique for trading off space and time, which we have begun to
investigate, is to employ various degrees of programmability in each pixel.  The
primate visual system consists of a hierarchy of 2-dimensional layers of
processors (neurons), in which each processor appears to represent a specific
visual feature, determined by its fixed connectivity (on short time scales) to the
feature detectors in antecedent layers from which it receives input.  Given that
neurons in the human visual system are extremely numerous (order of 10
billion), so that a large number of processors are available to analyze each pixel,
this hardwired, or “labeled line”, approach is not particularly limiting.

As mentioned above, however, the architectures that we are considering
will likely have room for significantly fewer processors than the biological
counterpart, typically one processor or less per image pixel in a given layer, but
will operate at clock rates that are orders of magnitude higher.  As such, we have
focused on ways to take advantage of the time dimension more effectively by
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introducing programmability into the architecture, so that a given site in each
array of pixel-locked processors may compute different features in a time-
multiplexed fashion.  The inclusion of such programmability also affords a more
general processing architecture that can be differently configured for different
visual domains or tasks.  This work has led to the development of specific new
multiplexing techniques, as described below.

Development of Spatio-Temporal Multiplexing Techniques

We have devised two spatio-temporal multiplexing techniques for
implementation on the photonic multichip module hardware.  Both techniques
allow us to exploit the time dimension more fully than would a more direct
mapping without such multiplexing.  We note that in typical operation scenarios
of the photonic multichip module, frame rates of the input images will be of
order 10 to 1000 Hz, and bandwidths on each interconnection line between
subsequent pairs of layers will be much higher, of order 10 to 100 MHz.  Thus,
for these multiplexing techniques to be computationally useful, the computation
and layer-to-layer interconnection patterns should effectively change many times
for a given input image.

We have devised a scrolling technique that can provide this feature; it uses
fixed optical interconnections that implement various filters (or fan-out patterns)
over space.  The input image data is repeatedly shifted (laterally, in the plane) in
time; at any one time-step, the image data is sent through the filters in parallel.
At each subsequent time-step, a different portion of the image is centered over
each filter, and thus a different set of computations is performed.  Viewed from
the subsequent layer, each fan-in pattern corresponds to a given filter over a
different portion of the image (Fig. 23); the filtered image data in this plane is
typically shifted in synchrony with the image data in the previous plane.
Viewed from the point of view of the image data, a parallel set of various filters
is being shifted across the image in time.  An example of the application of this
technique is to a full 4-D Gabor transform, in which different transform kernels
are laid out in space over the array.  Over time, each region of the image data is
filtered by each different kernel.

Our second technique relies on partial sequencing of the output ports of the
processing elements in time.  It will be illustrated here for a 1-D array that
employs laser diodes as the output port elements; the principle also applies to a
2-D array and to modulator-based systems.  We will describe this for a system
that has space-invariant layer-to-layer interconnections, with fan-outs of M, and
physical (DOE) interconnection weights that have been fabricated to be unity.  If
used in a mode that provides complete programmability of the layer-to-layer
interconnection weights, every Mth laser diode is turned on in the L th layer.  In
the (L+1)th layer, the gain of each receiver circuit is set proportional to the desired
weight of the optical interconnection line that is currently active.   In Fig. 24, for
example, every third box (laser diode output) of layer L  and all of the
interconnections from those boxes are the same shade of gray, indicating that
they are all on (active) during the same time step.  During this time step, the
three different weights for the three lines fanned out from a given laser diode are
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Location of center of each inter-
connection fan-in kernel

Image data path of one pixel

Fig. 23.   Spatiotemporal multiplexing by image data scrolling.  Different
interconnection patterns are laid out in space.  Over time, the input and output
image data is shifted; at each shift position, the image data is sent through the
interconnection patterns (filters) to the next layer.  Each pattern shown
represents the location of the center of each interconnection fan-in kernel.  (The
spatial extent, or receptive field, of each interconnection fan-in kernel is not
shown, and covers a number of such locations.)  The lateral path of one pixel of
image data is shown as a solid line and arrow.

Fig. 24.   Spatiotemporal multiplexing by temporal modulation of processing-
element inputs and outputs; shown for a 1-D array with an optical fan-out of 3.
In one time step, every third laser diode and its DOE interconnection fan-out
pattern are activated (shown in a common grayscale level).  Gains of the
detector/receiver circuits are set proportional to the desired interconnection
weights.  An interconnection round is completed in 3 time steps.
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implemented as electronic gains in the three receiving circuits.  In this example it
takes three time steps to sequence through all the outputs of layer L, which
completes one interconnection round.  The sequence of three signals received at
each receiving circuit is summed (integrated) over the time of one
interconnection round.  More generally, for a fanout of M, an interconnection
round is completed in at most M time steps.   By varying the detector circuit
gains in time, multiple interconnection filters are effectively multiplexed in time
at each spatial location.  An example of the application of this technique is to a
full 4-D Gabor transform in which different kernels are implemented in different
time steps, and the image data is spatially stationary in time.

Enumeration of Issues for Mapping of Vision Algorithms onto the
Optoelectronic Multichip Module Hardware

As a guiding principle for our work on the mapping of vision algorithms
onto the optoelectronic multichip module hardware, we have postulated various
scenarios for the mapping of specific algorithms, namely von der Malsburg’s
dynamic link architecture and Mel’s object recognition system.  At a lower level,
we have also been investigating the mapping of specific operations, such as
linear convolution operations, multiple parallel convolutions with different
kernels, and nonlinear on-center off-surround filters.  This work brought out
many issues and questions that were addressed by the algorithm subgroup and
the hardware subgroup.  Issues included the need for space-time tradeoffs
(mentioned above); the degree to which programmability is appropriate; analog,
digital, and hybrid number representations; storage and shifting of analog and
digital signals; and tradeoffs between in-the-plane electronic interconnections
and plane-to-plane optical interconnections.

Development of a Nature/Nurture Algorithm for Visual Adaptation

An adaptive vision sensor placed in the real environment must be capable
of adapting to changes in the environment such as lighting conditions, view
aspect, pose, and many others if it is to provide robust object recognition.
Adding adaptive capability to the Photonic Multichip Module (PMCM)
architecture requires an innovative strategy, as the envisioned hardware
implementations contain two interpenetrating sets of interconnections.  The
feedforward (out of the plane) weights supplied by the diffractive optical
elements are fixed following an initial (off-line) training period, and adaptive
weights are conveniently added by implementing lateral connections within each
plane by means of additional interconnecting VLSI circuitry.

During the research program, a novel Nature/Nurture (N/N) algorithm for
calculating the weight sets in such an architecture (consisting essentially of two
interpenetrating neural networks) was proposed and examined.  The PMCM
hardware implementation and its correspondent interpenetrating neural
network model are shown in (Fig. 25).  The modified multilayer perceptron
(MLP) model can map onto the PMCM structure in the feedforward data
processing scenario after all of the feedforward weight values are determined.
The detectors in each artificial neuron collect the optical fan-in signals to perform
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a summation function.  The collected information is then transformed by a
sigmoid transfer function circuit and transmitted to the associated DOE layer.
The vertical weighted fan-outs in the MLP model represent the optical weighted
fan-outs from the DOE.  The lateral weighted interconnections in the MLP model
represent the lateral VLSI interconnections modulated by adaptive weight
memory devices in each VLSI chip, interconnecting nearest neighbor and
perhaps next-nearest neighbor pixels.

The general learning steps for the Nature/Nurture algorithm are as follows:
(1) In an MLP structure such as the PMCM architecture, the interlayer (vertical)
weights are first trained by using an original dataset and a supervised learning
algorithm, with the lateral weights disabled (set to an initial value).  This step
constitutes the “Nature” procedure.  (2) The values of all of the vertical weights
in the MLP are then fixed.  (3) The original training dataset is then modified in
some manner, for example by adding a background or noise to produce a new
dataset.  (4) The hidden layer (lateral) weights are then turned on, and trained by
using the new dataset.  This step constitutes the “Nurture” procedure.  (5) The
final performance of the MLP is then examined against both the original and
modified data sets to determine if adaptation has increased the robustness of
object detection.

In the PMCM hardware implementation, the DOE patterns representing the
vertical weight values are fixed and established after the fabrication process
(Nature).  On the other hand, the adaptive electronic analog memory devices
representing the lateral weight values can be adapted after fabrication  (Nurture).
The traditional error backpropagation (EBP) algorithm is suitable for finding the
vertical weights only.  An analytical formula for calculating the lateral weights
was then derived based on the EBP algorithm.  A universal Nature/Nurture
algorithm for finding vertical and lateral weights for an arbitrary layer MLP was
also derived.

An optical character recognition (OCR) task was simulated by using an
artificial 100-100-2 MLP (Fig. 26).  The Nature/Nurture algorithm was adopted
to train the 100-100-2 MLP by means of a MatLab program on a Macintosh G3
PowerPC.  This 100-100-2 MLP with local interconnections models the signal
pathways in the PMCM architecture.  The 10 by 10 array of nodes (unity gain
detectors/emitters) in the first layer are matched to a corresponding 10 by 10
array of DOEs in the first layer.  The second layer’s 10 by 10 neuron unit array
represents an array of 10 by 10 artificial neurons.  Each artificial neuron is
assumed to consist of a dual-rail VLSI neuron unit, a VCSEL driven by the VLSI
unit, and a DOE unit.  The adaptive weighted local lateral interconnections
between artificial neurons are also modeled in this algorithm.  A final 2 by 1 VLSI
neuron array is placed beneath the DOE-VLSI-VCSEL-DOE module to collect the
ensemble of the weighted optical outputs.  The final two neurons produce two
individual output values.  These two indices can be compared with the desired
target values for classifying the input patterns.

A dataset of 10 by 10 digital pixellated versions of the characters “1”, “2”,
“3” and “4” was initially prepared (Fig. 27).  Another nine datasets produced
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from the original dataset with different degrees of gray level gradient
background were also prepared (Fig. 28).  The 100-100-2 MLP was first trained in
the Nature procedure by using the original dataset.  After the Nature procedure
alone, the MLP was able to fully recognize the original dataset, but not the
modified datasets (Fig. 29(a)).  After the lateral weights were modified by means
of the Nurture training procedure operating on the modified datasets, the MLP
was capable of recognizing both the new modified dataset and the unmodified
(original) dataset with 100% recognition accuracy, as shown in Fig. 29(b).

Fig. 25.   Mapping a single hidden layer feedforward neural network (right) onto
the stacked PMCM architecture (left).  The vertical weighted fan-outs represent
the optical weighted fan-outs from the DOEs.  The lateral weighted
interconnections represent the lateral links modulated by the adaptive weighted
memory devices in the VLSI plane.  The detectors in each artificial neuron collect
the optical fan-in signals to perform a summation function.  The collected
information is then transformed through a sigmoid transfer function and
transmitted to the next DOE layer.  Both the PMCM and the model are
extendable sideways.  Here only sections of the architectures are illustrated for
simplicity.
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Fig. 26.   A 100-100-2 perceptron with vertical and lateral weight sets.

Fig. 27.   Images of the original dataset for the “Nature” stage of the procedure in
the novel Nature/Nurture algorithm.



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 54
Final Progress Report (1 June, 1998 – 31 May, 2004)

Fig. 28.   Sample images of modified datasets for the “Nurture” stage of the
procedure.  The degree of shading in the upper dataset is –0.11.  The degree of
shading in the lower dataset is +0.11.
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(a)

(b)

Fig. 29.   (a) Recognition rates for the shaded datasets as a function of the
degree of shading of the background added to the original dataset after the
“Nature” stage only.  The recognition capability for the shaded dataset drops
dramatically as the degree of shading increases.  In this case, the as-trained
vertical weights from the original (unshaded) dataset are used during the
“Nature” stage of the procedure.  (b) Recognition rates for the shaded
datasets and the original dataset as a function of the shaded degree of the
background after the “Nature” and “Nurture” stages.  The recognition rates
for all datasets are now all 100%.  In this scenario, the normalized, the original
vertical weights are used during the “Nature” stage of the procedure; both
the original vertical weights and as-trained lateral weights are used in the
“Nurture” stage of the procedure.
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Significant Accomplishments:
Hybrid Electronic/Photonic Hardware Implementation

One of the key issues in the proposed hybrid packaging approach to the
implementation of adaptive optoelectronic eyes is the successful demonstration
of high-density fan-out/fan-in interconnections among the various layers of the
hybrid MCM stack.  This in turn involves demonstration of 2-D arrays of silicon
VLSI photodetection/local processor units, 2-D arrays of MQW modulators or
VCSELs, the interconnection of the silicon and gallium arsenide active element
arrays by flip-chip bonding, the design and fabrication of appropriate high
density fan-out/fan-in optical interconnections using diffractive optical elements
(DOEs), the incorporation of focal power either within the DOE design itself or
by means of a separate microlens array, the antireflection coating of all of the
optical interfaces within the stack, the incorporation of absorbing material
(“optical black”) wherever reflections or unwanted diffracted orders cannot be
tolerated, and the packaging of the multiple layers into an integrated functional
block including attention to both alignment issues and thermal dissipation
concerns.

Given the funding constraints imposed at the outset of the grant, it should
be noted here that the emphasis of the funded research component of this MURI
effort was on vision algorithms, models, and architectures.  In this section, we
describe the significant accomplishments achieved during the grant period in the
area of hybrid electronic/photonic hardware implementation, which proceeded
as a secondary focus leveraged by other resources.  As funding under the related
DARPA Photonic Wavelength and Spatial Signal Processing (PWASSP) initiative
became available (“Dense 3-D Integrated Photonic Multichip Modules for
Adaptive Spatial and Spectral Image Processing Applications”;  Start Date:  15
June, 2000), support for the hardware implementation component was greatly
increased and resulted in significant additional leverage to the MURI program.

Evaluation of Dual-Input, Dual-Output Silicon VLSI Neuron Unit Arrays

During the initial stages of this multi-year research program, while the
research effort on optimal parsing of the functionalities to be included in each
layer of a multichip module implementation of an adaptive optoelectronic eye
was still in progress, it might have appeared premature to define and implement
specific functional units in silicon VLSI chips.  On the other hand, many of the
issues inherent in developing a functional hybrid electronic/photonic hardware
implementation are to first order independent of the nature of such specific
functional units.  Therefore, during the resarch program we undertook (in
parallel with the algorithm, vision model, and architecture effort) to examine the
scientific and technological roadblocks to eventual hybrid MCM implementation
based on readily available and/or modifiable hardware components.

One of several possible silicon chip designs for eventual incorporation in an
adaptive optoelectronic eye involves the combination of photodetection
capability with analog, nonlinear transformations.  The implementation of dense
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fan-out/fan-in interconnections among paired processor layers is also highly
suggestive of a neural network approach.

Under separate sponsorship, we had previously designed, simulated, and
fabricated 16 × 16 arrays of dual-input, dual-output silicon VLSI neuron unit
arrays that implement parallel nonlinear functionality.  In this case, the nonlinear
function implemented is that of a sigmoidal transformation of the difference
between the excitatory and inhibitory channel inputs, generating two separate
outputs (for positive and negative differences of the inputs), a function that is in
turn characteristic of numerous neural network models [Jenkins and Tanguay,
1992].

The arrays comprised 100 × 100 µm pixels, fabricated in the 1.2 µm MOSIS
CMOS process, within which were arranged two photodetectors (vertical
junction photodiodes) representing positive (excitatory) and negative (inhibitory)
channel inputs, dual current mirrors and nonlinear transformation stages, and
dual output amplifiers that terminated in pads designed for eventual flip chip
bonding to MQW modulator elements or vertical cavity surface emitting lasers
(VCSELs) disposed on a separate III-V compound semiconductor substrate
(representing positive (excitatory) and negative (inhibitory) channel outputs).

During the research program, we completed an evaluation of these existing
16 × 16 neuron unit arrays, with a view toward determining their applicability
for functional incorporation in the emerging hardware platform, as well as their
capability for flip chip bonding to 2-D arrays of MQW modulators or VCSELs.
Detailed measurements focused on the uniformity of response across the array,
the functionality of the nonlinear transformation imposed, the bandwidth over
which the nonlinear transformation can be effected, the power dissipation on a
pixel-by-pixel basis, and the design flexibility that might potentially be afforded
by redesign in the 0.85 µm MOSIS CMOS process.

A key result from this investigation was the measurement of the output
voltage as a function of input photocurrent (generated by an 850 nm laser diode
co-integrated with the probe station employed for these measurements).  The
input-output transformation is indeed sigmoidal, with the data closely matching
the SPICE simulation at low frequencies (< 10 kHz).  At the two higher
frequencies measured (100 kHz and 1 MHz), the functional dependence
remained sigmoidal, but the saturation voltage decreased somewhat.  Post-
measurement analysis indicated that this frequency loading effect was due to the
inadvertent absence of several key vias designed to couple Vdd supply lines
fabricated in both metal layer 1 and metal layer 2, thereby reducing the current
carrying capacity of these lines by a factor of two while simultaneously loading
the drive lines with a large parallel capacitance.  This deficiency could easily be
corrected by refabricating the chip with an improved design.

The (pair of) photodiodes integrated within each pixel on the chip were
designed for increased collection efficiency by using substrate rather than well
collection.  The measured responsivity at 850 nm for these photodiodes was
0.254 A/W, consistent with what has been reported by other investigators for
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similarly designed structures.  The use of bulk photogenerated charge collection,
however, also increased the degree of crosstalk, roughly 8% for photodetectors
separated by a single pixel spacing (100 µm), even though a p+ guard ring was
included in this design in an attempt to minimize cross-pixel signal
contamination.  Although this crosstalk figure reduces the effective signal-to-
noise ratio, most artificial neural network structures are robust enough to
minimize the deleterious effects of this degree of pixel-to-pixel interaction.
Subsequent designs will address the crosstalk issue while attempting to maintain
relatively high collection (quantum) efficiency.

Since these chips were originally designed to accommodate MQW
modulators (which require high voltages, but low currents), during the research
program we evaluated the implications of redesigning the output driver circuits
to accommodate vertical cavity surface emitting lasers (which instead require
lower voltages and much higher currents).  This evaluation proved that the
existing chips could in fact be redesigned to accommodate VCSEL drivers
without compromising the current pixel pitch significantly (moving from 100 µm
to 125 µm, which matches the pitch of the VCSEL array masks that we designed
for USC fabrication, as well as the masks used by our collaborators at the Army
Research Laboratory (ARL; Dr. George Simonis and colleagues).  In these
modified designs, the VCSEL driver circuits occupied by far the greatest fraction
of the chip real estate, an issue of concern for eventual downsizing of the array
pitch.  This issue places even more importance than before on the availability of
low threshold, high efficiency vertical cavity surface emitting lasers, as described
in more detail below.

In the process of designing for incorporation of Si CMOS VCSEL driver
circuits, four new silicon VLSI chips were conceived, designed, and fabricated in
total.  Chip OMDL-00-1 includes a 12 ×  12 array of neuron units that incorporate
3 mA maximum-drive-current VCSEL drivers, two in each pixel, as shown
schematically in the layout diagram below (Fig. 30).  This chip was designed for
direct indium flip chip bonding to correspondingly pixellated VCSEL arrays.

A variant of this chip, Chip OMDL-00-1-x, is functionally identical except
for the fact that all of the bias lines are interconnected to provide a single
common bias point for the entire array (thereby reducing the number of control
lines from 14 to 3).

Chip OMDL-00-2 was designated as a companion test chip, and includes
several key VCSEL driver components and subcomponents arranged for
functional tests, as well as an array of the photodiodes included within each
pixel, herein configured as a network interconnected by a hexagonal resistive
grid.

Chip OMDL-00-3 includes a 5 × 6 array of neuron units with incorporated Si
CMOS drivers, laid out for external wire-bonding to incommensurate (different
pitch) VCSEL array elements, as shown in the layout diagram below (Fig. 31).
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Fig. 30.   VLSI layout of Chip OMDL-00-1, which comprises a 12 × 12 array of
neuron units that in turn incorporate 3 mA maximum-drive-current VCSEL
drivers, two in each pixel, configured for direct flip-chip bonding to a mating
GaAs VCSEL array.
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The layout of a single 122.4 × 124.8 µm pixel within Chip OMDL-00-1 is
shown in the layout diagram presented in Fig. 32, and as shown schematically in
Fig. 33.  The dual rail construction of each pixel is evident, with each input signal
starting from an n-diffusion/p-substrate photodiode (PD1 or PD2), followed by a
linear-I-to-sigmoidal-V transformation circuit (M1XX or M2XX families).  The
final output stage comprises a pair of large PMOS transistors that are configured
as operational transconductance amplifiers (OTA; M301 or M302).  A bias circuit
is included for adjusting the operating point of the entire dual-rail driver (M1 to
M6).

Fig. 31.   VLSI layout of Chip OMDL-00-3, which comprises a 5 ×  6 array of
neuron units that incorporate 3 mA maximum-drive-current VCSEL drivers, two
in each pixel, configured for external wire bonding to a complementary GaAs
VCSEL array.
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Successful fabrication and testing of these dual-input, dual-output
sigmoidal response neuron unit array circuits (including high current PMOS
VCSEL drive transistors) was achieved during the research program period.  For
example, as-fabricated photographs of Chip OMDL-00-1 are shown below in
Figs. 34 and 35.  The 12-by-12 neuron unit array of this chip has a 125 µm pitch as
shown in Fig. 34, and with external wire bonding pads fit into a 2.2 mm by
2.2 mm chip area as shown in Fig. 35.  The supply voltage was designed to be 5 V
to reduce power consumption.  The power dissipation was measured to be
13 mW per pixel, or about 1.87 W per chip in full operational mode at a
frequency of 2 MHz.  The large signal sigmoidal response was demonstrated at
frequencies up to 1.5 MHz without distortion of the desired sigmoidal
characteristics, as shown in Fig. 36.  According to HSPICE simulations, the 3-dB
cut-off frequency can be increased to about 15 MHz if the chip is fabricated by
using the 3.3 V, 0.25 µm TSMC process.  The total neuron unit area could be
reduced to about one fifth of the current size by using this same 0.25 µm TSMC
process, as shown in Fig. 37.

Fig. 32.   VLSI layout of a single pixel within the 12 × 12 array included in Chip
OMDL-00-1, as shown in Fig. 30.
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The successful fabrication and testing of these chips also allowed for direct
flip-chip bonding of silicon neural unit arrays to VCSEL arrays, thereby enabling
the evaluation of thermal management and heat dissipation, as well as direct
coupling to complementary DOE arrays.  We plan to include detailed test results
of optically addressed Si CMOS chips driving externally mounted VCSELs
within an array in the related DARPA/ARO PWASSP Final Progress Report.  In
addition, as low threshold VCSEL arrays become available that match the pitch
of the currently fabricated Si CMOS chip sets, we will continue with flip chip
bonding experiments to produce two-dimensional arrays of Si CMOS VCSEL
drivers and VCSEL output devices that can be characterized for use in
conjunction with DOE arrays, as described in the section on photonic multichip
module (PMCM) integration below.
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Fig. 33.   Schematic diagram of the dual-input, dual-output sigmoidal response
neuron unit array circuit, including high current PMOS VCSEL drive transistors,
as described in the text.
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Fig. 34.   Optical micrograph of a single pixel of the dual-input, dual-output
sigmoidal response neuron unit array circuit (Chip OMDL-00-1), including high
current PMOS VCSEL drive transistors, as described in the text.

Fig. 35.   Optical micrograph of the dual-input, dual-output sigmoidal response
neuron unit array circuit (Chip OMDL-00-1), including high current PMOS
VCSEL drive transistors, as described in the text.
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Fig. 36.   Output current as a function of input optical power for the dual-input,
dual-output sigmoidal response neuron unit array circuit (Chip OMDL-00-1),
including high current PMOS VCSEL drive transistors, at several frequencies.

Fig. 37.   Design area of key individual components as a function of minimum
feature size for dual-input, dual-output sigmoidal response neuron unit array
circuits including high current PMOS VCSEL drive transistors, as fabricated in
several different VLSI technologies.
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Development of a Single-Sided Flip-Chip Bonding Process

During the research program, we undertook an aggressive investigation of
advanced packaging technologies for integrating combinations of silicon-based
and gallium-arsenide-based VLSI electronic and photonic chips.  As can be seen
in Figs. 1, 2, and 3, the interfaces between paired silicon photodetector/
functional implementation chips and gallium arsenide 2-D modulator or VCSEL
arrays are configured as face-to-face proximity couplings, with very high density
vertical interconnections between pairs of corresponding elements.  For the
majority of the configurations that we currently envision, the interconnection
density is in the range of 3 to 4 interconnections per pixel.  For pixel sizes
between 100 µm × 100 µm and 50 µm × 50 µm, the interconnection density range
is therefore 3 × 104 cm–2 to 1.6 × 105 cm–2.

A crucial element in the development of such an interface is thus the
necessity for high-density parallel electrical interconnection of two-dimensional
pad arrays on the silicon chips with corresponding two-dimensional pad arrays
on the gallium arsenide chips, using flip-chip bonding approaches.  In our
laboratory, indium bump bonding by means of 10 to 30 micron sized indium
bumps has proven to be highly reliable, and was investigated as the
interconnection method of choice for this application.  We have extensive
experience with this indium bump flip-chip bonding approach, and have
developed a novel indium “velcro” deposition process that allows micro-
interpenetration of the roughened surfaces of two opposing indium bumps
deposited on the mating surfaces, resulting in low impedance (few Ω), reliable,
and temperature-compliant contacts as shown in Fig. 38.  We have extensively
tested arrays of these types of indium bump bonds, as shown in Fig. 39, over the
temperature range of 2 K to 300 K.

The first experiments that we undertook during the initial program period
were designed to test the feasibility of employing single-sided bump contacts
using thermally evaporated indium bumps instead of the more traditional dual-
bump structure.  This unusual approach is dictated by our desire to eventually
be able to use commercially-available control, DSP, microprocessor, and DRAM
chips in system-level implementations, as well as ASICs designed and fabricated
by other vision groups worldwide.  Often, such commercially-produced chips
are available only as single die and not in wafer form, making indium bumping
of each individual die an expensive and undesirable proposition.  Although the
indium bump deposition process is relatively benign, process incompatibilities
can potentially limit the range of choices of both silicon chips and gallium
arsenide chips that can be flip-chip bonded using the dual-bump (deposition on
both substrates) structure.

During the initial stages of the research program, several four-inch silicon
(Si) wafers containing a patterned flip-chip structure referred to as a "daisy
chain" were conformally covered with indium bumps that were deposited in
arrays designed to match the pre-patterned electrode arrays on the Si wafers.
The daisy chain structure is composed of a 3 cm by 1 cm "base" or "bottom" chip
and a smaller 1 cm by 1 cm "top" chip.  A 40 ×  40 array of pairwise-
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interconnected aluminum electrodes in the middle of the base chip is physically
aligned with the top chip's corresponding 40 ×  40 array of pairwise-
interconnected but otherwise isolated aluminum electrodes using the flip-chip
bonder.  After the top and bottom chips have been bonded together, a 40 × 40
array of top-to-bottom electrodes results, interconnecting the two chips
electrically and providing many test patterns that include from 2 to 40 indium
bumps in each independently accessible pattern.  Each individual pattern is
accessible from the edge of the bottom chip, where large connection pads are
provided for wire-bonding or probing.  This configuration allows for a number
of tests to be performed, ranging from basic electrical continuity (in multiple
configurations) to measurement of the indium bump connection impedance as a
function of frequency over the range of interest.

Two configurations using single-sided indium bumps were tested during
the research program.  The first experimental configuration incorporated indium
bumps deposited on the base chip and bonded to an unbumped top chip, while
the second experimental configuration was composed of an unbumped base chip
bonded to a indium bumped top chip.

Fig. 38.   Scanning electron micrograph of a single indium "velcro" bump
deposited on an aluminum bonding pad, and interconnected to a wire-bonding
pad by means of a metallization line.  The surface morphology of the indium
bumps is seen to be polycrystalline in nature, with large-scale RMS variations in
bump height.  In combination with the clearly visible sharp corners and edges on
the bump surface, these large-scale variations promote low-impedance contacts
through penetration of the native indium oxide layer.
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Tests were successfully performed mating an unbumped top chip to an
indium bumped base chip at bonding pressures of 10,000 grams (6.25 grams per
bump) and 8,500 grams (5.3 grams per bump), with successful mechanical
mating achieved in each case.  Initial electrical testing indicated unusually high
(kΩ) resistance values for small current/voltage signal levels flowing through
the as-bumped device, with much lower impedances in the few tens of ohms
range observed for voltages above 1 V.  This is the result of either a native
indium-oxide barrier on top of each indium bump, and/or an aluminum oxide
layer on the aluminum bonding pads on both die substrates.  Etch-before-
bonding experiments were performed to lower the characteristic impedance of
each interconnection bond.  While partially successful, this approach does not
represent an optimal solution.

Fig. 39.   Scanning electron micrograph of one portion of a 40 × 40 array of
indium bumps deposited on aluminum bonding pads, and interconnected to
wire-bonding pads by means of metallization lines.  The array is designed to
incorporate a daisy-chain pattern, allowing for direct measurement of bump
contact resistance in varying-length sequences of indium bumps.
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During the research program, we extended these initial flip chip bonding
characterization experiments in two parallel directions:  (1)  continued
development of appropriate processing sequences for indium bump contacts
between aluminum bonding pads (important for the extension of this research to
typical industrially-produced chip sets); and (2) the initial development of an
appropriate processing sequence for indium bump contacts from either
aluminum or gold pads (on the as-deposited side of the bump contact) to gold
pads (on the flip-chip-bonding interface side of the bump contact).

In the first case, that of aluminum bonding pads, additional flip chip
bonding experiments with chip-on-glass configurations that employ indium tin
oxide patterned electrodes and electrode pads identified oxidized aluminum
bonding pads as the source of the high resistance contacts observed at low
voltages (as described above), and not a native indium oxide as might otherwise
be suspected.  We addressed this issue by investigating a zincation approach to
pre-treat the aluminum contact pads, thereby avoiding the native aluminum
oxide layer.

In the second case, gold bonding pads were chosen for the
counterelectrodes in a number of continuing experiments.  Although these are
nontraditional bonding pads for most industrially-produced Si CMOS ASIC’s,
initial experiments showed dramatically lowered resistances at very low
voltages, with excellent long term stability.  During the research program, we
continued to pursue this approach for flip chip bonding of Si CMOS driver chips
to VCSEL arrays, as the VCSEL arrays can be fabricated using gold pads as a
final deposition step.

Development of High Refractive Index Diffractive Optical Elements
(DOEs)

As both the silicon (Si CMOS driver circuit) and gallium arsenide
(modulator or VCSEL array) layers are relatively high index, it may prove
advantageous to fabricate the DOE arrays in gallium arsenide or silicon as well,
on the basis of optimal (optical) impedance matching.  A second advantage of
this approach over the use of more traditional glass or quartz substrates is the
necessity of efficient heat removal (especially in the case of the VCSEL arrays), in
conjunction with the need for well-matched thermal coefficients of expansion to
maintain alignment over the anticipated operating temperature range.

To this end, we undertook to design, fabricate, and test DOE arrays
implemented in substrate materials with high indices of refraction.  As a first test
case, we used a combination of optical lithography and electron cyclotron
resonance (ECR) etching to fabricate 4:2:1 fan-out patterns in GaAs substrates, as
shown in Fig. 40.  In the 4:2:1 fan-out pattern, a 3 × 3 array of interconnections is
created, placing four units of diffracted intensity into the zeroth order
(corresponding zeroth nearest neighbor), two units of diffracted intensity into
each of the four nearest neighbors, and finally placing a single unit of diffracted
intensity (all in relative units) into each of the four next nearest neighbors.  As
the optimal diffraction efficiency is obtained when the optical path difference



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 69
Final Progress Report (1 June, 1998 – 31 May, 2004)

between the etched and unetched regions is equal to a half-wave (π phase shift)
at the design wavelength, the design etch depth was 1920 Å, and the measured
etch depth was 1978 Å, as measured with a Sloan Dektak II surface profilometer.
In this fabrication sequence, the ECR etching was performed in a PlasmaQuest
Model 98 ECR etcher using both BCl3 and Ar gas sources, a DC bias of 100 V, an
RF power of 300 W, and with currents of 170 A and 80 A supplied to the upper
and lower magnetic sources, respectively.  An SEM photograph depicting the
resulting side-wall profile is shown in Fig. 41.

The diffraction efficiencies of each of the nine diffracted orders were measured at
the design wavelength of 980 nm, resulting in errors from the theoretical
(relative) diffraction efficiencies of between 1% and 24%, depending on the
diffracted order, with an average error magnitude of 11.5% (treating all error
deviations as positive quantities regardless of sign).  Although these errors are
likely marginally acceptable in a neural network environment, we decided to
approach the reduction of these errors by antireflection coating both the back and
front sides of the DOE elements in order to eliminate multiple internal reflections
and their associated interference terms, as described in more detail below.

Development of High-Performance Antireflection Coatings for High
Refractive Index DOEs

The hybrid electronic/photonic packaging scheme proposed for the
implementation of an adaptive optoelectronic eye involves multiple vertically-
interconnected layers of silicon VLSI detector/processing chips with interleaved
layers of III-V compound semiconductor modulators or VCSELs, as well as
layers of diffractive optical elements (DOEs) and possibly microlens arrays.  In
the modulator case, an optical power bus layer is also included.

During the research program, we undertook a study of the potential
deleterious effects of multiple reflections on the integrity of the dense fan-
out/fan-in optical interconnections in such a multilayer stack with up to eight
interfaces between the sources and their corresponding detectors.  The
conclusion of this study was that multiple reflections can in fact pose a severe
problem, requiring the antireflection (AR) coating of all of the layers in the
multichip module.  Several of these layers contain active photonic devices, and
hence optimally require a combined AR coating and electrically conductive
contact.  In addition, at least one of the layers will contain a diffractive optical
element that is characterized by a highly nonuniform surface (as described
above).

We previously developed a transparent conductive coating for GaAs layers
that can also provide a high-performance antireflection coating function as well
[Karim, 1993].  During the research program, we evaluated the potential of this
type of coating for application to the highly nonuniform surfaces characteristic of
diffractive optical elements.



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 70
Final Progress Report (1 June, 1998 – 31 May, 2004)

Fig. 40.   Scanning electron microscope (SEM) photomicrograph of a GaAs
diffractive optical element (DOE) sub-element within a 20 × 20 array of identical
sub-elements, fabricated by means of optical lithography and ECR etching
techniques.

Fig. 41.   An SEM photomicrograph of the GaAs DOE sub-element shown in Fig.
40, tilted in this case to show the uniformity and verticality of the as-ECR-etched
side-wall profile.



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 71
Final Progress Report (1 June, 1998 – 31 May, 2004)

During the research program, we designed, deposited, and evaluated the
performance of such AR coatings on DOEs fabricated in both silicon and gallium
arsenide.  A 4:2:1 DOE fan-out pattern etched in a GaAs substrate as described
above was coated on both front and back surfaces with a 1296 Å layer of indium
tin oxide (ITO), deposited by RF magnetron sputtering using a Sloan S-310
Sputtergun at a pressure of 13 µm Hg, comprising 55 sccm of 99.9% Ar and 0.1%
O2, at an RF power level of 250 W.  As compared with the previous result
(described above) on the uncoated GaAs DOE array with errors from the
theoretical (relative) diffraction efficiencies of between 1% and 24%, depending
on the diffracted order, with an average error magnitude of 11.5% (treating all
error deviations as positive quantities regardless of sign), the antireflection (AR)
coated GaAs DOE array exhibited errors from the theoretical (relative) diffraction
efficiencies of between 0.6% and 9.5%, depending on the diffracted order, with
an average error magnitude of 5.2%, a substantial improvement.

In this experiment, the first surface reflectivity of the native GaAs substrate
(31.8%, due to an index of refraction 3.52 at 970 nm) was reduced to 0.4%.  The
resulting antireflection coatings are robust, broadband, and relatively easy to
tune in order to match the index of refraction of the substrate over a range of
design wavelengths (for a single layer coating, the optimal index of refraction is
the square root of the substrate index of refraction).  In addition, enough design
flexibility is afforded to allow for the antireflection coating of other high index of
refraction substrates (such as silicon).

Design and Fabrication of Low Threshold Vertical Cavity Surface
Emitting Laser Arrays

One of the most exciting applications of the vertical cavity surface emitting
laser (VCSEL) is in free-space optical interconnections at the chip-to-chip level.
Hybrid integration of optoelectronic devices onto Si-based systems is a
promising solution for achieving higher performance in computer systems or
dense optical interconnections.  Bottom-emitting VCSEL’s are particularly
suitable for hybrid integration with silicon VLSI chips using a flip-chip bonding
technology.  A large two-dimensional VCSEL array could be transferred in one
procedure, thereby reducing the device capacitance.  Bottom-emitting VCSEL
arrays are mainly operated at 980 nm to make use of the transparency of GaAs
substrate at this wavelength.  In this section of the report, the structure and the
fabrication of 980 nm VCSEL arrays on GaAs substrate will be discussed. In a
subsequent section, the result of hybrid integration with Si VLSI neuron unit
arrays will be presented.

A key issue that limited the potential use of vertical cavity surface emitting
laser arrays in the hybrid MCM structures described in this report is the high
power dissipation associated with current-generation VCSEL’s.  This high power
dissipation can be accommodated by either using large spatial separations of the
VCSEL’s (which reduces the area interconnection density), or by using a low
duty cycle (which reduces the total number of connections per second that can be
implemented).  In order to reduce these undesirable effects, and to instead make
use of the relative architectural and device simplicity offered by vertical cavity
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lasers, it is important to develop low threshold current (low power dissipation)
VCSEL’s that can be integrated with silicon driver chips by means of flip-chip
bonding techniques.

In a collaborative research effort on VCSEL’s with Prof. P. Daniel Dapkus’
group at USC, a better understanding of the role played by the placement of the
aluminum oxide aperture in determining the scattering losses in VCSEL cavities
was achieved during the research program.  Use of optimized aluminum oxide
apertures resulted in demonstrated threshold currents as low as 52 mA, and also
led to designs in which the VCSEL characteristics are much less sensitive to
variations in the oxidation length than previously existed.

VCSEL Structure

The typical components of a VCSEL are two high-reflectivity DBR mirrors
that surround the optical cavity, and the gain medium used for light emission.
Figure 42 shows a schematic cross section of a 980 nm VCSEL structure.  The
VCSEL structures were grown on (100) semi-insulating GaAs substrates using a
low-pressure metal-organic chemical vapor deposition (MOCVD) reactor.  The
structure consists of:  20 pairs of n-type λ/4 Al0.95Ga0.05As and λ/4 GaAs bottom
DBR (99.4% reflectivity); two 7.8 nm thick In0.2Ga0.8As quantum wells; a 20 nm
AlAs layer to be oxidized for the current aperture; 30 pairs of p-type λ/4
Al0.95Ga0.05As and λ/4 GaAs top DBR (99.99% reflectivity); and a 10 nm thick p+
GaAs cap layer.

For both DBR mirrors, GaAs and Al0.95Ga0.05As are used as high and low
index materials, respectively.  Between them, a 20 nm thick Al0.5Ga0.5As grading
layer was used.  They were uniformly doped with the concentration of 1 × 1018

cm–3 for both n-type and p-type DBRs.  Only the first five pairs of p-type DBR
adjacent to the cavity were lightly doped (~5 × 1017 cm–3) to reduce the free carrier
absorption.  Two 7.8 nm thick In0.2Ga0.8As quantum wells were used as a gain
medium, and the quantum wells were separated by a 15 nm thick GaAs barrier
to prevent dislocation formation.  A 20 nm thick AlAs layer was located in the
first period of the p-type DBR and aligned with the node of the standing wave
pattern to minimize the scattering loss after it is oxidized.

Figure 43 shows the reflectivity spectrum taken from the sample after
growth and the corresponding calculated data.  The width of the mirror
stopband is proportional to the refractive index difference between the high and
low index materials in the DBR mirrors.  If the difference in index of refraction
between the DBR pairs is small, the stopband is narrower.  The position of the
stop band and the side peaks of the measured spectrum match the simulated one
quite well.  The measured PL spectrum peak from this wafer was 975 nm.
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Fig. 42.   A schematic cross-sectional diagram of the 980 nm bottom-emitting
VCSEL structure with InGaAs quantum wells in the active region.

Fig. 43.   VCSEL reflectivity spectrum showing the mirror stopband and the
cavity resonance at 980 nm. The measured and simulated reflectivity of a
completed 980 nm VCSEL is shown.

Light
emission

at
980 nm

Ti/Pt/Au top p-type contact

30 pairs GaAs/Al0.95Ga0.05As
top p-type DBR

2 In0.2Ga0.8As quantum wells

20 nm AlAs / Oxide
aperture20 pairs GaAs/Al0.95Ga0.05As

bottom n-type DBR

GaAs (100) Substrate

AuGe/Ni/Au
bottom n-type
contact



Adaptive Optoelectronic Eyes:  Hybrid Sensor/Processor Architectures 74
Final Progress Report (1 June, 1998 – 31 May, 2004)

VCSEL Fabrication

For the fabrication of 980 nm VCSEL arrays, three different mesa sizes of
masks for VCSEL arrays were used; 20 µm, 35 µm, and 50 µm.  In a 20 ×  20
VCSEL array, each mesa was placed on a pitch of 125 µm.  Figure ZZ(a)-(f) shows
schematically the 980 nm bottom-emitting VCSEL device processing procedure.
The sample was first cleaned with TCE, acetone, methanol, and DI water to
remove any contaminants on the surface.  A 20 µm ×  20 µm square metal lift-off
mask was patterned with AZ5214 photoresist.  An image reversal method was
used to give an undercut edge profile so that the contact metal could be lifted off
easily.  After the pattern was developed, the sample was treated with oxygen
plasma ashing to remove the photoresist residue on the developed surface.
Before loading the patterned sample into the metal evaporator, the sample was
cleaned with diluted hydrochloric acid, HCl:H2O = 1:10, to remove any native
oxide on the GaAs surface.

A 30 nm/50 nm/200 nm thick Ti/Pt/Au multilayer metal contact was
deposited in an e-beam evaporator vacuum chamber to form p-type ohmic
contacts to the GaAs surface.  After the metallization process was completed, the
sample was soaked in acetone for 5 minutes to lift off unwanted metal layers.

A 200 nm thick SiNx thin film was deposited by PECVD at 275 °C to protect
the top p-type metal during wet oxidation, and to be used as an etch mask during
ECR etching.  A 35 µm ×  35 µm photoresist (AZ5214) square was patterned to
define the mesa for subsequent SiNx RIE etching.  The SiNx thin film was then
etched in an RIE system using a CF4 plasma (100 mTorr, 100 W, 2 min) to create a
35 µm ×  35 µm square mesa etch mask for a 20 × 20 VCSEL mesa array during the
following ECR etching process.

It is important to have a uniform mesa size across the array, as well as
vertical sidewalls for the VCSEL mesas.  If the mesa size or the vertical sidewalls
are not uniform, then the wet oxidation of AlAs will not be uniform, either.
Therefore, anisotropic dry etching for mesa patterning is preferred, since it offers
improved uniformity of the mesa size and the vertical sidewalls of mesa as
compared with wet etching.

The VCSEL mesas were formed by plasma etching in an ECR dry etching
system using BCl3 and Ar.  Typically, VCSEL devices have very thick epitaxial
structures, and require very accurate control of the etching depth.  In order to
etch VCSEL devices reproducibly, an in-situ laser reflectometry system was built
to monitor the etching process.  A He-Ne laser entered the ECR chamber through
a quartz window at an angle of 60° and reflected off the sample on the chuck
through another quartz window to a silicon photodetector.  The detected current
was monitored using a Keithley picoammeter, which was connected to a chart
recorder to produce an output record.
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Fig. 44.   Schematic diagram of the 980 nm bottom-emitting VCSEL array
fabrication procedure. (a) Ti/Pt/Au top p-type contact metallization;
20 µm ×  20  µ m mask (b) PECVD SiNx deposition (c) mesa patterning;
35 µm ×  35 µm mask (d) ECR etching (e) AlAs wet oxidation (f) AuGe/Ni/Au
bottom n-type contact metallization; 50 µm × 50 µm mask.
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With this system, the VCSEL devices were etched at the desired target etch
depth with a tolerance of less than ±2%.  The etching rate of GaAs/AlGaAs was
~0.30 µm/min with ECR etching conditions set to 300 W microwave power,
100 V RF dc bias, 30 sccm total flow rate (BCl3/Ar = 25/5 sccm), upper/lower
magnet = 170 A/40 A, and a 4 mTorr chamber pressure.  During 22 minutes of
ECR etching, 30 pairs of top p-type DBR, an AlAs layer, the quantum well region,
and part of the bottom n-type DBR were etched for epitaxial wafer 5617.  A total
thickness of 6.5 µm of epitaxial growth was etched.  The ECR etching process
was stopped at the tenth pair of the bottom n-type DBR below the cavity in order
to expose the bottom DBR layer for broad bottom n-type contact metallization as
well as to expose the edge of the AlAs layer for subsequent wet oxidation.
Figure 45 shows an SEM image of the sidewall of a VCSEL mesa after ECR
etching, showing that the etched mesa sidewalls were vertical and smooth.

Fig. 45.   An SEM photomicrograph of the GaAs/AlGaAs DBR mesa structure
after ECR etching (4 mTorr chamber pressure, 100 V RF dc bias,
BCl3/Ar = 25/5 sccm, upper/lower magnet = 170 A/40 A, and 300 W).

After the edge of the AlAs current confinement layer was exposed by the
ECR etching process, the sample was kept in methanol to avoid oxidation of the
exposed AlAs layer by oxygen and moisture within the air.  Usually, the sample
was etched immediately before the wet oxidation process.  The wet oxidation
process was carried out in a 1 inch diameter open quartz furnace with 300 sccm
N2 + H2O steam at 425 °C.  The H2O + N2 environment was created by bubbling
ultra high purity N2 gas through a 1 liter round bottom flask, which was
maintained at a constant temperature of 87.7 °C.  The N2 flow rate was precisely
controlled by an electronic mass flow controller.  The gas lines between the water
bubbler and the oxidation furnace were heated to a temperature of 120 °C to
prevent water condensation that could cause unstable oxidation rates.

The samples were placed on a piece of Si in a quartz boat and then slid into
the oxidation furnace with a quartz rod.  All of the parameters (water bubbler
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temperature, furnace temperature, and N2 flow rate) were carefully kept under
the same conditions to obtain reproducible oxidation.  Since the sidewalls of the
mesas were exposed after the ECR etching, the oxidation fronts proceed laterally
into the mesa center from the edges of the mesas.  The oxide extent can be
observed with an optical microscope if the layer structure is thin enough, while
an IR camera is necessary for examining the oxide layer in a thick VCSEL
structure.  Since the bottom-emitting epitaxial structure was too thick to allow
observation of the oxide extent with an optical microscope, a test oxidation
sample was fabricated in parallel with the main sample.

The oxidation rate was estimated from the test oxidation sample, and then
applied to the oxidation of the main sample.  The oxidation rate of the thin AlAs
layer (20 nm) was ≈ 0.62 to 0.68 µm/min under these conditions.  Since the
oxidation rate of the thin AlAs layer is slower than that of the thick AlAs layer,
the thin AlAs layer was chosen for precise control of the oxidation rate.  With
these oxidation rates, we can control the final oxide aperture size in a VCSEL
mesa structure to within 1 µm.

Instead of immediately removing the sample from the oxidation furnace
after the oxidation process was complete, the sample was moved to a lower
temperature zone for 10 minutes.  This two-step oxidation approach was
employed to remove the intermediate by-products and to achieve stability of the
resulting oxide.

The SiNx thin film on top of the VCSEL mesa was removed by using a CF4
plasma in an RIE etching system.  Then a broad area AuGe/Ni/Au
100 nm/30 nm/100 nm n-type ohmic contact was evaporated onto the AlGaAs
bottom n-type DBR layer to serve as a common anode.  To alloy the contacts, the
sample was loaded into a rapid thermal annealer (RTA), and then annealed at
400 °C for 30 sec in forming gas with a 1 °C/sec ramp rate.  For bottom-emitting
VCSEL’s, it is necessary to apply an antireflection (AR) coating at the air and
substrate interfaces to eliminate unwanted reflections.  For this purpose, a SiOx
(n = 1.90) layer was deposited in a Sloan e-beam evaporator for the 980 nm lasers
fabricated on GaAs substrates.  Without AR coatings, the L-I characteristics of the
bottom-emitting VCSEL’s showed strong feedback from the substrate-air
interface.  An SEM image of the completed device is shown in Fig. 46.
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(a)

  
(b)                                                                  (c)

Fig. 46.   SEM micrographs of a completed bottom-emitting 980 nm VCSEL array.
(a) Side view of VCSEL mesas; each mesa is separated by a pitch of 125 µm; (b)
Side view of a 35 µm × 35 µm VCSEL mesa; (c) Top view of a VCSEL array.

Bottom-Emitting 980 nm VCSEL Array Results

The completed VCSEL devices were tested at room temperature on an
uncooled stage with continuous wave (CW) excitation.  The CW measurements
were made with an HP4142B modular DC source test instrument and a UDT
calibrated broad area Si photodetector.  Current-voltage (I-V) and current-light
(I-L) measurements were made on individual devices.  In addition, output
emission spectra were recorded.  The sample and the sample holder were located
above a Si photodetector.  Since these VCSEL devices were bottom-emitting, a
5 mm size hole was made at the center of the Au-plated sample holder.  The
majority of the fabricated VCSEL devices on the chip lie above open hole, which
allowed the emission of light through the apparatus.  The test setup for bottom-
emitting 980 nm VCSEL’s is shown in Fig. 47.
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Fig. 47.   The test setup for bottom-emitting 980 nm VCSEL’s.

As may be seen in Fig. 48, one probe contacted the broad bottom metal
layer, and the other probe was placed directly on top of a VCSEL mesa.  Terra
Universal tungsten probes were used for the VCSEL measurements.  These probe
tips were 1 inch long with a 0.0001 inch tip radius, a 5° taper angle, and an
0.23 inch taper length.  These ultrathin probes allowed direct contact to VCSEL
mesas of dimensions as small as 20 µm × 20 µm.

To measure the emission spectra and far field pattern, additional
components were added to the measurement setup on an optical table.  The light
output from the laser passed through an opening in the sample holder and was
collected by a 50X objective lens.  The output was reflected by a mirror, and
collimated by a simple lens.  The optical signal was collected by a multimode
fiber and analyzed by an optical spectrum analyzer.  Figure 49 shows the typical
L-I-V characteristics of a single VCSEL device within a 20 × 20 VCSEL array.  The
threshold current and external quantum efficiency were 350 µA and 57%,
respectively.

From Fig. 49, it can be seen that a VCSEL with a square oxide aperture
~3.5 µm on a side has a threshold current as low as 350 µA with a threshold
voltage of 1.6 V (2.0 V at the threshold current).  The external quantum efficiency
reaches 57% and the maximum power exceeds 3 mW at 5 mA.  High efficiency
and low threshold current are two desirable characteristics realize for large and
densely packed VCSEL arrays.  However, these two properties cannot be
achieved at the same time, and tradeoffs between the wall-plug efficiency and
the threshold current must be made when designing the VCSEL DBR mirrors.
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For the hybrid integration of VCSEL arrays with Si circuitry, high wall-plug
efficiency is more desirable than a low threshold current with a correspondingly
low output power.

  

(a)                                                                  (b)

Fig. 48.   CCD images taken through a microscope to show the probe geometry
for 980 nm bottom-emitting 20 × 20 VCSEL arrays; (a) top view of 20 × 20 VCSEL
arrays; (b) a higher magnification view of a 20 × 20 array.
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Fig. 49.   The L-I-V characteristics of a 980 nm VCSEL from a 20 × 20 VCSEL array
under CW conditions.  The threshold current and external quantum efficiency
were 350 µA and 57%, respectively.

A typical emission spectrum of a 980 nm bottom-emitting VCSEL array
element is shown in Fig. 50.  The VCSEL operated in single mode up to 5 mA
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under CW conditions.  Most of the VCSEL devices operated in single mode up to
10 times the threshold current (~3 to 4 mA). For this bottom-emitting laser, the
center lasing wavelength was 976.9 nm at a current of 1 mA.
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Fig. 50.   Typical emission spectrum of a bottom-emitting VCSEL array element.
The VCSEL device operates in single mode up to 5 mA under CW conditions.

Polarization measurements for the VCSEL arrays were performed by
placing a 980 nm optical polarizer in front of the multimode fiber that coupled
the optical signal into the optical spectrum analyzer.  The measurement result is
shown in Fig. 51.  This data was taken at 3 mA current under CW conditions.
From Fig. 51, it is clear that the VCSEL is linearly polarized.

The wavelength spectrum of a semiconductor laser is an important device
characteristic, because in many applications spectral control of the laser output is
required.  Since the emission wavelength is determined by the reflectivity
resonance, it is expected that the wavelength will shift due to, for example,
ambient or internal temperature changes that occur in response to thermal
change of the indices of refraction of the mirror.  In addition to the wavelength
shift induced by ambient temperature changes, we must also consider shifts
induced by self-heating effects.

The output wavelength as a function of input current of one of the 980 nm
VCSEL’s is plotted in Fig. 52.  The threshold current of this device is 350 µA.  We
observe a wavelength shift with a rate of ~ 0.336 nm/mA.  The lasing
wavelength shifts to longer wavelengths as the input current is increased.  The
observed wavelength shift is approximately linear in the power dissipated by the
VCSEL.  When VCSEL devices are in operation, they heat up due to the flow of
current through the DBR mirror layers.  As a result, the cavity resonance mode
shifts to longer wavelengths due to changes in the refractive indices, and the
relative positions of the cavity resonance and the gain spectrum will determine
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the laser output wavelength for a given level of carrier injection.  These results
are very important for the development of matching DOE fanout patterns and
PMCM device sizes that are tolerant to wavelength shifts of this magnitude, since
the VCSEL’s are driven with time-varying analog currents in the PMCM
architecture.
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Fig. 51.   The measured polarization properties of a 980 nm bottom-emitting
laser.  This data was taken at 3 mA under CW conditions with a 980 nm optical
polarizer.

The L-I-V characteristics of an 8 × 8 bottom-emitting 980 nm VCSEL array
(125 µm pitch) are shown in Fig. 53(a).  The average threshold current is 321 µA
with a standard deviation of 23.2 µA, and the average external quantum
efficiency is 55.8% with a standard deviation of 1.96%.  The maximum wall-plug
efficiency approaches 23% at 1 mW output power, which is limited by the series
resistance of ~460 to 500 Ω.  The maximum single mode optical output power is
more than 2 mW under CW conditions.

In addition to the data shown in Fig. 53(a) from an 8 × 8 array, key
characteristics of a 20 × 20 array of VCSEL’s were also measured.  Of the 400
lasers in the array, four lasers failed to lase and the contact pads of three lasers
were destroyed before or during measurement.  Figures 53(b) and (c) show
histograms of the measured threshold current and external quantum efficiency of
the 20 × 20 VCSEL array.  The uniformity of the 20 ×  20 array is not as good as
that of the 8 × 8 array.  The standard deviations of the threshold current and
efficiency are increased to 126.6 µA and 3.7%, respectively.  This non-uniformity
was partly caused by the testing itself, as the L-I characteristics change in
response to the amount of force applied to the device by the testing probe.  Since
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there was no extended contact pad for the VCSEL array top contact, the testing
probe was directly placed on top of the VCSEL mesa during the device
measurement.  As a result, some of the VCSEL mesas were destroyed during the
measurement due to the vibration of the setup.  Also, the wet oxidation step
caused non-uniformity of the oxide apertures in the 20 × 20 VCSEL arrays during
the fabrication process.  The oxide apertures provide strong confinement for the
optical modes in VCSEL structures, and the device performance varies with the
absolute size of oxide aperture.

Control of the aperture size across the sample becomes very critical for the
uniformity of the L-I-V characteristics in VCSEL arrays.  The wet oxidation
process starts from the edge of the VCSEL mesas and advances toward the mesa
centers.  Since the oxide aperture is not defined by photolithography, control of
the wet oxidation process becomes very important for the performance of these
devices.  The oxidation rate of the AlAs layer strongly depends on the layer
thickness, composition, and temperature distribution in the oxidation furnace.
The uniformity of both VCSEL growth and wet oxidation processes needs to be
accurately controlled in order to improve the uniformity of oxide-confined
VCSEL’s.
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Fig. 52.   Light output intensity as a function of wavelength from a 980 nm
bottom-emitting laser from a 20 × 20 VCSEL array with different currents,
measured under CW conditions.
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Fig. 53.   Device characteristics of (a) 8 × 8 and (b, c) 20 ×  20 980 nm bottom-
emitting VCSEL arrays.  (a) L-I-V curves of 64 VCSEL’s; (b) histogram of the
threshold current; (c) histogram of the external quantum efficiency.
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Photonic Multichip Module (PMCM) Integration

During the research program, an important experiment was conducted to
demonstrate a key stage in the integration of the photonic multichip module
(PMCM).  In this experiment, two 970-nm wavelength, top-emitting vertical
cavity surface emitting lasers within an 8 × 8 array fabricated at USC were wire-
bonded to a submount, which was then connected to two independent VCSEL
device drivers.  The lasers exhibited 400 µA thresholds, and were addressed by
the device drivers to operate either one at a time, or both simultaneously.

A quartz-substrate diffractive optical element (n  = 1.457, fabricated by e-
beam lithography at QPS, Inc.) that implements a 4:2:1 fan-out pattern as
described previously was mounted in proximity to the VCSEL array, such that
the output beams from both lasers intercepted the same DOE.  Each laser was
turned on independently, resulting in the desired 3 × 3 fan-out pattern as shown
in Fig. 54.  Both lasers were then turned on to matched output intensities, and a
lens following the DOE array was placed such that the output patterns from the
two lasers overlapped, as shown in Fig. 55.

This output pattern demonstrates the key function of fan-in, and is the first
such demonstration of its kind, to the best of our knowledge.  The measured
optical reconstruction pattern is shown in Fig. 56, from which error percentages
could be estimated based on incoherent summation rules.  The minimum error
observed in the 14 resulting diffracted spots was 0.2%, and the maximum error
was 16%, with an average error of 7% (treating all error deviations as positive
quantities regardless of sign).

The same 4:2:1 fan-out pattern was also photolithographically defined in a
GaAs substrate, as described previously, and this DOE element was also used to
perform the same fan-out/fan-in experiment described above.  Successful fan-in
was achieved, and quantitative performance comparisons against the quartz-
substrate DOE will be included in forthcoming publications.

Also during the research program period, we demonstrated additional fan-
in from multiple laser sources, and measured the degree of error over a range of
relative laser output intensities.  Continuing these experiments will allow us to
determine the possible complications that may result from simultaneous VCSEL
operation within an array by either electrical or thermal cross talk.

Vertical-cavity surface-emitting lasers (VCSELs) are an ideal light source for
free-space optical processing since they can easily be fabricated into two
dimensional arrays of individually addressed lasers for which the output beam is
circularly symmetric with controllable divergence angle.  However, it is a
challenging process to integrate a large array of VCSELs onto a CMOS chip, since
the electrical interconnections between the VCSEL and the CMOS electronic
driver circuit must be short in order to reduce the parasitic capacitance, electrical
cross talk, and the complexity of interconnect wires that would be required if a
separate VCSEL was located some distance from the CMOS chip.  As discussed
in a previous section, the flip-chip bonding technique has previously been
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Fig. 54.   Fan-out pattern from a single 970 nm VCSEL element within an 8 × 8
array, transmitted through a 4:2:1 diffractive optical element (DOE).

Fig. 55.   Fan-in pattern from two 970 nm VCSEL elements within an 8 × 8 array,
transmitted through the same 4:2:1 diffractive optical element (DOE).
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Fig. 56.   Measured optical reconstruction pattern from two 970 nm VCSEL
elements within an 8 × 8 array, transmitted through the same 4:2:1 diffractive
optical element (DOE).  The spot size (FWHM) was 125 to 250 µm, with a spot
separation of 2.5 mm.

employed to integrate large arrays of GaAs multiple quantum well (MQW)
modulator-arrays to CMOS circuits [Goossen, 1995].  By using a relatively simple
flip-chip bonding technique in a similar manner, hybrid integration of bottom-
emitting VCSELs array to silicon VLSI chips can be demonstrated.  The
integration of VCSEL arrays with gigabit-per-second CMOS circuits via flip-chip
bonding technique has been demonstrated [Krishnamoorthy, 1999].

The co-integration of a VCSEL array with a Si drive chip (in this case a test
chip) is illustrated in Fig. 57.  As shown in the figure, two-dimensional arrays of
VCSELs are flip-chip bonded on a pixel-by-pixel basis to the silicon VLSI chips,
which act as VCSEL drivers through pinned out leads terminating in an array of
bonding pads that are designed to match the VCSEL pitch.

The electrical and optical characteristics of the flip-chip bonded 8 × 8 VCSEL
array were measured, with results as shown in Fig. 58.  The red curves
(composed of square symbols) depict the pre-bonded characteristics of the laser,
while the blue (smooth) curves depict the post-bonded characteristics of the
laser.  The output optical intensity as a function of drive current did not change
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significantly, but the voltage-current characteristic changed slightly after the
bonding process.  The resistance of the bottom-emitting laser before flip-chip
bonding was 460 Ω .  After bonding with the silicon mating substrate, the
resistance of the laser was increased to 540 Ω.  These total electrical resistance
values of the laser were determined by calculating the difference in slopes of the
measured V-I curves before and after bonding.

 

(a)                                                                     (b)

Fig. 57.   Optical micrographs showing operating flip-chip bonded VCSEL
chip to a silicon mating substrate; (a) one laser in operation at I = 2 mA; (b) 8
lasers operating simultaneously.

Implementation of Variable-Kernel-Size Sobel Transformations

While pursuing a novel approach for the implementation of an adaptive
optoelectronic eye, we remained committed to tracking the state-of-the-art in all-
electronic implementations of related smart camera functions, and to making
direct comparisons to projections for our emerging photonic multichip module.

In order to achieve this goal, we undertook a study of the computational
burden imposed by convolutional and nonlinear operations that are typical of
image-processing or vision-related algorithms, as implemented on both
emerging smart cameras and on desktop computers, from PC-scale through
large-scale sophisticated workstations.

In these studies, we tested the implementation of a Sobel operation,
commonly used in edge detection algorithms, on a variety of platforms.  The
Sobel operation can be cast in terms of two convolution operations and a
(nonlinear) magnitude operation, and hence combines two key features of the
emerging adaptive optoelectronic eye architecture.  This operation was tested
using 3 ×  3 convolution kernels across a standard 256 × 256 pixel test gray-scale
image.  Results ranged from 1.181 seconds on an HP (Apollo) Series 700
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workstation, through 0.109 seconds on an SGI R10000 workstation, to 0.030
seconds on an IVP MAPP 2200 smart camera (manufactured by IVP, Sweden)
that incorporates 256 single pixel processing elements onboard the CCD imaging
chip.
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Fig. 58.   Measured L-I-V characteristics of the flip-chip bonded VCSEL (a)
light-current characteristic of the bonded VCSEL; (b) voltage-current
characteristic of the bonded VCSEL (pre-bonded result = red (dotted) curves;
post-bonded result = blue (smooth) curves).

Although the preliminary IVP MAPP 2200 smart camera data looked
promising, several key disadvantages of this approach are noteworthy.  The
number of programmable filter operations for the current version of the smart
camera was limited, there was no color support, only 127 bits of RAM were
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available for each processing element, there was no support for conditional logic
(if/then) statements, there was no way to program individual processors, and
finally the smart camera proved difficult to program, as assembly language was
required.  Furthermore, the achievement of real-time frame rates with a Sobel
operation is impressive, but the scaling to larger kernel sizes is not.  In fact,
kernel sizes larger than 3 × 3 were not supported, and the range of achievable
filter operations was predetermined by the limited number of kernels hardwired
into the camera head.

PMCM Optical Power Budget

In order to estimate the overall power requirements of the PMCM hardware
implementation, a detailed analysis of the overall PMCM optical power budget
was performed.

The VCSEL-based PMCM stack containing two adjacent VCSEL’s
illuminating a single DOE substrate in a simple two-layer PMCM device is
shown schematically in cross section below.  The output optical beam width at
each substrate is initially determined by the VCSEL oxide confinement size, and
later by the substrates’ refraction properties as predicted by Snell’s Law.  This
figure also shows a schematic representation of the total optical power as one
progresses through the PMCM stack.

As configured for this calculation, each VCSEL is assumed to have a wall
plug lasing efficiency of 33%, and a maximum output optical power of 1 mW
(chosen due to the availability of VCSEL’s with these parameters).  This model
also takes into account all Fresnel reflection and absorption properties of the
substrates, while ignoring all unwanted optical diffraction effects.  Furthermore,
this model assumes that all light is normal to each surface, excludes any
dispersion-based effects, and does not include multiple reflections within the
stack architecture.  With these effects notwithstanding, this model still provides
an excellent starting point for initial optical power estimates needed for
operation of the PMCM.

The two VCSEL’s are separated by a 125 µm pitch, with the red-lines
representing the optical beam paths of an 8 µm VCSEL oxide aperture, and the
blue lines representing the optical beam path for a 6 µm VCSEL oxide aperture.
Both beams propagate through the GaAs VCSEL substrate with little loss until
striking the back VCSEL surface.  At this point, two optical effects occur.  First, a
Fresnel loss decreases the total optical power by nearly 33%.  The second optical
effect is the refraction properties caused by the difference in optical indices as
characterized by Snell’s Law.  In our case, as the optical ray leaves a high index
substrate and enters a lower index substrate (air), the optical beam is refracted
away from the interface surface normal.

As shown in the figure, the optical paths for both adjacent VCSEL’s exit the
GaAs VCSEL substrate and enter the shared DOE substrate.  The DOE substrate
consists of a 375 µm thick GaAs material in this configuration and is 1103 µm
away from the VCSEL substrate.  The distance between these two substrates is
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chosen to correspond to the silicon detector dimensions (25 µm square for this
exercise) as predicted by Fourier optics principles.  Generally, the greater the
illumination area of the incident optical beam, the smaller the (FWHM) diffracted
optical beam profile.  In this figure, the same area of the DOE pattern is
simultaneously illuminated by the two adjacent VCSEL’s.

MURI : Architecture -- Sing le VCSEL Operation
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Fig. 59.   Schematic diagram of the PMCM characterizing all of the critical optical
properties.  The width of the orange line represents the total optical power at that
point in the PMCM stack.

After passing through the DOE, a secondary substrate configured as a lens
array is needed to perform the necessary Fourier transform.  In previous figures
in this report, the DOE and the lens array were integrated into the same
substrate.  This was achieved by creating a refractive index distribution that can
simultaneously function as a lens, within which the DOE can be contained.  For
convenience, the optical power budget model breaks these two necessary
functions into separate substrates.  The lens array in this model is a surface relief
pattern on a GaAs substrate.  As configured, a single lens is used to perform the
Fourier transformation of the DOE.  Additional effects caused by the adjacent
VCSEL light output including lens aberrations, non-normal Fresnel reflections,
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light spill into adjacent lenses, and any additional diffraction effects, are not
considered here.  The DOE and the lens array then cause light to be focused onto
the back surface of the MOSIS-fabricated VLSI IC.

The relationship between the input optical intensity I0 and the optical
intensity received on a single detector Idet is expressed by the following equation:

Idet = I0e
−αGaAsdGaAsηGaAs /AirηAir /GaAse

−αGaAsdGaAs χDOEηGaAs /AirηAir /GaAse
−αGaAsdLens

ηGaAs /AirηAir /Silicone
−αSi dSi RDetector

in which I0 is the input optical power, αGaAs is the absorption coefficient of GaAs,
dGaAs is the thickness of the VCSEL GaAs substrate, ηGaAs/Air is the Fresnel
reflection coefficient of the GaAs/air interface, ηSi/Air is the Fresnel reflection
coefficient of the silicon/air interface, d lens is the thickness of the lens GaAs
substrate, dsi is the thickness of the silicon substrate, αsi is the absorption
coefficient of silicon substrate, χDOE is the percent of light diffracted into the DOE
orders, and Rdetector is the responsivity of the silicon detector.  The surface normal
transmittance through each interface is calculated by the expression T = 1 – R,
and is equal to 68.6%, or a Fresnel reflection loss of 31.4% for a GaAs/Air
interface.  Due to the number of surfaces and their associated refractive indices,
this number has a substantial effect on the final optical power reaching the
silicon detectors.  Assuming that 75% of the light is diffracted by the DOE into
the necessary orders, indicated by the χDOE term, and that a typical silicon
detector’s responsivity is 0.15 A/W, the final value of electrical current reaching
the photodetector in our PMCM stack is only 0.22 µA for a 1 mW input optical
source, a value deemed too low to drive our VLSI electronics.  A method to
improve this situation is described in the next section.

When an appropriate AR coating is applied to layers in the PMCM, a
significant increase in optical throughput is realized.  Consider the diagram
shown in Fig. 60 below.  Assuming that 75% of the light is diffracted by the DOE
into the necessary orders, indicated by the χDOE term, and that the silicon
detector’s responsivity is 0.15 A/W, the final value of electrical current reaching
the photodetector is 5.02 µA for a 1 mW input optical source – more than enough
to drive the VLSI computational electronics.  This is in contrast to the previously
calculated result of 0.22 µA for a 1 mW input optical source.  Essentially, we are
removing the Fresnel reflections from six surfaces (five GaAs surfaces and the
single back surface of the computational layer).  Notice that the final power, i.e.,
the power hitting the silicon photodetectors, is now only dependent on the input
optical power, the efficiency of the DOE array, and the silicon VLSI substrate
thickness.  This makes any subsequent PMCM power optimization problems
considerably easier.
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MURI : AR Coated PMCM Architecture -- Dual VCSEL Operation

Electrical
Power Budget

Opt ical
Power Budget

~12°
n = 3.52
α = 0.000

@ 970 nm

n = 3.52
α = 0.000

@ 970 nm

n = 3.52
α= 0.000

@ 970 nm

n = 3.45
~ 0.15 A /W

@ 970 nm

Material
Par ameters

Physica l
Effects

Absorpt ion

Absorption

FresnelReflection

Fresnel Reflection

Fresnel Reflection

FresnelRe flection

Fresnel Reflection

Fresnel Reflection

Snell's Law

Snell'sL aw

Snell'sL aw

Snell'sL aw

~14°

VCSEL Lasers

980 nm designed for wavel ength
~ 30 % wall plug effi ci ency
6 µm oxid e aperture yeilds 12° FWHM
8 µm oxid e aperture yields 14° FWHM

~ 3 mW ~ 1 mW

~ 5.02 µAmps
per detector

~30 % Wall Plug

Virtual Laser Source

DOE Pattern

Microlens Array

125 µm

~12°

~14°

Fully Interconnected

Physical Scale
= 50 µm

125 µm

Fig. 60.   Schematic diagram of the PMCM containing AR coatings on all high
refractive index surfaces, characterizing all unwanted optical losses.  The width
of the orange line represents the total optical power at that point in the PMCM
stack.
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MURI Faculty Honors and Awards

These honors and awards were all received during the MURI research
program, and recognize both the promise and accomplishments of key MURI
faculty investigators.

Irving Biederman
W. M. Keck Professor of Cognitive Neuroscience; Neuroscience Graduate
Program, University of Southern California

•  USC Associates Award for Creativity in Research and Scholarship
(for the development of the Geon Theory of shape perception); March
9, 1999, Los Angeles, California; awarded by the University of
Southern California.

•  Mentor for Elizabeth Keiko Williams, Palos Verdes High School,
Top 10 Finalist in the Intel Science Competition.

B. Keith Jenkins
Professor of Electrical Engineering, University of Southern California

•  Promoted to Professor of Electrical Engineering, September, 2004.

Bartlett W. Mel
Associate Professor of Biomedical Engineering; Neuroscience Graduate
Program, University of Southern California

•  National Science Foundation Career Award, “Dendritic Subunits in
Cortical Visual Processing and Development”, 1998-2003.

•  Promoted to Associate Professor of Biomedical Engineering, with
tenure, May, 2000.

Christoph von der Malsburg
Professor of Computer Science and Neurobiology; Neuroscience Graduate
Program, University of Southern California, and Ruhr-Universität Bochum

•  Karl-Heinz Beckurts Foundation Award for Outstanding
Achievements in the Field of Neural Computing; December 4, 1998,
Stuttgart, Germany; awarded by the Karl-Heinz Beckurts Foundation.

•  The Koerber-Prize for Science in Europe 2000; September 7, 2000.
The award also supports research over a three-year period to
investigate elementary functions of the brain, specifically in the visual
and olfactory systems, and to elucidate how the nervous systems of
animals processes visual stimuli during recognition of an object, with
the goal of applying such Gestalt perception to technology for the
recognition of patterns and speech.
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•  Hebb Award, International Neural Network Society; 2003.

John O’Brien
Professor of Electrical-Engineering-Electrophysics, University of Southern
California

•  1998 Presidential Early Career Award for Scientists and Engineers;
December, 1998, Washington, D.C. (awarded at a White House
ceremony, February 10, 1999); awarded by the Office of Science and
Technology Policy (OSTP) through the Department of Defense, Army
Research Office (Army Research Office Young Investigator Program).

•  1998-99 Zumberge Fellow, July, 1998, Los Angeles, California;
awarded by the University of Southern California.

•  Promoted to Associate Professor of Electrical Engineering-
Electrophysics, September, 2003.

•  Promoted to Professor of Electrical Engineering-Electrophysics,
January, 2006.

Bing Sheu
Professor of Electrical Engineering-Electrophysics, Electrical Engineering
Systems, and Biomedical Engineering, University of Southern California

•  Distinguished Lecturer, IEEE Circuits and Systems Society, 1998-99

•  Vice-President of Conferences, IEEE Circuits and Systems Society,
1998

•  Editor-in-Chief, IEEE Transactions on VLSI Systems, 1998

•  President-Elect, IEEE Circuits and Systems Society, 1999

•  Editor-in-Chief, IEEE Transactions on Multimedia, 1999

Armand R. Tanguay, Jr.
Professor of Electrical Engineering-Electrophysics, Chemical Engineering
and Materials Science, and Biomedical Engineering; Neuroscience Graduate
Program, University of Southern California

•  Fellow, American Association for the Advancement of Science
(AAAS), November, 1999; awarded in Washington, D.C. at the AAAS
Annual Meeting 2000, February 19, 2000.  Citation:  "for distinguished
contributions to physical optics, optical materials and devices, and
optical information processing and computing, including the invention
of stratified volume holographic optical elements".
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•  Faculty Fellow, Center for Excellence in Teaching, University of
Southern California, 2001-2005.

•  Promoted to Professor of Electrical Engineering-Electrophysics,
Materials Science, and Biomedical Engineering, January, 2001.

•  Distinguished Faculty Fellow, Center for Excellence in Teaching,
University of Southern California, 2005-present.

•  Teacher of the Year, 2002, Latter Day Saints Student Association,
University of Southern California.
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Scientific Personnel

Key Faculty Investigators

The eight key faculty members involved in the MURI research program on
Adaptive Optoelectronic Eyes at USC are listed below, along with areas of
research expertise and interest.  This list illustrates the interdisciplinary
contributions of each faculty member to the integrated effort.

Professor Madhukar was not funded by the MURI effort, but contributed
nonetheless in the areas indicated, as well as through the AFOSR MURI effort on
multiple quantum well and quantum box infrared (IR) sensors.

Prof. Irving Biederman
William T. Keck Professor
Psychology
Member, Neuroscience Graduate Program
Psychology of Vision; Experimental Tests of Human Visual
Capabilities; Development of Higher-Level Models and Vision
Algorithms; Development of Geon Theory of Vision

Prof. Christoph von der Malsburg
Computer Science and Neurobiology
Member, Neuroscience Graduate Program
Physiology and Psychology of Vision; Development of Low-Level and
Mid-Level Vision Algorithms Based on Spatial Relationships and
Feature Similarities; Mapping of Low-Level and Mid-Level Vision
Algorithms; Face Recognition; Image Reconstruction

Prof. Bartlett Mel
Biomedical Engineering
Member, Neuroscience Graduate Program
Development of Low-Level and Mid-Level Vision Algorithms Based
on Co-Occurrences of Extracted Features; Mapping of Low-Level and
Mid-Level Vision Algorithms; Testing of Vision Algorithms in Realistic
Environments

Prof. B. Keith Jenkins
Electrical Engineering-Systems
Mapping of Vision Algorithms into Electronic/Photonic Hardware
Implementations; DOE and Optical Systems Design
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Prof. Armand R. Tanguay, Jr.
Electrical Engineering-Electrophysics, Materials Science, and
Biomedical Engineering
Member, Neuroscience Graduate Program
Hybrid Analog/Digital VLSI Design; Diffractive Optical Element
Fabrication and Testing; Stratified Volume Holographic Optical
Elements; Stratified Volume Diffractive Optical Elements; Integrated
Optical Devices (Optical Power Bus); Flip-Chip Bonding and Device
Packaging

Prof. Bing Sheu
Electrical Engineering-Electrophysics, Electrical Engineering-
Systems, and Biomedical Engineering
Hybrid Analog/Digital VLSI Design; Cellular Neural Network
Designs; VLSI Chip Testing and Analysis; Active Pixel CMOS Sensor
Arrays

Prof. John O’Brien
Electrical Engineering-Electrophysics
E-Beam Lithography for Diffractive Optical Element Fabrication;
Nanofabrication Technology; Vertical Cavity Surface Emitting Laser
Arrays

Prof. Anupam Madhukar
Kenneth T. Norris Professor
Materials Science and Physics
Molecular Beam Epitaxy (MBE) Growth of Multiple Quantum Well
(MQW) Modulator, Detector, and Vertical Cavity Surface Emitting
Laser Arrays; Nanofabrication Technology; Focused Ion Beam
Fabrication of Diffractive Optical Elements; Quantum Dot IR
Photodetector Arrays

Affiliated Faculty Investigators

The four faculty members at both USC and other universities that became
involved in the MURI research program on Adaptive Optoelectronic Eyes at USC
since its inception are listed below, along with their areas of research expertise
and interest.  This list illustrates the complementary contributions of these
faculty members to the overall research program.

Prof. P. Daniel Dapkus
University of Southern California
Metal-Organic Chemical Vapor Deposition (MOCVD) Growth of
Multiple Quantum Well (MQW) Detector and Vertical Cavity Surface
Emitting Laser Arrays; Design and Fabrication of Ultra-Low Threshold
Vertical Cavity Surface Emitting Laser Arrays
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Prof. Nicholas George
University of Rochester, Institute of Optics
Smart Cameras; Diffractive Optical Elements; Stratified Volume
Holographic Optical Elements; Metrics for Automatic Evaluation of
Image Quality

Prof. Gregory P. Nordin
University of Alabama, Huntsville
Diffractive Optical Element Design, Fabrication, and Testing; Rigorous
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T. Lee, S.-J. Choi, and P. D. Dapkus, “Photonic Crystal Devices,” Paper JWC3,
Optics in Computing 2003, Washington, D.C., (2003); (Invited Presentation).
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Z.-J. Wei, S.-J. Choi, and P. D. Dapkus, “Photonic Crystal Devices,” Paper FMK5,,
Frontiers in Optics/Laser Science XX Conference (88th Annual Meeting of the
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Report of Inventions

No patent applications directly attributable to the MURI effort were
disclosed, filed, or awarded during the research program.

Technology Transfer

During the research program period, several of the investigators had
significant interactions with the various DoD agencies, as well as with
corporations and DoD contractors.  In several cases, key research results that
emerged during this research program are already in the early stages of
technology transfer.  These significant interactions and initial technology transfer
efforts are an important program component, as described below.

Professor Irving Biederman developed an ongoing research collaboration
with Dr. Barbara L. O'Kane of the U.S. Army CECOM RDEC Night Vision &
Electronic Sensors Directorate, Ft. Belvoir, VA, on the identification of targets in
infrared imagery by human observers.  This research program looked at the full
range of target images from where the parts and hot spots are well defined to
when the vehicles look like dental fillings.  A significant portion of this effort was
directed toward the development of a system with ATR capabilities.

Professor Christoph von der Malsburg had extensive interactions with the
Optical Tracking Group, Avionic Equipment Section, (Dr. Gabriel
Udomkesmalee) at the Jet Propulsion Laboratory.

Prof. von der Malsburg also started a U.S. company (Eyematic Interfaces,
Inc., Santa Monica, CA) for development of face recognition and tracking
systems (Dr. Hartmut Neven, Director).  Currently, visual recognition algorithms
and software developed by Prof. von der Malsburg and his students are being
employed by Eyematic for these applications.

Dr. von der Malsburg and his associates developed a face recognition
system under contract from the Army Research Laboratory (ARL) under the
FERET (Face Recognition Technology) Program (Dr. Jonathon Phillips, Contract
Monitor).  This system was repeatedly tested by ARL in competition to other
groups, and has repeatedly outperformed the competing recognition systems.  In
one such test the USC group outperformed all other groups, including Dr. A.
(Sandy) Pentland's group of the MIT Media Lab.

Under a second contract from the Army Research Laboratory (ARL), Prof.
Von der Malsburg’s group developed a Person Spotter System that is able to
extract and recognize faces from live video streams.

Dr. von der Malsburg’s research group also collaborated with Siemens
Corporate Research, Munich (Prof. U. Ramacher) on the development of an
advanced vision system (SEE-1).  Its core is an array of digital signal processing
chips (DSP’s), and its design is optimized for the computing-intensive algorithms
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developed in Dr. von der Malsburg's Laboratory.  The SEE-1 will have a
sustained processing power of 5 GOPS.  This advanced vision system is intended
for integration with the Person Spotter System, among other applications.

In a MURI-related project financed by the DoD Counterdrug Technology
Development Program Office, and administered by the Army Research
Laboratory, Dr. von der Malsburg’s research group developed a system for the
recognition of faces from live video.  This system was developed in consultation
with Mr. Tommy Walker, Naval Surface Warfare Center, Crane, Indiana.

In addition, a second MURI-related research project in Dr. von der
Malsburg’s research group, funded by the Office of Naval Research, was focused
on the fusion of consecutive image frames for the purpose of improved target
recognition and tracking.

Professor Armand R. Tanguay, Jr., and Professor B. Keith Jenkins developed
a technical collaboration with the Army Research Laboratory (Dr. Joe Mait), on
the design and application of novel subwavelength diffractive optical elements
(DOE’s).  Professor Gregory D. Nordin, of the University of Alabama, Huntsville
(UAH), an Affiliated Faculty Member of the MURI research program, was also
involved in this collaborative effort.  The interaction involved the development
of new design and fabrication methods for novel DOE’s, and combined key DOE
design and analysis expertise from ARL, as well as extensive rigorous diffraction
analysis expertise at UAH, with analytical and fabrication techniques that have
evolved from the MURI research program at USC.  This collaboration was also
directed towards uncovering the fundamental and technological potential (as
well as limitations) of adding such subwavelength capability to DOE’s.  The
multi-group interaction resulted in the design and simulation of new elements at
ARL, and in the evaluation of such subwavelength-feature DOE performance
from the point of view of multilayer computational structures at USC.  Potential
applications include dense chip-to-chip optical interconnections as well as other
diffractive optical systems.

Professor B. Keith Jenkins developed an interaction with technical personnel
at the TRW Automotive Electronics and Space and Defense Divisions (Dr. Barry
Dunbridge) on information display and driver interfaces in the automotive
cockpit, which could potentially provide an applications vehicle for hybrid
electronic/photonic computational modules, investigated within this MURI
program.

Professor Armand R. Tanguay, Jr. transitioned key research results on
single-sided flip-chip bonding technology to Teledyne Electronics Technologies
(Marina Del Rey, CA; Mr. Robert Steenberge), a key corporate partner in the
MURI effort.  This technology may prove to be exceedingly useful in the
packaging of multichip modules with industry-supplied OEM microprocessor,
memory, DSP, and ASIC chip sets.

In a second interaction with a Teledyne company, Prof. Tanguay’s group
initiated a collaborative effort with Teledyne Lighting and Displays (Hawthorne,
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CA; Dr. David Pelka) on the application of optical power bus technology in
display backlighting configurations, as well as on the antireflection coating of
microprismatic beam steering arrays.

Professor Tanguay developed an intensive interaction with the Eastman
Kodak Company (Rochester, NY; Dr. Gary L. Bottger, Dr. John Spoonhower, Mr.
Les Moore) on both immersive cameras and smart camera technology.  The
immersive camera concept provides a natural applications vehicle for adaptive
optoelectronic eyes, and smart cameras can potentially provide key stepping
stones along the way to a fully functional adaptive system implementation.  A
key current focus of the smart camera research project centers on contrast
enhancement, color constancy, and chromatic differentiation for the
disambiguation of camouflage (as well as for detection of smart fiducials in a
natural environment).  An additional feature of the project is the use of adaptive
nonlinear dynamic range compression algorithms for the acquisition and
processing of images in lighting conditions that span both bright (e.g., sunlit) and
dark (e.g., shadowed) regions.  Professor Tanguay spent six weeks of his
sabbatical leave during each of the summers of 1999 and 2000 at Eastman Kodak
Company, as well as at the University of Rochester, Institute of Optics (Prof.
Nicholas George and Prof. Dennis Hall).

Professor John O’Brien underook a collaboration with Agilent Laboratories
on photonic crystal components for multi-wavelength processing, and as a result
received additional financial support from Agilent for this program.  As part of
this research program, Agilent worked on developing an imprint lithography
technique that has the potential for large scale production of these crystals.  In
addition, they have a beam writer that is capable of writing patterns over large
areas.  Agilent agreed to pattern photonic crystal waveguides for us over large
areas to facilitate their characterization as part of the MURI research program as
well.

Professor Anupam Madhukar had considerable interaction and cooperative
work with the Avionics Division of WPAFB (Drs. Cole Litton and Edward Stutz)
and the Electronics Division of the Army Laboratory at Ft. Monmouth (Drs. T.
Aucoin, D. Smith, and P. Newman), including joint publications with the latter.
He also had active interactions with the Avionics and Materials Divisions of
WPAFB and developed interactions with the Army Research Laboratory (Dr.
Richard Leavitt) in the context of IR detectors.

Furthermore, Prof. Madhukar was Principal Investigator of a related MURI
effort that focused on IR detector arrays based on emerging quantum dot
technology (“Stress-Engineered Quantum Dots for Multispectral Infrared
Detector Arrays”, FY 98 MURI Program, Contract No. F49620-98-1-0474;
Program Manager:  Maj. Daniel K. Johnstone, Air Force Office of Scientific
Research).  The goal of this related research program was to develop IR focal
plane arrays with enhanced sensitivity and quantum efficiency by making use of
the significant increase in absorption cross section that results from 2-D quantum
confinement.
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Multidisciplinary Education

The impact of this MURI effort on USC's ability to conduct DoD-relevant
research and educate students was significant in terms of both research
integration and the development of human resources.  Currently, most advanced
sensor and electronic/photonic packaging research is carried out in industrial
and government laboratories, and neither is currently established as a viable
discipline.  This MURI program integrated an unusually broad research team
focused in both of these emerging technology areas, and greatly enhanced the
university's capability to perform cutting edge research in these areas.  This
capability was further enhanced through the acquisition of novel capital
equipment items funded by a separate MURI-related FY 99 DURIP equipment
grant.

The MURI program attracted excellent prospective undergraduates and
graduates.  We produced a large number of highly interdisciplinary Ph.D. theses
and B.S./M.S. theses during the course of the program, which will have a direct
impact on the trained workforce available to industrial and government
laboratories, as well as other universities.

During the grant period, several excellent new Ph.D. students were
recruited for participation in the MURI research program, and overall thirty-four
(34) Ph.D. students (partially funded or funded by related efforts) were involved
directly in MURI-related research.  Thirty (30) M.S., Engr., and Ph.D. degrees
were granted to students who were involved (either directly or indirectly) with
the MURI program, as listed above.

Extensive multidisciplinary interactions among all of the graduate and
undergraduate research assistants were undertaken during this grant, including
interactions with all of the MURI faculty members, through regularly scheduled
technical meetings, held throughout the period at an average rate of eight per
month:  four on algorithm and architectural issues, two on hardware
implementation issues, and two meetings of the entire MURI team on
programmatic issues, integration of concepts, and cross-disciplinary fertilization
(including reports from the two interacting groups).


