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Abstract

The conventional approach to routing in computer networks consists of using a heuristic to compute

a single shortest path from a source to a destination. Single-path routing is very responsive to topo-

logical and link-cost changes; however, except under light traffic loads, the delays obtained with this

type of routing are far from optimal. Furthermore, if link costs are associated with delays, single-path

routing exhibits oscillatory behavior and becomes unstable as traffic loads increase. On the other hand,

minimum-delay routing approaches can minimize delays only when traffic is stationary or very slowly

changing.

We present a “near-optimal” routing framework that offers delays comparable to those of optimal

routing and that is as flexible and responsive as single-path routing protocols proposed to date. First,

an approximation to the Gallager’s minimum-delay routing problem is derived, and then algorithms that

implement the approximation scheme are presented and verified. We describe the first routing algorithm

based on link-state information that provides multiple paths of unequal cost to each destination that are

loop-free at every instant. We show through simulations that the delays obtained in our framework for

minimum-delay routing are comparable to those obtained using Gallager’s algorithm for minimum-delay

routing. Also, we show that our framework renders far smaller delays and makes better use of resources

than traditional single-path routing.

�
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1 Introduction

The standard approach to routing in computer networks today consists of computing a single shortest path

from a source to each destination using some heuristic link-cost metric, which is typically not directly asso-

ciated with the transmission and queueing delays over links and paths. A less common approach to routing

is that of defining the routing problem as an optimization problem (e.g., multicommodity problem [5]) with

a specific objective function, such as minimizing delays or maximizing throughput, and solving the prob-

lem using any of several known optimization techniques. These two traditional approaches to routing have

inherent strengths and drawbacks.

In order to provide minimum delays, all optimal routing algorithms require the input traffic and the

network topology to be stationary or very slowly changing (quasi-static), and require a priori knowledge of

global constants that guarantee convergence of the routing algorithm. This makes optimal routing algorithms

impractical for real networks, because in real networks traffic is very bursty at any time scale and the network

topology frequently experience changes. Moreover, defining global constants that work for all input traffic

patterns are impossible to determine.

On the other hand, routing algorithms based on single shortest-path heuristics adapt very quickly to

changing network conditions, making them far more preferable than optimal routing for implementation in

real networks. The main shortcoming of single shortest-path routing is that the delays achievable with such

heuristics are far longer than those achievable using optimal routing algorithms. In addition, single-shortest-

path routing becomes unstable under heavy loads or very bursty traffic when the link cost metric used in the

routing algorithm is related to the delays or congestion experienced over the links [3].

The fact that shortest-path routing over single paths is far less efficient than optimal dynamic routing

and the oscillatory behavior of shortest-path routing when link costs are tied to link delays has been known

for many years. However, implementing optimal dynamic routing in a computer network has simply been

infeasible to date. The key contributions of this paper consist of: (a) introducing a new framework for

near-optimum delay routing; (b) verifying, for the first time, a set of invariants that permit routing-algorithm

designers to approximate Gallager’s necessary and sufficient conditions for minimum-delay routing with

loop-free routing conditions that can be achieved using distributed routing algorithms that do not require

any global variables or global synchronization; and (c) showing an example that provides end-to-end delays

that are comparable to the optimal, while being as fast as today’s shortest-path routing schemes.

Section 2 presents the minimum-delay routing problem (MDRP) as described by Gallager, and Gal-

lager’s minimum-delay routing algorithm [8]. Gallager’s algorithm is unsuitable for practical networks and

internetworks, because its speed of convergence to the optimal routes depends on a global constant, and

because it requires that the input traffic and network topology be stationary or quasi-stationary.

Several algorithms have been proposed to date that improve over Gallager’s minimum-delay routing

algorithm [2, 6, 23, 24]. Segall and Sidi [23, 24] extended Gallager’s minimum-delay routing algorithm

to handle topological changes using techniques developed by Merlin and Segall [19]. Cassandras et al. [6]
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present a better technique for measuring marginal delays. Bertsekas and Gallager [2] used second derivatives

to speed up convergence of Gallager’s algorithm. However, all these algorithms are still dependent on global

constants and the requirement that network traffic be static or quasi-static.

Because of its oscillatory behavior when link costs are related to delays, attempts to improving shortest-

path routing have been restricted mainly to using better link cost metrics (e.g., [18, 13]) or using multiple-

paths. To avoid undetected loops, OSPF permits multiple paths to a destination only when they have the

same length [20]. More recently, Zaumen and Garcia-Luna-Aceves [28] proposed an algorithm based on

distance vectors that supports multiple paths of unequal costs to each destination; however, link costs are not

tied to delays. Wang and Crowcroft [27] addressed the drawbacks of the shortest-path first (SPF) algorithm

by using alternate paths to detour traffic around points of congestion or network failures. However, the

alternate paths in SPF-EE (for emergency exits) are computed on a reactive basis, i.e., once congestion

occurs, which is less effective in dealing with short bursts of traffic.

Cain et al. [4] describe a routing algorithm for minimizing delays. However, this algorithm requires

that the routing-table updates at all the routers be synchronized, otherwise looping occurs, which increases

end-to-end delays. Because the synchronization intervals required by this algorithm must be known by all

routers, this is akin to using a global constant as in Gallager’s algorithm. This approach is not scalable

to very large networks, because the time needed for routing-table update synchronization becomes large,

and this in turn limits its responsiveness to short-term traffic fluctuations. What is seriously lacking in this

algorithm is a technique for asynchronous computation of multiple paths with instantaneous loop-freedom.

Section 3 presents a new framework for approximate solutions to MDRP. The novelty of this framework

stems from partitioning the computation of minimum-delay paths in two parts. First, multiple loop-free paths

of unequal cost to a destination are first established using long-term link-cost information. This is followed

by the allocation of flows to destinations along the multiple loop-free paths available at each router; such

an allocation is based on heuristics that attempt to minimize delays using short-term link-cost information.

It is this partitioning of MDRP that permits us to implement routing algorithms that provide routers with

near-optimum delays while keeping the routing algorithm as responsive to traffic or topology changes as the

best of today’s shortest-path routing algorithms. A set of invariants is also presented that permits Gallager’s

necessary and sufficient conditions for minimum-delay routing to be approximated with loop-free routing

conditions achievable with simple distributed routing algorithms that do not require any global variables or

global synchronization.

Section 4 describes a specific routing algorithm based on our new routing framework. This algorithm

consists of two key components: (a) the first link-state routing algorithm that provides multiple loop-free

paths of arbitrary positive cost at every instant, and (b) flow allocation heuristics that approximate minimum

delays along the predefined multiple loop-free paths available for each destination.

Section 5 presents results of simulation experiments designed to illustrate the effectiveness of our solu-

tion in static and dynamic networks. We compare our approach against the optimal routing approach and
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shortest-path routing based on Dijkstra’s shortest-path first (SPF) algorithm, because it is used widely in the

Internet today. The simulation results illustrate that the routing delays obtained with our new algorithm are

comparable to the optimal delays. Furthermore, the complexity of implementing our routing framework is

similar to the complexity of routing protocols that provide single-path routing in the Internet today.

2 Minimum Delay Routing

2.1 Problem formulation

The minimum-delay routing problem (MDRP) was first formulated by Gallager [8], and we provide the

same description in this section. A computer network
���������
	��

is made up of
�

routers and
	

links

between them. Each link is bidirectional with possibly different costs in each direction.

Let 
������� be the expected input traffic, measured in bits per second, entering the network at router � and

destined for router � . Let ���� be the sum of 
��� and the traffic arriving from the neighbors of � for destination

� . And let routing parameter � ���� be the fraction of traffic � �� that leaves router � over link
� � ����� . Assuming

that the network does not lose any packets, from conservation of traffic we have

� �� � 
 �� �"!�$#�%'& �
�� � �� � (1)

where
� � is the set of neighbors of router � .

Let ( � � be the expected traffic, measured in bits per second, on link
� � ����� . Because �)�� �*���� is the traffic

destined for router � on link
� � ����� we have the following equation to find ( � � .

( � � � !�+#�% � �� � ��,� (2)

Note that �.- ( � � -0/ � � , where / � � is the capacity of link
� � ����� in bits per second.

Property 1 For each router � and destination � , the routing parameters �1��,� must satisfy the following

conditions:

1. � ���� � � if
� � �����324 	 or � � � . Clearly, if the link does not exist, there can be no traffic on it.

2. �*���� ��� . This is true, because there can be no negative amount of traffic allocated on a link.

3. 5 �$#�% & �*��,� �76
. This is a consequence of the fact that all incoming traffic must be allocated to

outgoing links.
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Let � � � be defined as the expected number of messages or packets per second transmitted on link
� � �����

times the expected delay per message or packet, including the queueing delays at the link. We assume that

messages are delayed only by the links of the network and � � � depends only on flow ( � � through link
� � �����

and link characteristics such as propagation delay and link capacity. � � � � ( � � � is a continuous and convex

function that tends to infinity as ( � � approaches / � � . The total expected delay per message times the total

expected number of message arrivals per second is given by

��� � !� ��� ��� #	�
� � � � ( � � � (3)

Note that the router traffic-flow set � ��
 � ��	� and link-flow set ( �

 ( � � � can be obtained from 
 �

 
 ����
and � ��
 �*��,� � . Therefore, � � can be expressed as a function of 
 and � using Eqs. (1) and (2). The

minimum-delay routing problem can now be stated as follows:

MDRP: For a given fixed topology and input traffic flow set 
 ��
 
 �� � , and delay function � � � � ( � � � for each

link
� � ����� , the minimization problem consists of computing the routing parameter set � ��
 � ��,� � such that

the total expected delay ��� is minimized.

2.2 A Minimum Delay Routing Algorithm

Gallager [8] derived the necessary and sufficient conditions that must be satisfied to solve MDRP. These

conditions are summarized in Gallager’s Theorem stated below.

The partial derivatives of the total delay, ��� , of Eq.(3) with respect to 
 and � play a key role in the

formulation and solution of the problem; these derivatives are:����������� � !� �"!$# % �� �'& �)(� �+*�, � �.-0/ �1�2���� ���3 (4)

������ % �� � � 4 �� & �5(� �'*�, � �"-0/ ���2��1� �� 3 (5)

where �76� � � ( � � � �98 � � � � ( � � ��2�8 ( � � . and is called the marginal delay or incremental delay.

Similarly,
8 �:� 2�8 
��� is called the marginal distance from router � to � .

Gallager’s Theorem [8]: The necessary condition for a minimum of �7� with respect to � for all �<;� � and� � ����� 4 	 is ��� �� % �� � �
= � > � � % �� �2?A@B > � � % �� � � @ (6)

where C � � is some positive number, and the sufficient condition to minimize � � with respect to � is for all

�D;� � and
� � ����� 4 	 is
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� 6� � � ( � � � �
8 � �8 
 �� � 8 � �8 
 �� � (7)

Eq. (4) shows the relation between a router’s marginal distance to a particular destination and the

marginal distances of its neighbors to the same destination. Eqs. (5)-(7) indicate the conditions for perfect

load balancing, i.e., when the routing parameter set � gives the minimum delay.

The set of neighbors through which router � forwards traffic towards � is denoted by ���� and is called the

successor set. �
Under perfect load balancing with respect to a particular destination, the marginal distances through

neighbors in the successor set are equal to the marginal distance of the router, and the marginal distances

through neighbors not in the successor set are higher than the marginal distance of the router.

Let � �� denote the marginal distance from � to � , i.e.,
8 ��� 2�8 
��� . Let the marginal delay � 6� � � ( � � � from

� to
�

be denoted by ���� which is also called the cost of the link from � to
�

.

According to Gallager’s Theorem, the minimum delay routing problem now becomes one of determin-

ing, at each router � for each destination � : the routing parameters

 � ��,� � , � �� and � �� , such that the following

five equations are satisfied:

� �� � !� �"! # % �� �'* � �� /�� �� - (8)

� �� � �	��
 % �� � ? @
� ����� ���
(9)� ���� � �� /�� �� ����� �

(10)* ���� /�� �� - � * ���� /�� �� - ��� � � � �� (11)* � �� /�� �� -"! * � �� /�� �� - � � � �� �$#� � �� (12)

This reformulation of MDRP is critical, because it is the first step in allowing us to approach the problem

by looking at the next-hops and distances obtained at each router for each destination. Gallager [8] described

a distributed routing algorithm for solving the above five equations. When the algorithm converges, the

aggregate of the successor sets for a given destination � ( � �� for every � ) define a directed acyclic graph.

In fact, in any implementation, � �� must be loop-free at every instant, because even temporary loops cause

traffic to recirculate at some nodes and results in incorrect marginal delay computations, which in turn can

prevent the algorithm from converging or obtaining minimum delays.

Gallager’s distributed algorithm uses an interesting blocking technique to provide loop-freedom at every

instant [8, 23, 24]. We refer to this algorithm as OPT in the rest of the paper. Unfortunately, OPT cannot be

used in real networks for several reasons. A major drawback of OPT is that a global step size % needs to be
&
The term successor set was first introduced in [28].
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chosen and every router must use it to ensure convergence. Because % depends on the input traffic pattern,

it is impossible to determine one in practice that works for all input traffic patterns and for all possible

topology modifications. The routing parameters are directly computed by OPT and the multiple loop-free

paths are simply implied by the routing parameters in Eq. (9). The computation of routing parameters is, for

all practical purposes, a very slow process as it is a destination-controlled process. The destination initiates

every iteration that adjusts the routing parameters at every router; furthermore, each iteration takes a time

proportional to the diameter of the network and number of messages proportional to number of links. This

renders the algorithm slow converging and useful only when traffic and topology are stationary for times

long enough for all routers to adjust their routing parameters between changes. Also, depending on the

global constant % , the destination must initiate several iterations for the parameters to converge to their final

values. The number of such iterations needed for convergence tends to be large for a small % , and small for

a large value of % . Unfortunately, % cannot be made arbitrarily large to reduce the number of iterations and

to speed up convergence, because the algorithm may not converge at all for large values of % .

Hence, Gallager’s algorithm can be viewed only as a method for obtaining lower bounds under stationary

traffic, rather than as an algorithm to be used in practice. The next section shows how the theory introduced

in the Gallager’s method can be adapted to practical networks.

3 A New Framework for Minimum-Delay Routing

We noted that in Gallager’s algorithm the computation of the routing parameter set � is slow converging and

works only in the case of stationary or quasi-stationary traffic. In the Internet, traffic is hardly stationary and

perfect load balancing is neither possible nor necessary. Intuitively, an approximate load balancing scheme

based on some heuristic which can quickly adapt to dynamic traffic should be sufficient to minimize delays

substantially.

The key idea in our approach is, in a sense, to reverse the way in which Gallager’s algorithm solves

MDRP. The intuition behind our approach is that establishing paths from sources to destinations takes a

much longer time than shifting loads from one set of neighbors to another, simply because of the propagation

and processing delays incurred along the paths. Accordingly, it makes sense to first establish multiple loop-

free paths using long-term (end-to-end) delay information, and then adjust routing parameters along the

predefined multiple paths using short-term (local) delay information.

This new approach allows us to attempt to use distributed algorithms to compute multiple loop-free

paths from source to destination that, hopefully, are as fast as today’s single-path routing algorithms, and

local heuristics that can respond quickly to temporary traffic bursts using local short-term metrics alone.

Therefore, we map Eqs. (8)-(12) derived in Gallager’s method into the following three equations:

� �� � � ��� 
 � �� � � ���� � 4 � � � (13)
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� �� � 
$� � � ���� � ���� � 4 � � � (14)

� ��,� � �.� � ��� �� ��� �� � � 4 � � (15)

where
� �� ��
 �	�� � � �

�
� 
 4 � � � and

� �� ��
 � ��
�
� 
 4 � � � .

These equations simply state that, for an algorithm to approximate minimum-delay routing, it must

establish loop-free paths and use a function
�

to allocate flows over those paths. We observe that Eq. (13) is

the well-known Bellman-Ford (BF) equation for computing the shortest paths, and Eq. (14) is the successor

set consisting of the neighbors that are closer to the destination than the router itself. Note that the paths

implied by the neighbors in the successor set of a router need not be of the same length. The function
�

in Eq. (15) is a heuristic function that determines the routing parameters. Because changing the routing

parameters effects the marginal delay of the links (hence link-costs), we use regular updates of the link

costs.

The main problem with attempting to solve MDRP using Eqs. (13) to (15) directly is that these equations

assume that routing information is consistent throughout the network. In practice, a node (router) must

choose its distance and successor set using routing information obtained through its neighbors, and this

information may be outdated. At any time � , for a particular destination � , the successor sets of all nodes

define a routing graph � � � � � � � 
 � � � � � � � 4 ���� � � �,� � 4 � � . In single-path routing, � �� � � � has at most

one neighbor: the neighbor that is on the shortest path to destination � . Accordingly, � � � � � � for single-path

routing is a sink-tree rooted at � if loops are never created. The routing graph � � � � � � in our case should be

a directed acyclic graph in order for minimum delays to be approached.

The blocking technique used in Gallager’s algorithm ensures instantaneous loop-freedom. Likewise, to

provide loop-free paths even when the network is in transient state within the context of our framework,

additional constraints must be imposed on the choice of successors at each router, which essentially must

preclude the use of neighbors that may lead to looping.

Several algorithms have been proposed in the past to provide loop-free paths at every instant for the

case of single-path routing (e.g., the Jaffe-Moss algorithm [15], DUAL [9], LPA [11], and the Merlin-

Segall algorithm [19]) and one algorithm, DASM, has been proposed for the case of multiple paths per

destination [28]. All these algorithms are based on the exchange of vectors of distances, together with

some form of coordination among routers spanning one or multiple hops. The coordination among routers

determines when the routers can update their routing tables. This coordination is in turn guided by local

conditions that depend on values of reported distances to destinations and that are sufficient to prevent loops

from occurring.

We generalize the work to date on loop-free routing over single paths or multiple paths by means of the

following loop-free invariant (LFI) conditions, which are applicable to any type of routing algorithm. We

adopt the same terminology and nomenclature first introduced for DUAL [9] to describe the LFI conditions.

Loop-free Invariant (LFI) conditions: Any routing algorithm designed such that the following two equa-
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tions are always satisfied, automatically provides loop-free paths at every instant, regardless of the type of

routing algorithm being used:

� � �� - � �� � � 4 � � (16)

� �� � 
 � � � ���� � � � �� � � 4 � � � (17)

where � ���� is the value of � �� reported to � by its neighbor
�

; and
� � �� is called the feasible distance of

router � for destination � and is an estimate of � �� , in the sense that
� � �� equals � �� in steady state but is

allowed to differ from it temporarily during periods of network transitions.

In link-state algorithms, the values of � ��,� are determined locally from the link-state information sup-

plied by the router’s neighbors; in contrast, in distance-vector algorithms, the distances are directly commu-

nicated among neighbors. The following theorem verifies this key result of our framework.

Theorem 1 If the LFI conditions are satisfied at any time � , the routing graph � � � � � � implied by the suc-

cessor sets � �� � � � is loop-free.

Proof: Let
� 4 � �� � � � then from Eq. (17) we have

� ��,� � � � � � � �� � � � (18)

At router
�

, because router � is a neighbor, from Eq. (16) we have
� � �� � � � - � ���� � � � . Combining this

result with Eq. (18) we obtain

� � �� � � � � � � �� � � � (19)

Eq. (19) states that, if
�

is a successor of router � in a path to destination � , then
�

’s feasible distance

to � is strictly less than the feasible distance of router � to � . Now, if the successor sets define a loop at time

� with respect to � , then for some router 
 on the loop, we arrive at
� � �� � � � � � � �� � � � , an absurd relation.

Therefore, the LFI conditions are sufficient for loop-freedom. �
With the result of Theorem 1, Eq. (14) can be approximated with the LFI conditions to render a routing

approach that does not require routing information to be globally consistent, at the expense of rendering

delays that may be longer than optimal. Accordingly, our framework for near-optimum-delay routing lies in

finding the solution to the following equations using a distributed algorithm:

� �� � ����� � � �� /�� �� 
 ����� � �
(20)

� � �� � � �� � ��� � �
(21)

� �� � �
� 
 � �� � ! � � �� � ��� � � �
(22)% �� � � � * � � � � �� /�� �� 
 � ��� ��� � � % �� � 
 � ��� � � - ����� �
(23)
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4 Implementing Near-Optimum-Delay Routing

We present an approach based on link-state information, rather than distance information, because extending

our results to minimum-delay routing with additional constraints can be done more efficiently by working

with link parameters than path parameters, which are the combination of link parameters. Our approach

consists of three components: computing multiple loop-free paths, distributing traffic over such paths, and

computing link costs.

4.1 Computing Multiple Loop-free Paths

We describe the computation of multiple loop-free paths in two parts: computing � �� using a shortest-path

algorithm based on link-state information, and computing � �� by extending that algorithm to support multiple

successors along loop-free paths to each destination.

4.1.1 Computing � ��
There are many distributed algorithms for computing shortest paths, and any of them can be extended to pro-

vide multiple paths of equal and unequal costs as long as the extension obeys the LFI conditions introduced

in the previous section.

The partial-topology dissemination algorithm (PDA) propagates enough link-state information in the

network, so that each router has sufficient link-state information to compute shortest paths to all destinations.

In this respect, it is similar to other link-state algorithms (e.g., OSPF [20], SPTA [25], LVA [10], ALP [12]).

PDA combines the best features of LVA, ALP and SPTA. As in LVA and ALP, a router communicates to

its neighbors information regarding only those links that are part of its minimum-cost routing tree, and like

SPTA, a router validates link information based on distances to heads of links and not on sequence numbers.

PDA assumes that a router detects the failure, recovery and link-cost change of an adjacent link within

a finite amount of time. An underlying protocol ensures that messages transmitted over an operational link

are received correctly and in the proper sequence within a finite time and are processed by the router one at

a time in the order received. These are the same assumptions made for similar routing algorithms and can

be easily satisfied in practice. Each router � running PDA maintains the following information:

1. The main topology table, � � , stores the characteristics of each link known to router � . Each entry in

� � is a triplet ��� � � ����� where � is the head, � is the tail and
�

is the cost of the link �	� � .
2. The neighbor topology table, � �� , is associated with each neighbor

�
. The table stores the link-state

information communicated by the neighbor
�

. That is, ���� is a time-delayed version of � � .
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procedure INIT-PDA�
Invoked when the router comes up.

�
begin

Initialize all tables;
call PDA;

end INIT-PDA

procedure PDA�
Executed at each router � . Invoked when an event occurs

�
begin

(1) call NTU;
(2) call MTU; /* Updates �

�
*/

(3) if (there are changes to �
�
) then

Compose an LSU message consisting of topology
differences using add, delete
and change link entries;

endif
(4) Within a finite amount time, send the

LSU message to all neighbors;
end PDA

Figure 1: The Partial-topology Dissemination Algorithm

3. The distance table stores the distances from router � to each destination based on the topology in � �
and the distances from each neighbor

�
to each destination based on the topologies in � �� for each

�
.

The distance of router � to node � in � � is denoted by � �� ; the distance from
�

to � in � �� is denoted by

� ��,� .
4. The routing table stores, for each destination � , the successor set � �� and the feasible distance

� � �� ,
which is used by MPDA to enforce LFI conditions.

5. The link table stores, for each neighbor
�

, the cost � �� of the adjacent link to the neighbor.

The unit of information exchanged between routers is a link-state update (LSU) message. A router sends

an LSU message containing one or more entries, with each entry specifying addition, deletion or change in

cost of a link in the router’s main topology table � � . Each entry of an LSU consists of link information in

the form of a triplet ��� � � ��� � where � is the head, � is the tail, and
�

is the cost of the link � � � . An LSU

message contains an acknowledgment (ACK) flag for acknowledging the receipt of an LSU message from a

neighbor (used only by MPDA).

The INIT-PDA procedure in Fig. 1 initializes the tables of a router at startup time; all variables of

type distance are initialized to infinity and those of type node are initialized to null. All successor sets are

initialized to the empty set. PDA is executed each time an event occurs; an event can be either a receipt of an

LSU message from a neighbor or the detection of an adjacent link-cost change. Procedure NTU (Neighbor

Topology Table Update) shown in Fig. 2 is used to process the received message and update the necessary

11



procedure NTU
begin

(1) if (LSU message is received from a neighbor
�

) then
(1a) Update neighbor table �

�� . That is, add links,
delete links or change links according to the
specification of each entry in the LSU;

(1b) Run Dijkstra’s shortest path algorithm
on the resulting topology �

�� ; /*This results in
finding minimum distances from

�
to all other

nodes in �
�� . Note �

�� is a tree*/
(1c) Update

� �� � with new distances in �
�� ;

endif
(2) if (adjacent link * � � � - is up) then

Update � �� and send an LSU message to the
neighbor

�
with link information of all links in

its main topology table �
�
;

endif
(3) if (cost of an adjacent link * � � � - changed)then

Update � �� ;
endif

(4) if (adjacent link * � � � - failed)then
Update � �� and clear the table �

�� ;
endif

end NTU

Figure 2: Neighbor Topology Table Update algorithm

tables. Procedure MTU in Fig. 3 constructs the router’s own shortest path tree from the topologies reported

by its neighbors. The new shortest-path tree obtained is compared with the previous version to determine

the differences; only the differences are then reported to the neighbors. The router then waits for the next

event and, when it occurs, the whole process is repeated.

The algorithm MTU at router � merges the topologies ���� and the adjacent links � �� to obtain � � . The

merge process is straightforward if all neighbor topologies contain disjoint sets of links, but when two or

more neighbors report conflicting information regarding a particular link, the conflict has to be resolved.

Sequence numbers may be used to distinguish between old and new link information as in OSPF, but PDA

resolves the conflict as follows. If two or more neighbors report information of link
� � � � � then the router

� should update topology table � � with link information reported by the neighbor that offers the shortest

distance from the router � to the head node
�

of the link. Ties are broken in favor of neighbor with the

lowest address. For adjacent links, router � itself is the head of the link and thus has the shortest distance.

Therefore, any information about an adjacent link supplied by neighbors will be overridden by the most

current information about the link available to router � . Dijkstra’s shortest path algorithm is run on � � and

only the links that constitute the shortest-path tree are retained. Note that, because there are potentially many

shortest-path trees, ties should be broken consistently during the run of Dijkstra’s algorithm.

12



procedure MTU at router �

begin
(1) � ��� �

���
�
�
;/* Save copy */

(2) if (node � occurs in at least one of �
�� ) then

add � to the main topology table �
�
;

endif
(3) foreach node � in �

�
do��� �	� ��� � � � �� � /�� �� 
 ����� � �

;
let � be such that

��� � � * � �� � /�� �� - ;
/* Neighbor � is the preferred neighbor for
destination � . Ties are broken in favor of
lower address neighbor */

done
(4) foreach � in �

�
and its preferred neighbor � do

Copy all links * � � � - from �
�� to �

�
;

/* i.e., copy all links in �
�� for which

� is the head node */
done

(5) Update �
�

with information of each � �� ;
(6) Run Dijkstra’s shortest path algorithm on �

�
and remove those links in �

�
that are not

part of the shortest path tree;
(7) Update

� �� with new distances in �
�
;

(8) Compare � �
� �
�

with �
�

and note all differences;
end MTU

Figure 3: Main Topology Table Update Algorithm

We have shown [26] that the topology tables at all nodes converge to the shortest paths within a finite

time after the last link cost change in the network. After convergence, because there are no more changes to

the topology tables, no more LSU messages are generated.

4.1.2 Computing � ��
The LFI conditions introduced in Section 3 suggest a technique for computing � �� such that the implied

routing graph � � � is loop-free at every instant. To determine
� � �� in Eq.(16), router � needs to know

� �� � , the distance from � to node � in the topology table � �� . Because of propagation delays, there may be

discrepancies between the main topology table � � at router � and its copy � �� at the neighbor
�

. However, at

time � , the topology table � �� is a copy of the main topology table � � at some earlier time � 6 � � . Logically,

if a copy of � �� is saved each time an LSU is sent, a feasible distance
� � �� that satisfies the LFI conditions

can be found in the history of values of � �� that have been saved!

The multiple-path partial-topology dissemination algorithm, or MPDA, shown in Fig. 4 is a modifica-

tion of PDA that enforces the LFI conditions by synchronizing the exchange of LSUs between neighbors.
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procedure MPDA at router ��
invoked when an event occurs

�
begin

(1) call NTU;
(2) if (node is in PASSIVE state) then

(2a) call MTU; /* update �
�

and
� �� */

(2b)
� � �� � ����� � � � �� � � �� � ;

endif
(3) if (node is in ACTIVE state and the

last ACK is received) then
(3a) 4�� � � �� � � �� ; Set node to PASSIVE state;
(3b) call MTU to update �

�
;

(3c)
� � �� � ��� � � 4�� � � �� � � �� �

endif
(4)

� �� � � ��
 � �� � ! � � �� � ;
(5) if (changes occur in �

�
)then

Set node to ACTIVE state;
endif
if (no changes occur in �

�
and the event is

the last ACK) then
Set node to PASSIVE state;

endif
(6) if (there are changes to �

�
) then

Compose a new LSU for each neighbor with the topology
changes expressed as add link,
delete link and change link;

endif
(7) if (input event received is an LSU message from a neighbor)then

Add the ACK entry to newly composed LSU of that neighbor
endif

(8) Send the new LSU messages.
end MPDA

Figure 4: Multiple-path Partial-topology Dissemination Algorithm (MPDA)

In MPDA, each LSU message sent by a router is acknowledged by all its neighbors before the router sends

the next LSU. The inter-neighbor synchronization used in MPDA spans only a single hop, unlike the syn-

chronization in diffusing computations [7] which potentially spans the whole network. A router is said to be

in ACTIVE state when it is waiting for its neighbors to acknowledge the LSU message it sent; otherwise, it

is in PASSIVE state.

Assume that, initially, all routers are in PASSIVE state with all routers having the correct distances to

all destinations. Then a series of link cost changes occurs in the network resulting in some or all routers

to go through a sequence of PASSIVE-to-ACTIVE and ACTIVE-to-PASSIVE state transitions, until all

routers become PASSIVE with correct distances to destinations.

If a router in a PASSIVE state receives an event that does not change its topology � � , then the router has
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Figure 5: Active-passive phase transitions in MPDA.

nothing to report and remains in PASSIVE state. However, if a router in PASSIVE state receives an event

that affects a change in its topology, the router sends those changes to its neighbors, goes into ACTIVE

state and waits for ACKs. Events that occur during the ACTIVE period are processed to update � �� and � ��
but not � � ; the updating of � � by MTU is deferred until the end of the ACTIVE phase. At the end of the

ACTIVE phase, when ACKs from all neighbors are received, router � updates �3� with changes that may

have occurred in � �� due to events received during the ACTIVE phase. If no changes occurred in � � that

need reporting, then the router becomes PASSIVE; otherwise, as shown in Fig. 5, there are changes in � �
that may have resulted due to events and the neighbors need to be notified. This results in a new LSU, and

the router immediately becoming ACTIVE again. In this case, there is an implicit PASSIVE period, of zero

length of time, between two back-to-back ACTIVE periods, as illustrated in Fig. 5. A router � receiving an

LSU message from
�

must send back an LSU with the ACK bit set after updating � �� . If the router does not

have any updates to send, either because it is in ACTIVE state or because it does not have any changes to

report, it sends back an empty LSU with just the ACK flag set. When a router detects that an adjacent link

failed, any pending ACKs from the neighbor at the other end of the link are treated as received. Because all

LSUs are acknowledged within a finite time, no deadlocks can occur. The loop-freedom property of MPDA

are proven in [26].

4.2 Distributing Traffic over Multiple Paths

In general, the function
�

can be any function that satisfies Property 1, but our objective is to obtain a

function
�

that performs load balancing that is as close as possible to perfect load balancing (Eqs.(10)-

(12)).

The function
�

should also be suitable for use in dynamic networks, where the flows over links are

continuously changing, causing continuous link-cost changes. To respond to these changes, queueing delays

at the links must be measured periodically and routing paths must be recomputed. However, re-computing
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procedure IH
begin

(1)
� � #� � �� � % �� � � @ ;

(2) if (

 � �� 
 � �

) then� ��� � �� � % �� � � �
;

endif
(3) if (


 � �� 
 ? �
) then

% �� � �
��� � #���
	�� # �5�
���� #��� � #� 
 	�� #
����� � #� � ����� � � ��� � �� ;

endif
end IH

Figure 6: Heuristic for initial load assignment.

paths frequently consumes excessive bandwidth and may also cause oscillations. Therefore, routing-path

changes should only be done at sufficiently long intervals. Unfortunately, a network cannot be responsive to

short-term traffic bursts if only long-term updates are performed. For this reason, we use link costs measured

over two different intervals; link costs measured over short intervals of length ��� are used for routing-

parameter computation and link costs measured over longer intervals of length � � are used for routing-path

computation [17]. In general, �!� must be several times longer than �!� . Long-term updates are designed to

handle long-term traffic changes and are used by the routing protocol to update the successor sets at each

router, so that the new routing paths are the shortest paths under the new traffic conditions. The short-term

updates made every �"� seconds are designed to handle short-term traffic fluctuations that occur between

long-term routing path updates and are used to compute the routing parameters � ��,� in Eq. (15) locally at

each router. Accordingly, our traffic distribution heuristics assume a constant successor set and successor

graph.

When � �� is computed for the first time or recomputed again due to long-term route changes, traffic

should be freshly distributed. In this case, the allocation heuristic function
�

is a function of only the

marginal distances through the successor set. That is, Eq. (15) reduces to the form

 � ��,� � � �.� � ��
 �	�� �

� �
�
� 
 4 � � � � . When a new successor set � �� is computed, algorithm IH in Fig. 6 is first used to distribute

traffic over the successor set [17]. Note that

 � ���� � , computed in IH, satisfy Property 1. Furthermore, when

more than one successor is present, if � ��
�
� � �
�
# � ���$ � � �$ for successors 
 and % , then � ��

�
� � ��&$ . The

heuristic makes sense because the greater the marginal delay through a particular neighbor becomes, the

smaller the fraction of traffic that is forwarded to that neighbor.

After the first flow assignment is made over a newly computed successor set using algorithm IH, a differ-

ent flow allocation heuristic algorithm AH shown in Fig. 7 is used to adjust the routing parameters every �'�
seconds until the successor set changes again. The heuristic function

�
computed in AH is incremental and,

unlike IH, is a function of current flow allocation on the successor sets and the marginal distances through
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procedure AH
begin

(1)
� � �� ��� � � � � � � �� � /�� �� 
 ��� � �� � ;

(2) let
� � �� ��� � * � �� ��� /�� ���� - ;

// That is,
���

be the neighbor
that offers this minimum)

(3) foreach
��� � �� do� �� � � � �� � /�� ��
	 � � �� ��� ;

done

(4)
� � �� � � � ��


#���� #��� 
 ��� � �� � � �� ���� @ � ;

(4) foreach
� �� ��� � ��� � �� do% �� � � % �� � 	 ��� � �� � ;

done
(5) for

� � � �
do% �� � � % �� � / 5 � � � #� ��� � �� � ;

done
end AH

Figure 7: Heuristic for incremental load adjustment.

the successors. AH also preserves Property 1 at every instant. In AH traffic is incrementally moved from the

links with large marginal delays to links with the least marginal delay. The amount of traffic moved away

from a link is proportional to how large the marginal delay of the link is compared to the best successor

link. The heuristic tends to distribute traffic in such a way that Eqs. (10)-(12) hold true. This is important,

because the initial distribution obtained by IH is far from being balanced. The computation complexity of

the heuristic allocation algorithms is � ��� � � . Because the heuristics are run for each active destination, the

whole load-balancing activity is � ��� � .
Unlike % in Gallager’s algorithm, �!� and ��� are local constants that are set independently at each router.

Convergence of our algorithm does not critically depend on these constants like optimal routing does on % .

Also, ��� and ��� need not be static constants and can be made to vary according to congestion at the router.

The value of � � , however, should be such that it is sufficiently longer than the time it takes for computing

the shortest paths. The long-term update periods should be phased randomly at each router, because of the

problems that would result due to synchronization of updates [3].

4.3 Computing Link Costs

As mentioned earlier, the cost of a link is the marginal delay over the link � 6 � ( � � � .
If the links are assumed to behave like M/M/1 queues, then the marginal delay � 6 � ( � � � can be obtained

in a closed form expression by differentiating the following equation [16].
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� � � � ( � � � � ( � �� / � ��� ( � � �
� � � � ( � � (24)

where ( � � is the flow through the link
� � ����� , and / � � and � � � are the capacity and propagation delay of the

link. Because the M/M/1 assumption does not hold in practice in the presence of very bursty traffic, and

because Eq. (24) becomes unstable when ( � � approaches / � � , an on-line estimation of the marginal delays

is desirable.

There are several techniques for computing marginal delays that are currently available (e.g., [23, 22, 6]).

For the purposes of simulations, we borrow a technique introduced by Cassandras, Abidi and Towsley [6]

for on-line estimation of the marginal delay � 6 � ( � � � . The technique uses perturbation analysis (PA) for

the on-line estimation and is shown to perform better than the M/M/1 estimation. In addition, the PA

estimation does not require a priori knowledge of the link capacities. This is very significant, because the

capacity available to best-effort traffic in real networks varies according to the capacity allocated to other

types of traffic, such as real-time traffic. We must emphasize that our approach does not depend on which

specific technique is used for marginal-delay estimation, although some methods may be better than others.

The convergence or stability of our routing algorithm does not depend on the specific technique used for

marginal-delay estimation.

5 Simulations

The simulations discussed in this section illustrate the effectiveness of our near-optimal framework, and

demonstrate the significant improvements achieved by our approach over single-path routing in static and

dynamic environments. The delays obtained by optimal routing, single-path routing and our approximation

scheme are compared under identical topological and traffic environments. The results show that the av-

erage delays achieved via our approximation scheme are comparable (within a small percentage difference

rather than several times difference) to the optimal routing under quasi-static environment and the same are

significantly better than single-path routing in a dynamic environment.

For optimal routing, we implemented the algorithm described by Gallager [8], and label it with ’OPT’.

The plots of our approximation scheme are labeled with ’MP’. To obtain representative delays for single-path

routing algorithms, we opted to restrict our multipath routing algorithm to use only the best successor for

packet forwarding, instead of simulating any specific shortest-path algorithm. Because of the instantaneous

loop-freedom property that MPDA exhibits, the shortest-path delays obtained this way are better than or

similar to the delays obtained with either EIGRP [1], which is based on DUAL and requires much more

internodal synchronization than our scheme, rendering longer delays, and RIP [14] or OSPF [20], which do

not prevent temporary loops. We use the label ’SP’ for single-path routing in the graphs.

We performed simulations on the topologies shown in Fig. 8. CAIRN (www.cairn.net) is a real network

and NET1 is a contrived network. We are only interested in the connectivity of CAIRN, and its topology
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Figure 8: Topologies used in simulations

as used differs from the real network in the capacities and propagation delays assumed in the simulation

experiments. We restricted the link capacities to a maximum of 10Mbs, so that it becomes easy to sufficiently

load the networks. NET1 has a connectivity that is high enough to ensure the existence of multiple paths,

and small enough to prevent a large number of one-hop paths. The diameter of NET1 is four and the nodes

have degrees between 3 and 5. In each network we setup flows between several source-destination pairs and

measure the average delays of each flow. The flows in CAIRN are setup between these source-destination

pairs: (lbl, mci-r),(netstar, isie), (isi, darpa), (parc, sdsc), (sri, mit) ,(tioc, sdsc),(mit, sri),(isie, netstar), (sdsc,

parc),(mci-r, tioc),(darpa, isi). For NET1, the source-destination pairs are: (9,2), (8,3), (7,0), (6,1), (5,8),

(4,1), (3,8), (2,9), (1,6), (0,7).

The flows have bandwidths in the range 0.2-1.0 Mbs. For simplicity, we used a stable topology (links or

nodes do not fail) in all the simulations. In the presence of link failures, MP can only perform better than SP,

because of availability of alternate paths. Furthermore, OPT is not fast enough to respond to drastic topology

changes. Because MP is parameterized by the �!� and ��� update intervals, its delay plots are represented by

MP-TL-xx-TS-yy, where xx is the �!� update interval and yy is the � � update interval measured in seconds.

Similarly, the delays of shortest-path routing are represented by SP-TL-xx, where xx is the � � update period.

5.1 Performance under Stationary Traffic

Fig. 9 shows the average delays of flows in CAIRN for OPT and MP routing. The flow IDs are plotted

on the x-axis and average delays of the flows are plotted on the y-axis. Plot OPT-25 represents the 25%

’envelope’, that is, the delays of OPT are increased by 25% to obtain the OPT-25 plot. As can be seen, the

average delays of flows under MP routing are within the OPT-25 envelope. Similarly, in Fig. 10, the delays

obtained using MP routing for NET1 are within 28% envelopes of delays obtained using OPT routing. We

say delays of MP are ’comparable’ to OPT if the delays of MP are within a small percent of those of OPT.

Fig. 11 compares the average delays of MP and SP for CAIRN. We observe that the delays of SP for some
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Figure 9: Delays of OPT and MP in CAIRN.

flows are two to four times those of MP. In Fig. 12, for NET1, MP routing performs even better; average

delays of SP are as much as five to six times those of MP routing which is due to higher connectivity available

in NET1. Also observe that, because of load-balancing used in MP, the plots of MP are less jagged than

those of SP. MP routing performs much better than SP under high-connectivity and high-load environments.

When connectivity is low or network load is light, MP routing cannot offer any advantage over SP.

5.2 Effect of Tuning Parameters
�
� and

�
�

The performance of MP depends on the update intervals � � and ��� . The setting of ��� and ��� , however, is

simple. They are local and can be set independently at each node without affecting convergence, unlike the

global constant % which is critical for convergence of OPT. For CAIRN, Fig. 13 show the effect of increasing

� � when ��� and the input traffic is fixed. Observe that when �!� is increased from 10 to 20 seconds, the delays

in SP have more than doubled, while the delays of MP remain relatively unchanged. This effect indicates

that � � can be made longer in MP without significantly effecting performance. This is significant, because

sending frequent update messages consume bandwidth and can also cause oscillations under high loads.

Similarly, for NET1, delays for SP increased significantly while there is negligible change in delays of MP

as can be observed in Fig. 14, respectively. Our new routing framework provides the means for a trade-off

between update messages and local load-balancing.

At ��� intervals, the load-balancing heuristics are executed, which are strictly local computations and

require no communication. Therefore, � � can be set according to the processing power available at the

router. � � can be made from a few times to orders of magnitude greater than � � . In the simplest case, �!�
can be set to the same value of �"� and still gain significant performance as shown in Figs. 11 and 12. In the
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Figure 10: Delays of OPT and MP in NET1.

figures, we observe that MP-TL-10-TS-10 is much closer to OPT than SP-TL-10. Just the long-term routes

with load-balancing, without short-term routing parameter updates, seem to give significant gains; the major

gains here are due to the mere presence of multiple successors and load-balancing. Our experience from

simulations indicates that a �!� that is only a few times of longer than � � suffices to gain significant benefits.

This is great news, because it means that fine tuning of � � and ��� is not important for our approach to be

efficient.

5.3 Performance under Dynamic Traffic

It was stated earlier that OPT has very poor response to traffic fluctuations. This becomes evident in Fig. 15,

which shows a typical response in NET1 when the flow rate is a step function (i.e.., the flow rate is increased

from 0 to a finite amount at time 0). The dampened response of the network using MP indicates the fast

responsiveness of MP, making it suitable for dynamic environments. Because OPT cannot respond fast

enough to traffic fluctuations, it is impossible to find the optimal delays for dynamic traffic. However,

we can find a reasonable lower bound if the input traffic pattern is predictable like the pattern shown in

Fig 16, which shows only one cycle of the input pattern. To obtain a lower bound for this traffic pattern

that represents ’ideal’ OPT (the one that has instantaneous response) we first obtain the lower bound for

each interval during which traffic is steady by running a separate off-line simulation with traffic rate that

corresponds to that interval, and combine the results to obtain the lower bound. It is with this lower bound

that we compare delays of MP. Fig. 17 shows the average delays of the flows for OPT, MP and SP routing.

The results indicate that delays of MP routing are again in the comparable range of delays of an ’ideal’

optimal-routing algorithm.
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Figure 11: Delays of MP and SP in CAIRN.

Ultimately, MP will be used in real networks where traffic is bursty at any time-scale; therefore, it is

important to see how MP performs in that environment. We extracted 10 flows from the Internet traffic

traces obtained from LBL [21] and used them as input for the 10 flows in the CAIRN. Fig. 18 shows the

delays for SP and MP. We do not perform this simulation with OPT because Internet traffic is too bursty for

OPT to converge. Observe that, except for flows 4, 6 and 8, delays of MP are much better than those of SP.

The reason SP delays of these flows are better than those of MP is because of uneven distribution of load

in the network and low loads in some sections of the network — in low-load environments SP can perform

slightly better than MP. This can be easily rectified by modifying IH to use a small threshold cost for the

best link, the crossing of which actually triggers the load-balancing scheme.

6 Conclusions

We have presented a practical approach to near-optimal delay routing in computer networks. To over-

come the limitations of optimal routing algorithms, we proposed an approximation scheme and suggested

algorithms that implement various components of the approximation. The resulting framework is both im-

plementable in real networks and also provides delays that are close to those obtainable using the Gallager’s

method. An important element of our framework is our generalization of sufficient conditions for loop-free

routing, which are applicable to any type of routing algorithm.

We presented one of many possible implementations of the new routing framework. In doing so, we

introduced the first link-state routing algorithm that provides multiple paths that are loop-free at every instant

and that need not be of equal cost. We have shown through simulations that our implementation of the
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Figure 12: Delays of MP and SP in NET1.
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Figure 18: Delays under Internet traffic in CAIRN.

proposed framework performs significantly better than single-path routing, and that it offers delays that

are within a small percentage of the lower bound delays under stationary traffic. The simulations are by

no means exhaustive, but the results clearly indicate that the framework does offer potential for obtaining

delays that compare with the optimal routing.

Additional work is needed to study flow allocation heuristics that are better suited for specific end-to-

end services, e.g., trying to avoid out-of order packets for certain flows. Furthermore, our new routing

framework opens up many interested research opportunities for quality-of-service (QoS) routing, because

the loop-free invariant conditions on which it is based can be further constrained to satisfy different types

of service. Similarly, because the traffic allocation heuristics depend on local rather than global parameters

and, new heuristics can be defined to account for QoS constraints.
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