
 1

Knowledge Acquisition using an English-Based Method Editor
Jim Blythe and Surya Ramachandran

USC, Information Sciences Institute
4676 Admiralty Way,

Marina del Rey. CA 90292.
{blythe,rama}@isi.edu

Abstract
We describe an editor for problem-solving knowledge that communicates with the user through
English paraphrases of the knowledge. Although it does not support the full range of
modifications one might want to make, the value of the tool lies in the fact that the user need not
understand the syntax of the expert system to make modifications. By analyzing the problem-
solving knowledge, the tool can allow the user to select semantically coherent chunks of the
knowledge. It then presents English paraphrases of possible substitutions which would result in
new problem-solving knowledge that is syntactically correct. In this way the tool expands the
range of modifications that a naïve user can make to problem-solving knowledge in an expert
system.

Introduction

The ability to change the contents of the knowledge base without knowing the representation
language and with just a basic understanding of the domain is one of the ultimate goals of any
knowledge acquisition tool. (Simon 86) states the need for natural language interfaces in a very
compelling way:

"[...] continue to move forward with the natural language understanding

capabilities of the computer part of our system. [...] problems are going

to be stated initially by human beings in natural language. Unless we face

up to that fact, we are going to foreclose forever the computer doing a

very large part of our job [...]"

Research in natural language processing has made significant progress in the area of information
extraction from text (Cardie 97). In the area of knowledge acquisition, developing knowledge
bases from textual input has been investigated in (Goel 96) and (Hahn 96). From unstructured
English text, automated tools are able to extract facts, conceptual relations, and even complex
events. Other research in natural language has looked at the structure of natural language
dialogues between a person and a KA tool with some interesting findings regarding its discourse
structure (LuperFoy 95). Other related knowledge acquisition research is in the development of
tools are those that use easy-to-use paradigms that are intuitive for naive users (Gaines 93).
Making all of our KA tools and approaches communicate with users in a language like English
that they already are familiar with may result in a much more widespread use of AI technology
and in particular knowledge based systems. Often times, unconstrained English will be a
challenge as an interface to our systems, given that at least today they do not deal well with

mailto:rama}@isi.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1999 2. REPORT TYPE

3. DATES COVERED
 00-00-1999 to 00-00-1999

4. TITLE AND SUBTITLE
Knowledge Acquisition using an English-Based Method Editor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Information Sciences Institute ,4676 Admiralty
Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

properties inherent to natural language such as ambiguity, ellipse, and anaphora. But it is
feasible with today's technology to develop KA interfaces that use a very structured and
restricted subset of English without users noticing, giving them the illusion that they are
communicating in natural language. This is one of the aims of our research in trying to make
KA tools more accessible to end-users.

This paper describes an english-based method editor that can be used to make modifications to
knowledge bases developed using the EXPECT architecture (Swartout and Gil 95; Gil 94; Gil
and Paris 94). The tool makes use of the strict typing of the representation language and the
grammar that EXPECT follows in order to create an English-based front end that the expert and
novice domain expert can use to modify knowledge bases. EXPECT’s grammar is based on
previous work on the Explainable Expert System (EES) project (Swartout 81), which was a
framework for building knowledge-based systems that could provide good explanations of their
behavior.

Simply, the tool first converts problem solving knowledge into English-like structures. Then
these structures are displayed in a window where the user can select atomic or multiple chunks of
text. Then the interface provides the user with a set of alternatives (also parsed in English) that
can be substituted in the method. The user may select one of the provided alternatives and
commit the change. The important points are that the user can modify such structures without
ever having to refer to the underlying semantics or language that the knowledge is represented in
(source code) and that the result is grammatically correct since the alternatives are provided so as
to preserve the syntax.

Figure 1: An example of an EXPECT Problem Solving Method.

A simple example motivates our approach. Figure 1 shows an EXPECT method, a chunk of
problem-solving knowledge that computes the time to transport an item in a ship, by dividing the
distance to travel by the speed of the ship. A domain expert may wish to modify this piece of
knowledge in a number of ways, for instance to make sure the distance is computed along
waterways or to modify the speed computation to take the weight of the payload into account.
These are relatively simple modifications that we would like the expert to be able to make
directly, but the syntax of the method is daunting. Figure 2 shows the same method being edited
with the English-based front end. In the second window is a sentence representing the body of

((name calculate-time-to-transport-in-ship)
(capability (calculate-time-to-transport

(obj (?cargo is (inst-of weight-value)))
(in (?ship is (inst-of ship)))
(from (?origin is (inst-of location)))
(to (?dest is (inst-of location)))))

(result-type (inst-of time-value))
(method-body

(value-divide
(obj (find (obj (spec-of distance))

(from ?origin)
(to ?dest)))

(by (r-speed ?ship)))))

 3

the method: “find the distance from the first location to the second location and divide the
distance by the speed of the ship”. This is understandable with no knowledge of the underlying
syntax or the domain terms chosen by the knowledge engineer. The user can alter the method by
selecting a part of the sentence and choosing from a set of provided alternatives for that part
(shown in the second window from the bottom). The selected part can be a single atomic unit
like “speed” or a meaningful fragment like “the speed of the ship”. In Figure 2, the noun phrase
“the speed of the ship” was selected and it is being replaced with the sub-task “find the speed of
the ship with the weight value”. The English-based front end uses a parse tree of the method to
ensure that all selectable fragments of text correspond to coherent fragments of code in
EXPECT. It provides a textual description of each alternative for the selected sentence fragment
and ensures that each one corresponds to a code fragment that has the same role as the selected
fragment, so that after the change the new method description is still grammatical EXPECT
code.

Figure 2: The English-based method editor.

 4

In this paper we describe how the English-based editor is implemented and discuss some of the
advantages and limitations of the approach. In the next section we give a brief overview of the
EXPECT system and our approach to knowledge acquisition. Then we talk about the motivation
behind the development of such a tool. Next we give a detailed description of our approach to
generating fragments of English text and using them to interact with a user to modify problem-
solving knowledge. Finally we discuss some of the issues raised by this work and future
directions.

The EXPECT Framework for Knowledge Acquisition

EXPECT (Swartout and Gil 95; Gil 94; Gil and Paris 94) is a flexible KA tool that has been used
for a variety of tasks and domains including configuration (Gil and Melz 96) and planning
(Valente et al. 96). EXPECT provides an environment for building and maintaining knowledge-
based systems that are accessible to end-users. This requires capabilities such as explanation of
the system's behavior and support for knowledge-base construction and maintenance. EXPECT
builds on previous research on the Explainable Expert System (EES) project (Swartout 81),
which was a framework for building knowledge-based systems that could provide good
explanations of their behavior. In EXPECT, any information necessary to perform a task is
represented distinctly according to its nature either as domain facts or as problem-solving
knowledge. Domain facts are represented in LOOM (MacGregor 88 and MacGregor 94), a
knowledge representation system of the KL-ONE family (Woods and Schmolze 92). LOOM
provides a descriptive logic representation language and includes a classifier for inference.

Problem-solving knowledge is expressed as EXPECT methods (figure 1). A problem solving
method in EXPECT is an abstract and generic description of how a goal can be achieved and
includes the goal, a method body that describes the procedure to achieve that goal, and the result
that the method is expected to return. Methods decompose higher-level abstract goals into more
detailed ones. EXPECT's problem-solving representation language is tightly coupled with the
LOOM representation. This provides a good basis for relating goals and domain knowledge and
a better understanding of what the different types of knowledge contribute to the solution of the
task.

In order to ensure coherence among the various types of knowledge, the problem solver uses the
factual and problem-solving knowledge sources to perform a static analysis of a given problem,
recording how each piece of knowledge contributes to the problem-solving process. EXPECT
employs the reasoning capabilities of LOOM augmented with goal refinement and reformulation.
EXPECT’s analysis is effectively a partial evaluation of the given problem. Goals are
represented as LOOM concepts, and plan-goal matching is based on the LOOM classifier. If no
method is found to achieve a posted goal, the goal is reformulated using the factual domain
knowledge into a set of sub-goals that can be achieved. This analysis provides the knowledge
acquisition tool with an understanding of both the functionality and the nature of all the
information used for the task.

Whenever the problem solver cannot achieve a goal, the system takes this as an indication that
the knowledge that the system currently possesses may be insufficient. Instead of terminating
problem solving and reporting a failure, it notifies the knowledge acquisition module that will
analyze the problem and determine whether there is a need to request the user's intervention. The

 5

problem solver provides detailed information to the knowledge acquisition tool that is crucial to
support the user in correcting the problem.

The facility to relate all the different types of knowledge in the system and capture their
influence in the system's behavior enables EXPECT’s knowledge acquisition tool to support the
user in changing the system's knowledge. The problem-solving strategy is represented explicitly
so that the knowledge acquisition module reasons about it and dynamically derives the
knowledge roles that must be filled out, as well as any other information needed for problem
solving.

To allow the user to make modifications by changing some of the steps or perhaps adding a new
method using analogy, the method editor should be able to translate what the methods mean and
what are the alternatives that it can provide and suggest to the user.

An English-based Editor for EXPECT

Although EXPECT’s KA tools and approach are powerful, it is still hard for naïve users not
familiar with logic. The philosophy behind the English-based editor is that, although the kind of
knowledge that a good programmer possesses may be essential to perform the full range of
modifications that need to be made during the lifetime of a KB, a significant and useful set of
modifications are possible without this knowledge. We are exploring ways to bring these
capabilities to end users.

Figure 3: System Architecture

Two main steps are involved in our approach. First, the problem solving knowledge is converted
into an English-like structured text fragment. Second, selectable parts of the text are modified by

UI

Text
Generation

Methods
KB

Alternatives Generation

Method Fragment

S
t
r
u
c
t
u
r
e
d

P
o
s
s
i
b
l
e

A
l
t
e
r
n
a
t
i
v
e
s

S
e
l
e
c
t
e
d

m
e
t
h
o
d

Query

Q
u
e
r
y

User

 6

choosing among alternatives that are also presented via an English paraphrase. This allows the
user to make useful changes without directly coming into contact with the underlying syntax.

The English text-based method editor for EXPECT consists of three modules as shown in Figure
3. The Parser module produces readable text fragments to describe methods and alternative
method fragments to users. The Alternatives Generation module generates a list of likely
alternatives for any fragment of a method that might be selected by the user. The User Interface
module makes use of the lower-level capabilities of the other modules to present the user with an
English description of a method in which different pieces can be selected for alteration, with
similar descriptions of alternative strings for any part of the paraphrase that is selected.

Before we describe each module, we describe how problem-solving knowledge is represented in
EXPECT. The problem-solving knowledge represents the actions that can be performed over all
the objects in the domain. A problem solver tries to find a way to combine the available methods
that together achieve some goal given by the user. In EXPECT, the methods in a domain are
defined in a hierarchical fashion. They are defined independently from the higher-level tasks that
use them. They can have different levels of detail, ranging from very abstract generic methods to
very specific ones.

In EXPECT, the methods in a domain are defined in a hierarchical fashion. They are defined
independently from the higher-level tasks that use them. They can have different levels of detail,
ranging from very abstract generic methods to very specific ones. At the lowest level are
primitive methods, which cannot be decomposed any further and can be executed directly or
translate into user defined actions. Our language for actions tries to represent the intent of each
action, i.e., the goal that it can achieve.

As seen in Figure 1, EXPECT’s problem solving methods have three main parts: the capability
section of the method that specifies what the method can achieve, the method body that describes
how the action is decomposed into lower-level actions and the result type that specifies what
EDT the action returns. In order to build a method editor it is important that this hierarchical
decomposition of methods is incorporated not only at the method level but also in the specific
parts of the method itself. If we use a flat text generation scheme, the resulting text fragment
would lose the hierarchical nature of its representation and with it vital information on the
structure of the method itself. A flat representation would be adequate to select a single word that
represents some atomic element of the code. But in order to select different sections of the
method through their corresponding English strings, there has to be some association of the
method structure and English that is generated from it.

Text Generation
The method body and capability are each decomposed into a parse tree, where each node
represents a piece of the method (see figure 4). Associated with each node is the english text that
it generates, and all its children and the english text that they generate.

Each node has four fields: the English form, the EXPECT code that generates this english form,
a unique index number and a list of the node’s children.

 7

All structures in EXPECT have (or return) a value that has an EXPECT Data Type (EDT), an
object type as shown in Table 1. This greatly facilitates the ability of the interface to derive the
type for a given piece of code. This in turn allows for efficient alternatives generation (as
described in later sections). The method structure has clearly delineated sections and code
changes to one can be easily mapped to changes in other sections of the method (e.g. when we

change the variable reference in the capability section of a method, say from "ship" to "aircraft",
then the associated variable in the body, say "?ship1" now represents an instance of an airport).

Table 1: EXPECT Data Types (EDTs)

Consider a part of a problem solving method that determines the time taken for a ship to travel a
given distance:

(VALUE-DIVIDE (OBJ ?DISTANCE1) (BY (R-SPEED ?SHIP1)))

The resulting tree structure is shown in Figure 4.

The English paraphrase is generated from the first element of every node in depth-first order as
follows:

" divide the distance by the speed of the ship"
"- -- - - - - - "
"1 3 6 8 "

where we have added the second and third lines in this paper to highlight the extra spaces in the
string and their meaning. The second string has dashes to mark blank spaces and the third string
shows the corresponding nodes in the parse tree that allow the user to select a chunk of text
instead of an atomic unit.

Type Example Notation

a specific instance the city of New York NY

a concept the concept location (spec-of location)

an instance of a concept any seaport (inst-of seaport)

a set of instances a set of numbers (set-of (inst-of number))

a set of specific instances 1, 2, 3, 4 (1 2 3 4)

a set of specific concepts integer, real, fraction (integer real fraction)

a set of concepts a set of types of numbers (set-of (spec-of number))

 8

The user may want to change only a piece of this code, which may be a single construct/atomic-
unit or some contiguous sequence of them. The above decomposition helps capture user's intent
more precisely. Blank spaces between the words represent one of three distinct features. First are

Figure 4: Tree structure for an EXPECT method body fragment.

the natural blank spaces between words. Second, some of the code does not have English
translation (eg: OBJ does not translate into anything meaningful that can be put in its place.
Third, some blank spaces represent a nesting of sequential elements. So if it’s the user's intent to
change (by (r-speed ?ship1)) or (r-speed ?ship1) as a whole unit, because of the hierarchical
form of the parsed code, there will always be a blank that denotes every contiguous chunking of
nested code. For example the annotated string (with the blank spaces selectively numbered)
blank 1 will (when the mouse pointer is brought over it) cause the entire code segment to be
selected for replacement. Similarly 3, 6, and 8 represent different chunks of code that can be
replaces, identified by the index on the appropriate node.

Another observation is that there is a conversion to “the ship" from "?ship1”. In creating the tree
structure an association list is built with the variables and their associated types. The associated
EXPECT Data Type (EDT) for the variable is obtained from the capability section which will
have “(?ship1 is (inst-of ship))”. So this association list (or a part of it) would look like : (...
(?ship1 (inst-of ship)) (?origin (inst-of location))). This is then used whenever a variable is
encountered to generate a more descriptive translation of the variable.

English: “ “
Code: (value-divide (obj ?distance1) (by (r-speed ?ship1)))
ID: 1

English: “divide“
Code: value-divide
ID: 2

English: “ “
Code: (obj ?distance1)
ID: 3

English: “ “
Code: (by (r-speed ?ship1))
ID: 6

English: “ “
Code: obj
ID: 4

English: “the distance“
Code: ?distance1
ID: 5

English: “the speed of“

Code: r-speed

ID: 9

English: “the ship“

Code: ?ship1

ID: 10

English: “by“
Code: by
ID: 7

English: “ “
Code: (r-speed ?ship1)
ID: 8

 9

When two variables share the same type, as in the code fragment from Figure 1:

"(find (obj (spec-of distance)) (from ?origin) (to ?dest))"

the order in which the variables are introduced is used to distinguish them in the code. Thus, this
fragment is translated into:

“find the distance from the first location to the second location”.

Finally, simple transformations such as changing “value divide” to “divide” are made through
post-editing rules supplied with the KB.

User Interface
The User Interface module is currently written in CLIM. The interface shows the user three sub-
windows (figure 2). The first shows the English version of the method currently being edited.
The second shows two fields, "old text" and "new text" and the third displays a list of
alternatives for the selection in "old text", whenever there is one.

All entries in the method window and the alternatives window can be selected by the user to fill
either the "old text" or "new text" fields. To choose a piece of the method to modify, either from
the capability or the body, the user can select it to fill "old text". The method display makes use
of the tree structure described in the previous section so the user can click on any coherent chunk
of English of the parsed method.

For example if a sub-goal in the body is:

"divide the distance by the speed of the ship"

the user could click on the whole sub-goal, or "the speed of the ship", or just "the ship" or
"divide".
In this case, the user has selected the chunk of text corresponding to the “speed of the ship” and
has chosen to replace it with an alternate chunk of text that is a method in itself to “find the speed
of the ship with respect to the load it’s carrying”.

When a selection is made for the "old text" field, the tool fills the alternatives window with
possible alternatives to be selected for the "new text" field. The alternatives all belong to the
same classification in the grammar, e.g. relation name, parameter name, or something that can be
expanded to be an instance or concept. This helps the user make changes that are grammatical.
The next section discusses how the alternatives are chosen, and how they are ordered in the
window.

Once the user selects a value for the "new text" field, they can select "update" in the middle
window to make the change in a copy of the method. When this is done, the method window
changes to show an English language version of the modified method. However, the method is
not changed in EXPECT knowledge base until the user selects "done".

 10

Generation of Alternatives
This section describes what happens when the user selects a piece of text, replaces it with
another one and then commits one or more of these changes.

Alternatives generation deals with the user's intent over selected text to be replaced. The user
selects some text from the English paraphrase of the method capability or the method body. The
system displays (in English) a list of ordered, relevant possible replacements in the alternate
window. The basis for alternatives generation is the fact that every chunk of text that can be
selected through the interface is linked to a node in the parse tree that was generated. This node
in turn links to a fragment of EXPECT code, which has an EXPECT data type associated with it.
The system identifies relevant replacements by exploring a neighborhood of the selected code
fragment in the space defined by EXPECT’s method grammar. The ordering of the list of
alternatives reflects the system’s guess at what the user is most likely to select. Once the
selection of the replacement text has been made, the user can refresh, or see the changes in the
original code by the use of the "update" button. This process of selection and updating continues
until the user is satisfied with the new method. At this point the user can either commit these
changes to the knowledge base or cancel out of the operation.

The system generates alternatives when the user selects a string to be replaced. This is governed
by what piece of code is chosen (ie: variable, relation, sub-goal, etc.) and the type (EDT) of the
code chosen (the return type) which is established by the type hierarchy (ie: The method body
has a return type based on the result field). At the end of the replacements, the code is committed
to the EXPECT knowledge base.

For any selection made by the user, the system will generate a set of alternatives that constitute a
valid replacement, i.e. that fill the same role in the EXPECT grammar. The list for the selection
of alternatives is:

i) Concept and instance descriptions. (e.g. (inst-of number)) We retrieve all sibling
concepts, which will be displayed in the alternatives window. We also retrieve all
relations and possible variable assignments whose results have the same data type. Lastly
we retrieve all methods that have a return data type similar to the concept or instance
descriptions.

ii) Relation names. (e.g. r-speed) Currently, the alternatives are made up of all the relations

that are defined on the same EDT as the one selected. The list of variables of the same
data type and all methods that have a similar return data type.

iii) Goal/Sub-goal names. (e.g. FIND, FILTER, COMPUTE) The system generates

alternatives based on similar goal names (found by looking at all the sub-concepts of
expect actions) are displayed, all concepts and relations and possible variable
assignments with the same data type.

iv) Goal parameters. (e.g. WITH, FROM, ON) All known parameters are displayed, since

there is just a small number of them.

 11

v) Sub-goal expressions. (e.g. (FIND (OBJ (SPEC-OF DISTANCE)) (FROM
?ORIGIN) (TO ?DEST))) . The list of alternatives are ordered as the following;
variables that match the return-EDT of the goal, relations that have the same EDT, and
other goals that have the same return/result type.

vi) Variables. (e.g. ?PORT1, ?PORT2, ?S) The list of alternatives are ordered as follows:

similar variables in the plan (with the same EDT), other variables in the plan, relations
based on the EDT of the code selected, and goals that have the same return type (EDT) as
the selected code.

vii) Instances. e.g.: constants, etc. The list of alternatives are ordered as the following;

similar instances that may be part of the method, other instances from the domain
(matching EDT), variables from the domain (matching EDT), relations with the same
EDT, and goals that have the same return type.

Conclusions

The contributions of this work can be summarized as follows. The user interface provides an
easy way for novice as well as expert domain experts to modify and add knowledge to existing
knowledge bases. The English paraphrasing enables the user to concentrate more on the
knowledge that is to be added than on its representation and syntax in the knowledge base. By
restricting the user to choose from alternatives that are predetermined to be syntactically correct,
the interface ensures that the result of modification does not lead to syntactic inconsistencies.
The interface is domain independent and can be used over any EXPECT knowledge base without
any change to it.

As knowledge bases grow large, the set of all relevant alternatives can become hard to manage in
a simple list, so we are looking at ways the user can provide information to narrow the range of
alternatives. The simplest is to allow search, as tools like Ontosaurus (Swartout et. al, 96) do, so
the user can for example type "ports" and see every alternative that mentions the string "ports",
rather than have to scroll through the unfiltered list.

We are also working to improve the tool’s capabilities and functionality beyond simple editing to
allow the creation of new problem solving methods from scratch. Our approach combines the
English parsing ability with adaptive forms (Frank and Szekely 98), which have been shown to
be a powerful general method for entering data with restricted grammars. We are also planning
to integrate this editor with other KA tools that have been developed for EXPECT.

Acknowledgements

We gratefully acknowledge the support of DARPA with contract DABT63-95-C-0059 as part of
the DARPA/Rome Laboratory Planning Initiative, and with grant F30602-97-1-0195 as part of
the DARPA High Performance Knowledge Bases Program.

 12

References

Cardie, C., Empirical Methods in Information Extraction, AI Magazine, pp 65-79, Winter 1997

Frank M. R. and Szekely, P., Adaptive Forms: An interaction paradigm for entering structured
data. In Proc. of the ACM International Conference on Intelligent User Interfaces, pp 153-160,
1998.

Gil, Y. Knowledge refinement in a reflective architecture. In Proceedings of the 12th National
Conference on Artificial Intelligence, Seattle, WA, 1994.

Gil, Y., and Paris, C. Towards method-independent knowledge acquisition. Knowledge
Acquisition, Vol. 6 (2) pp :163--178, 1994.

Gil, Y. and Melz, E. Explicit Representations of Problem-Solving Methods for Knowledge
Acquisition. In Proc. of the National Conference on Artificial Intelligence (AAAI-96), 1996.

Goel, A., Mahesh, K., Peterson, J., Eiselt, K., Unification of Language Understanding, Device
Comprehension and Knowledge Acquisition. In Proceedings of the 10th Knowledge Acquisition
for Knowledge-Based Systems Workshop, 1996

Hahn, U., Klenner, M., Schnattinger, K. Automated Knowledge Acquisition Meets
Metareasoning: Incremental Quality Assessment of Concept Hypotheses During Text
Understanding, In Proceedings of the 10th Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1996

LuperFoy, S. Implementing File Change Semantics for Spoken-Language Dialogue Managers, in
Proc of the Spoken Dialogue System Workshop of the European Spoken Communication
Association, Vingsoe, Denmark, 1995

MacGregor, R. A Deductive Pattern Matcher. In Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI-88). St. Paul, MN, August 1988.

MacGregor, R. A Description Classifier for the Predicate Calculus. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, (AAAI-94), pp. 213-220, 1994.

Schmidt, G. and Wetter T., Towards knowledge acquisition in natural language dialogue. In
proceedings of the European Knowledge Acquisition Workshop. pp 239-252. 1989.

Swartout, W. R., Explaining and Justifying Expert Consulting Programs. In proceedings of the
7th International Joint Conference on Artificial Intelligence. 1981.

Swartout, W. R., and Gil, Y. EXPECT: Explicit Representations for Flexible Acquisition. In
Proc. of the 9th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, 1995.

Swartout, W. R., Patil, R., Knight, K. and Russ, T. Toward Distributed Use of Large-Scale
Ontologies. Proc. of 10th Knowledge Acquisition for Knowledge-Based Systems Workshop,
1996.

 13

Valente, A., Gil, Y. and Swartout, W. R. INSPECT: an Intelligent System for Air Campaign Plan
Evaluation based on EXPECT. ISI Technical memo, June 1996. Available on the Web at: the
URL: http://www.isi.edu/~valente/inspect/inspect.html

 Woods, W. and Schmolze J., The KL-ONE family. Computers and Mathematics with
Applications. 23(2-5). pp 133-177. 1992.

http://www.isi.edu/~valente/inspect/inspect.html

 14

	Knowledge Acquisition using an English-Based Method Editor
	Abstract
	Introduction
	
	A simple example motivates our approach. Figure 1 shows an EXPECT method, a chunk of problem-solving knowledge that computes the time to transport an item in a ship, by dividing the distance to travel by the speed of the ship. A domain expert may wish to

	The EXPECT Framework for Knowledge Acquisition
	An English-based Editor for EXPECT
	Text Generation
	User Interface
	Generation of Alternatives

	Conclusions
	Acknowledgements
	References

