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Abstract. Here, we contribute to the continuing development of the quasi-wavelet (QW)
model of turbulence that is currently being used in simulations of sound propagation and
scattering in the turbulent atmosphere. We show that a QW model of temperature fluctu-
ations exists for any physically reasonable temperature spectrum of isotropic homogeneous
turbulence, including the widely used von Kármán spectrum. We derive a simple formula
for the QW shape that reproduces a given spectrum exactly in the energy, transition, and
inertial subranges. We also show that simple QW shapes can be normalized to yield an ana-
lytic expression for a temperature spectrum that is fairly close to any given spectrum. As
an example, we match the Gaussian QW model to the von Kármán spectrum as closely as
possible, and find remarkably good agreement in all subranges including the dissipation sub-
range. We also derive formulae for the variance and kurtosis associated with the QW model,
and show how the latter depends on the QW packing fraction and size distribution. We also
illustrate how the visual appearance of several QW-simulated temperature fluctuation fields
depends on the QW packing fraction, size distribution, and kurtosis.

Keywords: Quasi-wavelet, Temperature fluctuations, Temperature spectra, Turbulent spectra,
von Kármán spectrum.

1. Introduction

Analytical and numerical modelling of turbulent fluctuations is important
in several fields, including turbulence theory, boundary-layer meteorology,
and wave propagation in turbulent media. During the past several years,
we have been developing the quasi-wavelet (QW) models of the velocity and
temperature fluctuations of atmospheric turbulence. These models had their

* E-mail: ggoedeck@nmsu.edu
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origins in work by McBride et al. (1992), deWolf (1993), Boulanger et al.
(1995), and Goedecke and Auvermann (1997). In such models, turbulence
is represented as a collection of self-similar localized structures of many
different sizes. Originally, these structures were called turbules (McBride
et al., 1992; Goedecke and Auvermann, 1997) or eddies (Goedecke et al.,
2001a). Now we call them quasi-wavelets (QWs), because they are simi-
lar to wavelets. However, QW sizes, shapes, amplitudes, number densities,
positions and orientations may be chosen as desired, which is not the case
for wavelets. Also, QWs do not satisfy the fluid equations or any ortho-
normality conditions. Goedecke and Auvermann (1997) showed that the
Kolmogorov inertial subrange spectral densities of the velocity and tem-
perature fluctuations of isotropic homogeneous turbulence are reproduced
by the QW model if the number densities and amplitudes of the QWs are
scaled properly with size, and the sizes are chosen appropriately. They also
showed that the QW model automatically predicts the existence of energy
and dissipation subranges, and reasonable behaviour of the spectral densi-
ties in those subranges.

An important application of the QW model is in simulations of the
temperature and velocity fluctuations needed to describe electromagnetic
and sound wave propagation and scattering in a turbulent medium. There
are already several examples of the successful use of QWs in atmospheric
acoustics. First, QWs were used in numerical simulations to predict the
detailed properties of Doppler broadened temporal spectra of monochro-
matic sound waves scattered by atmospheric turbulence advecting with the
mean wind (Goedecke et al., 2001a). The results allowed us to explain the
properties of experimentally determined Doppler broadened spectra. Sec-
ond, QWs were employed to study sound scattering due to atmospheric
turbulence behind noise barriers (Wilson et al., 2004a), which is an impor-
tant problem in noise control. Third, QWs were used to model atmo-
spheric turbulence in finite-difference time-domain simulations of sound
propagation outdoors (Marlin et al., 2003; Van Renterghem, 2003; Wilson
et al., 2003), which is a very promising method in computational atmo-
spheric acoustics. Fourth, QWs were employed in the solution of a for-
ward problem in acoustic tomography of the atmosphere (Vecherin et al.,
2004; Wilson et al., 2004b). In the first three of these applications, a kine-
matic simulation using random Fourier modes (as described, for exam-
ple, by Fung et al., 1992) would have been impossible or difficult; in the
fourth application, QWs were more convenient to use than random Fou-
rier modes.

An important feature of the QW model is that it can provide a virtually
exact representation of any physically reasonable spectral density of iso-
tropic homogeneous velocity fluctuations (Goedecke et al., 2004b). In that
paper, a simple formula for the unique QW shape associated with a given
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velocity spectrum was derived, and, as an example, the unique QW shape
that produces the widely-used von Kármán velocity spectrum from the QW
model equations was obtained.

Another important feature of the QW model is its ability to repre-
sent anisotropic, inhomogeneous, and/or intermittent turbulence. Random
Fourier mode representations cannot do this, and orthonormal wavelet rep-
resentations are more difficult to use than QW representations. We will
discuss briefly in Section 3 how to modify current QW models in order
to represent inhomogeneity and intermittency. Here, we note that a QW
representation of anisotropic velocity fluctuations is under development
(Goedecke et al., 2001b, 2004a). The current version of the model is able
to match experimental data presented by Mann (1994) quite well, except at
very small wavenumbers.

The QW model could be used to simulate virtually any scalar random
field, e.g., fluctuations of concentrations of chemical species or the opti-
cal refractive index in the atmosphere. In this paper, which complements
that of Goedecke et al. (2004b), we focus on QW models of atmospheric
temperature fluctuations. The main goals are (i) to investigate how accu-
rately a QW model can reproduce a given spectrum of isotropic homoge-
neous temperature fluctuations, such as the widely used von Kármán spec-
trum; (ii) to determine how well a given spectrum can be matched by a QW
model with simple QW shapes that are easy to use in numerical simula-
tions and that also provide an analytic form for the spectrum; (iii) to deter-
mine how another important property of the modelled turbulent fields, the
kurtosis (normalized fourth moment), depends on the QW packing frac-
tion and size distribution; and iv) to illustrate how the visual appearance
of several QW simulations depends on the QW packing fraction, size dis-
tribution, and kurtosis.

In what follows, in Section 2 we derive a simple QW model of isotropic
homogenous temperature fluctuations, and show how well these goals have
been achieved. In Section 3, we discuss our results.

2. QW Model of Turbulent Temperature Spectra

2.1. Isotropic QW model

In this subsection and the next, we present a derivation of what is proba-
bly the simplest possible QW model of the spectral density of the tempera-
ture fluctuations of isotropic homogeneous atmospheric turbulence. In this
model, the QWs are all located inside a volume V chosen large enough to
contain many QWs of each size. For isotropic temperature spectra, the tem-
perature fluctuation �T αn(r) for each QW is chosen to have the form
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�T αn(r)=hαn�Tαf
(∣∣r −bαn

∣∣ /aα

)
. (1)

Here, r is the position vector; f is the spatial parent function, spherically
symmetric about its centre point, the same for all QWs; α is the size class
index, α=1, . . .,N , where N is the number of size classes; aα is the QW size
in class α, with a1 the largest, aN the smallest; “αn” means “nth QW in size
class α”, n= 1, . . . ,Nα, so that Nα is the number of QWs in size class α,
and NV =∑N

α=1 Nα is the total number of QWs in V ; bαn is the location of
the centre of the (αn)th QW; �Tα >0 is the temperature fluctuation ampli-
tude of all QWs in size class α; and hαn is a random sign factor, ±1 with
equal probability. Also, the hαn are assumed to be statistically independent.
Therefore

〈
hαn

〉=0, (2a)

〈
hαnhβm

〉= δαβδnm, (2b)

where, δnm and δαβ are Kronecker symbols. The total temperature fluctua-
tion �T (r) in V is the sum

�T (r)=
N∑

α=1

Nα∑

n=1

�T αn(r). (3)

In this model, the locations {bαn} are uniformly random and statistically
independent in V , which ensures that the fluctuations are homogeneous in
V , except within a distance of order a1 from the edges of V . The quantities
�Tα,N , and Nα are not stochastic variables.

Figure 1 depicts a sample simulation of two-dimensional isotropic
homogeneous turbulent temperature fluctuations by circularly symmetric
QWs of different sizes. A solid circle corresponds to a positive QW ampli-
tude, with hαn =+1; a dashed circle corresponds to a negative QW ampli-
tude, with hαn =−1. The point O is the arbitrarily located origin. Several
position vectors bαn and sizes aα are indicated. Only four size classes are
used in this sample (N = 4), and, in each size class, the number of QWs
with positive amplitudes equals the number with negative amplitudes. (This
is not a necessary condition; only the statistical mean temperature fluctua-
tion over an ensemble of such samples must vanish). For simplicity, in this
sample the ratio of Nα+1 to Nα was chosen to be two, with N1 = 2. In a
realistic simulation, both N1 and N would be larger, and the ratio Nα+1/Nα

would be smaller.
In what follows, we need the Fourier transform �T̃ (k) of the tem-

perature fluctuation, written as a superposition of the Fourier transforms
�T̃ αn(k) of the individual QW fluctuations. These expressions are given by
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Figure 1. QW simulation of a two-dimensional turbulent temperature fluctuation.

�T̃ (k)≡ (2π)−3
∫

d3r�T (r)exp(−ik · r)=
N∑

α=1

Nα∑

n=1

�T̃ αn (k), (4a)

�T̃ αn (k)=hαna3
α�Tαexp

(−ik ·bαn
)
F (kaα) , (4b)

F(y)≡ (2π)−3
∫

d3ξexp(−iy · ξ)f (ξ). (4c)

Here and below, k ≡ |k| , y ≡ |y|, etc. The dimensionless Fourier transform
F(y) is called the spectral parent function. In general, in this simplest
model we do not allow F(0) = 0, whereby, according to Equation (4c), f

must have a non-zero spatial integral. Therefore, we may choose the nor-
malization F(0) = 1 with no loss of generality, and for convenience we
do so.

2.2. QW temperature spectrum

Under the conditions discussed in Section 2.1, the general expression for
the temperature fluctuation spectrum �T (k) is easily shown to be

�T (k)= (2π)3

V

〈∣∣
∣�T̃ (k)

∣∣
∣
2
〉
= (2π)−3

∫
d3re−ik·rBT (r), (5)



6 G. H. GOEDECKE ET. AL.

where BT (r) is the autocorrelation function 〈�T (r1 + r)�T (r1)〉. Inserting
the QW expressions (4a) and (4b) for �T̃ (k) in terms of the �T̃ αn(k) yields

�T (k)= (2π)3
N∑

α=1

nαa
6
α (�Tα)

2 F 2 (kaα) , (6)

with nα = Nα/V, so that nα is the mean number density of QWs of size
aα in V . Note that any spherically symmetric spatial parent function (as
in Equation (1)) yields a spherically symmetric spectral parent function (as
in Equation (4c)), which in turn yields an isotropic temperature spectrum,
i.e., a spectrum that depends only on the magnitude k of the wavevector k.

In order to proceed further, we need scaling laws for �Tα,nα, and aα.
We use the following:

�Tα = (�T1) (aα/a1)
1/3 , (7a)

nαa
3
α =φ, (7b)

aα =a1e
−µ(α−1), (7c)

for µ > 0. Here, φ and µ are scale-invariant parameters; φ is called
the packing fraction. Together, these relationships lead to the correct
(Kolmogorov) spectral behaviour in the inertial subrange, but they are not
the only ones that do so. As discussed in Goedecke and Auvermann (1997),
the particular relationships in Equation (7) were chosen because the first
agrees with the Kolmogorov energy transfer model of fully developed tur-
bulence; the second enforces a constant packing fraction; and the third
yields a fractal sequence of QW sizes, as suggested by Nelkin (1992). Note
that the second and third relationships are analogous to those that occur
in conventional wavelet analysis. We note again that this same QW model
could be used to simulate other scalar random fields that satisfy the scaling
relations of Equation (7), or similar ones.

Referring again to the sample two-dimensional simulation depicted in
Figure 1, note that, since Nα+1 =2Nα, the two-dimensional analogue of the
second relationship in Equation (7) requires aα+1 = aα/

√
2, which is what

was used in the sample simulation. In turn, the third relation in Equa-
tion (7) yields µ=0.5ln2 for this two-dimensional example. Also note that
there is considerable overlapping of different QWs in Figure 1, which is
expected in general for the uncorrelated random locations used.

In principle, the parameter µ may be chosen small enough that the sum
over sizes in Equation (6) may be replaced by an integral, as follows:

N∑

α=1

(· · · )→
∫ N

1
dα (· · · )= 1

µ

∫ a1

aN

da

a
(· · · ) , (8)
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where the last equality follows from Equation (7c). Using these relations in
Equation (6), we obtain

�T (k)=C1(ka1)
−11/3

∫ ka1

kaN

dy y8/3F 2(y), (9)

where C1 ≡ (2π)3 (φ/µ) (�T1)
2 a3

1. If the integral is constant over some
range of k, then �T (k)∝k−11/3 in that range, which is thus the inertial sub-
range. This occurs if aN � a1, for any localized spectral parent function.
For example, consider a Gaussian spectral parent function

F(y)= exp(−y2/2). (10)

Inserting this in Equation (9) yields

�T
G(k)= 1

2
C1(ka1)

−11/3 [γ
(
11/6, k2a2

1

)−γ
(
11/6, k2a2

N

)]
, (11)

where γ (p, x) = ∫ x

0 dt tp−1e−t is the incomplete gamma function. Its prop-
erties imply that this Gaussian QW spectrum is equal to a constant for
ka1 � 1, behaves like k−11/3 for ka1 	 1 	 kaN , and falls off faster than
k−11/3 for kaN � 1. This general behaviour occurs for all localized parent
functions f (ξ) and thus for all isotropic temperature spectra in this sim-
ple QW model. The Gaussian spectral parent function is one of two that
we have found that yields a simple spatial parent function and also yields
a fairly simple analytic expression for the temperature spectrum; the other
is an exponential spectral parent function.

2.3. Match to given spectrum

In this subsection, we show that specific spectral and spatial parent func-
tions corresponding to any given physically reasonable isotropic spectrum
can be found, and we obtain expressions for the parent functions that cor-
respond to the von Kármán spectrum.

In general, we suppose that �T (x) is a given analytic function, and we
take the derivative ∂/∂x of the product of x11/3 and Equation (9), where
x =ka1. This yields

∂

∂x

(
x11/3�T (x)

)=C1x
8/3 (F 2(x)− (aN/a1)

11/3F 2(aNx/a1)
)
. (12)

In many cases, we are not interested in the dissipation subrange kaN >1, or
the spectrum is not known in that region, or both. In such cases, it is rea-
sonable to neglect the last term above, since typically aN/a1 � 10−3. Then
Equation (12) yields

F 2(x)=C−1
1 x−8/3 d

dx

[
x11/3�T (x)

]
. (13)
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Using this spectral parent function in Equation (9) will reproduce the given
spectrum �T (ka1) accurately in the energy, transition, and inertial subrang-
es, i.e. for kaN < 1. The corresponding QW spatial parent function will be
localized and bounded if �T (ka1) falls off fast enough for large k. For
example, the widely-used von Kármán spectrum is given by

�T
VK(k)=CVK

(
1+L2

s k
2)−11/6

exp(−k2l2), (14)

where (Ls, l) are (outer, inner) scale lengths, and CVK is the value of the
spectrum at k = 0. If we use this in Equation (13), we obtain a QW spec-
tral parent function

FVK(x)≈ (1+L2
s x

2/a2
1

)−17/12
exp(−x2l2/2a2

1). (15)

In obtaining this result, we put C1 = (11/3)CVK in order to normalize
FVK(0) to unity. For simplicity, we also dropped a term resulting from the
derivative of the Gaussian function in Equation (14), because that term is
negligibly small for kl � 1, which is the region of interest. If we substi-
tute Equation (15) into Equation (9), the resulting QW spectrum is equal
to the von Kármán spectrum to extremely high accuracy for all k � 1/l.
In principle this is true for almost any choice of the ratio Ls/a1. However,
we expect a1 ≈ Ls , and we also expect aN ≈ l. In what follows, we choose
(l/Ls)= (aN/a1). The corresponding QW spatial parent function is given by
inserting Equation (15) into the inverse of Equation (4c) and integrating
over the 4π solid angle in y-space:

fVK(ξ)=4πξ−1
∫ ∞

0
dy y sin(ξy)(1+ (Lsy/a1)

2)−17/12exp(−y2l2/2a2
1).

(16)

This is a localized function that is bounded for all ξ if and only if a high-k
cut-off such as the Gaussian is present in the von Kármán spectrum. With-
out the cut-off, the function is unbounded at ξ =0.

2.4. Comparison of Gaussian QW and von Kármán spectra

In this subsection, we show that it is possible to use a simple parent func-
tion, such as a Gaussian function, and still achieve a good match to a
given spectrum in most spectral regions. To illustrate this, we regard the
von Kármán spectrum of Equation (14) as a given spectrum. Then we
adjust the parameters of the QW Gaussian spectrum of Equation (11) to
match as many of the properties of the given spectrum as possible.

One important property of turbulent temperature fluctuations is their
variance, defined by



QW TEMPERATURE SPECTRA 9

σ 2 ≡BT (0)=
∫

d3k�T (k), (17)

where the second equality follows from the inverse of Equation (5). For
the simplified von Kármán spectrum, defined by Equation (14) without the
Gaussian cut-off, the variance σ 2

VK is related to the amplitude CVK by

σ 2
VK = (π3/2�(1/3)/�(11/6)

) (
CVK/L3

s

)
. (18)

In obtaining this result, we used Equations (8.380.3) and (8.384.2) in
Gradshteyn and Rhyzik (1980). It is straightforward to show that the
Gaussian cut-off in Equation (14) reduces this result by 2% or less for
aN/a1 �0.002, which is satisfied for well-developed, high Reynolds number
turbulence. Therefore, Equation (18) provides a good approximation, and
we use it in what follows.

In order to obtain a similar relation for the Gaussian QW spectrum, we
substitute Equation (11) into Equation (17). This yields

σ 2
G = (2πC1/a

3
1

) ∫ ∞

0
dy y−5/3 [γ (11/6, y2)−γ (11/6,m2y2)

]
, (19)

where m=aN/a1, and y =ka1. For m�0.002, the ratio of the second term
on the right-hand side to the first is clearly m2/3 �0.016. The second term
is analogous to that resulting from the cut-off in the von Kármán spec-
trum; for simplicity, we drop the second term. An integration by parts of
the first term yields

σ 2
G ≈ 3

2
π3/2C1/a

3
1 . (20)

Other important properties of temperature spectra are their behaviours
in the inertial and energy subranges. For the von Kármán spectrum of
Equation (14), the inertial subrange clearly occurs for l−1 	 k 	 L−1

s ; for
the Gaussian QW spectrum of Equation (11), it occurs for a−1

N 	 k 	a−1
1 .

In these subranges, Equations (14) and (11) reduce immediately to

�T
VK(k)≈CVKL−11/3

s k−11/3, (21a)

�T
G(k)≈ 1

2C1�(11/6)a
−11/3
1 k−11/3, (21b)

which both display the characteristic k−11/3 dependence of the inertial sub-
range. Since we are regarding the von Kármán spectrum as a given spec-
trum, clearly we must set the two spectra equal in the overlapping part of
their inertial subranges. Then Equation (21) yields

C1

CVK
= 2

�(11/6)

(
a1

Ls

)11/3

. (22)
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For the von Kármán spectrum, the energy subrange occurs for k � 1/Ls ;
for the Gaussian QW spectrum (and all QW spectra) it occurs for k�1/a1.
In these subranges, Equations (14) and (11) yield

�T
V K(k)=CV K, (23a)

�T
G(k)= (3/11)C1. (23b)

These are both constants for small k, which is the conventional behaviour
of temperature spectra in the energy subrange.

If we apply Equation (22), as we must, and also attempt to put σ 2
G =σ 2

VK
(Equations (18) and (20)) as well as �T

G(k)=�T
VK(k) for small k (Equations

(23)), we clearly overspecify the two unknown parameters C1/CVK and a1/Ls.
For example, we may require the spectra to be equal in the energy subrange,
or we may require the fluctuations to have the same variance; but we may
not require both. Below, we investigate these alternatives.

2.4.1. Case i. Spectra Equal in Both Inertial and Energy Subranges
For this case, we use Equations (22) and (23) to determine the Gaussian
QW parameters. This yields

a1/Ls = (�(17/6))3/11 =1.16, (24a)

and

C1/CVK =11/3. (24b)

Then, Equations (18) and (20) yield the variance ratio

σ 2
G/σ 2

VK =1.24. (25)

Figure 2 contains log-log plots of the von Kármán and simplified von
Kármán spectra, and the Gaussian QW spectrum adjusted to agree with the
von Kármán spectra in the inertial and energy subranges, versus wavenum-
ber k. In this example, we made the following choices, which are reasonable
for near-ground atmospheric turbulence, Ls =10 m; l = .02 m with

aN/l =a1/Ls =1.16. (26)

(see Equation (24)). The plots reveal that this Gaussian QW spectrum is
virtually identical to the von Kármán spectrum in the dissipation subrange
as well. However, the spectra disagree noticeably in the transition region
between the energy and inertial subranges. Apparently, this disagreement is
enough to make the variance of the Gaussian QW model fluctuation 24%
larger than that of the von Kármán fluctuation (see Equation (25)).

Figure 3 contains plots of the corresponding Gaussian and von Kármán
dimensionless spatial parent functions vs. ξ = r/a1, where here r is the
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distance from the centre of the parent function. Using the Gaussian spec-
tral parent function of Equation (10), the corresponding spatial parent
function is of course also a Gaussian function, given by

fG(ξ)≡
∫

d3yF G(y)exp(iy · ξ)= (2π)3/2exp(−ξ 2/2). (27)

The von Kármán spatial parent function plotted in Figure 3 was obtained
numerically from a fast Fourier transform algorithm applied to Equation
(16), using the values given in Equation (26). Although the two spatial par-
ent functions are close for ξ � 0.5, they differ markedly for small ξ . The
von Kármán function increases rapidly as ξ →0, but it is bounded at ξ =0.

2.4.2. Case ii. Spectra Equal in Inertial Subrange, with Fluctuations having
the Same Variance

For this case, we use Equations (18), (20), and (22) to determine the
Gaussian QW parameters. This yields

a1/Ls = (�(4/3))3/2 =0.844, (28a)

and,

C1/CVK =0.724. (28b)

Then, Equation (23) yields the small-k (energy subrange) limit
(

�T
G(k)

�T
VK(k)

)

k→0

= 3C1

11CVK
=0.198. (29)

Figure 4 contains log-log plots of the von Kármán and simplified von
Kármán spectra, and the Gaussian QW spectrum adjusted to satisfy the
conditions of case (ii), versus wavenumber k. In this example, we made the
same reasonable choices of parameter values listed in Equation (26), as well
as the choices in Equation (28). Clearly, these case (ii) conditions make the
spectra differ noticeably everywhere except in the overlapping part of their
inertial subranges.

Figure 5 contains plots of the corresponding Gaussian and von Kármán
dimensionless spatial parent functions vs. ξ = r/a1, for the conditions of
case (ii). The Gaussian spectral parent function of Equation (10) still yields
the spatial parent function of Equation (27). However, when plotted vs. ξ ,
the von Kármán spatial parent function appears to be different in this case
than in case (i), because the values of a1/Ls and thus aN/l are different
from those in case (i). Note that the von Kármán spatial parent function
is bounded at ξ =0 in this case as well.

Note that our choice a1/Ls =aN/l (see Equation (26)) is reasonable but
not required. Different choices will affect QW spectra in the dissipation
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subrange. For example, we could choose aN/l to yield good agreement
between the Gaussian QW and the von Kármán spectra in this subrange
in Figure 4, but that would alter the good agreement between the two in
this subrange in Figure 2. In this sense, then, the latter good agreement is
merely an artefact of a fortuitous choice.

2.5. Kurtosis in the QW model

In this section, we calculate the kurtosis (normalized fourth moment) of a
QW field. As an initial step, the variance (second moment) is calculated by
a different method than was used earlier in the text, where the spectrum
was integrated to determine the variance. We will require this alternative,
more direct method to calculate the kurtosis. Substituting Equation (1) into
Equation (3), squaring, and taking the ensemble mean, we have

〈
�T 2(r)

〉=
N∑

α=1

N∑

β=1

�Tα�Tβ

Nα∑

n=1

Nβ∑

m=1

〈

hαnhβmf

( |r−bαn|
aα

)
f

(∣∣r−bβm
∣∣

aβ

)〉

.

(30)

Since the statistics are assumed homogeneous within the volume V , with-
out loss of generality we may set r =0. Furthermore, since the random sign
factors and position vectors are independent random variables, the ensem-
ble mean may be applied separately to functions of these variables:

σ 2 = 〈�T 2 (0)
〉=

N∑

α=1

N∑

β=1

�Tα�Tβ

Nα∑

n=1

Nβ∑

m=1

〈
hαnhβm

〉 〈
f

(
bαn

aα

)
f

(
bβm

aβ

)〉
.

(31)

Now, applying Equation (2b), this reduces to

σ 2 =
N∑

α=1

�T 2
α

Nα∑

n=1

〈
f 2
(

bαn

aα

)〉
. (32)

Since the positions of the QWs are uniformly distributed over the volume
V , the ensemble mean of f 2 (bαn/aα) can be calculated by integrating the
function over the volume and then dividing by V . The result is the same
for each QW in a particular size class α. Furthermore, assuming that even
the largest QWs are small compared to the size of the volume V , we may
change variables to ξ = bαn/aα and extend the limits of the integration to
infinity. That is,

〈
f 2(bαn/aα)

〉=V −1
∫

V

d3bf 2(b/aα)= (a3
α/V )

∫
d3ξf 2(ξ), (33)
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where the three-dimensional integral over ξ extends to infinity. Using this
in Equation (32) yields

σ 2 =
N∑

α=1

nαa
3
α�T 2

α

∫
d3ξf 2 (ξ)= (2π)3

N∑

α=1

nαa
3
α�T 2

α

∫
d3yF 2 (y). (34)

The second equality follows from Parseval’s Theorem,
∫

d3ξf 2 (ξ) =
(2π)3 ∫ d3yF 2 (y). This result is the same as Equation (6), after integrating
both sides of that equation over the 3D wavenumber space. Hence we have
shown that this alternative procedure for calculating the variance is consis-
tent with previous results in the text.

We can perform the summation in Equation (34) by applying the scaling
relationships, Equations (7). The result is

N∑

α=1

nαa
3
α�T r

α =φ�T r
1

N∑

α=1

e−rµ(α−1)/3 =φ�T r
1

1− e−rµN/3

1− e−rµ/3
, (35)

where the last term follows from the sum of the geometric series in the
second term. If µN 	 1, the exponential term in the numerator may be
neglected. Furthermore, if the spacing between the size classes is small
(µ � 1), we may approximate 1 − e−rµ/3 � rµ/3. Under these conditions,
which are typical, Equations (34) and (35) yield

σ 2 ≈ 3φ

2µ
�T 2

1

∫
d3ξf 2 (ξ) . (36)

For Gaussian QWs, f (ξ) = (2π)3/2 exp
(−ξ 2/2

)
, from which follows∫

d3ξf 2 (ξ)=π3/2 (2π)3. We thus have σ 2 ≈ (3φ/2µ)π3/2 (2π)3 �T 2
1 , in agree-

ment with Equation (20).
Now let us turn to calculation of the fourth moment, which follows the

same basic procedure as that for the second moment. Substituting Equa-
tion (1) into Equation (3), taking the fourth power and then the ensemble
mean, and setting r =0, we have

〈
�T 4〉=

N∑

α=1

N∑

β=1

N∑

χ=1

N∑

γ=1

�Tα�Tβ�Tχ�Tγ Sαβχγ , (37a)

where

Sαβχγ =
Nα∑

n=1

Nβ∑

m=1

Nχ∑

p=1

Nγ∑

q=1

〈
hαnhβmhχphγq

〉 〈
f (ξαn)f (ξβm)f (ξχp)f (ξγ q)

〉
,

(37b)
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and

ξαn =bαn/aα. (37c)

Since the signs of the QWs are independent and have zero mean, the
quantity

〈
hαnhβmhχphγq

〉
is zero if any individual QW is represented just

once [that is, if (α, n) , (β,m) , (χ,p), or (γ, q) is unique]. The quantity〈
hαnhβmhχphγq

〉
is non-zero, equal to unity, when two distinct QWs are each

represented twice
[
(α, n) = (β,m) and (χ,p) = (γ, q), but (α, n) 
= (χ,p);

(α, n) = (χ,p) and (β,m) = (γ, q), but (α, n) 
= (β,m); (α, n) = (γ, q) and
(β,m)= (χ,p), but (α, n) 
= (β,m)

]
, or when one distinct QW is represented

four times [(α, n)= (β,m)= (χ,p)= (γ, q)]. We thus have
〈
hαnhβmhχphγq

〉= δαβχγ δnmpq + (δαβδnmδχγ δpq + δαχδnpδβγ δmq

+δαγ δnqδβχδmp

) (
1− δαβχγ δnmpq

)
,

(38)

where δnmpq = 1 if and only if n = m = p = q. (Note that summation
over repeated indices is not implicit here.) Substituting into the earlier
result, and keeping in mind that all three groupings representing two QWs
repeated twice must be equal, we have

〈
�T 4〉=

N∑

α=1

�T 4
α

Nα∑

n=1

〈
f 4(ξαn)

〉

+3
N∑

α=1

N∑

β=1

�T 2
α �T 2

β

Nα∑

n=1

Nβ∑

m=1

(
1− δαβδnm

) 〈
f 2(ξαn)f 2(ξβm)

〉
, (39)

where we used δnmnm = δnm. Furthermore, we may set
〈
f 2(ξαn)f 2(ξβm)

〉= 〈f 2(ξαn)
〉 〈

f 2(ξβm)
〉

(40)

in the quadruple summation, since the QWs are mutually independent and
the term (α, n)= (β,m) is zero because of the presence of the

(
1− δαβδnm

)

factor. Removing the term involving the Kronecker deltas from the quadru-
ple summation, evaluating, and combining with the initial double summa-
tion, one has

〈
�T 4〉=

N∑

α=1

�T 4
α

Nα∑

n=1

[〈
f 4(ξαn)

〉−3
〈
f 2(ξαn)

〉2]

+3
N∑

α=1

N∑

β=1

�T 2
α �T 2

β

Nα∑

n=1

Nβ∑

m=1

〈
f 2(ξαn)

〉 〈
f 2(ξβm)

〉
.
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Evaluating the ensemble averages and the sums over n and m by the same
procedure applied to the calculation of the variance (see Equation (33))
yields

〈
�T 4〉=

N∑

α=1

nαa
3
α�T 4

α

∫
d3ξ f 4 (ξ)−3

N∑

α=1

nαa
6
α

V
�T 4

α

[∫
d3ξ f 2 (ξ)

]2

+3

[
N∑

α=1

nαa
3
α�T 2

α

∫
d3ξ f 2 (ξ)

]2

.

The final summation within the square brackets is simply the variance. The
middle summation should be much smaller than the first or third, since the
volume V is chosen large enough that a3

α �V for all α. Hence we have for
the kurtosis

〈
�T 4

〉

σ 4
�3+ 1

σ 4

N∑

α=1

nαa
3
α�T 4

α

∫
d3ξ f 4 (ξ). (41)

Using Equation (35) to calculate the sum, we have
〈
�T 4

〉

σ 4
=3+ 1

φ

[
1− e−4µN/3

1− e−4µ/3

∫
d3ξf 4 (ξ)

][
1− e−2µN/3

1− e−2µ/3

∫
d3ξf 2 (ξ)

]−2

.

(42)

Applying the approximations µN 	1 and µ�1, this becomes
〈
�T 4

〉

σ 4
≈3+ µ

3φ

[∫
d3ξf 4 (ξ)

][∫
d3ξf 2 (ξ)

]−2

. (43)

When the ratio φ/µ is large, the QWs are densely packed and the kurtosis
is close to the value of 3 that is achieved with Gaussian statistics. When
this ratio is small, the QWs are sparse and the kurtosis exceeds 3.

For a Gaussian QW,
∫

d3ξf 4 (ξ)= (π/2)3/2 (2π)6. Hence
〈
�T 4

〉

σ 4
=3+ 1

(2π)3/2 φ

[
1− e−4µN/3

1− e−4µ/3

][
1− e−2µN/3

1− e−2µ/3

]−2

≈3+ µ

3 (2π)3/2 φ
,

(44)

where again the approximation is valid for µN 	1 and µ�1.

Figure 6 plots the kurtosis vs. the packing fraction φ, as given by the
exact form of Equation (44), for three sample choices of µ, namely, µ =
0.6931, 0.1733, and 0.0433, which according to Equation (7) correspond
to aα/aα+1 =2,21/4, and 21/16, respectively. In each case, N , the number of
size classes, was chosen such that a1/aN =210 = 1024, so N = 1 + 10ln2/µ,



18 G. H. GOEDECKE ET. AL.

10
-2

10
-1

10
0

3

3.5

4

4.5

Packing fraction, φ

K
ur

to
si

s

aα /aα+1
=2

aα/aα+1
=21/4

aα/aα+1
=21/16

Figure 6. QW model kurtosis vs. packing fraction for three different size distributions.

or N = 11, 41, and 161, respectively. Note that µN = 7.931 in all cases,
large enough to neglect the exponentials in the numerators of each fac-
tor in Equation (44). We see that when there is a large spacing between
the size classes, e.g. aα/aα+1 =2, the packing fraction must be close to
unity to obtain a kurtosis near 3. A nearly continuous range of sizes, e.g.
aα/aα+1 =21/16, allows this for a much smaller packing fraction.

2.6. Example visualizations

In this subsection, we present visualizations of several turbulent temperature
fluctuation fields that have been synthesized by the QW method. Figures 7–9
are grey-scale plots of fields obtained with Gaussian QWs, for three different
choices of the parameter set [µ,φ,N ], as indicated in the figure captions. The
QWs were randomly positioned inside a rectangular volume V having dimen-
sions 150 m by 150 m by 50 m. The visualizations show a 100 m by 100 m
cross-section in the x–y plane through the volume V , at z= 25 m. (A 25-m
buffer on each side of this cross-section mitigates edge effects that otherwise
would result from missing large QWs that are partly inside V but whose cen-
tres lie outside of V .) In each case, the largest QW size is a1 =50 m. QWs
with size less than 0.5 m are not generated, since they would not be visible
at the resolution of the visualizations.
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Figure 7. Visualization of a QW simulation of turbulent temperature fluctuations in two
dimensions, with parameters µ=0.693, φ =1, kurtosis = 3.01, and N =7.

Figure 8. Visualization of a QW simulation of turbulent temperature fluctuations in two
dimensions, with parameters µ=0.693, φ =0.01, kurtosis = 4.47, and N =7.
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Figure 9. Visualization of a QW simulation of turbulent temperature fluctuations in two
dimensions, with parameters µ=0.0433, φ =0.0625, kurtosis = 3.01, and N =107.

The constant C1 [see Equations (9–11)] was chosen to be 8.82×105 m3 K2,
which corresponds to a QW temperature amplitude �T1 =0.14 K in Figures
7 and 9, and �T1 =1.4 K in Figure 8. The plots are obtained by subdividing
the visualization plane into a fine mesh of squares of area �A = 0.5 m by
0.5 m, and then, after all the QWs have been chosen and positioned, evalu-
ating the double sum in Equation (3) at the centre point of each square.

One noteworthy feature of these QW simulations is the realistic appear-
ance of the simulated fields exhibited by Figures 7 and 9. Note that Figure
7 results from a large packing fraction, φ =1, and a quite discontinuous set
of sizes, aα/aα+1 = 2(µ= 0.693), while Figure 9 results from a small pack-
ing fraction, φ = 0.0625, and a nearly continuous set of sizes, aα/aα+1 =
21/16(µ= 0.0433). However, these two cases were chosen to have the same
value of the kurtosis, 3.01.

Another noteworthy feature is exhibited by Figure 8, namely, the unreal-
istic appearance of the simulated turbulent field in this case. Since Figure 8
results from a small packing fraction, φ = 0.01, as well as the same discon-
tinuous set of sizes used for Figure 7, aα/aα+1 = 2(µ= 0.693), this appear-
ance is not surprising. Note that this case has a kurtosis value of 4.47.

3. Discussion

In this paper, we used a very simple QW model of turbulent temperature
fluctuations: it employs spherically symmetric spectral parent functions that
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are positive-valued at k = 0, uniformly random locations of the QWs in
the volume containing the turbulence, and no correlations among the signs
of the temperature fluctuations of different QWs. The model also uses the
scaling relations of Equation (7), which are not unique. They were cho-
sen by Goedecke and Auvermann (1997) as perhaps the simplest ones that
agree with the Kolmogorov energy transfer model of fully developed turbu-
lence and also yield the correct Kolmogorov behaviour of temperature and
velocity spectra in the inertial subrange. Alternatives were discussed briefly
in that paper, but they have not yet been pursued.

In Section 2, we accomplished the main goals stated in the Introduc-
tion. First, in Section 2.3 we showed that this simplest QW model can
reproduce any given spectrum of isotropic homogeneous temperature fluc-
tuations quite accurately. In particular, the matching condition of Equa-
tion (12) determines a QW spectral parent function that would reproduce
such a given spectrum exactly, at all wavenumbers, if it were inserted into
Equation (9). However, Equation (12) appears difficult to solve. We noted
that, for typical ratios of the smallest to the largest QW sizes, the sec-
ond term on the right-hand side of Equation (12) is negligible for wave-
numbers smaller than those in the dissipation range. Since the given spec-
tral behaviour in that range is generally neither accurate nor important
to our applications, we dropped that second term. The resulting Equation
(13) then yields a spectral parent function that reproduces almost any given
isotropic spectrum virtually exactly in the energy, transition, and inertial
subranges. We treated the von Kármán spectrum as an example of a given
spectrum, and solved Equation (13) for the von Kármán spectral parent
function (Equation (15)). We also obtained an integral expression for the
corresponding spatial parent function (Equation (16)).

Second, in Section 2.4 we showed that, if we use any localized QW par-
ent function (other than the one given by Equations (12) or (13)) in this
simplest QW model, the resulting spectrum could be matched exactly to
a given isotropic spectrum in both the inertial and the energy subrang-
es, but matched only approximately in the energy-to-inertial transition sub-
range. Actually, we showed this only by example, using a Gaussian QW
parent function and the von Kármán spectrum as the given one, but the
generalization is obvious by observation of Equation (9). In the example,
the mismatch in the transition subrange led to substantial disagreement
between the variances of the two fluctuations. We also showed that, if we
required the Gaussian QW fluctuations to have the same variance as the
von Kármán fluctuations, then the spectra would differ noticeably every-
where except in the inertial subrange, where of course we required them to
be the same.

Third, in Section 2.5 we derived analytic expressions for the kurtosis of
a QW representation in terms of the QW model parameters φ, the packing
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fraction, and µ, the natural logarithm of the ratio of adjacent QW sizes
(see Equations (7)). We showed that the kurtosis differs appreciably from
the value 3 only if the ratio φ/µ is small.

Fourth, in Section 2.6 we provided grey-scale visualizations of several
two-dimensional QW model simulations, for different choices of φ and µ.
These visualizations revealed that a large kurtosis does not seem to pro-
duce a realistic appearance of the model turbulent field, while a kurtosis
near the limiting value of 3 does. This possible connection between values
of the kurtosis and the visual appearance of the simulated turbulent fields
needs to be investigated in further study.

Generalizations of the simple QW model used herein would be nec-
essary if measured spectra do not have the isotropic translation-invariant
behaviour assumed above. For example, anisotropic inhomogeneous fluctu-
ations could not be represented by spherically symmetric QWs, nor could
the QWs be uniformly distributed in space. QW representations of inho-
mogeneity and intermittency would require changes in the model, such as
spatially dependent parameters and scale-dependent packing fractions. For
another example, suppose a measured isotropic spectrum is not constant in
the energy subrange. Then its QW model might have to include more com-
plicated parent functions, or correlations among the signs of the QWs, or
volume scale effects, or some other changes that could accommodate the
observed energy subrange behaviour. These kinds of modifications remain
to be investigated in future work.
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