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F̂ k
V F forcing vector
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θ / αl
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∆ computational grid-size
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δ2 momentum thickness (Schlichting, 1979)
ε turbulent dissipation rate, error
η irrotational strain-rate invariant, similarity variable
ηP parallel efficiency
γ̈ coefficients for EASMα

κ thermal conductivity, rotation angle
K turbulent kinetic energy
λθ / λz fundamental azimuthal / streamwise wavelength
µ, µT molecular kinematic viscosity, turbulent kinematic viscosity
ν, νT molecular dynamic viscosity, turbulent dynamic viscosity
Π source terms
φ arbitrary function
Ψ test function, oblique angle
ρ density
σε, σK , σρ constants for turbulent transport equations
θ azimuthal angle
Θ wavenumber
τT turbulent time-scale
ξ rotational strain-rate invariant
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a∗ speed of sound
a, c constants
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dt time step
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fε2, fµ wall-damping functions
H total enthalpy
h grid spacing
i complex number i =

√
−1

k physical azimuthal mode
kN numerical/computational azimuthal mode
kh, lh number of azimuthal and streamwise modes
ls, la number of symmetric and anti-symmetric azimuthal modes
(l, k) combined Fourier mode for temporal simulations

(l: streamwise mode, k: azimuthal mode)
LK Kolmogorov length-scale
M , MT Mach number, turbulent Mach number
mr1 number of radial points in boundary layer region
mr2 number of radial points in wake region
N wall-distance
nd number of currently computed sub-domain
ndom1 number of sub-domains in boundary layer region
ndom2 number of sub-domains in wake region
nz1tot number of streamwise points in boundary layer region
nz2tot number of streamwise points in wake region
nz1 number of streamwise points in each sub-domain

in boundary layer region
nz2 number of streamwise points in each sub-domain

in wake region
P turbulent production
Pr, PrT Prandtl number, turbulent Prandtl number
p pressure
p, q, r coefficients for EASMα

RSu Sutherland temperature
R gas constant
Re, ReT global Reynolds number, turbulent Reynolds number
Reδ1 local Reynolds number, based on the displacement thickness
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Sp speed-up
T temperature
T (Θ) transfer function
t time
u, v, w streamwise, radial, and azimuthal velocity components
U+ streamwise velocity component in wall-coordinates
rmax height of integration domain in the radial direction
W rotational strain rate invariant
y+ wall normal direction in wall coordinates
za length of approach flow
zmax length of domain from base in the streamwise direction

Subscripts

ax axis
c base-corner
b begin
D diameter
dist disturbance
ε transport equation for turbulent dissipation rate
e end
i, j, k, l,m indices for cartesian tensor notation
∞ reference point values
K transport equation for turbulent kinetic energy
max maximum of referring quantity
T turbulent
z, r, θ streamwise, radial, and azimuthal coordinate

Superscripts

– backward splitting / downwinding
+ wall coordinates, forward splitting / upwinding
n time-level
R RANS model

Modifiers

? dimensional number
¯ Reynolds-/time-average
′ fluctuation quantities for Reynolds-/time-average
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˜ Favre average, filtered variable
′′ fluctuation quantities for Favre average
¨ quantity for EASMα

˘ basic state variable
´ disturbance quantities for linearization
ˆ Fourier coefficient

Abbreviations

BC, B.C. Boundary Condition
c.e. compressible extensions
CPU Central Processing Unit
CFL Courant-Friedrichs-Levy ( c∆x

∆t
)

DNS Direct Numerical Simulation
EASM Explicit Algebraic Stress Model
EASMα Explicit Algebraic Stress Model with variable ratio of P

ε

EOS Equation Of State
FFT Fast Fourier Transformation
FLOPS Floating-Point Operation per Second
FSM Flow Simulation Methodology
I.C. Initial Condition
LDV Laser Doppler Velocimetry
LES Large-Eddy Simulation
LNS Linearized Navier-Stokes
LST Linear Stability Theory (Orr-Sommerfeld equation)
N-S Navier-Stokes
OMP Open Multi Processing
RANS Reynolds Averaged Navier-Stokes
RHS Right-Hand-Side terms of transport equation
RK Runge-Kutta
STKE Standard K-ε Model
TDNS Temporal Direct Numerical Simulation
TKE Turbulent Kinetic Energy
TS Tollmien-Schlichting
UIUC University of Illinois at Urbana-Champaign

Style

O order of
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Abstract

With funding from ARO Grant No. DAAD190210361 transitional and turbulent

supersonic axisymmetric wakes were investigated by conducting various numerical

experiments. The main objective was to identify hydrodynamic instability mecha-

nisms in the flow at M = 2.46 for several Reynolds numbers, and relating these to

coherent structures that are found from various visualization techniques. The premise

for this approach is the assumption that flow instabilities lead to the formation of

coherent structures. Three high-order accurate compressible codes were developed in

cylindrical coordinates for this research: A spatial Navier-Stokes (N-S) code to con-

duct Direct Numerical Simulations (DNS), a linearized N-S code for linear stability

investigations using two-dimensional basic states, and a temporal N-S code for per-

forming local stability analyses. The ability of numerical simulations to deliberately

exclude physical effects is exploited. This includes intentionally eliminating certain

azimuthal/helical modes by employing DNS for various circumferential domain-sizes.

With this approach, the impact of structures associated with certain modes on the

global wake-behavior can be scrutinized. It is concluded that azimuthal modes with

low wavenumbers are responsible for a flat mean base-pressure distribution and that

k = 2 and k = 4 are the dominant modes in the trailing wake, producing a four-

lobe wake pattern. Complementary spatial and temporal calculations are carried out

to investigate whether instabilities are of local or global nature. Circumstantial ev-

idence is presented that absolutely unstable global modes within the recirculation

region coexist with convectively unstable shear-layer modes. The flow is found to be

absolutely unstable with respect to modes k > 0 for ReD > 5, 000 and with respect to

the axisymmetric mode for ReD > 100, 000. Furthermore, it is investigated whether

flow control measures designed to weaken the naturally most significant modes can

decrease the base drag. Finally, the novel Flow Simulation Methodology (FSM), us-

ing state-of-the-art turbulence closures, was shown to reproduce DNS results at a

fraction of the computational cost.
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1. INTRODUCTION

Flight vehicles at supersonic speed ideally are fitted with a streamlined afterbody to

avoid a large drag force. In many practical applications, ranging from projectiles to

missiles, however, it is not possible to implement such an aerodynamic improvement.

For example, most tactical and defense missiles spend a considerable time of their

flight coasting, where the burnt out rocket motor presents a blunt base to the flow.

A recirculation region forms behind the base of the body that is responsible for

a low base-pressure, thus causing aerodynamic drag (base-drag). Flight tests with

projectiles (U.S. Army 549 projectile) conducted by Rollstin (1987) have shown that

the base-drag may account for up to 35% of the total drag. Simulations performed

by Sahu et al. (1985) for artillery shells at M = 0.9 showed that the base-drag can

even account for up to 50% of the total aerodynamic drag. The total drag determines

the range, terminal velocity or the payload of the object, thus playing a crucial role

in the design process.

Due to the large contribution of the base-drag to the overall drag, modifying the

near-wake region such that the base-pressure would increase could be highly rewarding

with respect to drag-reduction and, as a consequence, increasing the performance

characteristics of flight vehicles or projectiles. However, in order to modify the near-

wake flow effectively, a detailed understanding of the underlying physical mechanisms

that are responsible for the flow behavior is required. For this reason, in the past,

numerous research efforts, experimental, theoretical, and computational, have focused

on understanding the physics of the near-wake region, also referred to as base flow.

1.1 Physical Problem

Due to the complexity of the physical problem and limitations of experimental and

numerical techniques, discussed below, early studies have focused almost exclusively
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on the mean flow behavior. Only recently, the attention has shifted to identifying

coherent structures. A review of investigations concerned with the mean flow and

coherent structures is given in following.

1.1.1 Mean Flow

Historically, the fundamentals of supersonic base flows were mainly investigated ex-

perimentally. However, wind tunnel experiments suffered from the difficulty of prop-

erly supporting the (axisymmetric) base model so as not to cause undue effects on the

flow field behind the base. In experimental investigations, different methods of model

support have been proposed; for example, Chapman (1951) used side mounted struts,

Donaldson (1955) employed a rear sting support and Dayman (1963) constructed up-

stream wire mounts. However, all of these techniques showed non-negligible effects on

the near-wake behavior and, in particular, on the base-pressure. Other factors that

can compromise experimentally obtained data include the use of intrusive probes

(such as Pitot pressure tubes, hot wire probes, etc.) and wind tunnel interference,

i.e., vibrations, upstream sound, noise radiated from turbulent boundary layers of

the wind tunnel walls and blockage, to name a few. The strong sensitivity of the

flow to perturbations (in form of sound, solid surfaces, such as probes, etc.) most

likely is due to a global instability that may be present in the recirculation region (see

discussion in section 1.2). It is, therefore, paramount to understand and minimize

the effects of external disturbances, in particular if the objective is to investigate the

role of instabilities and large coherent structures (c.f. section 1.1.2).

One remedy to most above mentioned difficulties are free-flight experiments. How-

ever, in addition to the much greater cost, free-flight experiments also suffer from ma-

jor disadvantages. For example, it is not possible to map out details of the flow field

as is possible with wind tunnel experiments. Also, the reliability of flight-test data is

often in question because of the considerable difficulties in controlling conditions and
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parameters in the free-flight tests.

A series of very carefully designed experiments of supersonic axisymmetric wakes

have been performed at the University of Illinois at Urbana Champaign (UIUC) in

a specifically constructed supersonic blowdown-type wind tunnel (see, e.g., Herrin &

Dutton, 1989, 1994, 1995; Mathur & Dutton, 1996a,b). Dutton and co-workers used

a forward sting support which appears to be superior to other methods with regard to

minimizing flow interference. Results were obtained by non-intrusive Laser Doppler

Velocimetry (LDV). The published data include the mean velocity, turbulent kinetic

energy (TKE) and Reynolds stress components. Additionally, data were released for

the pressure distribution on the base, obtained by pressure tabs distributed radially

across the base.

The mean flow topology of the near-wake region downstream of an axisymmetric

cylinder with a blunt base is depicted schematically in figure 1.1. Already the mean
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Figure 1.1 Schematic of the mean flow-field of a supersonic base flow.

flow field is highly complex: A uniform supersonic flow aligned with a cylindrical

body produces an approach boundary layer (1) that separates at the body corner.

The flow undergoes an expansion (2) with a large turning angle that causes a strong

reduction in pressure. A thin, yet very energetic free shear-layer forms (3), separat-

ing the outer inviscid fluid from a large recirculation region (4) downstream of the

base. The effect of the rapid expansion on the shear layer was investigated by Her-

rin & Dutton (1995). They found that the shear layer could essentially be divided
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into an outer region where the turbulent fluctuations are quenched due to compress-

ibility effects, and an inner region where the turbulent activity is magnified by the

interaction of organized large-scale structures in the shear layer with low-speed fluid

entrained from the recirculation region. As the free shear-layer approaches the axis

of symmetry, a recompression (5) process occurs that realigns the flow with the axis

and subjects the shear layer to a strong adverse pressure gradient. The location at

which the mean streamwise axis-velocity is zero is defined as the reattachment point

(6). Herrin & Dutton (1997) found that in this region, “extra” strain rates, such

as bulk compression (due to the adverse pressure gradient), the concave streamline

curvature and the lateral streamline convergence are important. It was shown that

out of these additional strain rates the lateral streamline convergence is the dominant

effect, reducing the Reynolds stress throughout the reattachment region. Finally,

farther downstream, a trailing wake (7) develops.

The sharp radial gradients in the shear layer and the rapid spatial changes make

the flow field highly complex, and therefore very difficult to investigate both exper-

imentally and computationally, even if the flow field were “steady.” However, the

mean flow topology of figure 1.1 is misleading and disguises the fact that, in reality,

the flow is highly unsteady. Herrin & Dutton (1994) found that even in the “low-

speed” recirculation region, a significant dynamical behavior can be observed with

reverse velocities of up to 100ms .

1.1.2 Coherent Structures

It is well known that for subsonic (incompressible) wakes, the dynamics of the large

(coherent) structures play a dominant role in the local and global behavior of the

flow. This evidence was found from both experimental investigations and numerical

simulations and was confirmed by theoretical studies. For example, in experiments of

the flow around a sphere, Aschenbach (1974) detected large structures and identified
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two different modes of vortex shedding: A shear-layer mode for moderate Reynolds

numbers with a Strouhal number increasing with Reynolds number, and a second

mode of shedding that has an approximately constant Strouhal number. He showed

that the shedding from the second mode was in the form of two counter-rotating

helices.

For supersonic flows, on the other hand, little is known yet about the dynamical

behavior of turbulent flows. Early measurements of turbulence in an axisymmetric

compressible wake include the work by Demetriades (1968a,b, 1976). By using an

intrusive probe, his research was restricted to the far-wake and focused on the effect

of compressibility on turbulent structures. Nevertheless, some quantitative evidence

of the existence of dominant large structures in supersonic axisymmetric wake flows

was provided: Amplitude spectra (see figures 11 to 14 in Demetriades, 1968b) dis-

played distinct peaks at relatively low frequencies, thus indicating the presence of

dominant modes (structures). In addition, the amplitude distribution for the velocity

fluctuations (figures 2 and 3, respectively, of Demetriades, 1968b) resembled that of

an incompressible axisymmetric wake, where it is known that the resulting profile

is due to the presence of dominant, large coherent structures (see, e.g., Cannon &

Champagne, 1991). Morkovin (1968) suggested that when normalized properly, the

distribution of fluctuations (as caused by large structures) has a universal character

and that compressibility effects can be accounted for by the mean density variations

alone. Gaviglio et al. (1977) decomposed different terms in the TKE equation, focus-

ing on the production term and showing the effects of compressibility and streamline

curvature on turbulence production. Their analysis showed that Morkovin’s hypoth-

esis is fully valid in self-preserving flows. For rapid expansions or compressions, on

the other hand, higher order approximations might be needed.

For increasing Mach numbers, it was observed that shear layers and jets have

a reduced spreading rate which was commonly attributed to density effects alone.

Brown & Roshko (1974), after studying incompressible shear layers with large density
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ratios, concluded that it was the intrinsic compressibility that affects the development

of the supersonic shear layer. In their experiments they were also among the first to

identify what we today call coherent turbulent structures. Hussain (1986) defines

these structures as “a connected turbulent fluid mass with instantaneously phase-

correlated vorticity over its spatial extent.”1 Large coherent structures were also

observed in experiments of supersonic jets by Oertel (1979).

Bogdanoff (1983) introduced the convective Mach number2 as a parameter for

the compressibility of the flow. His work was extended by Papamoschou & Roshko

(1988) who did an extensive study of turbulent shear-layers that clearly revealed the

presence of dominant large-scale structures for various Mach numbers and density

ratios. Further work on turbulent mixing-layers was done by Elliott et al. (1995)

who used single and double pulsed visualizations to track the evolution of the large-

scale structures. In their work, Papamoschou & Bunyajitradulya (1996) addressed

the following observations: For increasing convective Mach number, not only does

the growth rate of the shear layer decline but the turbulence becomes less organized

(shows less 2-D coherence) and 3-D disturbances become more amplified. Some ana-

lytical work, validated with numerical simulations, was done by Sarkar et al. (1991)

who focused on the effect of the dilatational terms on compressible turbulence. They

identified another measure for compressibility, namely the turbulent Mach number

which relates the speed of the turbulent fluctuations with the local speed of sound. A

comprehensive review of compressibility effects on turbulence is given by Lele (1994).

In more recent experimental investigations, Bourdon & Dutton (1998); Bourdon

et al. (1998); Bourdon & Dutton (2001) were able to clearly show the presence of large

coherent structures in the axisymmetric base flow by employing planar visualizations

1Crow & Champagne (1971) had also observed coherent structures in their experiments of jet
turbulence but called them “orderly structures.”

2This is the Mach number in a coordinate system travelling with the velocity of the dominant
waves.
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to complement their earlier LDV measurements.3 The observed structures appeared

to be of significant size relative to the shear layer thickness.

Thus, sufficient evidence exists that large coherent structures are present in super-

sonic axisymmetric wakes and may indeed play an important role. Furthermore, it

is of great interest to understand how these structures are altered by passive control

mechanisms, such as “boat-tailing” (see Bowman & Clayden, 1968; Bourdon & Dut-

ton, 2000), “base bleed” (c.f. Cortwright & Schroeder, 1951; Reid & Hastings, 1959;

Clayden & Bowman, 1968; Valentine & Przirembel, 1970; Sahu et al., 1985; Sahu &

Heavey, 1995; Mathur & Dutton, 1996a,b), “base burning” (Hubbartt et al., 1981;

Ding et al., 1992), etc. Such techniques were shown to modify the mean base flow and,

as a consequence, the base-drag. However, the underlying mechanisms responsible

for the changes are not understood. In order to optimize such techniques for practical

applications, it is essential that the fundamental mechanisms that are responsible for

these changes be brought to light. The key to uncovering these essential mechanisms

is in first understanding the role of the coherent turbulent flow structures and, in

particular, how the dynamics of these structures might be influenced by techniques

for drag reduction. Questions that thereby arise are: How are these structures gener-

ated, i.e., are they a consequence of a convective instability of the shear layer or are

they generated by global modes originating in the recirculation region? Finally, how

significant is the influence of these structures on the mean flow, and in particular on

the base-pressure that determines the base-drag?

Although the existence of large-scale structures could be verified in experiments,

the high speeds of the flows under investigation make an accurate observation of

the generation and evolution of these structures very difficult. So far, it has been

virtually impossible to obtain time-accurate three-dimensional visualizations of these

structures. In light of the difficulties, uncertainties and high costs associated with

experiments, numerical simulations have been considered as attractive alternatives

3LDV is a pointwise technique that is incapable of directly investigating large scale structures.
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and/or complements to experimental investigations.

1.2 Numerical Simulations

There is considerable evidence that the formation of large-scale structures is due to hy-

drodynamic instabilities of the (time-averaged) mean flow and that the development

of these structures can be captured by stability theory (see, e.g., Gaster et al., 1985;

Oertel, 1990; Theofilis, 2003). In fact, certain aspects of the development can be cap-

tured with linear stability theory, although intensities (amplitudes) of the structures

are often too large for the linear stability theory to be valid. Experimental results

for incompressible turbulent mixing layers, two-dimensional turbulent wakes, and ax-

isymmetric wakes with a blunt base have shown that certain key features, such as

dominant frequencies, mode shapes (amplitude distributions), and streamwise spac-

ing (streamwise wavelengths) of the structures can be well predicted by linear stability

theory (Wygnanski et al., 1986; Marasli et al., 1989). These investigations support

the notion that hydrodynamic instabilities give rise to the generation of large-scale

structures and affect their spatial and temporal development.

1.2.1 Hydrodynamic Stability Investigations

There are several approaches to investigate the stability behavior of a given flow.

Standard linear stability theory (LST) deals with instabilities of infinitesimally small

amplitudes that develop in a parallel flow, containing only one inhomogeneous spatial

direction. Mathematically, the problem can be formulated as an eigenvalue problem

(EVP) that requires the solution of the Orr-Sommerfeld equation. Theofilis (2003)

demonstrated that, once the parallel assumption is not invoked and the EVP is ex-

tended to multiple dimensions, this method becomes prohibitively expensive in terms

of computational cost. In spite of (or because of) the restrictions of parallel the-

ory, LST has been applied by many researchers. For example, Huerre & Monkewitz
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(1985) presented the distinction between convective and absolute instabilities in par-

allel shear flows, a terminology that originated from plasma physics. According to

their definition, a flow is convectively unstable if a pulse disturbance decays to zero in

time at all locations in the flow. On the other hand, an absolute instability is present

if a disturbance leads to exponential growth in the entire field. Monkewitz (1988)

found analytically that the first helical mode is absolutely unstable in the near wake

behind a bluff body for Reynolds numbers in excess of 3,300 (based on wake-diameter

and freestream velocity). Monkewitz also found that large-scale structures co-exist

with a recirculation region, which was later confirmed experimentally by Cannon &

Champagne (1991). The experiments also revealed that these large-scale structures

are predominantly helical with a dominant first azimuthal mode.

In an extensive review on different classes of instabilities for spatially growing

flows, Huerre & Monkewitz (1990) introduced the concept of global instability in

the context of slow variations of the basic flow in the streamwise direction. Using

numerical simulations in conjunction with LST, absolute/global instabilities were

found for a two-dimensional bluff body with a blunt base by Hannemann & Oertel

(1989). Oertel (1990) found that the development of the von Kármán vortex street can

be suppressed using passive control mechanisms such as base-bleed or suction in order

to avoid the absolutely unstable region. Numerical simulations for an axisymmetric

body with a blunt base conducted by Schwarz et al. (1994) also revealed the existence

of absolutely/globally unstable modes that are of helical nature.

An approach for solving the stability equations where the basic state features a

weak dependence of the streamwise coordinate was accomplished by the derivation

of the parabolized stability equations (Herbert, 1997). If, however, the basic state

is truly non-parallel, another approach is required. The numerical integration of

the linearized Navier-Stokes (LNS) equations appears to be an efficient method for

conducting linear stability investigations of a non-parallel, steady or time-periodic

state. A recent summary of insights gained into three-dimensional linear stability
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investigations was given by Theofilis (2003). Here, a multidimensional eigenvalue

problem is solved with the underlying basic state being a fully two-dimensional, steady

or time-periodic non-parallel flow. The term BiGlobal instability was introduced, to

distinguish this kind of analysis from the previous, above mentioned, absolute or

global instability work, that assumes a parallel or weakly non-parallel basic state,

respectively.

However, once the nonlinear behavior becomes of interest, which is the case when

investigating the effect of nonlinear disturbances (such as coherent structures) on the

mean flow, the full Navier-Stokes equations need to be solved, i.e., Direct Numerical

Simulations (DNS) need to be conducted. Supported by the dramatic increase of

available computing power of supercomputers over the last decades, numerous at-

tempts have been made to calculate the flow field around and behind axisymmetric

bodies aligned with the free stream. In addition to the potential of providing further

understanding of the relevant physics involved, these calculations were also motivated

by the considerable challenge that this complex flow field represents for the area of

computational fluid dynamics. As mentioned above, the flow contains a large variety

of difficulties such as the combination of shock waves, thin free shear-layers, bound-

ary layers, and recirculating regions that have to be captured correctly in a numerical

simulation. In addition, high Reynolds number flows exhibit a very broad spectrum

of time- and length-scales that, in the case of DNS, need to be fully resolved by the

computational grid. For that reason, DNS of wakes at Reynolds numbers in the or-

der of O(106), as investigated by Dutton and co-workers, with sufficient resolution in

all three dimensions and in time, are out of reach even with present supercomput-

ers and probably will be for a considerable time. For that reason, other approaches

for computing such flows have been considered that require turbulence models, such

as Reynolds Averaged Navier-Stokes equations (RANS) and Large Eddy Simulation

(LES).
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1.2.2 Turbulence Modelling

A filter can be applied to the governing equations (see section 2) of the underlying

problem. The averaged equations then nearly take the form of the original equations

(which would be used for DNS), except for turbulence closure terms which have to be

modelled. Traditionally, the modelling of the closure terms was separated into two

categories: LES and RANS.

For LES, the filter applied to the governing equations is of a spatial nature and

only the large-scale motion is computed directly. The sub-grid scale structures, which

are assumed to be isotropic, are modelled. This method was initially proposed by

Smagorinsky (1963) who based his model on the Boussinesq assumption (Boussinesq,

1877) which states that the turbulent stresses can be related linearly to the mean

velocity gradients by an eddy-viscosity. For RANS, where typically a temporal filter or

ensemble averages are used, the entire spectrum of turbulent fluctuations is modelled

and only a steady mean flow is solved for. In the case of non-turbulent temporal

fluctuations of the mean flow this class of turbulence models has been extended to

unsteady RANS (URANS).

In terms of resolution requirements, typical grids used for LES are coarser than

those employed by DNS. Nevertheless, the large scales need to be resolved in a three-

dimensional and time-dependent fashion. Also, for wall-bounded flows, the gradient

of the viscous sublayer has to be captured which, for large Reynolds numbers, can

be prohibitively expensive – even for LES. RANS simulations, in contrast, can often

be carried out in two dimensions and only require resolving the mean flow gradients.

They are, therefore, the least expensive method even though additional transport

equations4 have to be solved to obtain an estimate of the turbulent length- and time-

scales (it has been argued by Speziale, 1995, that two-equation models constitute the

minimum level of closure that is physically acceptable).

4The number of additional equations determines the type of model: zero, one- or two-equation
model.
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Owing to the least restricting resolution requirements, the RANS approach was the

first to be considered for simulating supersonic base flows. Early RANS calculations

include thin-layer Navier-Stokes simulations employing an algebraic eddy-viscosity

(zero equation) model by Sahu et al. (1985) or by Petrie & Walker (1985). The cal-

culations were able to capture the qualitative features of the experimentally obtained

flow field. However, relevant quantities, such as turbulent shear-stresses and, in par-

ticular, such fundamental aspects as the all important base-pressure or the size of

the separation bubble (recirculation region), were often not predicted well. Childs &

Caruso (1987) surveyed existing computational Navier-Stokes methods for calculat-

ing turbulent compressible wake flows. They concluded that inadequate numerical

resolution of the large gradients and, in particular, the turbulence modelling were the

major culprits for not being able to reliably and accurately calculate the flow field.

RANS calculations were also employed for investigating different means of drag-

reduction, such as the effects of base bleed (see, e.g., Danberg & Nietubicz, 1992;

Sahu & Heavey, 1995) and base burning (Nietubicz & Gibeling, 1993). The simula-

tions showed a correct trend for the drag reduction when compared with experimental

results but, in some cases, even global flow field characteristics such as the center-

line velocity were not in good agreement with experiments. Two facts suggested that

some relevant physical mechanisms were not captured by the computational approach:

First, using different turbulence models but otherwise identical codes yielded incon-

sistent (and often contradictory) results. Second, the predicted pressure distribution

on the base consistently deviated from experimental results.

Considerable efforts were made to determine the influence of the dilatational terms

on compressible turbulence in the hope that this had been the reason for failure of

earlier computations. Sarkar et al. (1991) and Sarkar (1995) showed that these terms

can be responsible for up to 20% of the TKE budget. Sarkar (1992) introduced

a simplified model, that algebraically relates the pressure-dilatation to quantities
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obtained in incompressible closures.

Tucker & Shyy (1993) and, more recently, Krishnamurty & Shyy (1997) made an

assessment of K−ε model RANS calculations of the UIUC flow using the full Navier-

Stokes equations. They incorporated the above mentioned as well as additional com-

pressibility extensions and showed some improvement over previous results. However,

Tucker & Shyy (1993) found that the eddy viscosity in the recirculation region and

the K-level in the shear layer were overpredicted and mentioned that the model did

not account for baroclinic torque, which is an important factor in the TKE budget.

Furthermore, a strong (unphysical) radial variation of the base-pressure was observed.

The shortcomings of steady RANS calculations in combination with the presented ev-

idence of the existence of energetic, large scale structures that may have a profound

effect on the mean flow, as discussed above, suggest that unsteady calculations need

to be carried out in order to achieve better agreement with experiments.

Therefore, it appears that LES would be the method of choice because of the abil-

ity to capture three-dimensional and unsteady effects. However, several shortcomings

of the “standard” Smagorinsky LES model might make this model ill-suited for the

current research. Some of the deficiencies include the failure to account for the normal

stress components (which are important in the recirculation region, for example), an

ad-hoc constant that is only valid for a certain flow region and “damping functions

that are needed at the walls which are empirical in nature and do not apply to general

wall bounded turbulent flows” (Speziale, 1997). Further shortcomings of this widely

used model can also be found in Jiménez & Moser (1998).

Fureby (1999) used LES to compute the supersonic base flow, employing different

subgrid models. For modelling the subgrid scales, a standard Smagorinsky model, a

one-equation eddy-viscosity model and a Monotone Integrated LES model were used.

The results were shown to not depend noticeably on the underlying SGS model,

which suggests that, in his calculations, the resolved scales were fairly independent
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of the details of the subgrid scales. The calculations overpredicted the base-pressure

and underpredicted the recirculation length which was attributed to the effect of a

different approach boundary layer thickness in the calculations when compared to ex-

periments. In order to achieve a better prediction of the approach boundary layer, a

considerably better resolution would be required in that region, increasing the overall

computational cost drastically.

In order to reduce computational costs while still computing unsteady flows with

large coherent structures, hybrid RANS/LES approaches have been proposed. The

underlying principle is to conduct a RANS-type simulation close to a wall and perform

an LES away from the wall to capture the unsteadiness. One way of implementing

this method has been proposed by Spalart et al. (1997) and is known as Detached

Eddy Simulation (DES). In principle, the method compares the distance to the closest

wall with the product of the local grid spacing and an empirical constant. For small

distances, the eddy viscosity is computed according to a one-equation RANS model,

otherwise a Smagorinsky type LES is employed.

This approach was applied to the UIUC experiments by Forsythe & Hoffmann

(2000) who reported results agreeing reasonably well with the experimental data for

values of the empirical constant smaller than originally suggested. The mean flow

quantities in the recirculation region were found to deviate from the experiments and

were dependent on the utilized grid, even though they reported very good agreement

of the mean base pressure distribution. Later work by Forsythe et al. (2002) included

the testing of DES based on both the originally used Spalart-Allmaras model and a

Shear Stress Transport model Menter (1994) while also incorporating the compressible

shear-layer corrections into the turbulent transport equations.

Another approach, that smoothly blends DNS, LES and RANS has been suggested

by Speziale (1998a,b) and was named the Flow Simulation Methodology (FSM) (for

details, see review papers by Fasel et al., 2002, 2006). The centerpiece of FSM is
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a strategy to provide a proper amount of modelling of the subgrid scales based on

the “local and time-instantaneous physical resolution” of the calculation. This is

accomplished by employing a so-called “contribution function” which locally and in-

stantaneously compares the smallest relevant turbulent flow scales to the local compu-

tational grid size. The contribution function has to be designed such that it provides

no modelling if the computation is locally well resolved so that the simulation ap-

proaches a DNS in the fine-grid limit. The contribution function needs to provide

modelling of all scales in the coarse-grid limit and thus RANS or URANS calculations

are conducted. In between these resolution limits, the contribution function adjusts

the necessary modelling for the unresolved scales while the larger (resolved) scales

are computed as in “traditional” LES. However, in contrast to “traditional” LES,

the subgrid scales are now modelled using a sophisticated two-equation turbulence

model. Furthermore, due to the ability of FSM to locally and instantaneously adjust

for the required contribution of turbulence modelling, regions away from the wall

that lack sufficient grid-resolution can be computed in the URANS limit. This is in

contrast to the DES approach, where the method is restricted to switching to RANS

close to walls only. Therefore, the FSM approach appears to be a promising strategy

for the calculation of high Reynolds number supersonic wakes. For that reason, this

methodology will be employed in the current investigation. The same idea of using

a contribution function to scale the closure terms was similarly incorporated in the

“limited numerical scales” approach by Batten et al. (2000, 2002).

1.3 Present Research

The objective of this work is to contribute towards the understanding of the origin

and the dynamics of coherent structures in supersonic, axisymmetric wakes behind

bluff bodies. The premise for this study is the underlying assumption that flow

instabilities lead to the formation of coherent structures and determine their evolution.
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As mentioned before, it is not yet clear whether the structures that have been detected

in supersonic base flows are a consequence of a convective instability of the shear layer

or of global modes that might be present in the recirculation region. Furthermore, the

effect of large coherent structures, associated with specific instabilities, on the mean

flow is of particular interest, as they presumably strongly affect the base-pressure

and, consequently, determine the base-drag.

To that end, a high-order accurate compressible Navier-Stokes (N-S) solver in

cylindrical coordinates was developed for numerical experiments of transitional and

turbulent supersonic base flows. In addition, a linearized version of the full N-S code

was developed for linear stability investigations using a two-dimensional basic state.

Furthermore, a temporal N-S code was implemented for performing local stability

calculations (for a detailed discussion of the spatial versus temporal approach see

Fasel, 1990). In order to pursue the above named objectives, numerical experiments

are conducted exploiting the ability of numerical simulations to deliberately exclude

physical effects and, therefore assess their importance. For example, by employing

DNS for various circumferential domain-sizes, certain azimuthal modes can be in-

tentionally eliminated. Thereby, their impact on the global wake-behavior can be

scrutinized. In addition, when using the temporal code, it is sought to exploit the

fact, that the effects caused by streamline curvature, pressure gradients, shocks and

expansion waves, etc. are eliminated by this model. This is in contrast to many

previous investigations that have employed the temporal model. There, the objec-

tive oftentimes was to extend the approach by including additional terms that model

non-parallel effects etc., such that temporal results could be compared directly with

data obtained from spatial calculations (see, e.g., Guo et al., 1996). Here, by com-

paring with results from spatial calculations, the importance of the omitted physical

mechanisms can be evaluated. In particular, by conducting spatial and temporal sim-

ulations in a complementary fashion, instabilities can be identified as local or global

modes. In the following, a brief outline of the report is given:
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In chapter 2, the governing equations are presented. The filtered Navier-Stokes

equations are given in index notation in section 2.1. All turbulence closures and

transport equations, including the extension to wall-bounded flows, are described in

section 2.2. A more detailed description of the FSM is given in section 2.3, followed

by the introduction of the linearized N-S approach including a high Reynolds number

extension in section 2.5. The full form of all equations and the derivation of the LNS

equations are compiled in Appendix A.

Chapter 3 contains information about the numerical method for all codes devel-

oped for the present research. This includes the spatial and temporal discretization,

the boundary and initial conditions, the axis treatment and a brief overview of grid

stretching, filtering and parallelization. The chapter is completed by presenting the

differences in the numerical method between the full N-S and the TDNS and LNS

codes. Further details about the numerical method, such as the finite-difference sten-

cils, a stability analysis of the numerical method and the derivation of filters for

non-equidistant grids are presented in Appendix C. Details of the parallelization by

domain decomposition and a performance study of the algorithms are given in Ap-

pendix C.6.

Chapter 4 is concerned with establishing that the developed codes are suitable for

the investigation of hydrodynamic instabilities. To that end, simulations of Tollmien-

Schlichting (TS) waves and oblique disturbances in subsonic and supersonic boundary

layers are discussed in sections 4.1–4.3. The capability of capturing the formation and

evolution of coherent structures is demonstrated with reproducing results by Schwarz

(1996) of the flow field behind an axisymmetric afterbody. In addition, the LNS code

is employed for this case to determine whether the flow is absolutely unstable with

respect to more than one helical mode. Finally, wall-distance independent versions
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of the explicit algebraic stress model (EASM) of Gatski & Speziale (1993) and the

generalized EASM (EASMα) by Rumsey et al. (2000), including compressibility ex-

tensions, are validated for incompressible, flat-plate turbulent boundary layers and

the axisymmetric approach flow of UIUC in section 4.5. A 1-D variant of the tempo-

ral code is also used in order to achieve a high turn-around-time for resolution and

parameter studies.

The linear stability behavior of axisymmetric wakes at M = 2.46 is investi-

gated in chapter 5 for various Reynolds numbers. The main focus is on establishing

whether the flow is absolutely or convectively unstable with respect to two- or three-

dimensional disturbances. Furthermore, it is investigated if the instabilities are of

local or global nature, and whether helical modes are present as for subsonic wakes.

To accomplish these objectives, complementary spatial calculations, employing the

LNS code, and local TDNS simulations are carried out.

In chapter 6, DNS results are presented for base flows at M = 2.46 and three

different Reynolds numbers. For each Reynolds number, simulations were conducted

for various circumferential domain-sizes, thereby deliberately eliminating azimuthal/

helical modes. Thus, the effect of large-scale structures associated with particular

azimuthal/helical modes on the global flow behavior, in particular the base-pressure,

can be evaluated. In order to determine which modes are most important, several

figures of merit are scrutinized. These include temporal spectra for the detection

of dominant frequencies connected with certain azimuthal modes, endviews and ra-

dial mode-shapes in order to determine which modes are responsible for the resulting

wake-pattern, time-averaged base-pressure distributions and streamwise axis velocity

profiles. A vortex-identification criterion is employed, along with visualizations of

contours of total vorticity, instantaneous local Mach number and the magnitude of

baroclinic torque, to identify the relevant structures in the flow. An effort is made
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to relate the observed structures to instability mechanisms that might be present for

the mean or the instantaneous flow-field. Once it has been established which modes

dominate the global flow behavior for various Reynolds numbers, an attempt is made

to exploit the identified hydrodynamic instabilities for influencing the near-wake. The

effects of flow-control on the resulting wake-patterns and the mean base-pressure are

investigated.

Axisymmetric RANS and three-dimensional FSM calculations are discussed in

chapter 7. The performance of different turbulence models for RANS and FSM cal-

culations are evaluated for transitional base flows by comparing the results with the

DNS data of chapter 6. The turbulence closures include the state-of-the-art EASMα,

the original EASM and the standard K − ε model (STKE) by Launder et al. (1975),

for comparison. In addition, the applicability of compressibility extensions, coeffi-

cient modifications as suggested by Papp et al. (2002), and the influence of the inflow

conditions on the global solution are investigated. Finally, both the RANS and the

novel FSM approach are applied to the UIUC case. The results are discussed and

compared to the experimental data in section 7.4.

To conclude, the most important results are summarized in chapter 8, followed

by a compilation of relevant parameters for all calculations conducted (Appendix D)

and the list of references.
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2. GOVERNING EQUATIONS

2.1 Navier-Stokes Equations

The compressible Navier-Stokes equations, consisting of conservation of mass, mo-

mentum and total energy govern the physical problem under consideration. The flow

is assumed to be an ideal gas with constant specific heat coefficients. For simplicity,

all equations in this section are presented in tensor notation. The governing equations

in cylindrical coordinates are given in Appendix A.1.

All quantities are made dimensionless using the flow quantities at a reference

location in the flow; here the free-stream/inflow location is used. The radius of the

body was chosen as the reference length. The non-dimensionalization results in the

following dimensionless parameters:

Re =
ρ∗∞u

∗
∞r

∗

µ∗∞
, M∞ =

u∗∞
a∗∞

, P r =
µ∗∞c

∗
p

κ∗∞
, Ec =

u∗2∞
c∗pT

∗
∞

. (2.1)

When using any kind of turbulence model, the governing equations need to be

known in filtered form. For LES-type calculations, a spatial filter is used whereas

for RANS-type calculations, filtering is mostly associated with a temporal average.

However, the filtered equations take the same form, regardless of whether a temporal

or spatial average is considered; only the method of obtaining the sub-grid quantities

is different. Therefore, the overbars that appear in the averaged equations can ei-

ther represent a spatial or temporal average (i.e., for this research, the implicit filter

inherent to the discretization scheme with a filter width related to the grid size or

time-step). A tilde denotes a Favre-average defined as

f̃ =
ρf

ρ
. (2.2)

The velocity vector ui and the temperature T are decomposed into a Favre-average

and a fluctuating part (denoted by ′′) and the pressure p and the density ρ are split
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into the Reynolds-average (denoted by —) and a fluctuating part (denoted by ′). The

non-dimensional resolved continuity, momentum and the energy equations are:

∂ρ

∂t
+

∂

∂xk

(ρũk) = 0 , (2.3)

∂

∂t
(ρũi) +

∂

∂xk

[ρũiũk + pδik − (τ ik − ρσik)] = 0 , (2.4)

∂

∂t
(ρER) +

∂

∂xk

[ρũkH + qk +Qk − ũi (τ ik − ρσik)] = Π , (2.5)

where the resolved stress-tensor is computed as

τ ik =
2

Re
µ

(
S̃ik −

1

3
S̃jjδik

)
, (2.6)

with the resolved strain rates

S̃ik =
1

2

(
∂ũi

∂xk

+
∂ũk

∂xi

)
. (2.7)

The resolved total enthalpy and total energy are defined as

H = E +
p

ρ
, E = cvT̃ +

1

2
ũiũi , (2.8)

respectively. The resolved pressure is obtained from the equation of state

p =
ρT̃

γM2
, (2.9)

with γ = 1.4. The resolved heat flux is computed from

qk = − κ

PrEcRe

∂T̃

∂xk

, (2.10)

with Pr = 0.70 and the Eckert number being Ec = (γ − 1)M 2. Finally, the resolved

molecular viscosity µ and the resolved thermal conductivity are computed according

to Sutherland’s law (see White, 1991)

µ
(
T̃
)
= κ

(
T̃
)
= T̃

3

2

(
1 +RSu

T̃ +RSu

)
, with RSu =

110.6K

T ∗
∞

. (2.11)
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The above equations contain three terms that do not occur in the unfiltered equa-

tions: the subgrid-tensor ρσik, the subgrid heat-flux vector Qk and the source term

Π in the energy equation. These terms have to be modelled (see section 2.2). For

a DNS, where it is assumed that all relevant time- and length-scales are resolved by

the computational grid and a sufficiently small time-step, the model terms are set to

zero, implying that φ = φ = φ̃. In the other limit, where the filter-width is so large

that all fluctuations are filtered out, a traditional RANS is recovered.

2.2 Turbulence Models

If the numerical simulations are not performed in the DNS limit, a closure is needed

for equations (2.4) - (2.5). In the following section, several models for the subgrid-

stress tensor, ρσik, the subgrid heat-flux vector, Qk, and the source term, Π, are

introduced.

2.2.1 Turbulent Stress-Tensor

Three different closures are employed for representing the turbulent stress-tensor:

a “standard” K-ε model (c.f. Wilcox, 1998), the explicit algebraic Reynolds Stress

model (EASM) of Gatski & Speziale (1993) and the generalized version of the EASM

(EASMα, Rumsey & Gatski, 2001).

Standard K − ε Model (STKE)

The subgrid stress-tensor is computed from

ρσR
ik =

2

3
ρKδik − 2µT

(
S̃ik −

1

3
Sjjδik

)
, (2.12)

where the eddy viscosity is given as

µT = cµfµτTK , (2.13)
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with cµ = 0.09. The turbulent time-scale is given as the ratio between the turbulent

kinetic energy and the turbulent dissipation rate τT = K
ε
. This model is widely used

in commercial and research codes where, for wall-bounded flows, an empirical wall-

damping function, fµ, is frequently employed to enforce the logarithmic law of the

wall. A more detailed discussion of wall-damping functions is given in section 2.2.5.

Explicit Algebraic Stress Model (EASM)

The EASM was derived from the explicit solution of the equilibrium form of the

modelled Reynolds stress transport equation for incompressible flows in Gatski &

Speziale (1993) and extended to compressible flows by Speziale (1997). The model is

of the form of an anisotropic eddy viscosity model with strain-dependent coefficients:

ρσR
ik =

2

3
ρKδik − ρKτTf(η, ξ) [ α1

(
S̃ik −

1

3
S̃jjδik

)
(2.14)

− α2 τT

(
S̃ijW̃jk + S̃kjW̃ji

)

+ α3 τT

(
S̃ijS̃jk −

1

3
S̃lmS̃lmδik

)]
.

with W̃ik = 1
2

(
∂eui
∂xk
− ∂euk

∂xi

)
.

To remove the possibility of singularities, a regularized version for f(η, ξ) is used:

f(η, ξ) =
3

3− 2η2 + 6ξ2
≈ 3(1 + η2)

3 + η2 + 6η2ξ2 + 6ξ2
. (2.15)

The terms η and ξ are related to the irrotational and the rotational strain rate in-

variants according to

ξ =
α2

α1

K

ε

(
W̃lmW̃lm

) 1

2

, η =
1

2

α3

α1

K

ε

(
S̃lmS̃lm

) 1

2

. (2.16)

The values of the coefficients appearing in equations (2.14) and (2.16) depend on the

flow region. In the approach boundary layer, the ratio of production over dissipation

rate is assumed to be unity, whereas in the separated flow regime, P
ε
= cε2−1

cε1−1
, resulting

in different values of αi (c.f. Sandberg & Fasel, 2003).
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Generalized Version of EASM (EASMα)

As mentioned above, the flow under investigation features physically very disparate

regions such as a boundary layer, a free shear layer subject to pressure gradients and a

recirculation region. It is safe to say, that assuming the production to dissipation ratio

to be a constant cannot hold for all regions. For that reason, the generalized EASM,

where the production over dissipation ratio is not fixed to a constant but computed

locally and instantaneously as presented in Rumsey et al. (2000) was also chosen. In

order to locally determine the ratio of turbulent production over dissipation, the roots

of a cubic equation have to solved. The turbulent stress-tensor is computed from

ρσR
ik =

2

3
ρKδik − 2µ̈T

[(
S̃ik −

1

3
Sjjδik

)
(2.17)

+ a2a4

(
S̃ijW̃jk + S̃kjW̃ji

)
− 2a3a4

(
S̃ijS̃jk −

1

3
S̃lmS̃lmδik

)]
.

The eddy viscosity is given by

µ̈T = ρν̈T = C̈µρKτT = −ρKτT
(
α1

τT

)
. (2.18)

Note, that the eddy viscosity used by the EASMα is not the same as used for the

turbulent heat-flux (see equation 2.25) and the transport equations for K and ε

(equations 2.23 and 2.24).

The value of α1/τT is obtained by locally and instantaneously solving the following

cubic equation: (
α1

τT

)3

+ p

(
α1

τT

)2

+ q

(
α1

τT

)
+ r = 0 , (2.19)

where

p = − γ̈1
φγ̈0

,

q =
1

(2φγ̈0)
2

(
γ̈21 − 2φγ̈0a1 −

2

3
φa23 − 2W 2τ 2Ta

2
2

)
, (2.20)

r =
γ̈1a1

(2φγ̈0)
2 .
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The needed parameters are assembled as follows:

φ = S̃ikS̃ikτ
2
T , W = −W̃ikW̃ik ,

a4 =
τT

γ̈1 − 2γ̈0

(
α1

τT

)
φ
,

γ̈0 =
C1
1

2
, γ̈1 =

C0
1

2
+

(
Cε2 − Cε1

Cε1 − 1

)
. (2.21)

The constants are given as Cε1 = 1.44, Cε2 = 1.83, C0
1 = 3.4, C1

1 = 1.8, a1 = 0.4866,

a2 = 0.8 and a3 = 0.375. An algorithm to solve the cubic equation is given in detail in

Rumsey & Gatski (2001). Hence, the turbulent viscosity for the most recent EASMα

is computed without having to assume a constant ratio of turbulent production over

turbulent dissipation rate, in contrast to the original EASM of Gatski & Speziale

(1993). Comparing the turbulent viscosity of the two models gives

2µ̈T = α1ρ
K2

ε
f(η, ξ) , (2.22)

where f(η, ξ) in the old EASM is a function of the irrotational and rotational strain-

rate invariants that also include α1. In this approach, α1 is computed by assuming a

constant value for P
ε
which can be different for separate flow regions (c.f. Sandberg

& Fasel, 2003).

2.2.2 Turbulent Transport Equations

The Reynolds stress models require the turbulent kinetic energy, K, and the turbulent

dissipation rate, ε. They are computed solving two additional transport equations

∂

∂t
(ρK) +

∂

∂xk

[
ρũkK −

(
µ

Re
+
µT

σK

)
∂K

∂xk

]
= ΠK , (2.23)

∂

∂t
(ρε) +

∂

∂xk

[
ρũkε−

(
µ

Re
+
µT

σε

)
∂ε

∂xk

]
= Πε . (2.24)

The turbulent viscosity µT can either be determined using equation (2.13) or using

equation (2.18). The constants for the turbulent diffusion terms are σK = 1.0 and

σε = 1.3.
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2.2.3 Subgrid Heat-Flux Vector

The subgrid heat-flux vector is modelled by assuming similarity in the gradient trans-

port of heat and momentum, thus relating the thermal eddy diffusivity κT to the

eddy diffusivity µT (equation 2.13) by a constant turbulent Prandtl number PrT as

described in Speziale & So (1996)

Qk = − 1

γEc

µT

PrT

∂T̃

∂xk

. (2.25)

Speziale & So (1996) suggest that, for most engineering applications, a turbulent

Prandtl number of PrT = 0.9 is adequate. Note that, for a turbulent Prandtl number

of unity, complete similarity is assumed which is the well known Reynolds analogy

for turbulent heat transfer.

2.2.4 Source Terms

The source terms Π and ΠK in the energy and K-equations include a pressure dilata-

tion term, terms involving the turbulent dissipation rate and the subgrid mass-flux.

It was shown by Sarkar et al. (1991) that both pressure dilatation and compress-

ible dissipation are important in compressible turbulence. Therefore, both effects are

modelled according to Sarkar et al. (1991), Sarkar (1992) and Speziale (1996)

p′
∂u′′j
∂xj

= a2ρ̄σikS̃ikMT + a3ρ̄εM
2
T , (2.26)

with the turbulent Mach number (a measure of influence of compressibility on turbu-

lence)

MT =

√
2K

T̃
M . (2.27)

The turbulent dissipation rate is defined and the subgrid mass-flux is modelled ac-

cording to Speziale (1996) as

τ ′′ik
∂u′′i
∂xk

= ρ̄ε , u′′k =
1

ρ̄σρ

µT
∂ρ̄

∂xk

, (2.28)
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respectively. Using these model terms results in the source terms for the energy

equation and the transport equation for turbulent kinetic energy K

Π = (1− a2MT ) ρσikS̃ik +
(
1− a3M2

T

)
ρ̄ε− (τ ik − p̄δik)

∂

∂xk

[
µT

σρ

∂

∂xi

(
1

ρ̄

)]
,

ΠK = − (1− a2MT ) ρσikS̃ik −
(
1− a3M2

T

)
ρ̄ε−

(
∂p

∂xi

− ∂τik
∂xk

)
Cµ

ρσρ

τK
∂ρ

∂xi

, (2.29)

respectively, with the constants σρ = 0.5, a2 = 0.15 and a3 = 0.2. In absence of

turbulent mass fluctuations, the source term in transport equation for K needs to be

the negative value of the source term in the energy equation because any production

of turbulent kinetic energy must be equal to the dissipation of the averaged energy.

The source term of the transport equation for the turbulent dissipation rate is

Πε = −Cε1ρ
1

τT
σik

(
∂ũi

∂xk

− 1

3
S̃jjδik

)
− Cε2fε2ρ

ε

τT
+ Cε3ρ̄Re

1

2

T

ε

τT
− 4

3
ρ̄εS̃jj , (2.30)

where fε2 is a wall-damping function discussed in section 2.2.5, Cε1 = 1.44, Cε2 = 1.83,

Cε3 = 0.001 and ReT being the turbulent Reynolds number

ReT =
ρK

µ
τT . (2.31)

All terms in the above equations, for which summation of repeated indices applies,

are fully expanded for cylindrical coordinates in Appendix A.1.

2.2.5 Extensions to Wall-Bounded Flows

For the present research, one has to distinguish between two walls with inherently

different properties: The approach flow wall and the base-wall. The approach bound-

ary layer does not experience significant pressure gradients or streamline curvature

until very close to the corner. It is therefore safe to assume that non-equilibrium

effects are not present and standard wall-damping functions derived for equilibrium

boundary layers can be utilized. This is, of course, only necessary for the Reynolds

number regime where the approach flow is turbulent, as in the UIUC experiments
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(Reθ = 13, 700). For the transitional cases investigated, the approach boundary layer

is laminar and the turbulence model is switched off entirely in the approach region.

The flow along the base-wall, on the other hand, reaches much lower velocities and

does not exceed Reθ ≈ 500, even for the highest Reynolds number under investigation

(UIUC case). Moreover, both for axisymmetric RANS and for three-dimensional cal-

culations, the flow along the base-wall at best can be described as a stagnation-point

flow,1 exhibiting strong acceleration away from the stagnation point and a signif-

icant deceleration and flow-separation when approaching the corner. Additionally,

for unsteady calculations, large structures impinge on the base, hence describing the

flow over the base as an equilibrium flow does not appear to be an adequate assess-

ment. Not only are most wall-damping functions derived for equilibrium boundary

layers, but they oftentimes rely on the wall-distance in wall-coordinates, an ill-defined

quantity when encountering regions of zero wall-shear as found at a stagnation point.

One example of a commonly used wall-damping function used for the STKE model

(equation 2.13) is the van Driest damping function

fµ = 1− exp

(
−N

+

A+

)
, (2.32)

where N+ is the wall-normal distance in wall coordinates and A+ = 25. If utilized,

however, the damping function was only employed for the turbulent approach bound-

ary layer but not for the base-wall due to the above mentioned reasons.

To remove singularities at walls in the destruction term of the ε-equation, i.e.,

K = 0, a damping function fε2 is used. Traditionally, this wall-damping function

takes the form

fε2(N) = 1− exp
(
−Re
√
0.1KN

)
, (2.33)

where N is the wall-normal distance. For both EASM models, fε2(N) is the only

term containing a wall-distance; the Reynolds stress model automatically accounts

1In the case of an axisymmetric calculation, the stagnation point is fixed at the axis, whereas for
3-D calculations it can move freely.
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for near-wall effects through the computation of f(η, ξ) (equation 2.15) or α1

τ
(equation

2.19).

To be completely independent of the wall-distance, another approach is used for

computing fε2 which is based on a suggestion by Durbin (1993). It relies on the

assumption that the smallest physical time-scale in a turbulent flow is the Kolmogorov

time-scale. Therefore, by computing fε2 as

fε2 =
1

max
[
1, CT√

ReT

] , (2.34)

a completely wall-distance independent model is obtained. This function contains

an additional constant that requires calibration. The effects of wall-damping func-

tions and the limiter in turbulent boundary layers are evaluated in section 4.5. An

alternative approach of obtaining an entirely wall-distance independent turbulence

model that is more closely related to Durbin’s original suggestion was used for results

presented in Sandberg & Fasel (2003). There, the turbulent time-scale was limited

utilizing the Kolmogorov time-scale

τ =
K

ε
= max

[
K

ε
,CT

√
µ

Reρε

]
. (2.35)

This limited value was used in all instances where a turbulent time-scale appears in

the transport equations for resolved energy, K and ε, and the calculation of the eddy

viscosity.

2.3 Flow Simulation Methodology (FSM)

The fundamental concept of the methodology was already introduced in section 1.2.2.

The details of the implementation are given in the following. For the Flow Simulation

Methodology, the turbulent stress tensor is multiplied with the contribution function

f(∆/L)

σik = f(∆/L)σR
ik . (2.36)
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For the compressible extension, the source term in the energy equation and the tur-

bulent heat-flux vector also have to be rescaled with the contribution function:

Qk = f(∆/L)QR
k and Π = f(∆/L)ΠR. (2.37)

The term ∆ = [(∆z2 +∆r2 + (r∆θ)2)/3]1/2 is the representative computational grid

size and L is the relevant length-scale. In the present calculations, a contribution

function in a form proposed by Speziale (1998a) was used

f(∆/Lk) =


1− e

−β ∆

Lk




n

, (2.38)

where LK is the Kolmogorov length-scale LK =
(

µ
ρRe

)3/4
/ε1/4 and where β and n are

adjustable parameters. Currently n is set to unity and β is set to a small value on

the order of O(10−3). Other forms of the contribution function and different choices

of the length-scale are possible (see, e.g. Fasel et al., 2002).

As the ratio β∆
Lk

becomes small (grid resolution sufficient to resolve the relevant

scales), f(∆/Lk) approaches zero and the computation will approach the DNS-limit.

For insufficient resolution, f(∆/Lk) approaches unity, the RANS-limit is approached.

For all intermediate values of the contribution function, a LES based on a state-of-

the-art Reynolds Stress model is performed.

2.4 Scaling Laws

For base flow calculations, the most common scaling of quantities employs the diame-

ter or radius of the base, D or R, and the maximum velocity of the approach flow, U .

This outer scaling is used for the non-dimensionalization of the governing equations

in the present work.

For emphasis of the near-wall behavior and better comparison with theory, the

wall-scaling, or inner scaling for incompressible turbulent boundary layer flows is
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introduced (see, e.g., Schlichting, 1979). The velocity, the wall-normal coordinate

and the Reynolds number are scaled with the friction velocity uτ =
√

τw
ρw

as follows:

U+ =
ũz

uτ

,

x+i = xiuτ
ρRe

µ
. (2.39)

In the limit of Re → ∞, a turbulent boundary layer has an overlap region between

the wall-layer and an outer layer, called the logarithmic law of the wall

U+ = κln(y+) + C , (2.40)

with κ ≈ 0.4 and C ≈ 5.24 in the absence of a streamwise pressure gradient. The

wall-layer, or viscous sublayer, can be shown to satisfy

U+ = y+ . (2.41)

In order to obtain several turbulent quantities in wall-coordinates, the following scal-

ings are used

K+ =
K

u2τ
, ε+ =

µ

ρRe

ε

u4τ
, R+

rz =
Rrz

u2τ
. (2.42)

2.5 Linearized Navier-Stokes (LNS) Equations

The compressible Navier-Stokes equations in cylindrical coordinates, as described in

section A.1 are used as the basis for obtaining the linearized Navier-Stokes (LNS)

equations. All variables are decomposed into a steady, two-dimensional basic-state

component and disturbance quantities:

φ = φ̆+ φ́ . (2.43)

Terms that contain products of basic state variables only can be subtracted because

they satisfy the Navier-Stokes equations for the basic state. All products containing
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more than one disturbance variable are neglected as they are considered small com-

pared to products of disturbance variables and basic state variables. Because only

two-dimensional basic states will be considered for the present research (w̆ = 0), all

azimuthal derivatives of basic-state terms vanish. The set of equations that needs to

be solved is derived in detail in Appendix A.3.

One of the objectives of this research is to investigate the hydrodynamic stabil-

ity behavior of supersonic axisymmetric wakes for high Reynolds numbers, as in the

experiments at UIUC. If a two-dimensional basic state is available for such a flow,

from either an axisymmetric RANS solution or an averaged LES solution, a linear

stability analysis can be conducted with the linearized code. However, the additional

viscosity caused by the turbulent fluctuations (eddy viscosity) needs to be accounted

for. Otherwise the amplification rates of the disturbances might be significantly over-

predicted, or, in the worst case, modes that should not be amplified at the “effective

Reynolds number”2 might grow if the eddy viscosity is neglected.

The simplest approach to include the effects of the additional viscosity is to sim-

ply estimate the eddy viscosity and reduce the Reynolds number accordingly. For

this approach, however, no information about the distribution of the eddy viscosity

is included and the resulting deficiencies in the solution are expected to be unac-

ceptably large. The most complete methodology would be to linearize the transport

equations for the turbulent quantities K and ε in order to provide an accurate eddy

viscosity. This approach, however, was beyond the scope of this work. An interme-

diate approach was chosen by assuming that the fluctuations of the eddy viscosity

are small compared to the basic state values. Wernz (2001) found this to be a good

approximation for turbulent wall-jets. The derivation of this high Reynolds number

extension to the linearized equations can be found in Appendix A.3.1.

2Typically the eddy viscosity is significantly larger than the molecular viscosity, hence if the
Reynolds number is based on the eddy viscosity it becomes considerably smaller than when based
on the molecular viscosity.
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3. NUMERICAL METHOD

All transport equations given in section 2 can be written in the form of an advection

and a diffusion term on the left-hand-side and a source term on the right-hand-side.

In cylindrical coordinates, this results in the following system of partial differential

equations (PDE)
∂U

∂t
+
∂A

∂z
+
∂B

∂r
+

1

r

∂C

∂θ
+

1

r
D = S1 . (3.1)

The complete contents of the vectors are given in Appendix A.1. The system of

equations (3.1) and all closures are solved numerically at discrete points. For spatial

calculations, derivatives in time and in the r−z plane are discretized using high-order

accurate finite differences. The azimuthal direction is discretized employing a spec-

tral method. For temporal calculations, derivatives in the streamwise direction are

also approximated with a spectral method (see section 3.9). Note that the transport

equations for the turbulent quantities K and ε were manipulated to the compact

vector form, i.e., they represent the 6th and 7th equation of the system 3.1.

Unlike in previous investigations, where the transport equations of the turbulent

quantities are solved in 2-D2 with a lower-order accurate, separate solver, such as

an ADI-method (e.g. Seidel, 2000) or the MacCormack method (e.g. Terzi, 2004),

the same algorithm is used as for the Navier-Stokes equations. Several factors make

this approach attractive: Implementation is facilitated and no additional numerical

solver needs to be validated. Furthermore, the turbulent quantities are solved fully

three-dimensionally. This is of particular importance when assuming that turbu-

lent, helical structures are present and generate strong azimuthal variations in the

1Note that for DNS, the right-hand-side of equations (3.1) vanishes and a system of homogeneous
PDEs is recovered.

2The assumption of homogeneous statistics in the spanwise direction is commonly invoked.
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turbulent quantities.3 Finally, the turbulent quantities are also solved to high-order

accuracy, facilitating the separation of the contribution of the turbulence model and

excessive discretization errors of a low-order accurate algorithm.

As already mentioned in the introduction, the flows under investigation, even for

the lowest Reynolds number of interest, contain turbulent regions and, therefore,

require a large number of grid points to resolve all relevant scales. The restriction

of the CFL number, essential for conducting a time-accurate simulation, and the

simultaneous requirement to compute several flow-through-times in order to be able

to obtain time-averages and statistics also necessitates a very large number of time-

steps, hence making the desired calculations very costly. It is therefore paramount to

reduce the computational time as much as possible. To that end, significant savings in

computational time are achieved by grid-stretching and symmetric Fourier transforms

which drastically decrease the number of required grid-points. Further, employing

a domain-decomposition technique, combined with parallel computing, enables the

reduction of wall-time required for a given calculation. These three elements, along

with other details of the numerical procedure are discussed in the following sections.

3.1 Boundary and Initial Conditions

The computational domain is shown in figure 3.1. As in the simulations by Tourbier

(1996), only the last part of the approach flow is computed (region 1), i.e., the inflow

boundary layer represents another parameter in the simulation. The code was written

such that region 1 alone can be computed, allowing for boundary layer calculations, a

feature that was essential for validation of the turbulence models. Both region 1 and

2 can be decomposed into sub-domains in order to compute efficiently on multiple

CPUs. The domain-decomposition is described in section 3.6.

3That this is indeed the case is shown in section 6.1.4.
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Figure 3.1 Computational domain for spatial calculations.

At the inflow boundary, the axial and azimuthal velocity and the temperature

are set to a constant value. In subsonic calculations, either Dirichlet or Neumann

conditions can be imposed on pressure, K and ε. For supersonic simulations, the

pressure is fixed in the supersonic region and a Neumann condition is used in the

subsonic part of the approach boundary layer. The outflow boundary is computed

via one-sided stencils, setting the second derivative to zero. For subsonic cases, the

pressure can be set to a constant value at the outflow. The freestream boundary

is represented by Neumann conditions on all variables for subsonic cases and by

simplified characteristic boundary conditions according to Harris (1997) for supersonic

cases.

At the walls, no-slip and no-penetration are enforced for all velocity components

and the turbulent kinetic energy is set to zero. The pressure at the wall can be ei-

ther computed from the applicable momentum equation, i.e., the radial momentum

at the approach flow wall, and the axial momentum for the base wall. Alternatively,

a Neumann condition can be applied. Temperature can be set to a constant value

or computed through a high-order extrapolation, i.e., either isothermal or adiabatic

walls are specified. For all boundaries mentioned above, the density is computed

through the equation of state for a perfect gas.
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The initial condition for flat-plate boundary layer calculations is generated by in-

terpolating a compressible similarity solution onto the utilized grid. For axisymmetric

wake calculations, the initial condition is constructed by extending the above men-

tioned similarity solution downstream of the base in the region 1 ≤ r ≤ rmax. Behind

the base (0 ≤ r < 1), all variables are set to the value of the corner-point, except the

u-velocity, which is prescribed by a hyperbolic tangent function, ranging from 0 at

the base to a value smaller than unity at the outflow. This measure is taken to avoid

reverse flow at the outflow during start-up of the calculation. Because this initial

condition deviates strongly from the expected axisymmetric base flow solution, very

strong transients occur during start-up, generating large disturbances. For higher

Reynolds numbers, at start-up, smaller time-steps or higher spatial resolution are

required than for the converged case. To alleviate this problem, the flow is initially

converged out for a moderate Reynolds number and then continued and converged

(in some cases using multiple iterations) for the desired Reynolds number. Typi-

cally, several flow-through times are necessary to obtain axisymmetric steady-state

solutions.

For all three-dimensional calculations, a converged axisymmetric flow field is used

as initial condition for the 0th Fourier mode and the higher modes are set to zero. A

density-pulse in the higher Fourier modes is then utilized to accelerate the growth of

the higher Fourier modes (see, e.g., chapter 6.1).

When performing RANS calculations, a laminar flow field is read in and the

turbulent quantities K and ε are set to constants within the field, typically on the

order of O(10−2) and O(10−3) for K and ε, respectively. Note that K must be zero

at the walls. It was found that the time-step could be significantly enlarged when

the initial condition of K was filtered multiple times in the wall-normal direction to

mitigate excessively large gradients close to the wall.
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3.2 Axis Treatment

Due to a pseudospectral approach in the azimuthal direction, the flow field is rep-

resented in Fourier modes, with the zeroth mode being the spatial mean flow and

the higher modes being higher azimuthal modes. A state-of-the-art axis treatment

is implemented, exploiting parity conditions. Even parity implies that the even az-

imuthal modes of a variable have an even symmetry and, conversely, the odd modes

have an odd symmetry at the axis. On the other hand, for odd parity, the even

azimuthal modes of the variable have an odd symmetry and the odd modes have an

even symmetry at the axis. The derivation of which variables have which parity in the

case of a half-cylinder calculation is given in Appendix C.3. The resulting boundary

conditions at the axis are as follows: The zeroth azimuthal mode (mean flow) of all

quantities evolves according to the governing equations, except for the radial and the

azimuthal velocity components, which are set to zero. The first mode of the radial

and azimuthal velocity components are permitted to be non-zero at the axis, however,

all other higher modes are set to zero at the axis.

A modification of this axis treatment had to be implemented to allow for cal-

culations of domain-sizes with an azimuthal extent of less than π. In the case of a

quarter-cylinder, the numerical modes kN = 0, 1, 2, 3, . . . correspond to the physical

modes k = 2, 4, 6, . . . in the half-cylinder case, hence all higher modes in azimuthal

have to be set to zero at the axis. Also, for the quarter-cylinder case, the parity

conditions have to be changed, because all corresponding physical modes are even.

For the option of computing 1/8th or 1/16th of a cylinder, only the azimuthal modes

k = 4, 8, 12, . . . or k = 8, 16, 24, . . . are computed, respectively. They require the same

axis treatment as for the quarter cylinder case.

An investigation of 1/6th of a cylinder only contains the physical modes k =

3, 6, 9, . . . and therefore, as above, all higher modes are set to zero for this case.

However, as opposed to the quarter-, 1/8th- or 1/16th-cylinder cases, the odd numer-
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ical azimuthal modes correspond to odd physical modes (e.g., kN = 1 → k = 3)

and the even numerical azimuthal modes correspond to even physical modes (e.g.,

kN = 2→ k = 6). Hence, the same parity conditions as in the half-cylinder case can

be utilized. A compilation of all symmetry and boundary conditions at the axis is

given in Appendix B.

3.3 Spatial and Temporal Discretization

In radial direction, sixth-order accurate split compact finite differences are employed.

As described in Burke (2001), compact finite-difference stencils are derived that are

valid on a non-equidistant grid in contrast to mapping the computational domain to a

uniform grid. Burke (2001) chose this method because it results in greater flexibility

of the choice of grids and because Meitz & Fasel (2000) showed that it leads to a

lower truncation error. In streamwise direction, fourth-order accurate standard split

differences are utilized to facilitate the domain-decomposition described in section

3.6. The fourth-order accurate standard split differences are described in Tourbier

(1996) or Harris (1997) for equidistant grids. In the current implementation, how-

ever, the difference stencils are derived for stretched grids in the same way and for

the same reasons as the radial compact differences, see Appendix C.2. The sub-grid

mass fluxes, however, are computed differently. Derivatives of density, pressure and

the viscous stress-tensor are computed to second-order accuracy in the r − z plane

to introduce additional dissipation for enhanced numerical stability in regions where

expansion fans and shocks are present.

The axisymmetric wake is a natural application for the use of Fourier transforms

in the azimuthal direction due to the periodicity of the physical problem. For a plane

geometry, on the other hand, domain-width studies need to be conducted to determine

which spanwise wavelengths are most amplified because, using Fourier transforms,
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only integer multiples of the fundamental wavenumber can be captured. For example,

when using a domain width of Lz = 3, not only waves with wavelengths larger than

λz > 3 are omitted, but also a disturbance with a wavelength of λz = 2 would

be excluded. In the cylindrical coordinate system, theses studies are not necessary

because the geometry requires the wavelength of the disturbance wave to be an integer

fraction of the fundamental wave (λθ = 2π).

Water tunnel results of incompressible, low Reynolds number wakes conducted by

Siegel (1999) show that the flow selects a symmetry plane that moves on a time-scale

much slower than that of interest for the unsteady structures. Experimental work

by Bourdon & Dutton (1998) shows that compressible wakes also exhibit a degree of

symmetry in the azimuthal direction. A more recent paper by Bourdon & Dutton

(2001) shows a clear symmetry of the flow in circumferential direction when using

delta-shaped tabs on the body. Employing symmetric transforms enforces a symme-

try plane similar to that caused by the surface disturbances (tabs) in the experiment.

Assuming a perfectly axisymmetric base flow, the only additional information that

could be obtained by employing full Fourier transforms is the azimuthal variation of

the position of helical structures which most likely won’t affect mean flow results and

statistics. Therefore, as in previous work on this topic by Tourbier (1996), symmetric

Fourier transforms can be justified in the azimuthal direction that lead to a signifi-

cant reduction in computing time. The derivation of the equations in Fourier space

is given in Appendix A.4.1.

For time advancement, a four-stage Runge-Kutta scheme is employed which is

described in more detail in Appendix C.1. Details of the derivative stencils and the

splitting are given in Appendix C.2. The benefits of using split finite-differences are

illustrated using a von Neumann stability analysis for a model problem in Appendix

C.4.
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3.4 Grid Stretching

Grid stretching for the radial and the streamwise directions is employed to enable

clustering of points in regions of high gradients, e.g., in the approach flow boundary

layer, the shear layer, and the corner of the after-body. Utilizing coarse grids in

regions of benign gradients such as the free-stream, saves a large amount of grid-

points. This leads to a significant reduction of computational time, in particular for

3-D calculations. In the azimuthal direction, the grid is necessarily equidistant, as a

spectral method is used in this direction. The grids for the downstream and the radial

directions are generated with separate tools before runtime and saved in separate files.

The values of the grid-points are read at initialization and the weighted derivative

and filter stencils can then be computed. For the current investigation, the grids were

chiefly generated using polynomial functions. A detailed discussion of various options

of grid stretching can be found in Appendix C.2.

Chung & Tucker (2003) show that the accuracy of high-order finite difference

schemes suffers significantly once the grid is very strongly stretched. Therefore, for

the DNS calculations, in radial direction the grid is equidistant behind the base

(0 ≤ r ≤ 1) to achieve the highest possible accuracy and a large amount of grid-

points is used in the streamwise direction in order to achieve a very benign stretching

with ratios of ∆zmax

∆zmin
≤ 20. The authors also showed that strong stretching in com-

bination with coarse grids can cause compact schemes to exhibit negative numerical

dissipation, which can quickly lead to divergence of the solution. For that reason,

coarse FSM calculations that feature strong grid-stretching are always conducted

employing filtering (see discussion in section 3.5).

3.5 Filtering

It was demonstrated by Chung & Tucker (2003) that using high-order compact dif-

ferences on stretched grids leads to an amplification of high-wavenumber oscillations.
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Low-pass filters need to be employed in order to prevent a contamination of lower

wavenumbers by these high-frequency artifacts of the numerical method and, more

importantly, to ensure numerical stability of the numerical method. Burke (2001)

implemented a 4th-order accurate compact filter, that was designed to have its cut-off

at the wavenumber Θ = 2 (c.f. Lele, 1992). This filter, however, is derived for an

equidistant grid and will, therefore, not exhibit the designed transfer function if ap-

plied to a stretched grid. At this point, it is unclear how to define a transfer function

which removes a given frequency on a stretched grid. Thus, an analytic evaluation of

the performance of filters on stretched grids is not attempted in the present work.

Another downside of employing the compact filter in streamwise direction was

the incompatibility with the domain-decomposition because a matrix needs to be

solved for, that requires knowledge of the full streamwise extent which cannot be

accomplished in parallel. For that reason, explicit filters (6th- and 4th-order accurate)

were derived for non-equidistant grids and employed in the streamwise direction.

The derivation is given in appendix C.5.1 and the accuracy is discussed for different

resolutions and types of grid-stretching. A further discussion of issues regarding

filtering can be found in Appendix C.5.1.

3.6 Parallelization

In recent years, the number of CPUs that have become available on shared memory

computers or distributed memory clusters has increased drastically. To exploit this

trend, a domain decomposition was implemented in the streamwise direction. The

streamwise direction was chosen for several reasons: This direction typically requires

a significantly larger amount of points than the radial direction because of the larger

downstream extent of the computational domain (typically, −1 < z < 12 versus

0 ≤ r < 6). Further, in the radial direction, high resolution is only required in the

region 0 ≤ r < 1.5 because the free-stream is not of interest and does not contain
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large gradients. In contrast, in the streamwise direction, high resolution is required

from the base to the highly turbulent recompression region and the trailing wake, i.e.,

the grid-stretching in the streamwise direction is required to be moderate to avoid

overly coarse grids far downstream of the base.

The implementation of the domain decomposition employs Open MP for the as-

signment of sub-domains to CPUs, limiting parallel simulations to shared-memory

computers. The maximum number of processors that can be used depends on the

number of streamwise points and the largest stencil-size of the streamwise derivatives

or filters, respectively. A detailed description of how the domain-decomposition is

implemented, e.g., when synchronization is required, etc. are given in Appendix C.6,

together with a performance study of the code on parallel computers.

3.7 Disturbance Generation

Pulse disturbances are introduced using the following procedure: Higher Fourier

modes (k > 0) initialized with zero are added to the converged or averaged axisym-

metric flow field (k = 0). Within the recirculation region, a top-hat function with

an extent of six gridpoints in the streamwise and the radial directions is specified in

all Fourier modes of density with a small amplitude (typically of order 10−4). This

distribution serves as initial condition and, thus, constitutes a pulse disturbance in

both space and time.

Controlled disturbances are introduced using a volume force. The forcing function

is added in Fourier space to the right-hand-side of either the streamwise or the radial

momentum equations (2.4) in a steady or periodic fashion. The disturbances are

described by half a wavelength of a cosine in both the radial and the streamwise

directions with a frequency ω (ω = 0 for steady forcing) and an amplitude Adist:

F̂ k
V F = Adist sin(2πωt)

[
1− cos

(
(r − rb)π
re − rb

)][
1− cos

(
(z − zb)π
ze − zb

)]
, (3.2)
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with k denoting which azimuthal mode is forced, and rb, re, zb and ze being the

starting and end points of the forcing in the radial and the streamwise directions,

respectively. A monopole disturbance was chosen to keep the spatial extent of the

volume force sufficiently compact to be fully immersed within the shear or boundary

layer.

3.8 Linearized Code

The linearized code is based on the full Navier-Stokes code. The same numerical

method was used, keeping close to all subroutines unchanged. Only the transport

equations were substituted with the linearized equations derived in Appendix A.3.

The main difference between the original N-S code and the linearized code is that,

in the absence of nonlinear terms, the linearized equations can be solved entirely

in Fourier space. As a consequence, the Fourier transform routines were omitted.

Without having to conduct Fourier transforms and allocate additional collocation

points to avoid aliasing errors, the computational cost is significantly reduced.

The initial condition for the linearized calculations always consisted of a two-

dimensional basic-state that was either a similarity solution (if available) or a con-

verged axisymmetric solution from the full Navier-Stokes code. As only the distur-

bance quantities are solved for, several modifications were required for the boundary

conditions. At walls, in addition to setting the fluctuations of the velocity compo-

nents to zero, temperature fluctuations are also prohibited, even when an adiabatic

boundary condition is used for the basic state. At the free-stream, a decay condition

was implemented for the validation calculations described in sections 4.1 - 4.3. For

supersonic flow, all fluctuations are set to zero at the inflow and, for subsonic flow,

a Neumann condition was specified for the disturbance density. All other boundary

conditions were treated as in the full N-S code.
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Figure 3.2 Computational domains for temporal calculations.

3.9 Temporal Code

The temporal code was derived from the full N-S code. Depending on whether it is

desired to conduct temporal simulations of a boundary layer or a wake, the tempo-

ral code is based on the subroutines of the spatial code for a sub-domain of region

1 or a sub-domain of region 2, respectively (see figure 3.1). Figure 3.2 shows the

computational domains for both temporal boundary layer and wake calculations. For

temporal simulations, the streamwise extent of the domain is small to justify the as-

sumption of locally parallel flow. The measure for the domain-length thereby is the

wavelength of the fundamental instability wave. Hence, periodic boundary conditions

can be employed for the inflow and outflow and, therefore, Fourier transforms can

also be used for the streamwise direction. In the streamwise direction, however, full

Fourier transforms need to be utilized to allow for flow through the domain.

High commonality between the spatial and the temporal code was desired to accel-

erate validation and to facilitate the implementation of new elements, such as modi-

fied/new turbulence models. Additionally, the temporal code was designed to conduct
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calculations in order to, e.g., establish resolution requirements for high Reynolds num-

ber cases or design an appropriate contribution function for FSM. In order for the

temporal results to be applicable in the spatial case, the numerical method of both

codes needs to be as similar as possible. Therefore, the use of a spectral method in the

downstream direction and abandoning the domain decomposition are the only signif-

icant differences between the temporal and the spatial code. In spite of the different

approaches, the same system of equations (3.1) and all closures as for the spatial code

are solved numerically at discrete points in the temporal approach. The governing

equations in double-spectral space are presented in Appendix A.4.1. One-dimensional

calculations can be conducted with the temporal code by setting the number of az-

imuthal and streamwise Fourier modes to zero, hence only the (k, l) = (0, 0) mode

is computed, where the indices denote the streamwise and azimuthal mode-number,

respectively. This was of interest for testing the turbulence models for a flat plate

boundary layer because, for temporal RANS calculations, no streamwise or azimuthal

gradients would occur. Considerable savings in computational time were achieved by

evaluating the turbulence models with 1-D temporal RANS calculations because they

typically only required a few minutes on a single CPU. The results of these validation

calculations are discussed in section 4.5.
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4. CODE VALIDATION

For the research presented in this work, three separate codes were employed, namely

a full Navier-Stokes code, a linearized Navier-Stokes (LNS) code and a temporal code.

As described in section 3, both the LNS code and the temporal code are based on

the full Navier-Stokes code and share most of its key numerical features. However,

before applying any of the codes to turbulent simulations at high Reynolds numbers

and supersonic speeds, a thorough validation of each code was conducted.

As described in Appendix C.4, the combination of split finite differences with a

Runge-Kutta time-integration method is suited for the current research. To verify,

that the method is sufficiently accurate to investigate flow instabilities, Tollmien-

Schlichting (TS) waves were computed with all three codes and compared to linear

stability results and data presented in the literature. Then, incompressible wakes were

simulated with the linearized and the full Navier-Stokes code. Finally, the turbulence

models were tested for incompressible and compressible boundary layers using both

the full Navier-Stokes and the temporal code.

4.1 Tollmien-Schlichting Waves (M = 0.25)

The computation of TS waves was chosen as a challenging test for the numerical

method. A viscous hydrodynamic instability is responsible for the growth of small

amplitude waves (TS waves) in a boundary layer. Therefore, an accurate represen-

tation of the physical mechanisms in the near-wall region is crucial for capturing

the correct behavior of the waves, such as phase and amplitude distributions and, in

particular, the growth rates.

The first validation case described here was the computation of two-dimensional

TS waves in an incompressible, flat plate boundary-layer. In order to conduct simu-

lations of a flat plate with the present codes in cylindrical coordinates, the boundary
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layer thickness was chosen to satisfy δ ¿ rwall. This was realized by adding a large

cylinder radius rwall, typically on the order of O (104) to the values of the radial

grid, such that rwall ≤ r ≤ rwall + rmax and therefore all 1
r
terms become negligi-

ble. Computing at very low Mach numbers with a compressible code without specific

modifications, such as preconditioning, is impractical due to the increasing stiffness

of the energy equation when M → 0, requiring unreasonably small time-steps. On

the other hand, to reproduce the incompressible results, the Mach number needed

to be small enough to not introduce compressibility effects. M = 0.25 was chosen

as a good compromise, where Mach number effects are negligible and the time-step

restriction was acceptable.

Most of the validation results are presented in Balzer (2003) and here only few

key results are shown here in order to establish the validity of results obtained with

the temporal code. Balzer found excellent agreement between the data obtained from

temporal simulations and LST. In the process of conducting several parameter stud-

ies (domain height, cylinder radius, near-wall resolution), Balzer also investigated the

influence of the Mach number on the results (i.e., growth rate, amplitude and phase

distributions) and confirmed thatM = 0.25 is suitable for reproducing incompressible

results without requiring unreasonably small time-steps.

To validate the full Navier-Stokes and the linearized code, data were compared

to DNS results from an incompressible code and another compressible code, both

presented in Terzi & Fasel (2002). The set-up of the calculation follows case 1 from

Fasel & Konzelmann (1990) where a DNS code, albeit an incompressible one, was

employed and, therefore, potential deviations from LST caused by non-parallel effects

were accounted for. Fasel & Konzelmann (1990) chose a global Reynolds number of

Re = 100, 000, and a non-dimensional frequency of the disturbance F = 1.4 · 10−4,

defined as F = β∗ν∗/U∗
∞, where β∗ denoted the dimensional frequency. Converting

the frequency to the current non-dimensionalization, the non-dimensional frequency
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Figure 4.1 Amplitude distributions (left) of streamwise velocity component and am-
plification rate (right) of inner maximum of streamwise velocity at Reδ1 = 800; results
from DNS and LNS calculations compared to LST and reference DNS; M = 0.25,
F = 1.4 · 10−4.

is β = F · Re = 14. Following the findings from above, the Mach number was set to

M = 0.25. Two different grids were employed, a coarse and a fine corresponding to the

grids utilized by Fasel & Konzelmann (1990) and Terzi & Fasel (2002), respectively.

The disturbances were introduced into the flow by a volume forcing technique, as

described in section 3.7. When varying the computational grids, the same grid points

were used for the volume forcing, resulting in slightly different positions of the forcing.

However, it was determined that this had no influence on the resulting wave as the

forcing location for all cases was upstream of the amplified region. All other relevant

parameters are listed in table D.1 in Appendix D.

The amplitude distribution of the streamwise velocity component at Reδ1 = 800

is shown in figure 4.1. The results obtained with both the full Navier Stokes code and

the linearized code agree very well with LST and the reference DNS, in particular

when the fine grid is used. For the coarse grid, the outer maximum is slightly shifted

towards the wall, suggesting that the effective Reynolds number is slightly lower at

this location, caused by a larger truncation error as the grid-spacing is larger.1 Figure

1It is shown in Appendix C.4 that the utilized numerical scheme produces mainly dissipation
errors, increasing the effective viscosity and consequently decreasing the effective Reynolds number.



72

4.1 also shows the amplification rate of the inner maximum of the streamwise velocity

component as a function of Reδ1 . It is interesting to see, that the results obtained

employing the finer grid with the present code agree very well with the data from

the compressible reference DNS (that utilized the same grid). A calculation with an

even finer grid was conducted (not shown) but displayed no visible difference in the

solution, suggesting that the result was converged.

When using the coarse grid, the amplification rate is slightly decreased, consistent

with the presumed lower effective Reynolds number caused by the larger grid-spacing.

Nevertheless, the result computed on the coarse grid still shows a larger amplification

rate than that predicted by LST and the maximum is shifted downstream, consistent

with the findings of Fasel & Konzelmann (1990). The incompressible reference DNS,

which matches the data by Fasel & Konzelmann (1990) produced an even larger am-

plification rate. None of the compressible calculations were able to reproduce this

result. Since the reference compressible code uses a very similar numerical method

as the codes used for this work, (split finite differences with a Runge Kutta method),

it is conjectured that small phase errors caused by the numerical scheme when com-

puting at small CFL numbers (due to the low Mach number) might be a cause for

the discrepancy (see the discussion in Appendix C.4). However, the compressible

code used by Terzi (2004) has been extensively tested and used for stability investiga-

tions of incompressible shear layers and supersonic boundary layers and was therefore

considered as a good benchmark.

4.2 Tollmien-Schlichting Waves (M = 1.6)

The accurate computation of incompressible 2-D TS waves presented in the previous

section gives considerable confidence in the codes utilized in this work. Nevertheless,

the correct implementation of the energy equation could not yet be scrutinized as

the effect of the temperature field on the velocity field (through viscosity and EOS)
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Figure 4.2 Amplitude distributions (left) of streamwise velocity component and ther-
modynamic variables ρ and T and amplification rate (right) of inner maximum of
streamwise velocity at Rex = 800; results from DNS and LNS simulations compared
to reference DNS (nscc); Re = 100, 000, M = 1.6, F = 5.0025 · 10−5.

is negligible at low Mach numbers. To that end, the growth of 2-D disturbances in

a supersonic boundary layer at M = 1.6, as investigated by Thumm (1991), were

computed and compared to a reference DNS. The Mach number M = 1.6 was cho-

sen because for M < 2.2 only the viscous mode is unstable and no higher Modes

(Mack modes) are present. This facilitates the investigation of the development of

the disturbance. The global Reynolds number was chosen to be Re = 100, 000 and

the forcing frequency F = 5.0025 · 10−5. All further parameters are compiled in table

D.2 in Appendix D.

The amplitude distributions of the streamwise velocity component and the ther-

modynamic variables ρ and T at Rex = 700 are shown in figure 4.2 (left). All curves

are scaled with the maximum of the respective streamwise velocity component. The

results obtained with both the DNS and the LNS codes agree very well with the data

from the compressible reference DNS. When scrutinizing the amplification rate (fig-

ure 4.2, right), it can be observed that the onset and the end of the unstable region

for the frequency investigated is predicted correctly with both the LNS and the DNS

codes. The DNS code shows a slightly smaller value of the maximum amplification
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rate than the reference and the LNS simulations which might be attributed to the

fact that the base flow (mode k=0) deviated slightly from the initial condition. The

initial condition was obtained with the reference DNS using a characteristic boundary

condition at the free-stream, whereas for the present DNS, only a Neumann condition

was applied. In the LNS calculation, the base flow remains unchanged and, therefore,

the agreement with the data from the reference calculation is superior.

4.3 Oblique Tollmien-Schlichting Waves (M = 3.0)

The previous sections have illustrated that the codes developed can accurately pre-

dict 2-D TS waves, both for subsonic and supersonic flow. Nevertheless, the above

test cases were only two-dimensional and, therefore, the validity of the azimuthal dis-

cretization, in particular the Fourier transforms has not yet been established. To that

end, the growth of oblique disturbances in a supersonic boundary layer at M = 3.0

were computed and compared to a reference DNS by Husmeier (2002).

In order to simulate a three-dimensional flat plate with the cylindrical codes devel-

oped for this research, only a circumferential fraction of a cylinder must be computed.

As explained previously, the radius of the cylinder is specified to be rwall À 1 so that

δ ¿ rwall. Thus, the curvature of the cylinder in azimuthal direction is very benign

and λθ ¿ rwall. The azimuthal wavenumber αθ needs to be scaled with the desired

azimuthal wavelength λθ and the specified cylinder radius rwall as explained in detail

in Appendix A.4.1.

For the temporal simulation, the Reynolds number, based on streamwise posi-

tion, was specified as Rex = 700 and the displacement thickness was fixed to be

δ1 = 0.002435. The streamwise domain length was set to λz = 0.05194 and the az-

imuthal (spanwise) domain length to λθ = 0.02998. When disturbing mode (1, 1), this

resulted in an oblique angle of ψ = 60◦, which according to LST is the most amplified
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angle. Note, that for three-dimensional temporal calculations, combined modes (l, k)

are used, where l denotes the streamwise mode-number and k denotes the azimuthal

wavenumber. Further parameters for the calculation can again be found in table D.2

in Appendix D. The amplitude and phase distributions of the first streamwise and

azimuthal mode (1,1) for the streamwise velocity component and the thermodynamic

variables ρ and T are shown in figure 4.3. The results obtained with TDNS corre-

spond very well with the data from LST. Balzer also compared the temporal growth

rate obtained from TDNS with the spatial growth rate from LST, which he related

through the phase speed, and found a deviation between the two results of merely

10%. This is acceptable, considering that the Gaster transformation was employed

at this higher Mach number.

The reference DNS by Husmeier (2002) was conducted with 328 points in the

wall-normal direction. However, based on the good agreement of the results from the

temporal code with LST using only 120 wall-normal points, the validation calculations

for the full Navier-Stokes and the linearized codes were conducted with 130 points
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in the wall-normal direction. The global Reynolds number was specified as Re =

1, 578, 102, the inflow location was z0 = 1.5917 · 10−3 and the azimuthal (spanwise)

domain length was specified to be λθ = 0.02998 in order to match the parameters

given by Husmeier (2002). By introducing the periodic forcing into the first azimuthal

mode, an oblique wave with ψ = 60◦ was generated. All other relevant parameters are

listed in table D.2 in Appendix D. The amplitude (left) and phase (right) distributions

of the streamwise velocity component and the thermodynamic variables ρ and T at

Rex = 700 are shown in figure 4.4. All amplitude distributions are scaled with the

maximum of the respective streamwise velocity component. Very good agreement is

achieved between the results obtained from both spatial codes and the data from the

compressible reference DNS. The accurate representation of the phase relations is of

particular interest for the current research as phase errors can influence where and if

vortices are generated and thereby affect global results.

The growth rates αi (figure 4.5, left) obtained from both the DNS and LNS code

correspond very well with the data of the reference. When scrutinizing the amplifi-

cation rate (figure 4.5, right), it can be observed that the DNS and the LNS codes
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produce the same results. The agreement with the reference DNS is excellent except

for in the region 325 < Rex < 375. This deviation most likely arises due to the

use of different forcing mechanisms. Husmeier (2002) used wall blowing and suction,

whereas the codes developed here employed volume forcing with the largest amplitude

of the forcing function in wall-normal direction at approximately half the boundary

layer thickness. The strong oscillations in αi in the data from the reference DNS in

this Rex region are an indication that the disturbance wave is not fully established

yet, as opposed to the case where the volume forcing is used. Once the receptivity

region is overcome, the slopes obtained from all calculations are identical.

In conclusion, the validation cases conducted so far demonstrate that the codes

developed for this research are capable of accurately representing the development of

hydrodynamic instabilities. Even weak viscous instabilities leading to TS waves are

captured correctly in 2-D and 3-D, for both subsonic and supersonic flows.



78

4.4 Subsonic Wake Flows

In order to ascertain the correct implementation of the axis-treatment (see section 3.2)

and the interface between regions 1 and 2 (see section 3.1), several calculations were

conducted for low Mach number, axisymmetric wakes at various Reynolds numbers.

These cases were chosen as they could be conducted at reasonable computational cost

and because comparison data of Schwarz (1996) was available. Schwarz investigated

incompressible, axisymmetric wakes for several Reynolds numbers, comparing and

validating his results with water tunnel experiments. The radial velocity was set to

v = 0 at the inflow to match the B.C.s incorporated in the incompressible formulation

by Schwarz.

First, axisymmetric calculations were conducted for various Reynolds numbers and

then fully 3-D calculations were performed for three cases, using the axisymmetric

results as initial condition. All relevant data for the calculations presented in the

following are specified in table D.4 of Appendix D.

4.4.1 Axisymmetric Calculations

In the calculations conducted by Schwarz, for increasing Reynolds numbers the ap-

proach boundary layer thickness was decreased accordingly. This is equivalent to

keeping the size of the cylinder and the kinematic viscosity constant in an experi-

ment and only augmenting the free-stream velocity.

Figure 4.6 shows the axial velocity distribution along the centerline for M = 0.25

and Reynolds numbers ranging between 500 and 8, 000 for axisymmetric calculations.

The lines denote the results obtained with the compressible N-S code, the open sym-

bols indicate the results by Schwarz (1996). Up to ReD = 4, 000, very good agreement

is achieved. For the ReD = 8, 000 case, the discrepancy is accepted as Schwarz sug-

gests that his higher Reynolds number calculations were not fully converged. For the

Reynolds numbers 1, 000 and 2, 000, the calculations were repeated with a different



79

0 1 2 3 4 5 6 7 8
z

-0.4

-0.2

0

0.2

0.4

U
ax

Re
D

=500

Re
D

=1,000

Re
D

=2,000

Re
D

=4,000

Re
D

=8,000

Re
D

=1,000, fine

Re
D

=2,000, fine
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obtained with current compressible code with coarse and fine resolution, respectively.

grid. The grid spacing at the base corner was slightly coarser as for the above cases,

however, a significantly larger number of points was used in both the streamwise and

the radial direction. The grid-stretching was, therefore, much more benign and the

resolution several radii away from the body was significantly finer. As seen in figure

4.6, the solution obtained on the finer grid does not differ from the results computed

on the coarser grid. This shows that the numerical method converges and that the

accuracy of the finite differences and the filtering does not deteriorate with relatively

strong stretching factors as used for the coarse grid case.

While conducting the validation calculations, the following interesting behavior

was recognized. At different Reynolds numbers, not only the recirculation length

changes, but also the maximum reverse velocity is drastically altered. When fixing

the approach boundary layer thickness to a constant value for varying Reynolds num-

bers, which corresponds to increasing the size of the body while keeping the velocity

and the viscosity of the flow constant, the results differ noticeable. Only the recir-

culation length increases with increasing Reynolds numbers, however, the maximum

reverse velocity is nearly constant at u ≈ −0.33 and the peak is located about one

radius from the base for all cases. Clearly, this implies that the thickness of the
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separating boundary layer has a pronounced effect on the global behavior, even for

the axisymmetric case that converges to a steady-state solution. For a fully three-

dimensional flow, this would be expected as a steeper gradient at separation would

lead to faster growth of instabilities and more entrainment of high-speed fluid would

result, altering the global wake-behavior.

4.4.2 3-D Calculations

Fully three-dimensional calculations were conducted for three different Reynolds num-

bers with both the linearized and the full N-S code. At t = 0, a pulse disturbance was

introduced in all azimuthal modes of density at z = r = 1 with the same amplitude

to accelerate the growth of the amplitudes of the higher modes.2

The temporal development of the higher azimuthal Fourier modes (uk for the

LNS simulations and (ρuk) for the DNS) at the disturbance location was monitored

to evaluate whether they are amplified or whether they decay in time. The results of

the calculations with 500 ≤ ReD ≤ 2, 000 obtained with LNS simulations and DNS

are shown in figure 4.8 left and right, respectively. When looking at the results from

2Due to an absolute instability of the flow at the investigated Reynolds and Mach numbers,
round-off errors would suffice to generate a contribution of the higher modes, however, this would
require considerably longer computation times.
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Figure 4.8 Temporal development of higher azimuthal modes at the disturbance loca-
tion (z, r) = (1, 1) obtained with LNS calculations (left) and full Navier-Stokes codes
(right) for Reynolds numbers 500, 1, 000 and 2, 000 from top to bottom; M = 0.25.

the LNS calculations, at ReD = 500 it appears as if only mode k = 1 is amplified and

all other modes decay. Increasing the Reynolds number to 1, 000, the amplification

rate of mode k = 1 increases and mode k = 2 appears to be neutrally stable. At

ReD = 2, 000, modes k = 1, 2, 3 are amplified, with the first azimuthal mode k = 1

having an even higher amplification rate. When scrutinizing the results obtained from

DNS, the same observations can be made. For ReD = 500, only the first azimuthal

mode exhibits exponential growth initially and all other modes decay. At t ≈ 150,

the first mode has reached an amplitude large enough so that nonlinear interaction
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Figure 4.9 Contours of total vorticity at t = 180 (top) and t = 229 (bottom); ReD =
1, 000, M = 0.25.

with itself leads to growth of the second azimuthal mode k = 2. One higher mode

after the other is generated and they grow until a steady saturation state is reached

at t ≈ 1200. However, no deviation in mode k = 0 from the axisymmetric solution is

observed because the nonlinear saturation amplitudes are too small.

At ReD = 1, 000, the results from the DNS also show the increased growth rate

of the first azimuthal mode and a neutrally stable second mode (k = 2). At t ≈ 130,

nonlinear interaction causes all modes to be amplified until they reach a saturation

state. However, at this higher Reynolds number, the amplitude levels at saturation are

large enough to results in a significant alteration of the azimuthal mean flow (k = 0).

This nonlinear interaction in the region 240 < t < 320 manifests itself in vortex

shedding, as can be seen in the sideviews of instantaneous total vorticity, shown in

figure 4.9. That is followed by a quieter interval 320 < t < 370, also shown in figure

4.9, again succeeded by shedding of several structures. This intermittent behavior

was also observed by Schwarz (1996). The Strouhal number for the vortex shedding

was found to be St = 0.155 which compares exactly to that found by Schwarz (1996).
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Figure 4.10 Sideview of total vorticity at t = 180 (top) and perspective view of iso-
surfaces of Q = 0.2 at t = 191.2 (bottom); ReD = 2, 000, M = 0.25.

The Strouhal number for the intermittency was StI ≈ 0.015.

At ReD = 2, 000, as in the results obtained with LNS calculations, the first two

azimuthal mode are amplified in the linear stage before nonlinear effects lead to

exponential growth of all higher Fourier modes. The saturation level is again large

enough to cause a strong interaction with the axisymmetric Fourier mode and no

intermittency is observed, which is in agreement with the calculations by Schwarz

(1996). The Strouhal number of the vortex shedding is St = 0.0946. Figure 4.10

shows a sideview of contours of instantaneous total vorticity (top), clearly highlighting

the vortex shedding and the presence of smaller scale structures. The visualization of

a perspective view of iso-contours of Q = 0.23 (figure 4.10) illustrates the structure of

the vortices generated in this flow. For clarity, the base is marked by the dark-grey

surface. The formation of vortex loops can be observed and is in very good agreement

3The vortex-identification criterion Q will be introduced in detail in section 6.1.2.
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Figure 4.11 Amplitude distributions of the first azimuthal mode for all three velocity
components obtained with DNS and LNS simulations; ReD = 500 at z = 1 for
t = 231.7 (top left), ReD = 1, 000 at z = 1 for t = 115.9 (top right), ReD = 2, 000 at
z = 1 for t = 57.9 (bottom left), ReD = 2, 000 at z = 4 for t = 57.9 (bottom right);
M = 0.25.

with the data of Schwarz (1996).

Being able to obtain the same three-dimensional flow field as Schwarz (1996) with

the DNS code gives confidence in the correct implementation of the axis and the

interface between regions 1 and 2. In order to verify that the LNS code also works

properly for a full wake calculation, the amplitude distribution of the first azimuthal

mode for all three velocity components obtained from both the DNS and the LNS

calculations are compared in figure 4.11. The radial profiles obtained in the recircula-

tion region at z = 1 are shown for all three Reynolds numbers. The most significant
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difference in the radial profiles for increasing Reynolds number is the appearance and

growing importance of a secondary maximum in the streamwise velocity component

at r = 1.1. The amplitude distributions are also shown for ReD = 2, 000 at a location

further downstream, still inside the recirculation region at z = 4. At this location, the

secondary maximum in the streamwise component is no longer present. However, a

distortion in all three profiles is visible close to the axis at r = 0.2. The data obtained

from LNS simulations virtually match the DNS results for all velocity components,

Reynolds numbers and streamwise locations at a significantly lower computational

cost (see table D.4 in Appendix D).

This section concludes the validation of the tools that were developed for the

investigation of physical flow instabilities in supersonic axisymmetric wakes. It was

demonstrated that the three-dimensional flow field behind an axisymmetric afterbody

can be accurately captured, quantitatively reproducing the data obtained from incom-

pressible reference DNS that were validated with water tunnel results. Furthermore,

data from LNS calculations indicated that, at ReD = 2, 000, the flow is absolutely

unstable with respect to both the first and the second helical mode.

4.5 Turbulence Models

The turbulence models described in section 2.2 are validated with calculations of tur-

bulent boundary layers, both on a flat plate in the incompressible limit, and for a

supersonic flow over a cylinder. Furthermore, an additional constant that is intro-

duced in order to make the turbulence models wall-distance independent (see section

2.2.5) was calibrated with these calculations. All turbulence models are implemented

in the same codes (spatial and temporal Navier-Stokes codes) that are employed for

stability investigations and the solution of the filtered N-S equations. Any variation

in the flow solution can therefore entirely be attributed to the contribution of the
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turbulence models. This allows for evaluating the performance of different closures.

The temporal code was employed for the validation calculations of the incompress-

ible boundary layers. In order to achieve the fastest possible turn-around times for

parameter studies, 1-D calculations were conducted, i.e., the number of streamwise

and azimuthal modes was set to zero and only the radial (wall-normal) direction was

solved for. The calculations could typically be conducted in less than three minutes

on a desktop PC. Once the appropriate constants were found, the results from the

temporal calculations were verified with the spatial code.

4.5.1 Incompressible Turbulent Boundary Layer

Initially, a flat plate, zero pressure gradient turbulent boundary layer was computed

at M = 0.25 and Reδ ≈ 1, 700. As for the calculations of TS-waves (section 4.1),

the radius of the body was set to rwall À 1 to prevent lateral curvature effects from

having an impact on the solution. As initial condition, a laminar boundary layer

profile was chosen for the velocity field and both turbulent quantities K and ε were

set to a constant (typically on the order of 10−3) throughout the domain. All further

parameters are listed in table D.5 in Appendix D.

In figure 4.12, the influence of the choice of αi (see section 2.2.1) on the numerical

solution is illustrated by means of several quantities in wall coordinates to emphasize

the near-wall behavior. The EASM calculations are conducted using either the wall-

distance dependent damping function fε2(N) (equation 2.33), or employing the fully

wall-distance independent EASM (equation 2.14 and 2.35), varying the constant cT of

equation 2.35. For this approach, the turbulent time-scale limiter is applied to every

occurrence of a turbulent time-scale, τT . The results are compared with each other

and to theoretical curves (laminar sublayer with U+ = y+ and logarithmic law region

with U+ = 2.5ln(y+) + 5.24). For all quantities shown, it appears as if, when using

the wall-damping function fε2(N), the choice of αi does not influence the solution.
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This was expected, as the wall-damping function overrides the turbulence model

close to the wall. However, once the wall-distance independent variant is used, the

solution becomes highly dependent of which coefficients αi are used. It is noteworthy

that virtually the same solution is obtained when using either cT = 10 in combination

with using values of αi, obtained by assuming P/ε = 1.88, or when specifying cT = 12

and employing the “incompressible” values of αi. For the flow currently considered,

the latter appears to be the better choice.

Looking at the streamwise velocity component in wall-coordinates, the slope in

the region 10 < y+ < 300 is slightly too high when using the wall-damping function

fε2(N) ,which might be attributed to the low Reynolds number. However, when

using the limiter with cT = 12, the slope corresponds slightly better to the theoretical

values. It was therefore determined that this was the appropriate value for cT when

using this particular approach of limiting the turbulent time-scale (equation 2.35).

For values of 0 < cT < 6, the calculations produced the same results as without any

limiter and fε2(N) = 1, significantly undershooting the logarithmic-law curve. In

contrast, when choosing cT > 12, the departure from the viscous sub-layer curve was

delayed to approximately y+ ≈ cT , thereby overshooting the theoretical curve.

Comparing the results obtained for the turbulent quantities K+ and ε+ when

using the turbulent time-scale limiter versus using the wall-damping function also

reveals qualitative differences. When employing the limiter, the decay of K towards

the wall is not as rapid as when using the wall-damping function. Furthermore, ε at

the wall reaches values close to the global maximum, in agreement with the recently

empirically suggested absolute maximum at the wall (Speziale & So, 1996, specify

0.1 < ε+wall < 0.2, and ∂ε+

∂y+

∣∣∣
wall

= 0). In contrast, when using fε2(N), the wall value of

ε+ is considerably smaller than the absolute maximum at y+ ≈ 7. Most importantly

was, however, that good agreement with theory was obtained using a wall-distance

independent turbulence model, so that the more complex base flow geometry could

be investigated. Results for supersonic base flow calculations using this approach are
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Figure 4.12 One-dimensional temporal RANS calculations of a turbulent boundary
layer employing the EASM for different values of αi and utilizing fε2(N) (equation
2.33) or the limiter for the turbulent time scale (equation 2.35); shown are streamwise
velocity (a), turbulent kinetic energy (b), turbulent dissipation rate (c) and the rz-
component of the Reynolds stress (d) in wall-coordinates: u+ = y+ (—), u+ =
2.5ln(y+)+5.24 (– –); ε+ = 2.5/y+ (– · –); using fε2(N) with incompr. αi (◦); fε2(N)
with P/ε = 1.88 (¤); cT = 10 with incompr. αi (+); cT = 10 with P/ε = 1.88 (×);
cT = 12 with incompr. αi (?); cT = 12 with P/ε = 1.88 (>); Reδ ≈ 1700, M = 0.25.

presented in Sandberg & Fasel (2003).

However, for the flow under investigation in this research which features very

disparate flow-regions, assuming a constant ratio of production over dissipation rate

most likely will deteriorate the solution. Finding in addition the strong dependence
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of the solution on the values of the coefficients αi when utilizing the turbulent time-

scale limiter led to the decision of abandoning this particular turbulence model for

the current work. The generalized version of the EASM, where P/ε is locally and

instantaneously computed (see section 2.2.1) was considered instead and needed to

be validated as well.

The same case as above was considered for the validation of the EASMα, namely

a turbulent flat plate boundary layer with zero pressure gradient at M = 0.25 and

Reδ ≈ 1, 700. The new turbulence closure was also implemented into the temporal

code, therefore, the same kind of 1-D calculations as described above were conducted

with the new model. The main difference between the new EASMα and the EASM

was found to be a different optimum value for cT , implying that the limiter value is

dependent on the turbulence model used. The best agreement with the theoretical

curves was obtained when using cT = 18. Most likely, the change in the value of cT is

caused by an increase in c̈µ near the wall when using the EASMα. With this value of

cT established as the best choice for the EASMα closure, a grid study was conducted

using both the limiter and the traditional fε2(N) wall-damping function, shown in

figure 4.13 left and right, respectively. Both the number of points in wall-normal

direction, determining the degree of stretching employed, and the finest spacing at

the wall were varied. All parameters for these cases are compiled in table D.5 in

Appendix D.

The results from the calculations where the wall-damping function fε2(N) was em-

ployed can easily be summarized as not showing any significant differences, regardless

of which grid was used. When using the turbulent time-scale limiter, however, the

picture changes and the solution varies for different grids. This was expected, as the

wall-damping function fε2(N) basically determines the near wall behavior, whereas

the near-wall region needs to be fully resolved when using the wall-distance indepen-

dent version of the turbulence model. Once the near-wall spacing becomes too coarse
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Figure 4.13 One-dimensional temporal RANS calculations of a turbulent boundary
layer employing the EASMα for different computational grids utilizing either the
turbulent time-scale limiter (equation 2.35) with cT = 18 (left) or fε2(N) (equation
2.33) (right); shown are streamwise velocity in (a) and (b), turbulent kinetic energy
in (c) and (d), turbulent dissipation rate in (e) and (f), the rz-component of the
Reynolds stress in (g) and (h) and production over dissipation in (i) and (j), all
in wall-coordinates; u+ = y+ (—); u+ = 2.5ln(y+) + 5.24 (– –); ε+ = 2.5/y+ (–
· –); mr2 = 60, ∆rwall = 0.0004 (◦); mr2 = 60, ∆rwall = 0.001 (¤); mr2 = 80,
∆rwall = 0.0002 (+); mr2 = 80, ∆rwall = 0.002 (×); mr2 = 160, ∆rwall = 0.0002 (?);
mr2 = 160, ∆rwall = 0.002 (>); Reδ ≈ 1, 700, M = 0.25.

in calculations using the turbulent time-scale limiter, the solution deteriorates, as can

be seen for the cases employing ∆rwall = 0.002, denoted by the symbols (×) and (>).

Here, the streamwise velocity profiles in wall coordinates deviate from the theoretical
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curves. The turbulent kinetic energy is overpredicted, as is the value of the turbulent

dissipation rate. Only the rz-component of the Reynolds stress tensor seems to be

unaffected by which grid is used. Note that, as for the case when using the original

EASM, the maximum value of ε+ is located at the wall when using the turbulent

time-scale limiter as opposed to ε+ being far from its maximum value at the wall

when using the wall-damping function fε2(N). It appears as if the number of points

(the amount of stretching) has a negligible effect on the solution.

As already mentioned, in contrast to assuming a specific ratio of turbulent produc-

tion over the dissipation rate, the EASMα computes P/ε locally and instantaneously.

The value of P/ε is shown in plots (i) and (j). When using the wall-damping func-

tion, P/ε approaches zero at the wall and varies between 1.05 < P/ε < 1.15 in the

logarithmic law region, suggesting that the assumption of setting P/ε = 1 for this

kind of flow is a valid assumption. When using the limiter, however, the values of

P/ε rise to significantly larger levels in the viscous sub-layer. This appears to be

inconsistent as the Reynolds stresses should be zero at the wall and P/ε therefore

also should approach zero, because P = ρσikSik.

In light of this inconsistency, another approach was considered to make the turbu-

lence model entirely wall-distance independent (see section 2.2.5). Instead of limiting

every occurrence of a turbulent time-scale, only τT in the destruction term of the

transport equation for ε (equation 2.24) is multiplied by a wall-damping function

that is constructed using a turbulent time-scale limiter, as shown in equation (2.34).

This approach was again tested with the calculation of a turbulent, flat plate bound-

ary layer with zero pressure gradient, so that the temporal code could be employed.

For this case, the flow parameters were M = 0.25 and Reδ ≈ 50, 000 and the EASMα

was used. The results for the calculations are shown in figure 4.14. Scrutinizing the

streamwise velocity component in wall-normal coordinates, it becomes obvious that

the solution is quite sensitive with respect to the value of cT . For cT = 4.65, very
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Figure 4.14 One-dimensional temporal RANS calculations of a turbulent boundary
layer employing the EASMα with different values of cT ; shown are streamwise veloc-
ity (a), turbulent kinetic energy (b), turbulent dissipation rate (c) production over
dissipation rate P

ε
, (d) and the rz-component of the Reynolds stress (e), all in wall-

coordinates; u+ = y+ (—); u+ = 2.5ln(y+) + 5.24 (– –); ε+ = 2.5/y+ (– · –); fε2(N)
(◦); cT = 4.60 (+); cT = 4.65 (×); cT = 4.70 (?); Reδ ≈ 50, 000, M = 0.25.
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good agreement with the theoretical curves is achieved. For this value of the constant,

all quantities but the turbulent dissipation rate are predicted very similar to when

the traditional wall-damping function is used. Most importantly, the deficiency of

the above method is overcome, the production over dissipation ratio approaches zero

at the wall when using the wall-distance independent wall-damping function fε2. In

spite of the sensitivity towards the value of cT , it was decided to use this approach for

the investigation of turbulent axisymmetric wakes, because this approach constituted

a fully wall-distance independent turbulence model without apparent inconsistencies.

In conclusion, the results from calculations of turbulent boundary layers demon-

strated that theoretical results could be reproduced, in particular for the streamwise

velocity component in wall-coordinates. Wall-distance independent versions of both

the EASM and EASMα were successfully validated. The constants required in the

limiters were calibrated to reproduce the correct slope and offset of the law of the

wall for turbulent boundary layers with zero pressure gradient over flat plates. The

near-wall behavior of ε and the slope U+ over y+ was found to correspond more

accurately to theoretical and empirical references when using the wall-distance inde-

pendent versions of the turbulence models than when using a standard wall-damping

function.

4.5.2 Compressible Turbulent Boundary Layer

To validate the compressible extensions to the turbulence model, an axisymmetric

supersonic turbulent boundary layer simulation was calculated with the spatial code.

The flow parameters were chosen as M = 2.46 and Reδ = 165, 000 at the outflow

in order to match the approach boundary layer in the experiments by Herrin &

Dutton (1991). 52× 80 points were used in the streamwise and the radial directions,

respectively. Further parameters for the simulations can be found in table D.5 in
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Appendix D. An additional objective of these computations was to obtain results

that could serve as inflow conditions for calculations of the entire base flow geometry,

using both RANS and FSM. Several calculations were conducted with the original

EASM, using both the wall-damping function fε2(N) and the turbulent time-scale

limiter with different values for cT . The results were presented in Sandberg & Fasel

(2003) and in summary, good agreement between the calculations using fε2(N) or

when using the limiter with cT = 12 and the experiments was found. Several integral

quantities such as the compressible displacement thickness, δ1, momentum thickness,

θ, and Reθ, calculated for an axisymmetric boundary layer are compared to the

experimental values in table 4.1.

Employing the EASMα, the calculations were repeated with the wall-distance

independent wall-damping function fε2 in order to calibrate the constant cT for later

RANS and FSM calculations of the UIUC flow. Figure 4.15 shows the computed

streamwise velocity profiles in comparison to the experimental data and theory. The

best agreement with the theoretical curves was achieved using cT = 4.45. Using the

friction velocity obtained from that case to rescale the data of Herrin and Dutton, the

agreement between experiment and RANS calculation is found to be very good. For

smaller values of cT , the velocity profiles undershoot the theoretical log-layer solution.

For larger values of cT , the opposite is the case and the velocity profile departs from the

laminar sub-layer too far away from the wall. Several integral quantities, calculated

for an axisymmetric boundary layer are again compared to the experiments and to

UIUC EASM EASMα

fε2 cT = 12 cT = 4.40 cT = 4.45 cT = 4.50

δ1 0.031 0.0349 0.0333 0.0343 0.0341 0.0332
θ 0.0083 0.00833 0.00814 0.00837 0.00831 0.00813
Reθ 13,700 13,744 13,431 13,810 13,711 13,414

Table 4.1 Comparison of integral quantities from RANS calculations with UIUC-
experimental data for turbulent approach-flow; Reδ = 165, 000, M = 2.46.
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Figure 4.15 Streamwise velocity profiles in wall-coordinates from temporal boundary
layer calculations using EASMα; u

+ = y+ (—), u+ = 2.5ln(y+) + 5.24 (– –), experi-
ments by Herrin & Dutton (1991) (+), cT = 4.40 (- - -), cT = 4.45 (◦), cT = 4.50 (- ·
-); Reδ = 165, 000, M = 2.46.

the previous calculations employing the original EASM. All results are compiled in

table 4.1. Overall, the best agreement with the experimental data is found when using

the EASMα with cT = 4.45. Therefore, the result obtained with that calculation was

chosen as inflow data for future calculations of the entire base flow at experimental

flow conditions.

In summary, the compressible extensions to the source terms of the transport

equation for energy and turbulent kinetic energy K were shown to work properly. All

turbulence models tested were able to reproduce the supersonic turbulent approach

boundary layer over an axisymmetric cylinder, measured in the experiments at UIUC.

4.6 Summary

It was demonstrated in the previous sections that all elements are in place for con-

ducting numerical simulations of transitional and turbulent axisymmetric wakes. Nu-

merous calculations verified that the codes developed for the present research can

accurately capture the growth of disturbance waves due to hydrodynamic instabil-

ities, both for incompressible and compressible flows in two and three dimensions.
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Numerical codes are therefore available for the investigation of the development and

evolution of coherent structures that are the consequence of physical flow instabilities.

The axisymmetric solution of subsonic wakes matched reference data and the

three-dimensional, unsteady flow fields of incompressible reference calculations were

reproduced. In addition, data from LNS calculations indicated that, at ReD = 2, 000,

the flow becomes absolutely unstable with respect to both the first and the second

helical mode.

Finally, it was shown that the implementation of several turbulence models was

successful and that turbulent boundary layers, both for incompressible flow over a

flat plate and for supersonic flow aligned with a cylinder, could be accurately com-

puted. The results compared well with theory and experimental data. Wall-distance

independent versions of the EASM and EASMα were successfully validated and the

additional constants appearing in the limiters were calibrated. A strong dependence

of the solution on the values of the coefficients αi when utilizing the turbulent time-

scale limiter was observed for the EASM. For several cases, employing these versions

yielded superior results over the standard approach using a traditional wall-damping

function.
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5. RESULTS - LINEAR STABILITY ANALYSIS

Linear stability calculations were conducted for supersonic axisymmetric wakes at

Reynolds numbers between 5, 000 and 3, 300, 000. For all cases, the Mach number

was chosen to be M = 2.46 to match the flow parameters of the UIUC experiments

when computing at the highest Reynolds number. The Mach number was kept con-

stant to show whether certain trends could be established and different flow regimes

could be identified as a function of Reynolds number only. Both spatial and tempo-

ral stability calculations were conducted in order to determine whether local and/or

global instabilities are present in the flow. To investigate whether the flows are ab-

solutely unstable with respect to azimuthal/helical perturbations, pulse disturbances

were introduced into the azimuthal Fourier modes within the recirculation region.

The amplitudes of the Fourier modes at the disturbance location were monitored

over time to determine whether the disturbances grow or decay. For cases where the

pulse response decayed in time, periodic forcing was applied to the shear layer and

the spatial growth or decay of the perturbations was observed to identify whether the

flow is subject to convective instabilities.

5.1 Basic State

In order to obtain a basic state for the linear stability calculations, axisymmetric

calculations were conducted with the full N-S code for Reynolds numbers up to

ReD = 400, 000. The basic state for the ReD = 3, 300, 000 case was obtained from an

axisymmetric RANS calculation (see chapter 7). The converged axisymmetric flow

fields served as basic state for the three-dimensional spatial and temporal stability

calculations. As shown in the validation chapter (section 4.4.1), the boundary layer

thickness at separation has a pronounced effect on the global flow-field, even for ax-

isymmetric calculations. To match the approach boundary layer thickness measured
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Figure 5.1 Centerline streamwise velocity obtained from axisymmetric N-S calcula-
tions for different Reynolds numbers; δc = 0.1, M = 2.46.

in the experiments at UIUC, the approach boundary layer was designed such that

δc = 0.1 for all cases. The parameters used for the calculations are listed in the

second column of table D.6 in Appendix D, except that kh = 0, dt = 7 · 10−3 and

the computational cost per flow-through-time was 0.428 CPU hours on an HP Alpha

computer. Several calculations were repeated on different computational grids to ver-

ify that the grid-resolution was sufficient. The axisymmetric calculations converged

to a steady-state solution for all Reynolds numbers ReD ≤ 100, 000, implying that

no absolute instability with respect to axisymmetric disturbances is present. How-

ever, for ReD ≥ 200, 000, the flow became unsteady, suggesting that the flow may be

absolutely unstable with respect to the axisymmetric mode.

The streamwise velocity component at the axis obtained from the axisymmetric

N-S calculations is shown in figure 5.1. As for the subsonic case, the maximum

reverse velocity is fairly constant for all Reynolds numbers investigated when keeping

the approach boundary layer thickness constant. However, the recirculation length

varies considerably and increases for larger Reynolds numbers. The streamwise axis-

velocity at the outflow (z = 15.9) is supersonic for ReD < 20, 000. For larger Reynolds

number, the flow becomes marginally subsonic close to the axis. Due to the fact that

the cases with ReD ≥ 200, 000 become unsteady, averaged solutions are shown. For

a further discussion of the ReD = 400, 000 case, see section 6.1.3.
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5.2 Spatial Results

In contrast to standard LST, when using spatial simulations, the basic state can be

two-dimensional and allow for strong gradients in the streamwise direction. Thereby,

calculations are not restricted to local analysis and can account for non-parallel and

other global effects. In the LNS code, all azimuthal modes are decoupled and a linear

analysis for each individual mode can be accomplished simultaneously. In addition,

it was shown in the validation chapter (chapter 4) that results obtained with the

linearized N-S code reproduced the data obtained from the full N-S code for small

disturbances. As the LNS calculations can be conducted entirely in Fourier space

without having to utilize Fourier transforms and allocate additional collocation points

to avoid aliasing errors, the computational costs are significantly reduced. For these

reasons the linearized code was employed for all spatial linear stability calculations.

Pulse disturbances were introduced into the azimuthal modes behind the base

within the recirculation region at r = 0.5 and z = 2.5. For all other relevant parame-

ters of the stability calculations conducted with the linearized code, see table D.6 in

Appendix D. As opposed to the temporal calculations that will be presented later,

for each azimuthal mode the most amplified streamwise wavelengths are included in

the calculations and cannot be excluded by an unfortunate choice of the streamwise

domain-length. Note that the temporal behavior of each azimuthal mode can be

composed of multiple unstable streamwise wavelengths. The temporal development

of the azimuthal Fourier modes of the streamwise velocity component was monitored

at the disturbance point and is shown in figure 5.2 for several Reynolds numbers.

In contrast to the subsonic cases investigated in the validation chapter (section

4.4.2), at ReD = 5, 000, all azimuthal modes decay rapidly, implying that, at this

Reynolds number, the supersonic flow is linearly stable with respect to axisymmetric

and helical modes. This fact illustrates the strong damping effect of compressibility,

in particular considering that the approach boundary layer for the supersonic cases
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Figure 5.2 Temporal development of azimuthal Fourier modes of streamwise velocity
obtained from LNS calculations for various Reynolds numbers; M = 2.46.
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was chosen to be significantly thinner than for the subsonic cases. A steeper gradient

in the separated shear-layer is, therefore, enforced and should lead to even larger

growth rates of the disturbances than in the subsonic case. Even though modes

k = 0 and k = 1 are the least damped ones at ReD = 5, 000, when increasing the

Reynolds number to 10, 000, these two modes do not grow but the azimuthal Fourier

modes k = 2 and k = 3 are the only modes to become amplified. It should be noted

that mode k = 2 grows monotonically, while mode k = 3 and several higher modes

exhibit an oscillatory behavior in time with a regular period of F ≈ 12.1 Further

increasing the Reynolds number to ReD = 20, 000, the first azimuthal mode also

becomes unstable, showing the same regular growth as k = 2. At this Reynolds

number, all higher Fourier modes included in the calculation are amplified. For

ReD = 30, 000, the amplification rates of all unstable modes are increased and modes

k = 1 − 4 all exhibit monotone growth with modes k = 3 and k = 4 featuring

the largest growth rates. At this point it would be of interest to solve the multi-

dimensional eigenvalue problem for the basic states under consideration according to

Theofilis (2003). This could determine whether the modes exhibiting monotonous

growth possess a purely imaginary complex frequency, i.e., are non-oscillatory.

The main difference that can be observed for both the ReD = 60, 000 and ReD =

100, 000 cases (besides the increased amplification rates) is that modes k = 7 and

k = 8 possess growth rates exceeding those of most other modes, except for k = 3

and k = 4. Only when increasing the Reynolds number to 200, 000, a qualitative

change can be noticed. For this case, mode k = 1 is the most amplified Fourier mode

and the axisymmetric mode exhibits a larger growth rate than all remaining modes.

This confirms the suspicion, that, at this Reynolds number, an absolute instability of

the axisymmetric mode could be present for the flow conditions under investigation.

At ReD = 3, 300, 000, the linear stability calculation was conducted with the high

1The absolute value of the data is shown in order to display the results on a logarithmic scale,
therefore, sign changes appear as local minima.
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Reynolds number version of the LNS code, as presented in Appendix A.3.1. Note

that, for this case, a much shorter time-interval is selected, illustrating the consid-

erably increased growth-rate for all Fourier modes, in spite of the additional eddy

viscosity which was included in the calculation. In contrast to all previous cases, the

amplification rate of all modes, including the axisymmetric mode, is similar.

Tourbier (1996) found no absolute instability with respect to helical modes for

ReD < 30, 000. However, judging from results obtained from the LNS simulations, it

appears to be more likely that the lower limit for an absolute instability with respect

to helical modes lies between 5, 000 and 10, 000. It can only be speculated about the

reasons of the discrepancy between the current results and those by Tourbier (1996).

At ReD = 20, 000, the first growth of the higher modes was not detected before

t ∼ 30, which corresponds to approximately two full flow-through times. In light of

considerably less available computer power at the time of the previous investigation,

it seems likely that Tourbier (1996) terminated the calculations at an earlier time,

where the amplitudes of the azimuthal modes were still decaying.

To exclude the possibility that reflections from the domain boundaries introduced

non-physical perturbations in the region of interest and continuously excited con-

vective instabilities, the calculation for ReD = 20, 000 was repeated with a larger

domain size. As stated in section 5.1, for ReD ≤ 20, 000, the flow is subsonic in the

vicinity of the axis at the outflow when zmax = 15.9. For a domain with zmax = 26,

on the other hand, the streamwise axis-velocity at the outflow becomes Uax = 0.46,

which corresponds to Max = 1.12. Therefore upstream travelling reflections from the

outflow were eliminated. The inflow of the computational domain was also moved

to 2 radii upstream of the base. Furthermore, no perturbations from the free-stream

were anticipated for the radial domain-size chosen. The Mach angle at M = 2.46 is

∼ 24◦, therefore, for a domain height of r = 6, the expansion wave emanating from

the base corner reaches the freestream at approximately z = 11. Hence, potential
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Figure 5.3 Two dimensional mode-shape of Fourier mode k = 3 of the streamwise
velocity component obtained from LNS calculations for two instances; ReD = 30, 000,
M = 2.46.

reflections from the free-stream boundary will not interfere with the wake before ap-

proximately 22 radii downstream of the base. The calculation with a different domain

size showed no significant difference from the original computation, giving confidence

in the results discussed above.

So far, only the pulse response in time for a single location was discussed. When

observing the entire flow field, it appears as if the unstable modes are of two-dimensional

nature. Representative for all other cases, the third azimuthal Fourier mode of the

ReD = 30, 000 case is shown in figure 5.3 for two time-instants. Even though the

amplitude increases one order of magnitude from t = 50 to t = 65, the shape of

the mode changes only marginally, in particular close to the base at z ≈ 0.5. Far-

ther downstream, several azimuthal modes oscillate in time while growing, as was

observed in figure 5.2, however, the shape of the modes also is preserved. The local

maximum close to the base grows monotonically for all unstable modes, irrespective

of the Reynolds number, also maintaining a “frozen” two-dimensional distribution.

It is suggested, that this is an indication for the presence of a global mode. In order

to verify that this might be the case, temporal calculations were conducted, which,

due to the parallel assumption of the basic state inherently exclude the presence of

global modes. The temporal results are presented in section 5.3.
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The radial profiles of azimuthal Fourier modes for all three velocity components,

obtained from LNS calculations, are shown in figures 5.4 – 5.6 in order to establish

the effect of the Reynolds number on the amplitude distributions. A streamwise

location within the recirculation region, z = 2.5, was selected. For all data-sets, the

azimuthal modes of all velocity components were scaled with the global maximum

of the first azimuthal Fourier mode of the streamwise component. This procedure

was chosen to ensure that, for each azimuthal Fourier mode, the amplitudes of the

three velocity components could be compared to each other. The amplitudes among

separate Fourier modes were not considered crucial, as all modes are decoupled in the

linearized calculations and, therefore, do not interact with each other.

For all Reynolds numbers investigated, the radial profiles of the axisymmetric

mode k = 0 possess their maximum in the vicinity of the shear layer. In contrast,

for Reynolds numbers up to ReD = 100, 000, the amplitude distribution of the first

azimuthal mode exhibits a global maximum at r ≈ 0.2 for the streamwise component,

and a maximum at the axis for the radial and the azimuthal components. The mode-

shapes, therefore, strongly resemble those found for the subsonic wake calculations

at ReD = 1, 000 (see section 4.4.2). For ReD ≥ 200, 000, however, the radial profiles

exhibit an entirely different behavior, with the global maximum of the first mode of

all velocity components located in the shear layer. The above observations lead to

the conclusion, that, in spite of being damped up to ReD = 10, 000 and amplified for

ReD ≥ 20, 000, the mode-shape of the first azimuthal mode is fairly independent of

Reynolds numbers up to ReD = 100, 000 at M = 2.46. The Mach number appears to

determine the threshold value of the Reynolds number at which a significant change in

shape occurs, as evidenced by the development of global maxima in the mode-shapes

in the shear layer for ReD ≥ 2, 000 at M = 0.25 (see figure 4.11).

For the higher azimuthal modes, a similar behavior can be observed as for the

first mode, i.e., for lower Reynolds numbers, the global maxima are located within
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Figure 5.4 Radial mode-shapes of Fourier modes of the streamwise velocity compo-
nent, obtained from LNS calculations for Reynolds numbers: 5, 000, 10, 000, 20, 000,
30, 000, 60, 000, 100, 000, 200, 000 and 3, 300, 000, from top left to bottom right;
z = 2.5, M = 2.46.
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Figure 5.5 Radial mode-shapes of Fourier modes of the radial velocity component,
obtained from LNS calculations for Reynolds numbers: 5, 000, 10, 000, 20, 000, 30, 000,
60, 000, 100, 000, 200, 000 and 3, 300, 000, from top left to bottom right; z = 2.5,
M = 2.46.



108

0 0.2 0.4 0.6 0.8 1
r

-0.2

-0.1

0

0.1

0.2

w
k /|u

1 | m
ax

k=1
k=2 (*10)
k=3 (*10)
k=4 (*10)
k=5 (*10)

0 0.2 0.4 0.6 0.8 1
r

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

w
k /|u

1 | m
ax

k=1
k=2
k=3
k=4
k=5

0 0.2 0.4 0.6 0.8 1
r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

w
k /|u

1 | m
ax

k=1
k=2
k=3
k=4
k=5

0 0.2 0.4 0.6 0.8 1
r

-16

-8

0

8

16

24

w
k /|u

1 | m
ax

k=1 (*100)
k=2
k=3
k=4
k=5 (*100)

0 0.2 0.4 0.6 0.8 1
r

-80

-60

-40

-20

0

20

40

60

80

w
k /|u

1 | m
ax

k=1 (*100)
k=2
k=3
k=4
k=5 (*10)
k=6
k=8

0 0.2 0.4 0.6 0.8 1
r

-24

-16

-8

0

8

16

24

w
k /|u

1 | m
ax

k=1 (*100)
k=2
k=3
k=4
k=5
k=6
k=8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
r

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

w
k /|u

1 | m
ax

k=1
k=2 (*100)
k=3 (*100)
k=4 (*100)
k=5 (*100)
k=6 (*100)
k=8 (*100)

0 0.2 0.4 0.6 0.8 1
r

-0.2

-0.1

0

0.1

0.2

0.3

0.4

w
k /|u

1 | m
ax

k=1
k=2 
k=3
k=4
k=5
k=6 
k=8 

Figure 5.6 Radial mode-shapes of Fourier modes of the azimuthal velocity component,
obtained from LNS calculations for Reynolds numbers: 5, 000, 10, 000, 20, 000, 30, 000,
60, 000, 100, 000, 200, 000 and 3, 300, 000, from top left to bottom right; z = 2.5,
M = 2.46.
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the recirculation region and for increasing Reynolds numbers, an additional local

maximum develops in the shear layer, becoming the absolute maxima for ReD ≥
200, 000. As opposed to the first azimuthal mode, for higher modes the presence of

a local maximum in the shear layer region occurs for considerably smaller Reynolds

numbers, starting at ReD = 10, 000.

This behavior leads to the suggestion that two distinct instability mechanisms

for the higher azimuthal modes might be present in the flow: A global mode within

the recirculation region, and a shear-layer mode. The fact that the shear-layer mode

becomes visible in the radial profiles only for higher Reynolds numbers is expected.

The shear-layer mode is subject to strong damping in high compressibility environ-

ments. A measure for the compressibility of the flow is the convective Mach number

Mc, introduced by Bogdanoff (1983). When using the isentropic definition of Mc,

the largest convective Mach number is reached at the streamwise location where the

maximum reverse velocity can be found,2 i.e., in the initial shear-layer. Therefore,

large Reynolds numbers are required in order to enable the shear-layer instability to

be amplified. Several azimuthal modes with k > 1 display a strong contribution of

the shear-layer mode at lower Reynolds numbers. This can be attributed to the fact

that oblique disturbances possess larger amplification rates under high compressibility

conditions.

The location z = 2.5 was selected for the above discussion because it is repre-

sentative of a large part of the recirculation region. However, the two-dimensional

mode-shape shown in figure 5.3 exhibited a local maximum at z = 0.5, growing mono-

tonically for all Reynolds numbers. Therefore, mode-shapes of the streamwise velocity

component are also shown for two Reynolds numbers in figure 5.7. In contrast to the

location z = 2.5, the global mode appears to be dominant for both Reynolds numbers.

Merely the first azimuthal mode shows a significant contribution of the shear-layer

2In fact, due to the rapid expansion at the base, the free-stream velocity also possesses its largest
value at the same streamwise location.
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Figure 5.7 Radial mode-shapes of Fourier modes of the streamwise velocity compo-
nent, obtained from LNS calculations; ReD = 30, 000 (left) and ReD = 200, 000
(right); z = 0.5, M = 2.46.

mode in the ReD = 200, 000 case. The decreased contribution of the shear-layer mode

at the location z = 0.5 compared to the location z = 2.5 suggests that this instability

is of convective nature, i.e., grows in the downstream direction.

The radial profiles of the azimuthal modes at a streamwise location downstream

of the recompression region (not shown here), were also scrutinized. All mode-shapes

only exhibited one maximum, contracted to a smaller radial extent due to the lesser

circumference of the wake at the location further downstream. In the absence of a

recirculation region, only the shear-layer mode is present at the location within the

trailing wake.

In conclusion, evidence for an absolute instability with respect to higher azimuthal

modes, k > 0, was found at M = 2.46 for ReD > 5, 000. For ReD > 100, 000, the flow

appears to be absolutely unstable with respect to the axisymmetric mode, k = 0. For

the Reynolds number range 10, 000 ≤ ReD ≤ 100, 000, the linearly most amplified

modes are k = 2, 3, 4. It is suggested that, for higher azimuthal modes, a global mode

and a shear-layer mode coexist. For increasing Reynolds numbers, the shear-layer

mode gains in importance and, eventually, becomes dominant.
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5.3 Temporal Results

In order to determine whether the flow is locally or globally unstable with respect

to axisymmetric, azimuthal or helical modes, stability investigations at several char-

acteristic streamwise positions were conducted with the temporal code. Using the

temporal approach for small disturbances can be compared to performing standard

linear stability analysis. The primary benefit of conducting temporal calculations

complementary to spatial calculations is that it can be determined whether distur-

bances are locally unstable or if they only become unstable in the presence of global

effects, such as streamwise pressure gradients, streamline curvature, etc.

To obtain the local profiles required for the stability investigations, axisymmetric

DNS calculations were conducted for all Reynolds numbers of interest. The one-

dimensional profiles of the desired streamwise location were then extracted from the

converged spatial solutions and the radial velocity component was set to zero in order

to be consistent with the temporal assumption of parallel flow. The profiles were

read into the temporal calculations at initialization and constituted the basic state,

i.e., the mode (l, k) = (0, 0). With the radial velocity set to zero and the lack of

streamwise gradients of the basic state, for the mode (0, 0), the governing equations

reduce to a pure diffusion equation. A forcing term needs to be added to the RHS

of the governing equations in order to avoid a significant change of the basic state

over time. For a detailed discussion of applying forcing terms in order to maintain the

basic state, see, e.g., Laurien & Kleiser (1989); Sandberg (1999); Balzer (2003). Three

characteristic positions were chosen for the stability calculations: Firstly, a location

fairly close to the base, at z = 0.5. Here, the highest reverse velocity is reached for

all Reynolds numbers investigated (see figure 5.1) and the shear layer features a large

radial gradient just after separation. In the spatial calculations, the maximum of the

global mode was found at this position. Secondly, a position farther downstream, at

z = 2.5, where the shear layer has grown and the gradient is reduced. This location
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is representative of a large area within the recirculation region. Finally, downstream

of the reattachment point, at z = 7 or z = 9, within the trailing wake. No reverse

flow is present, however a significant velocity deficit occurs.

The same numerical grid in the radial direction was used in the temporal case as

for the spatial calculations. The azimuthal extent of the domain was 0 ≤ θ ≤ π for

all cases. However, which streamwise length of the domain to chose was not obvious.

Therefore, a calculation of a representative case, here ReD = 30, 000 at z = 2.5, was

conducted for a fairly long streamwise extent (λz = 4 · π) with a large number of

streamwise Fourier modes (lh = 32). The calculation revealed that no modes with

l ≤ 2 or l ≥ 12 were strongly amplified. Thus, all stability computations were done

with 8 streamwise modes for a domain length of λz = 2 · π. For further relevant

parameters, see table D.3 in Appendix D. A pulse was introduced at the inflection

point of the respective profile when the calculation is initialized and the development

of the streamwise and azimuthal Fourier modes was monitored at the forcing location.

The results are shown for Reynolds numbers 5, 000 ≤ ReD ≤ 200, 000 in figure

5.8. For clarity, only the most amplified Fourier modes are shown. Recall that

the mode numbers are given in the format (l, k), where l denotes the streamwise

mode-number and k denotes the azimuthal wavenumber. Each azimuthal mode is

assigned one symbol and the streamwise modes are distinguished through separate

line-styles. In general, it can be observed that the growth rates of the most amplified

modes increase with increasing Reynolds numbers. Also, the closer the location of

the profile under investigation is to the base, the higher the growth rates appear to

be and the more modes experience strong amplification. The graphs also reveal that

the most unstable modes are always helical (oblique) modes, i.e., k, l 6= 0. In fact,

unstable axisymmetric modes (k = 0) are only found for the two upstream locations,

and no unstable streamwise modes (l = 0) were found at all in the linear regime.

For the lowest Reynolds number investigated (5, 000), at z = 0.5, modes with
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Figure 5.8 Temporal development of Fourier modes of density obtained from TDNS
for ReD = 5, 000, ReD = 10, 000, ReD = 30, 000, ReD = 60, 000, ReD = 100, 000 and
ReD = 200, 000 from top to bottom; left: z = 0.5, center: z = 2.5 and right: z = 9
(top two), z = 7 (remaining); M = 2.46.
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k = 2, 3, 4 are most amplified with the streamwise mode numbers being l ≤ 3. Further

downstream, at z = 2.5, where the reverse velocity is reduced and the radial shear-

layer gradient is diminished, only the first two azimuthal modes are amplified for long

streamwise wavelengths. Within the trailing wake, the local analysis shows that only

the first azimuthal mode is unstable for l = 1, 2.

Increasing the Reynolds number to 10, 000, a larger amount of Fourier modes

becomes unstable. At the location close to the base, azimuthal modes up to k = 6

are strongly amplified. At z = 2.5, as opposed to the lower Reynolds number, modes

with k = 3 also are amplified and in the trailing wake modes with k = 2 start to

grow, albeit at a considerably smaller rate than modes with k = 1.

Further increasing the Reynolds number, the trend, that larger azimuthal mode-

numbers also become strongly amplified, continues. However, a significant difference

can be observed when comparing the three streamwise locations. For the location

within the trailing wake, the streamwise mode-number of the most unstable modes

does not increase considerably, i.e., l = 2, 3 for all k. In contrast, at z = 0.5, the

streamwise wavenumber of the most amplified Fourier modes increases steadily with

Reynolds number such that, at ReD = 200, 000, modes with l ≥ 4 are most amplified

for all k. The location at z = 2.5 shows a similar behavior, however, the shift towards

higher streamwise wavenumbers is not as pronounced. In order to assert that no

streamwise modes higher than l = 8 are significant, the calculations at z = 0.5 for

the higher Reynolds numbers were repeated with a streamwise domain length eight

times smaller, i.e., λz = 0.25 · π. For these cases, l = 1 corresponds to l = 8 in the

calculations with the longer domain-length. The additional calculations revealed that

no modes with l > 8 (in the original case) were strongly amplified for the Reynolds

numbers investigated.

Additional calculations were conducted by Balzer (2003) for a streamwise location

close to the mean reattachment point. For all Reynolds numbers, the results were

similar to those found here at z = 7 or z = 9, i.e., the azimuthal modes with k = 1
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Figure 5.9 Radial mode-shapes of Fourier modes of the streamwise velocity compo-
nent, obtained from TDNS; ReD = 30, 000 (top left), ReD = 60, 000 (top right),
ReD = 100, 000 (bottom left) and ReD = 200, 000 (bottom right); z = 2.5, M = 2.46.

and k = 2 were most amplified. Recall that in the spatial calculations employing the

linearized code, the azimuthal modes k = 2, 3, 4 were the most amplified modes for

10, 000 ≤ ReD ≤ 100, 000.

The radial mode-shapes obtained from temporal calculations are shown in figure

5.9. For all Reynolds numbers and locations z ≥ 2.5 investigated with the tempo-

ral code, the mode-shapes exhibit a maximum exclusively in the shear layer region.

Virtually no variation can be observed within the recirculation region, implying that,

at this location the local analysis only captures the shear-layer mode. This leads to

the hypothesis that the inner maximum found in the radial profiles obtained from

spatial calculations might indeed be caused by global modes. The above results also

confirm that the shear-layer instability is generated locally. Judging from the non-
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zero phase speeds found for all unstable modes, the shear-layer mode appears to be a

convective instability. Radial profiles obtained from local stability calculations using

a profiles from the trailing wake (not shown here) showed a similar behavior to the

spatial results. This supports the notion that the trailing wake region only contains

the shear-layer mode.

In summary, for all Reynolds numbers and streamwise positions investigated here,

unstable modes were found. The dominant unstable modes most likely can be classi-

fied as convective shear-layer modes and are of helical nature. For increasing Reynolds

numbers, the growth rates increase and higher azimuthal modes gain importance.

Depending on the streamwise location, the streamwise wavenumbers of the fastest

growing modes also increase for larger Reynolds numbers. Comparing the results

from the temporal calculations with the spatial results presented above constitutes

circumstantial evidence that global modes are present in the spatial calculations. The

(linearly) most unstable shear-layer modes appear to be generated locally. In order

to determine, whether the instabilities found in the lowest Reynolds number case are

of convective or absolute nature, additional spatial computations were conducted and

are presented in the following section.

5.4 Convective Instability

It was determined in the spatial calculations, that supersonic axisymmetric wakes at

M = 2.46 with an approach boundary layer thickness of δ = 0.1 become absolutely

unstable with regard to higher azimuthal modes for ReD > 5, 000. The temporal

results presented in section 5.3, however, showed amplification of disturbances at

ReD = 5, 000. Due to the periodic boundary conditions in the streamwise direction,

the temporal approach converts every physical problem to a closed system, i.e., distur-

bances cannot leave the system. If the flow is convectively unstable, the disturbance
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will, therefore, grow in time, which in the spatial case would be defined as an absolute

instability.

In order to verify that the instabilities detected for ReD = 5, 000 in the temporal

code are of convective nature, i.e., requiring continuous excitation in order to remain

in the region of interest, an additional calculation was conducted. Here, a time-

periodic volume forcing, see section 3.7, was introduced in the shear layer immediately

after separation (center of disturbance at r = 1.05, z = 0.04). The fact that all

azimuthal Fourier modes are decoupled in the linearized code was advantageous, as
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Figure 5.10 Instantaneous azimuthal Fourier modes of ρ; periodic forcing active (left)
and switched off (right) z = 2.5, r = 0.5, ReD = 5, 000, M = 2.46.
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the stability behavior of several azimuthal modes could be investigated with a single

calculation. Four higher azimuthal Fourier modes were used, and the forcing at low

amplitude (Adist = 1 · 10−5) was introduced into every mode. The periodic forcing at

a frequency of ω = 0.5, which appeared to be the most amplified one in the temporal

calculations, was active for the time-interval 0 ≤ t ≤ 32. The forcing was then

switched off, in order to evaluate whether the disturbances were entirely convected

out of the computational domain. Results for all azimuthal modes are shown in figures

5.10 (a) to (h).

At t = 29.6, while the forcing is still active, it can be observed for all modes that

the disturbances grow in the streamwise direction up to the end of the recirculation

region (the recirculation length of the basic state is z = 4.4) and then start to decay.

It can also be seen that modes k = 3 and k = 4 exhibit the largest growth rates. The

graphs on the right hand side of figure 5.10 show instantaneous results 4.8 forcing-

periods after the forcing was switched off (t = 41.6). The disturbances have travelled

downstream and the amplitudes of disturbances remaining in the recirculation region

have become small. At a later time (not shown here), no disturbances remain in

the region of interest, a clear indication that, for this Reynolds number, the flow

is convectively unstable (and not absolutely unstable) with regard to all azimuthal

modes.

In order to verify that the disturbances contained in the recirculation region truly

decay once the forcing is switched off, the temporal development of all modes was

again monitored at the same probe point as for all above cases. The temporal behavior

of all modes is shown in figure 5.11. While the forcing is still active, no temporal

growth (as opposed to the spatial growth seen in figure 5.10) can be observed at

the probe point. All modes exhibit an oscillation with the forcing frequency and the

amplitude being similar to the forcing amplitude. After switching off the periodic

forcing, all modes start decaying (t ≈ 34) once the last disturbance generated at the

forcing location (r = 1.05, z = 0.04) has passed the probe point (r = 0.5, z = 2.5).
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Figure 5.11 Temporal development of azimuthal Fourier modes of the streamwise
velocity component obtained from an LNS calculation employing periodic forcing;
ReD = 5, 000, M = 2.46.

5.5 Summary

Supersonic axisymmetric wakes with an approach boundary layer thickness of δc =

0.1 were found to be convectively unstable with respect to all azimuthal modes at

ReD = 5, 000. For larger Reynolds numbers, a pulse disturbance led to temporal

amplification of higher azimuthal modes, implying that the flow is absolutely unstable

with respect to higher azimuthal modes, k > 0, for ReD > 5, 000. It was conjectured

that absolutely unstable global modes within the recirculation region coexist with

convectively unstable shear-layer modes. The local stability simulations also revealed

that the shear-layer modes possess a non-zero streamwise wavenumber, implying that

the modes are of helical nature.

The third azimuthal mode k = 3 has the highest amplification rate for Reynolds

numbers up to ReD = 100, 000. For ReD > 100, 000, the flow also becomes absolutely

unstable with respect to the axisymmetric mode, k = 0. The mode-shapes obtained

from spatial simulations illustrate that the global mode is dominant for low Reynolds

numbers. For larger ReD, the strong damping effect of compressibility is overcome and

the global maxima of all azimuthal modes move from the interior of the recirculation

region to the shear-layer region, i.e, the shear-layer mode gains in importance.
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6. RESULTS - DIRECT NUMERICAL SIMULATIONS

The results presented in the previous chapter have given valuable insight into the

linear stability characteristics of supersonic axisymmetric wakes at various Reynolds

numbers. Nevertheless, by excluding nonlinear effects, the occurrence of coherent

structures and the break-down to turbulence is not permitted. The main objective of

this research is, however, the investigation of the formation and evolution of coherent

structures that are a consequence of physical flow instabilities. The understanding

of the physical mechanisms is essential as it is supposed that the structures have a

significant impact on the mean flow and are responsible for a considerable amount of

base-drag. To that end DNS were employed to investigate the near-wake region in

supersonic axisymmetric wakes.

As mentioned in the introduction (section 1.2), DNS of supersonic wakes at flow

conditions investigated at UIUC are currently, and will be in the near future, out of

reach with present super-computers.1 For that reason, here transitional supersonic

base flows are investigated. Although the flow is not fully turbulent, it will be shown

that many of the qualitative features found in the experiments by Dutton and co-

workers can be captured. Moreover, transitional flows facilitate the investigation of

the initial development of the large structures because the break-down to small-scale

turbulence either does not fully occur or takes place on a relatively slow time-scale

(or large length-scale), leading to a well-defined separation of scales.

Of particular interest was to determine the significance of certain modes and their

effect on the mean flow. This was accomplished by exploiting one of the strengths

of conducting numerical simulations: Deliberately simplifying the physical problem

at hand. Here, simulations were conducted of various circumferential domain-sizes,

thereby intentionally eliminating different azimuthal/helical modes. Thus, the effect

1This will be illustrated later in section 7.4.1.
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of large-scale structures associated with particular azimuthal/helical modes on the

global flow behavior could be evaluated.

For all Reynolds numbers investigated in this work, initially a DNS for a half-

cylinder (domain with 0 ≤ θ ≤ π) was conducted. Once it was verified that the

grid-resolution was adequate, integration domains with an azimuthal extent of θ < π

were also computed. Thus, various modes of the half-cylinder case were deliberately

suppressed and their effect on the mean flow could be studied. For more details about

which modes are excluded for different azimuthal domain-sizes, see the description

of the axis treatment in section 3.2. Note that in the following, the mode numbers

denoted by k refer to the corresponding mode in the half-cylinder case, not the compu-

tational mode of the respective calculation, i.e., mode k = 2 always has a wavelength

of π, for example.

To judge what effect certain azimuthal Fourier modes have on the mean flow, one

of the figures of merit will be the visualization of endviews at different downstream

locations. In order to give an impression of what kind of wake patterns (when looking

at an endview) are generated by various azimuthal modes, several examples were

computed analytically, superimposing individual azimuthal Fourier modes with the

axisymmetric mode. For calculations employing symmetric Fourier transforms, scalar

quantities, such as total vorticity, are represented by a cosine-series (for a complete

listing of symmetries, see table B.1 in Appendix B). The polar representation of the

endview of the wake then becomes a function of the azimuthal mode-number, k, the

mean radial extent of the shear layer, r0, chosen as unity here, and an amplitude, A,

according to

r = r0 + A cos (k · θ) . (6.1)

Two fundamentally different solutions can be generated depending on how the am-

plitude A is treated: The sign of A can be kept constant, here the choice was a
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k = 1, A = ±0.4 k = 2, A = ±0.4 k = 3, A = ±0.4 k = 4, A = ±0.4

k = 2, A = 0.4 k = 4, A = 0.4 k = 6, A = 0.4 k = 8, A = 0.2

Figure 6.1 Schematic of wake patterns generated by various azimuthal modes.

positive sign; or the sign of the constant can alternate, which would be the case if

the respective mode exhibits an oscillatory behavior in time. The resulting patterns

are illustrated in figure 6.1 with the dashed line representing the undisturbed axisym-

metric state. On top, the results for an oscillating constant A are shown, and on the

bottom the solutions obtained when keeping the sign of A constant are displayed. It

can clearly be seen, that the same qualitative wake pattern can be produced with

different modes. In the top and bottom left figures, a similar shape of the wake can

be generated either through a flapping of the wake in the lateral direction, caused by

an oscillatory mode k = 1, or the presence of a steady mode k = 2. A “four-lobe”

structure (second graph from left) is possible either through an oscillating mode k = 2

or a dominant steady fourth mode. A “six-lobe” pattern (third from left) would be

the consequence of either an oscillating dominant mode k = 3 or a steady mode k = 6,

and in case the fourth mode (oscillatory) or k = 8 (steady) would exhibit the largest

amplitudes, an “eight-lobe” shape (bottom right) could occur. Naturally, any combi-
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nation of the above patterns also could be generated if multiple azimuthal modes are

significant in a particular case. In order to determine which mode is responsible for

the resulting wake pattern, additional data, such as radial amplitude distributions of

the azimuthal modes, need to be considered.

The DNS calculations at M = 2.46 were conducted for three different Reynolds

numbers. The lowest Reynolds number investigated was ReD = 30, 000, for which

preliminary results were discussed in Tourbier (1996). For the second series of cal-

culations, the Reynolds number was doubled. Finally, the largest Reynolds number

chosen was ReD = 100, 000, as this constituted the highest Reynolds number possible

with the resources available at the time of this research. For all cases, the approach

flow is laminar, and transition occurs downstream of the separation point.

6.1 DNS for ReD = 30, 000

All calculations were performed on the same streamwise/radial grid with 516x200

points in the streamwise and the radial direction, respectively, and with the smallest

grid-spacing at the corner, where ∆zc = ∆rc = 0.008. In the azimuthal direction, the

simulation of the half-cylinder was initially carried out with 16 symmetric spectral

modes. The amplitudes of the azimuthal modes were scrutinized in the recompression

region and here the magnitude of mode k = 16 was only one order of magnitude

lower than that of the first Fourier mode. Therefore, the calculation was repeated

(using the old calculation as three-dimensional initial condition) with 64 symmetrical

azimuthal modes. The number of Fourier modes chosen for the calculations with

smaller circumferential domain-sizes were chosen such that the azimuthal resolution

remained constant, i.e., 32, 24, 16 and 8 modes were used for the quarter-cylinder,

1/6th-cylinder, 1/8th-cylinder and the 1/16th-cylinder calculations, respectively. For

all further parameters, see table D.7 in Appendix D.
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Figure 6.2 Temporal development of Fourier modes of (ρu) at disturbance location
z = 2.5, r = 0.5 at start-up for half-cylinder calculation; ReD = 30, 000, M = 2.46.

6.1.1 Time-Dependent Results

The pulse response of the higher azimuthal density modes at the disturbance location

was monitored for all cases investigated. Rapid growth was observed for all domain

sizes, implying that the flow is absolutely unstable with respect to modes k = 1

through k = 8 for this Reynolds number.2 Representative for all circumferential

domain-sizes, the temporal development of the Fourier modes of (ρu) at the pulse

location for the start-up transient of the half-cylinder case are shown in figure 6.2.

When comparing the temporal development of the Fourier modes with the results

obtained from the linear calculations (shown in figure 5.2), the same behavior can

be observed up to t ≈ 110, e.g. the azimuthal Fourier modes k = 2, 3, 4 possess the

largest growth rates. For t > 110, however, modes k = 3 and k = 4 reach sufficiently

large amplitudes such that the nonlinear interaction between these two modes causes

an increase in the growth rate of mode k = 1. In addition, the nonlinear interaction

between modes k = 3 and k = 4 results in increased growth rates of k = 6 and

k = 7. For t > 125 mode k = 6 reaches large amplitudes and the nonlinear inter-

action with k = 3 produces a strongly increased amplification rate of mode k = 9.

2In order to investigate whether the flow is absolutely unstable with respect to higher azimuthal
modes, even smaller azimuthal domain-sizes would have to be computed. Alternatively, LNS simu-
lations with a greater number of modes could be performed.
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Eventually, all higher modes experience large growth rates, nonlinearly generated by

low-wavenumber azimuthal modes. It is noteworthy that modes k = 3 and k = 4 con-

tinue growing linearly until reaching the nonlinear saturation state. This illustrates

that the presence of several linearly (absolutely) unstable azimuthal modes leads to

the generation of higher wavenumber modes through nonlinear interaction.

To get a qualitative impression of the dynamics of the flow for varying azimuthal

domain-sizes, instantaneous vorticity for the plane with θ = 0◦ and θ = θmax of

the respective calculations are shown in figures 6.3 (a) to (e). Large structures de-

velop in the inner part of the shear layer in agreement with the observations made

in experiments by Herrin & Dutton (1995). These structures help to entrain a signif-

icant amount of low speed fluid from the recirculation zone and noticeably shorten

a) half-cylinder b) quarter-cylinder

c) 1/6th-cylinder d) 1/8th-cylinder

e) 1/16th-cylinder

Figure 6.3 Sideviews of instantaneous contours of total vorticity; top half θ = 0◦,
bottom half a) θ = 180◦, b) θ = 90◦, c) θ = 60◦, d) θ = 45◦ and e) θ = 22.5◦;
ReD = 30, 000, M = 2.46.
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the recirculation region compared to the axisymmetric solution of section 6.1.3. The

quarter-cylinder case appears to contain a smaller amount of small-scale structures

than the half-cylinder case. For the 1/6th-, 1/8th- and the 1/16th-cylinder cases, the

number of large-scale structures is reduced, leading to a significantly longer recircula-

tion region due to the lack of entrainment of low-momentum fluid by large structures

(also see figure 6.19), and even less small-scale structures can be observed.

An interval of the temporal development of the Fourier modes of density in a

region of high activity, in this case the recompression region, is shown in figures 6.4

(a) – (e). The initial start-up transient is already overcome and a fully nonlinear

saturation level has been reached. The decay in energy over the azimuthal modes

a) half-cylinder b) quarter-cylinder
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Figure 6.4 Temporal development of Fourier modes of in a region of high activity;
z = 4.82, r = 0.238, ReD = 30, 000, M = 2.46.
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amounts to approximately five orders of magnitude for the four largest domain sizes

and even more for the 1/16th-cylinder, suggesting that the resolution in the azimuthal

direction is sufficient.

For the half-cylinder (a) it can be observed that the magnitude of all modes

decays between 80 < t < 100, leading to a relatively quite region in the interval

100 < t < 110. This is an indication that the flow is intermittent. Note that

this behavior was also found for the subsonic wake at ReD = 1, 000 investigated in

section 4.4.2. The presence of intermittency for the current case at a significantly

higher Reynolds number illustrates the damping effect of compressibility. It will be

attempted to give an explanation for the occurrence of intermittency once a better

understanding of the flow field has been established.

The same behavior is observed for the quarter-cylinder case (b) and the 1/6th-

cylinder case (c), i.e., the flow displays intermittency, particularly noticeable in the

intervals 130 < t < 142 and 40 < t < 50, respectively. For the 1/8th-cylinder (d), the

picture changes drastically, showing far smaller amplitudes in the higher modes, and

the fraction of quiet regions increases. This behavior is even more pronounced in the

1/16th-cylinder case, where the flow fails to exhibit any high-frequency oscillations.

Also, no distortion in the azimuthal mean flow k = 0 can be detected for the smallest

domain size.

The data of the azimuthal Fourier modes of density in the recompression region

(for a much larger time interval than shown in figure 6.4) were Fourier-decomposed

in time. The obtained frequency spectra were scrutinized to identify dominant fre-

quencies in the flow and to determine if the temporal resolution of the calculations

was adequate. For all cases that were investigated, the amplitudes of the azimuthal

Fourier modes showed a decay of approximately three decades over the Strouhal num-

ber based on diameter. This implies that the time-step chosen for the calculation was

sufficiently small to resolve all relevant temporal scales. This was expected, as the
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time-step limitation due to the explicit time-integration is fairly restrictive.

As shown in figures 6.4 (a) – (e), the flow exhibits an intermittent behavior for all

cases. This complicated the Fourier analysis in time and a study of how the size of the

sampling interval would affect the resulting frequency spectrum was conducted. In

conclusion, post-processing only a smaller interval led to more distinguished peaks and

facilitated the identification of dominant frequencies. However, when the entire data

set was Fourier transformed, the same dominant frequencies (for StD > 0.1) could still

be detected, with the benefit of including additional information in the low-frequency

range. Therefore, for all cases, the entire data was used for the temporal Fourier

decomposition.

The amplitudes of selected azimuthal Fourier modes over the Strouhal number

are shown for all circumferential domain-sizes, except the 1/6th-cylinder, in figure

6.5. For the half-cylinder case, it can be observed that modes k = 1, 2, 3, 4 contain

most of the energy. Modes k = 1 and k = 4 exhibit a very strong peak at StD = 0.031.

It can be argued that they interact nonlinearly with themselves, resulting in a peak

with twice the frequency in the azimuthal mean flow k = 0. This can be validated by

detecting that this peak in k = 0 does not exist in the cases where mode k = 1 was

omitted. Further, the fact that modes k = 1, 3 and k = 4 exhibit a peak at the same

frequency corroborates the notion that the first mode might be nonlinearly generated

by k = 3 and k = 4 as discussed in the context of the temporal development of the

Fourier modes at start-up. At StD = 0.08, peaks in both k = 1 and k = 2 coincide.

This value is similar to the frequency observed for the slow lateral motion (flapping)

of the entire wake in the r − z-plane at θ = 0, π which therefore can be attributed

to these two modes. Furthermore, mode k = 2 exhibits multiple peaks at moderate

frequencies, coinciding with mode k = 4 at StD = 0.22, suggesting that these two

modes are causing large structures in the recompression region. For higher StD, the

frequencies of the peaks for the mean flow k = 0 cannot be expressed in multiples of

isolated higher modes, leading to the conclusion that the modification of the mean
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Figure 6.5 Fourier decomposition in time of higher density modes in a region of high
activity, half-cylinder top left, quarter-cylinder top right, 1/8th-cylinder bottom left,
1/16th-cylinder bottom right; z = 4.82, r = 0.238, ReD = 30, 000, M = 2.46.

flow is caused by simultaneous nonlinear interaction of several higher modes.

In the quarter-cylinder case, it can again be concluded, that strong structures are

present in the recompression region, considering the large amplitudes of the lower

modes at low frequencies. Modes k = 2 and k = 4 exhibit the most prominent peaks.

The azimuthal mean flow (k = 0) shows several prominent peaks at low frequencies

but also exhibits a distinctive maximum at StD ≈ 0.8, nonlinearly generated by k = 2.

The 1/8th-cylinder case reveals a peak of mode k = 4 at StD = 0.022, which de-

notes the frequency of the vortex shedding. Also, a very prominent maximum can be

seen at StD = 0.06 for the same mode, possibly generating a peak in mode k = 8 for

the same Strouhal number through a nonlinear interaction with itself. Both modes

seem to produce a peak in the zeroth mode at twice the frequency, i.e., StD = 0.12.

For the 1/16th-cylinder case, the picture simplifies drastically due to the fact, that
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only one mode appears to interact with the circumferential mean flow. Mode k = 8

exhibits only one noticeable peak at StD = 0.05, nonlinearly interacting with itself

and producing a reaction of the mean flow k = 0 for twice (StD = 0.1) the frequency.

Mode k = 0 then nonlinearly interacts with itself to produce a peak at StD = 0.2.

The snapshot of instantaneous total vorticity for this case, shown in figure 6.3 (e),

confirms the absence of structures with varying length-scales. The lack of small-scale

structures for the small domain sizes most likely can be attributed to a viscous cut-

off of the high-wavenumber modes, i.e., the highest modes are damped by viscous

diffusion. For the larger domain sizes, modes with longer wavelengths are unstable

and reach large amplitudes, nonlinearly generating higher mode numbers and thus

producing small-scale structures.

In summary, at this Reynolds number, both the half-cylinder and quarter-cylinder

cases appear to fully transition to turbulence downstream of the recompression region,

exhibiting high-frequency fluctuations in higher azimuthal modes. An intermittent

behavior is observed for all cases at the specified flow conditions. The bulk of the

energy is contained in modes k = 1, 2, 3, 4. Peaks were found at low frequencies

in the temporal spectra for the lower azimuthal modes that suggest the presence of

large scale structures in the recompression region. Dominant maxima in the temporal

spectrum of the zeroth azimuthal mode appear to be generated by nonlinear inter-

action of the most important helical modes with themselves or k = 0. For the small

circumferential domain-sizes, a viscous cut-off of the high wavenumbers prevents the

high azimuthal modes to grow linearly. In addition, because the long wavenumbers

are eliminated in the small domain sizes, the large wavenumbers cannot be generated

nonlinearly either. Consequently, no small-scale structures are generated for these

cases.
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6.1.2 Coherent Structures

In order to identify what kind of structures are generated in the flows under inves-

tigation and how those structures evolve, a vortex-identification method needs to be

employed. Terzi, Sandberg & Fasel (2006) performed a study of various vortex educ-

tion methods and concluded that the Q-criterion is an adequate choice as the desired

information can be obtained from available data at low computational cost and the

method can be implemented easily. The Q-criterion is named after the second invari-

ant of the gradient of the velocity vector and for compressible flows can be computed

as:

Q =
1

2

[(
∂ui

∂xi

)2

+WikWik − SikSik

]
, (6.2)

with Sik = 1
2

(
∂ui
∂xk

+ ∂uk
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)
andWik = 1

2

(
∂ui
∂xk
− ∂uk
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)
. For incompressible flows, ∂ui

∂xi
= 0

from continuity, and Q reduces to a balance between the total vorticity and the total

strain magnitudes. For positive Q, rotation dominates strain and vortical structures

can be visualized. For compressible flows, the dilatational term needs to be included

for the sake of maintaining the invariant property of Q. This complicates the above

intuitive interpretation of Q and it is not entirely clear whether positive values of

Q educe pure vortical structures for compressible flows. To evaluate the influence

of the dilatational term, the vortex-identification method was applied to the same

data-field with and without the compressible extension. For both methods, very

similar structures were observed in the visualizations of the resulting variables (see

Terzi et al., 2006), suggesting that the Q-criterion is also useful for the flows under

investigation.

Figure 6.6 shows several views of instantaneous iso-contours of Q = 0.1 for the

half-cylinder case for two time-levels. On the left side, top- and sideviews are shown

and on the right side a perspective view, looking from the inflow towards the outflow,

is visualized with the dark-grey surface marking the base. The difference between the
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Figure 6.6 Instantaneous iso-contours of Q = 0.1 for half-cylinder case, top- and
sideview (top and bottom, left) and perspective view from inflow towards outflow
(right); ReD = 30, 000, M = 2.46.

two time-levels is ∆t = 3, which corresponds to roughly one fourth of a flow-through-

time, allowing free-stream fluid to travel three radii downstream.

Comparing the visualizations of Q for the supersonic case with the results obtained

for the subsonic wake at ReD = 2, 000 (see section 4.4.2, figure 4.10), a fundamentally

different flow behavior can be detected. Even though the Reynolds number in both

cases is sufficiently large for the flow to transition to turbulence several diameters

downstream of the base, the considerable difference in Mach number leads to a sig-

nificant change in the flow field. For the subsonic case, large vortex-loops are shed

alternately on the upper and lower side, highlighting the dominance of the first helical
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mode. In contrast, in the supersonic case, close to the base, oblique, or helical, struc-

tures can be seen, denoted by “A”. In addition, longitudinal structures are present

within the recirculation region that protrude into the trailing wake. This confirms

the findings of the local analysis using temporal simulations, that the most unstable

modes are always helical with k, l 6= 0. Therefore, it can be concluded that the helical

structures are a consequence of the shear-layer mode.

Comparing the two time-intervals, the outer helical structures appear to move

upstream on a slow time-scale, implying that they reside on the inner boundary of

the shear layer, where the streamwise velocity component is negative. Typically, one

would expect two-dimensional rollers to be located at the inflection point of the mean

local profile. However, the inflection point of the mean profile is located where the

mean streamwise velocity component is supersonic. As discussed in section 5.2, the

convective Mach number Mc reaches large values in the initial shear layer, implying

that considerable compressibility effects are present in this region. Therefore, the

generation of oblique, or in this case, helical disturbances in this region can be ex-

pected. However, due to the considerably smaller compressibility in the low-velocity

region (within the inner part of the shear layer), these disturbances seem to be more

amplified there, such that they become large enough to be detected. It will be seen

later, that for larger Reynolds numbers, where the amplification rates of the distur-

bances are increased, the helical structures also become visible close to the inflection

point, i.e., they can be seen travelling downstream.

Farther downstream, the convective Mach number decreases (as the streamwise

axis-velocity increases) and mainly longitudinal structures and several vortex loops

appear. The structures observed within the trailing wake strongly resemble hairpin

structures, commonly observed in boundary-layer transition (one of them marked

with “B”). The “legs” of these structures can be seen to extend into the recircula-

tion region and the “heads” of the hairpin vortices form vortex loops which travel

downstream and move away from the axis. Similar to the boundary-layer transition
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scenario, once the “heads” of the hairpin vortices are lifted, an instantaneous layer

of high shear is developed, which is highly unstable and is the basis for tertiary in-

stabilities that generate high-frequency oscillations. This process appears to be one

of the mechanisms responsible for the generation of small-scale structures that can

be observed in the trailing wake in the sideviews of the total vorticity in figure 6.3.

These small structures possess a considerably larger value of Q and are, therefore,

not visible in the figures currently discussed.

The helical structures appearing within the shear layer exhibit a sinusoidal mod-

ulation with a fairly large wavelength, implying that azimuthal modes with a small

wavenumber are significant. In addition, the lateral motion (flapping) of the entire

wake in the r − z-plane at θ = 0, π can also be observed in figure 6.6, particularly

in the sideviews, albeit by far not as pronounced as for the flow at M = 0.25. This

supports the observation from the frequency spectra, that the first azimuthal mode

plays a considerable role.

In figure 6.7, results are presented for the quarter-cylinder case. Qualitatively, the

same flow features can be observed as for the half-cylinder case, i.e., helical structures

within the shear layer and hairpin vortices with “legs” extending from the trailing

wake into the recirculation region. For the sideviews, an extended time-sequence is

shown in order to better demonstrate the dynamical behavior of the structures present

in the flow. For the first time-step shown (t = 132.08), three streamwise structures

are marked. The first structure (“A”) is located within the recompression region and

protrudes into the recirculation region. Structures “B” and “C” are found downstream

of the mean reattachment point, in the trailing wake. The spacing between the three

structures is fairly constant, suggesting a dominant frequency in the (unforced) flow

with a low value, as seen in the frequency spectrum of the quarter-cylinder case. At

the second time-instant shown, structure A has not only travelled downstream but

also has been stretched in the streamwise direction by the adverse pressure gradient

within the recompression region. Further in time, the vortex A appears to have been
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Figure 6.7 Instantaneous iso-contours of Q = 0.1 for quarter-cylinder case; time-
sequence of sideviews (left) and perspective view from inflow towards outflow (right);
ReD = 30, 000, M = 2.46.

stretched even further, still keeping its “legs” within the recirculation region. In the

remaining pictures of the time-sequence, it can be observed how the structure finally

detaches from the recirculation region and travels further downstream at a fairly

constant convective speed. A vortex ring is eventually shed when the peak station is

lifted up. Structures B and C can be seen undergoing the same dynamical behavior.

The time-sequence also reveals that, as for the half-cylinder case, the helical structures

in the shear layer slowly travel upstream. In addition, due to the exclusion of mode

k = 1, no flapping of the entire wake is permitted, which is visible in the sideviews

shown in figure 6.7.
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t = 217 t = 136.8

Figure 6.8 Instantaneous iso-contours of Q = 0.1; perspective view from inflow to-
wards outflow of 1/6th-cylinder case (left) and 1/8th-cylinder case (right); ReD =
30, 000, M = 2.46.

Perspective views of Q = 0.1 are shown for both the 1/6th-cylinder and the 1/8th-

cylinder cases in figure 6.8. Again, hairpin vortices with “legs” extending from the

trailing wake into the recirculation region can be observed. However, the structures

within the shear layer appear to be of more axisymmetric than helical nature, in par-

ticular for the 1/8th-cylinder case. In contrast to the results of larger domain sizes, the

longitudinal structures that are visible in the trailing wake are aligned with the axis

and mostly parallel to each other. When visualizing larger values of Q (not shown

here), considerably less small-scale structures are visible than for the half-cylinder

case. This is an indication that the modes with low wavenumbers are partly responsi-

ble for the creation of small-scale structures, either directly or through the generation

of secondary instabilities leading to tertiary instabilities. In the visualizations of the

smaller circumferential domain-sizes, a considerably smaller amount of the streamwise

structures is observed. It is suggested that this, in combination with the absence of the

azimuthal modes k = 1 to k = 4 for decreasing circumferential domain-sizes, leads

to a reduced azimuthal and streamwise modulation of the longitudinal structures.

This inhibits the occurrence of secondary and tertiary instabilities that might result

in small-scale structures. Also, a reduced number of hairpin structures diminishes
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the number of vortex loops, which would, if present, lead to an instantaneous layer

of high shear. Thereby one basis for the formation of small-scale structures is revoked.

For all cases shown so far, a large number of longitudinal structures was not only

seen in the trailing wake but also within the recirculation region. An effort is now

made to unveil how these vortices are generated. One possible mechanism is proposed

here: On the basis of linear stability calculations (see section 5) it was suggested that

the flow is absolutely unstable with respect to global modes within the recirculation

region. Once the amplitudes of these global modes reach sufficiently large values,

chevron-like patterns are imposed onto the recirculating fluid. These patterns are

similar to those illustrated in figure 6.1. It will be shown later in section 6.1.5, that

longitudinal structures can be generated when flow in the streamwise direction passes

through a region with a strong circumferential modulation. For a fully developed

recirculation region, most likely multiple mechanisms compete, complicating the re-

construction of the most dominant events. For that reason, a time-sequence of the

initial start-up of the 1/8th-cylinder calculation is shown in figure 6.9 in order to

isolate individual events. Iso-contours of Q = 0.4 are shown in a perspective view,

looking from downstream towards the base.

Initially, the amplitudes of the higher azimuthal modes are small and the flow is

fully axisymmetric, with an axisymmetric structure (“A”) generated by the stagnation

point at the base (marked by a black surface). In the second figure of the time-

sequence, a significant azimuthal modulation of the axisymmetric structure can be

observed (“B”). The circumferential variation occurs within the recirculation region

and not in the shear layer. Linear stability calculations at ReD = 30, 000 (figure

5.2) showed that mode k = 4, which is the fundamental azimuthal mode for the

1/8th-cylinder case, possesses the largest amplitude at r ≈ 0.45 and was, therefore,

classified as global mode. Consequently, it can be speculated that global modes

have reached large amplitudes and are responsible for the azimuthal modulation of
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Figure 6.9 Time-sequence of instantaneous iso-contours of Q = 0.4 for initial transient
of 1/8th-cylinder case; perspective view from the trailing wake towards the base;
ReD = 30, 000, M = 2.46.

structure A. This sinusoidal variation in the circumferential direction appears to be

the cause for the occurrence of longitudinal structures, visible at the next time-instant

t = 121.6 and marked with “C”. In the following graph, it can be seen that another

streamwise structure has been generated (“D”), which pushes C toward the shear

layer through induction of radial velocity. The structure C appears to reach the part

of the shear layer where the streamwise velocity is positive and the outer part of C

is convected downstream, thereby stretching the vortex. Another structure, similar

to C, is present, albeit the iso-value at this time-instant is smaller than that of C

and, therefore, only the outermost part can be seen, denoted by “E”. Going further

in time, to t = 128, it can be observed that the outer parts of C and E have travelled

downstream and the structures have been stretched in the streamwise direction. In

the last time-instant shown, several observations can be made: The outer part of C

appears to have overcome the adverse pressure gradient in the recompression region

and has travelled a considerable distance downstream. D on the other hand fully

remains within the recirculation region and actually slowly travels upstream again.

The structure E follows C and the next structure, marked “F”, appears. Once the
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Figure 6.10 Temporal development of Fourier modes of (ρu) from temporal calcula-
tions for half-cylinder case; z = 2.5 (left) and z = 9 (right); ReD = 30, 000,M = 2.46.

initial transient is overcome, the recirculation region continuously contains several

streamwise structures and, in addition, vortex loops can be observed (see, e.g., the

structures at the base seen in the perspective view of the half-cylinder case in figure

6.6). These structures constantly impinge on the shear layer and thereby introduce

disturbances. Because the shear layer was shown to be convectively unstable, the

perturbations experience amplification in the streamwise direction which most likely

results in the generation of additional structures.

To support that the longitudinal structures within the recirculation region are

generated when global modes reach large amplitudes, additional temporal calcula-

tions were performed. The local stability calculations conducted with the temporal

code, presented in section 5.3 were continued into the nonlinear regime. The Fourier

decomposition in the streamwise direction allows for the distinction between helical

and streamwise modes, i.e., all mode-pairs (l, k) with the streamwise component l = 0

represent longitudinal modes. The results obtained from the temporal calculations

are shown in figure 6.10. Note that the initial pulse disturbance was introduced at

the inflection point of the mean profiles and the time-response was monitored at the

same location. For the location z = 2.5 (left), it can be seen that the longitudinal

modes (l = 0) are damped or barely amplified in the linear regime. For t > 30,

longitudinal modes with k = 1, 4, 6 become strongly amplified due to a secondary
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Figure 6.11 Perspective views of iso-contours of Q = 0.1 from temporal calculations
of half-cylinder case; z = 0.5, z = 2.5 and z = 9 (from left to right); ReD = 30, 000,
M = 2.46.

instability, and, at t > 45, higher azimuthal modes up to k = 32 become amplified.

At the position further downstream at z = 9 (right), the mode-pair (l, k) = (0, 2) is

the first to become strongly amplified due to nonlinear interaction for t > 25, followed

by higher azimuthal modes for t > 35. These observations imply that longitudinal

structures develop in the shear layer.

The resulting flow fields obtained from the temporal simulations at separate

streamwise locations are shown in figure 6.11. At the location close to the base, the

occurrence of helical structures in the shear layer, as seen in the spatial calculations,

is clearly visible. When the temporal calculation is conducted using the local profile

at z = 2.5, several large vortex loops develop which are most likely a consequence of

the nonlinearly strongly amplified modes k = 4 and k = 6. However, for both loca-

tions, no streamwise structures can be observed within the recirculation region. This

reinforces the suggestion that the longitudinal structures are a consequence of addi-

tional instabilities occurring global modes within the recirculation region reach finite

amplitudes. Looking at the flow field that is obtained from a temporal simulation

using a profile from the trailing wake, large vortex loops, similar to those observed in

the subsonic wake at ReD = 2, 000 (see figure 4.9), can be seen. These vortices are

a consequence of modes k = 2 and k = 4 reaching a nonlinear saturation level. It

can be speculated that in the presence of streamwise pressure gradients, significant

stretching of these structures would occur which might lead to similar structures as
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those observed in the spatial case. Therefore, it can be assumed that the hairpin

vortices in the trailing wake might be partly generated locally.

The results obtained from the temporal simulations suggest, that the helical struc-

tures in the shear layer and the hairpin structures in the trailing wake, observed in

the spatial calculations, are a consequence of local instabilities and are not caused

by global effects. In contradistinction, because the longitudinal structures within the

recirculation region could not be reproduced with local calculations, it is conjectured

that these structures are most likely a consequence of a global instability.

In addition, compressibility itself also might be responsible for the generation of

vortical structures. The vorticity equation for compressible flows distinguishes it-

self from the incompressible formulation through an additional term, the baroclinic

torque. The misalignment of the density gradients with the pressure gradients can

lead to vorticity generation and destruction. At the base-corner, for example, the

rapid expansion produces strong density and pressure gradients. These two gradients

are not aligned with each other and, therefore, the r − z, or axisymmetric, compo-

nent of the baroclinic torque will be non-zero. As already stated above, axisymmetric

Figure 6.12 Instantaneous iso-contours of magnitude of baroclinic torque for half-
cylinder case at t = 270; top- and sideview (top and bottom, left) and perspective
view from inflow towards outflow (right); iso-level 0.2; ReD = 30, 000, M = 2.46.
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disturbances are not significantly amplified in this region due to the compressibility

of the flow. However, once structures are present within the flow-field, instantaneous

density and pressure gradients will be present that move with the structures and

produce all components of the baroclinic torque vector. Iso-contours of the magni-

tude of baroclinic torque ( 1
ρ2 |∇ρ×∇p| = 0.2) are shown in figure 6.12 for the same

time-instant as the iso-contours of Q presented in figure 6.6. The main contribution of

vorticity production or destruction can be found in the outer shear-layer and the trail-

ing wake, i.e., where the flow is supersonic and the density gradients are significantly

larger than in low-speed regions. The axisymmetric distribution of the magnitude

of baroclinic torque observed just downstream of the base can be attributed to the

steady rapid expansion mentioned above, which results in a large contribution of the

r− z-component. Further downstream, the helical nature of the instantaneous struc-

tures can be observed with the degree of obliqueness decreasing in the downstream

direction. This might be due to the diminishing convective Mach number, leading to

a stronger axisymmetric organization of the structures.

From a large number of additional visualizations, which are omitted for brevity,

other features were observed that suggest that additional instability mechanisms

might be present. These additional mechanisms will be further discussed for the

higher Reynolds number cases in sections 6.2.2 and 6.3.2.

With the knowledge gained from the results discussed above, a possible expla-

nation for the occurrence of intermittency can now be proposed: The axisymmetric

mean flow is unstable and gives rise to primary instabilities, which, in turn, lead to

secondary and tertiary instabilities that cause the formation of large- and small-scale

structures. The large-scale structures might interact with the mean flow to an extent

that the resulting mean flow is no longer unstable, which, as a consequence, leads to

a quiet region. Once the large structures are convected downstream and the mean

flow becomes unstable again, disturbances can again be amplified, resulting in the
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repeated generation of large- and small-scale structures.

In summary, it was demonstrated that helical structures are present within the

initial shear-layer, confirming results from the linear local analysis with the tem-

poral code. Higher azimuthal modes lead to a sinusoidal modulation of the helical

structures, causing the generation of longitudinal structures within the shear layer.

Circumstantial evidence was presented, showing that longitudinal structures within

the recirculation region are generated as a consequence of global modes reaching large

amplitudes. When the outer parts of these streamwise vortices are entrained by the

shear layer, the structures are strongly stretched and, eventually, they detach from the

recirculation region. In the trailing wake, the structures have strong resemblance with

hairpin vortices, forming vortex loops. For smaller circumferential domain-sizes, the

number of hairpin structures is strongly decreased. The exclusion of low wavenumber

modes inhibits an energy cascade to higher wavenumbers, resulting in considerably

fewer small-scale structures. Furthermore, it was shown that the baroclinic torque

also might be an important vorticity-production mechanism. The main contribution

of vorticity production or destruction through baroclinic torque was found in regions

subject to high compressibility, i.e., the outer shear-layer and the trailing wake.

6.1.3 Mean Flow

In order to assess the impact of the large-scale structures, on the mean flow, averaged

flow-quantities need to be evaluated. To obtain time-averages, the DNS were con-

ducted until running averages were converged, which required approximately twelve

flow-through times for all cases.

The time-averaged radial profiles of several azimuthal Fourier modes for all three

velocity components are shown in figures 6.13 – 6.15. Two characteristic streamwise

locations are chosen. One region of interest is upstream of the recompression region,
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where the flow has not yet fully transitioned and considerable reverse-flow occurs. The

second region chosen is within the far wake, as the question arises whether the mode

shapes are affected by the strong adverse pressure gradient in the recompression region

and by the highly unsteady flow behavior. In contrast to the radial distributions

obtained from linear calculations, the amplitudes of the individual azimuthal modes

obtained from DNS are relevant as they determine the degree of interaction between

separate modes. Therefore, none of the modes is rescaled in the graphs to allow for

a direct evaluation of the significance of individual modes.

When comparing the results obtained from the DNS of the half-cylinder calcu-

lation at z = 2.5 (figures 6.13 – 6.15 top left) with the results presented for the

linear calculations in figures 5.4 – 5.6, the following differences can be found: For

the first azimuthal mode, the maximum amplitudes of the radial and the azimuthal

components amount to approximately 50% of the streamwise maximum, as opposed

to roughly 30% in the linear case. The shape of the streamwise component is signifi-

cantly changed versus the result obtained in the linear calculation, showing similarities

to several higher modes (in terms of the locations of maxima, inflection points and

slopes). Also, the overall values of the first mode are on the same order as those of

the dominant modes, in spite of a significantly smaller amplification rate determined

in the linear calculations. This alludes to the possibility that the shape of the first

azimuthal mode might be the result of nonlinear interaction of the dominant modes.

The second azimuthal mode displays strongly altered mode shapes in comparison

to the linear results. In contrast, the radial profiles of the third and fourth mode

correspond very well with the data obtained from the linear calculations, in particular

for the radial and the azimuthal components. This suggests, that at this streamwise

location (within the recirculation region, upstream of recompression), the azimuthal

modes that were found to linearly exhibit the largest amplification rates also dominate

in the nonlinear case.

Downstream of the recompression region, however, the picture changes drastically.
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Figure 6.13 Time-averaged radial mode-shapes of (ρu)k obtained from DNS for half-,
quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5 (left), z = 9 (right),
ReD = 30, 000, M = 2.46.
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Figure 6.14 Time-averaged radial mode-shapes of (ρv)k obtained from DNS for half-,
quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5 (left), z = 9 (right),
ReD = 30, 000, M = 2.46.
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Figure 6.15 Time-averaged radial mode-shapes of (ρw)k obtained from DNS for half-,
quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5 (left), z = 9 (right),
ReD = 30, 000, M = 2.46.
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When reviewing the top right plots of figures 6.13 – 6.15, it can be concluded that

the radial distributions of all modes has changed, suggesting that a strong nonlinear

interaction between all modes occurs in, or downstream of, the recompression region.

This notion is supported by the observation that most modes shown in the graphs,

except k = 1, exhibit similar mode-shapes. The maximum amplitude of the first mode

of all velocity components is exceeded by the higher azimuthal modes, in particular

modes k = 2, 4, 6. It is interesting to note that mode k = 3 is not among the most

significant modes, in spite of the largest growth rate found in the linear case and the

highest amplitudes of the radial profiles obtained from the DNS at z = 2.5. It is

likely that modes k = 2 and k = 4, both having large amplification rates in the linear

case, nonlinearly interact with each other. Thereby they become the most dominant

modes and augment the importance of modes k = 6 and k = 8 (as seen for the radial

component in figure 6.14, top right).

This corroborates the above assumption that when long wavelength modes reach

large amplitudes, higher wavenumber modes are nonlinearly generated, leading to the

formation of smaller scale structures. More evidence to support this conjecture can be

found by scrutinizing the mode-shapes obtained from DNS of different circumferential

domain-sizes. Examining the amplitude distributions for all domain sizes (figures

6.13 – 6.15), the following observations can be made. At z = 2.5, when excluding all

odd modes (quarter-cylinder calculation), the mode-shape of k = 2 is considerably

different than in the half-cylinder case, in fact it resembles the profile of mode k = 4,

in particular for the azimuthal component. The fact that the shape of k = 2 is

strongly altered in the absence of k = 1 indicates that the two modes strongly interact

with each other in the half-cylinder case, as already mentioned when discussing the

temporal spectra shown in figure 6.5. The change in the amplitude distribution in

the second mode, for the case that the first mode is omitted, is even more pronounced

at z = 9, especially for the streamwise component. The amplitude distributions of

modes k = 4, 6, 8, 12 appear to remain fairly unchanged from the half-cylinder case
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for both streamwise locations, with k = 4 exhibiting the largest maximum amplitude.

Presumably, this is due to the fact that, in the absence of all odd modes, energy from

k = 0 is transferred to the even modes through nonlinear interactions. In addition,

mode k = 4 has the largest (linear) growth rate of the modes included in the quarter-

cylinder calculations.

For the 1/6th-cylinder calculations, the most dominant mode is k = 6 in contrast

to the half-cylinder case, where, in the recirculation region, the amplitude of k = 3

was considerably larger. Scrutinizing the smallest circumferential domain-size shown

in figures 6.13 – 6.15, it can be observed that the radial profiles of mode k = 4

are altered from the cases with larger domain sizes. This might be an indication,

that k = 4 interacts strongly with mode k = 1 and k = 2 in the respective cases.

In particular for the streamwise and radial components, mode k = 8 clearly is the

most dominant mode. It should also be noted that for all calculations of cases with

a circumferential extent with θ < π, (ρu)k À (ρv)k > (ρw)k, in contrast to the

half-cylinder case, where the radial and the azimuthal component were similar in

magnitude.

To conclude the discussion of the amplitude distributions of the azimuthal modes,

the most striking observation when comparing the results for the different domain

sizes with each other is the fact that it is always the first higher harmonic of the

fundamental wavelength that is the most dominant one, i.e., in the quarter-cylinder

case the most dominant mode is k = 4, in the 1/6th-cylinder case mode k = 6, etc.

Furthermore, regardless of the wavenumber, the mode shape of the most dominant

mode is always the same for all domain sizes. For all domain sizes with θ < π,

the magnitude of the dominant mode is significantly larger than those in the half-

cylinder case. This can be attributed to the fact that the dominant mode obtains

energy directly from the spatial mean and does not have to “share” this energy with

the excluded modes through nonlinear interaction.
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As mentioned above, a meaningful figure of merit for determining the effect of the

dominant modes on the mean flow are visualizations of endviews at different down-

stream locations. Figure 6.1 illustrated what kind of wake patterns can be expected

when particular modes are significant. Three different quantities are selected for

visualization for the following reasons: First, the amplitude distributions discussed

above revealed that the streamwise velocity component is dominant for virtually all

cases. Therefore, total vorticity was chosen as it contains all directional derivatives

of the streamwise velocity component. Second, the visualization of streamwise vor-

ticity is intended to clarify whether longitudinal vortices are present in the mean.

Third, because symmetric Fourier transforms are used in the azimuthal direction,

the circumferential mean of the azimuthal velocity component is zero. Thus, even

small amplitudes in the higher modes of w can easily be detected in endviews of the

azimuthal velocity component, facilitating the identification of streamwise structures.

The same characteristic locations as those chosen for the discussion of the radial

profiles are selected to show the time-averaged endviews. Figure 6.16 shows the

endviews for all circumferential domain-sizes (from top to bottom) at the downstream

location z = 3. This location is within the recirculation region and merely half a radius

downstream of the upstream position for which the radial amplitude distributions

were shown in figures 6.13 – 6.15. The figures displaying the azimuthal velocity

component only show the domain computed, whereas, for the graphs of vorticity, the

data from the calculations were mirrored and duplicated the respective number of

times to show the results for the entire cylinder. This allows for a more convenient

comparison between results for different domain sizes and provides a better impression

of the resulting wake patterns.

The shear layer (at r ≈ 0.7) is most prominent in the visualization of total vortic-

ity, as this quantity includes the radial derivative of the streamwise velocity compo-

nent. However, several distortions can be observed on the inside of the shear layer,

which indicate that structures might be present in the mean flow. To assess whether
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Figure 6.16 Endviews of time-averaged contours of total vorticity (left), streamwise
vorticity (center), and azimuthal velocity (right) upstream of the recompression region
at z = 3 for half-, quarter-, 1/6th, 1/8th and 1/16th-cylinder (from top to bottom);
ReD = 30, 000, M = 2.46.
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these structures are of longitudinal nature, the focus is shifted to the visualization of

mean streamwise vorticity, which does not include any component of the streamwise

derivatives. As opposed to the vorticity magnitude, the streamwise vorticity also con-

tains information about the direction of rotation. The positive and negative values

denote clockwise and counterclockwise rotation, respectively.

Within the shear layer, negative streamwise vorticity is found in the mean flow

for 0 ≤ θ ≤ 2π
3
, pinched at θ ≈ π

3
. Positive values of streamwise vorticity are seen

for 2π
3
≤ θ ≤ π. In the interior of the recirculation region, the same behavior can be

observed, except for a reversed orientation and a more pronounced separation of the

structures. The visualization of the mean azimuthal velocity component displays a

similar behavior, i.e., three structures within the recirculation region and two struc-

tures in the shear layer. The occurrence of only one sign change and the presence

of distinctive features at θ ≈ π
3
and θ ≈ 2π

3
implies that the mean flow is mainly

the result of a superposition of modes k = 2 and k = 3. These modes were also

found to be the dominant ones in the discussion of the radial amplitude distributions

at z = 2.5. The resulting pattern observed in the endviews further suggests that

these most significant modes are non-oscillatory in time, see discussion of figure 6.1.

This is further supported, recalling that the modes k = 2 and k = 3 not only were

the (linearly) most amplified modes but also showed monotonous growth in time, as

opposed to higher azimuthal modes (see figures 5.8 and 6.2).

For all other circumferential domain-sizes, scrutinizing the visualizations of stream-

wise vorticity and the azimuthal velocity component shows two pairs of counter-

rotating structures within the integration domain. One pair is embedded in the shear

layer, the other is present within the recirculation region, with a reversed orientation.

When looking at contours of total vorticity, it seems that for each pair of counter-

rotating structures observed in contours of streamwise vorticity and azimuthal ve-

locity, one vorticity peak appears in the shear layer. This behavior is caused by

the entrainment and ejection of fluid from the recirculation region in the presence of
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longitudinal structures. The quarter-cylinder case therefore exhibits a “four-lobe”-

structure, the 1/6th-cylinder calculations a “six-lobe” structure as sketched in figure

6.1. In consideration of the results found discussing the radial mode-shapes, these

patterns are generated by the azimuthal modes k = 4, k = 6, k = 8 and k = 16 for

the respective calculations. Similar to the half-cylinder case, these modes are most

likely non-oscillatory in time.

Downstream of recompression (figure 6.17), the mean values of total vorticity

are reduced, mainly because the radial gradient of the streamwise velocity compo-

nent is significantly smaller in the trailing wake than in the shear layer. The max-

imum values of streamwise vorticity and the azimuthal velocity component remain

roughly unchanged. This indicates that in the mean the longitudinal structures persist

throughout the strong pressure gradient in the recompression region. This supports

the assumption, that longitudinal structures are generated within the recirculation

region and eventually travel downstream. In the half-cylinder case, a “four-lobe”

structure emerges, with the largest extension at θ = 0 and θ = π. This can be

attributed to the “flapping” motion of the wake, which, due to the imposed sym-

metry, is restricted to the θ = 0 and θ = π plane. If full Fourier transforms were

employed, the flapping movement could continuously select different planes and the

average could therefore be more circular. This explanation is substantiated by the

endview of the quarter-cylinder case, where mode k = 1 is excluded and the “four-

lobe” structure is prominent. Recalling that the amplitude distribution of the fourth

mode had the largest amplitude suggests that for the quarter-cylinder, a steady mode

k = 4 is the most dominant mode and responsible for the “four-lobe” pattern. In the

half-cylinder case, the largest amplitudes found in the mode-shapes were for modes

k = 2 and k = 4. Therefore, the “four-lobe” structure observed for this case might be

a superposition of an oscillatory mode k = 2 and a steady mode k = 4. In contrast

to the upstream position discussed above, no contribution of mode k = 3 can be

observed. This explains the strongly decreased magnitude of the third mode seen in
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Figure 6.17 Endviews of time-averaged contours of total vorticity (left), streamwise
vorticity (center), and azimuthal velocity (right) downstream of the recompression
region at z = 9 for half-, quarter-, 1/6th, 1/8th and 1/16th-cylinder (from top to
bottom); ReD = 30, 000, M = 2.46.
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the amplitude distribution at z = 9.

For all other calculations, the picture remains unchanged from the location z =

2.5, except that the longitudinal structures are more elongated along the symme-

try/periodicity axis. The endview of the vorticity magnitude of the 1/16th-cylinder

reveals that the structures present in the flow are not energetic enough to produce

a significant azimuthal variation of the mean flow. In addition, the radial extent of

the wake is smaller for the 1/8th- and 1/16th-cylinder cases than for the cases with

a larger circumferential domain-size due to the fact that the recompression region is

much further downstream and the far-wake has not yet spread as much.

In order to obtain a more complete image of the averaged flow field, the visualiza-

tions of averaged iso-contours of Q = 0.05 are presented in figure 6.18. Perspective

views from downstream towards the base are shown for the four largest circumferen-

tial domain-sizes. The flow direction is from left to right. For the half-cylinder case,

shown on top, only the computed data is visualized. For all other cases, however, the

available data was mirrored at the symmetry plane for clarity. The graphs on the left

side are views from the “outside”, i.e., from the free-stream towards the axis and the

graphs on the right side show the perspective view from the “inside”, with the radial

axis directed into the page. For all cases, it can be seen that the mean longitudinal

structures seen in the endviews within the recirculation region at z = 2.5 (figure 6.16)

and in the trailing wake at z = 9 (figure 6.17) are connected. Also, the azimuthal

modulation of the shear layer can be observed in the mean. This modulation, being

apparent in the mean, most likely is due to the presence of a global mode and presum-

ably leads to the creation of the longitudinal structures. Another similarity between

all cases is the occurrence of the same number streamwise vortices in the mean flow.3

3If the half-cylinder case had also been mirrored, four streamwise vortices would be displayed,
however, in order to allow for a clearer view into the recirculation region, only the computed domain
is shown.
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Figure 6.18 Time-averaged iso-contours of Q = 0.05, perspective view from down-
stream towards the base, flow is from left to right; from the “outside” (left) and from
the “inside” (right); half-cylinder, quarter-cylinder, 1/6th-cylinder and 1/8th-cylinder
from top to bottom; ReD = 30, 000, M = 2.46.

This was already evident in the endviews shown above and can be attributed to the

fact that it is always the first higher harmonic of the fundamental wavelength that

is the most dominant one, as shown when discussing the mode-shapes presented in

figures 6.13 – 6.15.

In order to evaluate the effect of the different wake patterns on the base pres-

sure and the recirculation length, the mean streamwise velocity along the axis and

the pressure coefficient along the base are shown for all cases in figure 6.19. The

axisymmetric solution, that was used as the basic state for the linear stability in-

vestigations and that served as initial condition for the DNS of all domain sizes is
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Figure 6.19 Averaged pressure coefficient (left) and streamwise axis-velocity (top) for
all circumferential domain-sizes; ReD = 30, 000, M = 2.46.

included for comparison. For the half-cylinder case, the recirculation length of the

separation bubble is decreased to z = 5.3 versus z = 6.1 for the axisymmetric case.

However, even more significant than the decrease in recirculation length is the drastic

change of the shape of the profile within the recirculation region. Not only has the

location of the maximum reverse velocity considerably moved downstream, its value

has also strongly decreased. These differences are a consequence of the mixing of

low speed fluid contained in the recirculation region with the outer high-momentum

fluid through the structures discussed above. The pressure distribution along the

base, obtained from the half-cylinder calculation, is completely flat, as opposed to

the axisymmetric case, where a strong radial variation, with a pronounced maximum

at the axis, is visible.

For the quarter-cylinder case, the base-pressure coefficient is very similar to that

found in the half-cylinder case, displaying only a slight radial variation. The data

obtained from the quarter-cylinder calculation show an even shorter recirculation

length. As was shown in the discussion of the radial profiles (figure 6.13), mode

k = 4 contains a significantly larger amount of energy than in the half-cylinder case.

Therefore, it is suggested, that the structures generated in this case contain more

energy, thus entraining more low momentum fluid from the reverse-flow region. The

location of the maximum reverse-velocity is slightly farther upstream, albeit with
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roughly the same magnitude. These observations reinforce the earlier conclusion,

that mode k = 1 only plays a minor role for the present flow conditions. The main

effects that can be attributed to mode k = 1 are a short plateau in the streamwise

axis-velocity at z ≈ 1, that can only be seen in the half-cylinder case, and causing a

perfectly flat pressure distribution.

Scrutinizing the results obtained from the calculation of the 1/6th-cylinder verify

that the azimuthal modes k = 2 and k = 4 are the most relevant modes for this

Reynolds number. Both modes are excluded in this case and the recirculation length

strongly increases, eclipsing even the value of the axisymmetric solution. The base-

pressure distribution also exhibits a more pronounced radial variation, with the mean

value being higher than the mean magnitude found for the larger domain sizes.

In the simulations of the 1/8th- and 1/16th-cylinder the amplitude levels of the

dominant modes are not large enough to significantly modify the mean flow or to

generate any significant structures. Hence, these cases fail to reproduce the results

of the half-cylinder case, i.e., a flat pressure distribution along the base and a short

recirculation region.

From the above results, it is not clear whether merely the unsteadiness of the flow is

responsible for a flat pressure-profile on the base, or whether the three-dimensionality,

i.e., the effects of higher azimuthal modes, is the origin of the fundamentally different

results. In order to clarify this, an axisymmetric calculation at ReD = 400, 000, a

Reynolds number which is significantly larger than the threshold value for an absolute

instability with respect to the axisymmetric mode (see section 5), was conducted that

became highly unsteady.

The mean pressure coefficient distribution along the base for the unsteady case is

compared with the steady results from axisymmetric calculations at lower Reynolds

numbers in figure 6.20. As for the steady lower Reynolds number cases, a strong radial

distribution with a pronounced peak at the axis can be seen. The peak maximum is

fairly constant for all cases, which can be attributed to the similar maximum reverse
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Figure 6.20 Pressure coefficient on the base obtained from axisymmetric DNS calcu-
lations for various Reynolds numbers; M = 2.46

velocity at all Reynolds numbers and the same slope of the streamwise axis-velocity at

the base. The fact that the result from the highly unsteady axisymmetric calculation

does not show any significant deviation from the steady cases demonstrates that the

flat pressure distribution on the base, found for the three-dimensional DNS, is not

caused by the axisymmetric mode. Therefore, the flat pressure distribution on the

base must be a direct consequence of higher azimuthal modes.

The time-averaged streamwise axis-velocity versus streamwise coordinate for this

Reynolds number is included in figure 5.1. It appears that the main effect of the

structures, which are a consequence of the absolute instability with respect to the ax-

isymmetric mode, is the presence of a long constant velocity region at 1.25 < z < 6.

Due to the small variation of pressure in the radial direction within the recirculation

region, this leads to a fairly constant pressure for the same interval. This corresponds

to the results obtained for incompressible backward-facing steps, which are dominated

by two-dimensional structures (rollers), as discussed by Terzi (2004). The axisym-

metric structures present at the highest Reynolds number also cause entrainment of

low-speed fluid from the recirculation region, thereby reversing the trend of increasing

recirculation length for increasing Reynolds numbers.

In conclusion, further evidence was presented supporting the claim that the first
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azimuthal mode might be a nonlinear product of the dominant modes, i.e., a sub-

harmonic of the most important higher modes. Comparing various circumferential

domain-sizes with each other, it was found that the first higher harmonic of the funda-

mental wavelength was the most dominant mode for all cases. In addition, regardless

of the wavenumber, the mode-shape of the most dominant mode always exhibits the

same mode-shape. A modulation of the shear layer was also apparent from the mean

flow data, building confidence in the suggestion that global modes are present which

presumably lead to the creation of longitudinal structures within the recirculation

region. In the half-cylinder case, the base pressure distribution is entirely flat. It was

demonstrated that this is caused by azimuthal modes with low wavenumbers. Once

the low wavenumber modes are eliminated, a radial variation of the pressure at the

base with a peak at the axis is obtained, and the mean pressure is slightly increased.

6.1.4 Turbulent Statistics

In order to obtain averaged turbulent quantities, first the running averages of the

conservative variables needed to be converged. The calculations were then contin-

ued, reading in the converged running averages and computing the mean values of

the velocity components, temperature and molecular stresses at start-up. During

the calculation, at every time-step, these mean quantities were subtracted from the

instantaneous values, thereby obtaining the fluctuations of all quantities. The final

step was to assemble all turbulent quantities, such as K, ε and the turbulent stresses

and average those over time.4

Side- and endviews of the averaged turbulent kinetic energy, K, the turbulent

dissipation rate, ε and several Reynolds-stresses, u′iu
′
j, are shown in figure 6.21 for

data obtained from the half-cylinder calculation. The sideviews of K, ε and the

turbulent shear-stress u′v′ illustrate that no significant fluctuations are present prior

4Typically, the running averages for the turbulent statistics were also computed for at least six
flow-through-times.
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Figure 6.21 Azimuthal average of turbulent statistics; sideviews (left) and endviews
at z = 7 (right) for half-cylinder case; ReD = 30, 000, M = 2.46.

to roughly two radii downstream of the base. Furthermore, it can be observed that

the highest activity is present on the inside of the shear layer, with the magnitudes of

the respective quantities increasing in the downstream direction. In order to quantify

and find the streamwise location of the maximum values, the radial maxima of each

variable over the streamwise coordinate are shown in figure 6.22. For reference, the

mean recirculation length is denoted by the vertical dashed line. The radial maximum
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of the TKE, the turbulent dissipation rate and all normal stress components, u′iu
′
i,

are located downstream of the mean reattachment point. In contrast, the maximum

of the most significant shear-stress component, u′v′, is located upstream of the mean

reattachment point, at z ≈ 3.5. Because the shear-stress component can be related

to the radial gradient of the mean streamwise velocity component, u′v′ ∼ ∂u
∂r
, this

behavior can most likely be attributed to the decreasing shear-layer gradient in the

streamwise direction. These observations are in contrast to the findings by Herrin

& Dutton (1997) who reported that the maxima of most turbulence quantities were

located upstream of the mean reattachment point. However, in their case, the flow

was fully turbulent, whereas the flow currently investigated is of transitional nature.

The endviews for both K and ε at z = 7, downstream of the mean reattachment

point, where the highest levels of most turbulent quantities were found, reflect the

“four-lobe” structure of the wake discussed above. The most dominant structures

seen in the mean streamwise vorticity, shown in figure 6.17, appear to generate the

largest number of small-scale structures, evidenced by the highest level of K and ε at

these locations. This corroborates the assumption made earlier, that the small scales

are generated by large-scale structures and, therefore, are a consequence of additional

instabilities. The strong azimuthal variation of the turbulent quantities further shows

the necessity of solving the transport equations for K and ε fully three-dimensional,

as stated in section 3. In addition, the side- and endviews of the azimuthal normal

stress component confirm that turbulent fluctuations in the azimuthal direction can

not be neglected.

It can be seen in figure 6.22, that, for all circumferential domain-sizes, u′u′ is the

dominant turbulent-stress component. The other two normal-stress components are

fairly similar to each other in magnitude and shape, such that u′u′ À v′v′ ≈ w′w′.

The profiles of K and the streamwise normal stress component are very similar due
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Figure 6.22 Radial maxima of various averaged turbulent statistics over streamwise
coordinate obtained from DNS for half-cylinder (top left), quarter-cylinder (top right),
1/6th-cylinder (bottom left) and 1/8th-cylinder (bottom right); vertical dashed line
denotes the respective mean reattachment length; ReD = 30, 000, M = 2.46.

to the relation

K =
1

2

(
u′u′ + v′v′ + w′w′

)
≈ 1

2
u′u′ . (6.3)

The TKE is roughly one order of magnitude larger than the turbulent dissipation

rate ε. It is also interesting to note, that the shear-stress component u′v′ has its

maximum within the recirculation region, with magnitudes significantly larger than

those of v′v′ and w′w′ in that region. However, for both the half-cylinder and the

quarter-cylinder calculations, the values of the two normal stresses increase in the

downstream direction while the shear-stress decreases so that downstream of the mean

reattachment point v′v′ ≈ w′w′ ≥ u′v′. The TKE and u′u′ distributions both reach

a plateau at the streamwise location where the shear-stress reaches its maximum

value in the half-cylinder and 1/8th-cylinder calculation, before increasing further

towards their global maxima. A possible explanation for this behavior is that, once

the flow has transitioned, the turbulence production remains fairly constant. Only

when the flow becomes subjected to the strong streamwise pressure gradient in the
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reattachment region, the turbulence production increases significantly.

In the quarter-cylinder case, however, a striking difference can be observed. K and

u′u′ increase monotonically until attaining their global maxima noticeably upstream

of the mean reattachment point. Their maxima coincide with the location of the

maximum of the shear-stress component u′v′. The magnitudes reached at the peaks

are significantly larger than for all other cases. This suggests, that for this case the

transition process is more violent than for the other cases, immediately generating

more energetic structures that lead to higher values in the turbulent statistics. The

values of all quantities downstream of the global maximum become similar to those

seen in the other cases, thus no different turbulence generation mechanisms appear

to be present in the trailing wake. This suggestion is supported by the fact that the

shape of the turbulent dissipation rate resembles the distributions obtained from the

other cases, with the location of the maximum value remaining downstream of the

mean reattachment point.

Finally, the availability of the distribution of the turbulent dissipation rate is useful

as another criterion for determining whether the calculation is well enough resolved.

The Kolmogorov length-scale can be computed and compared with the grid-spacing.

For the half-cylinder case, the maximum value of ε was found to be ε ≈ 0.0015, which

leads to a Kolmogorov length-scale of LK = O(10−3). As can be seen from figure 6.21,

the location of this maximum is approximately at (z, r) = (7, 0.25). The numerical

grid resolution at this point is ∆z = 0.0524 = O(10 · LK), ∆r = 0.008 = O(LK)

and r∆θ = 0.25 · π
128

= 0.00616 = O(LK). Hence, the numerical resolution in the

radial and the azimuthal direction are on the order of the Kolmogorov length-scale.

In the streamwise direction, the grid-spacing is roughly one order of magnitude larger

than LK , which is at the lower limit of what is considered adequate for resolving the

relevant length-scales. However, as the estimate for the Kolmogorov length-scale is

based on the maximum of ε and the streamwise grid becomes finer approaching the

base, the streamwise resolution is also considered to be sufficient. Recall, that the
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temporal resolution and the resolution in the azimuthal direction were already found

to be sufficient through the discussion of the temporal development of the Fourier

modes in section 6.1.1.

In summary, in the half-cylinder case, the maximum values of all turbulence quan-

tities, except the turbulent shear-stress was found downstream of the mean reattach-

ment point. The turbulent Reynolds shear-stress exhibited a maximum upstream

of the recompression region because of the relation to the mean shear layer gradi-

ent, which is decreasing considerably farther downstream. Endviews illustrate that a

strong azimuthal variation of the turbulence quantities is present, substantiating the

claim that transport equation for K and ε need to be solved fully three-dimensional

for the present flow. Finally, the turbulence dissipation rate was used to estimate

the Kolmogorov length-scale, and it was determined that the spatial resolution of the

calculations were adequate.

6.1.5 Flow Control

From the hydrodynamic stability investigations, using both spatial and temporal

simulations, it was concluded that the azimuthal modes k = 1, 2, 3, 4 are the dominant

modes for supersonic axisymmetric wakes at ReD = 30, 000. In particular the second

mode is responsible for a mean “four-lobe” wake structure, significant entrainment

of fluid from the recirculation region, and, consequently, a low base-pressure. This

is supported by the fact that, for cases where mode k = 2 was excluded, i.e., all

calculations with a circumferential domain-size smaller than a quarter-cylinder, an

increase in the mean base-pressure was observed.

The knowledge gained from these calculations motivated the use of flow control

methods to exploit and/or counteract the instability mechanisms present in the flow,

such that a pressure increase at the base, and, consequently, a drag reduction could
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be accomplished. To that end, several calculations were conducted at M = 2.46 and

ReD = 30, 000 employing flow control, designed to weaken the dominance of the low-

wavenumber modes. Disturbances were introduced into the approach boundary layer,

just upstream of separation (center of disturbance at r = 1.05, z = −0.15) through

a time-periodic volume force F̂ k
V F , which was described in section 3.7. The volume

force was added to the right-hand-side (RHS) of the radial momentum equation (2.4)

in Fourier space, thus a specific azimuthal mode could be forced. The disturbances

were either steady or periodic in time with a frequency ω and a disturbance amplitude

Adist, according to equation (3.2). Two separate mechanisms for altering the near-

wake were investigated:

1. Longitudinal vortices were introduced into the initial shear-layer, imposing sym-

metries on the flow in the r − θ plane and constraining helical modes with low

mode-numbers.

2. Axisymmetric vortices were generated, which, due to compressibility effects, do

not experience significant growth in the streamwise direction, but reduce the

energy transfer from the mean flow to oblique disturbances, thereby decreasing

the growth of helical structures.

To emulate steady vortex generators which introduce longitudinal vorticity into the

Figure 6.23 Endviews of time-averaged streamwise vorticity in the initial shear-layer
at z=1; steady azimuthal forcing of k = 4, k = 8 and k = 16 from left to right;
ReD = 30, 000, M = 2.46.
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shear layer, the volume force F̂ k
V F was added to a specific azimuthal mode of the

RHS with ω = 0. Three cases were examined: forcing either mode k = 4, k = 8

or k = 16, hence generating 8, 16 or 32 counter-rotating longitudinal structures in

the circumferential direction. The resulting structures are illustrated in figure 6.23

by contours of streamwise vorticity in an endview at a location close to the base

(z = 1). In order to produce axisymmetric vorticity, the axisymmetric mode k = 0

was disturbed periodically with ω = 0.4166. This frequency was selected because it

corresponded to the most unstable streamwise wavelength for the axisymmetric mode

that was found using temporal calculations.

An interval of the temporal development of the azimuthal Fourier modes in a

region of high activity, after the initial transient is overcome, is shown in figures 6.24

(a) – (d). In contrast to the unforced case presented in figure 6.4, high-frequency

oscillations are present throughout the entire interval and no intermittency can be

observed for all forced cases, except when steady forcing of mode k = 4 is applied.

This suggests that the structures introduced into the flow, whether streamwise or

axisymmetric, lead to instabilities which continuously produce small-scale structures.

In order to identify the dominant frequencies in the flow, the data of the az-

imuthal Fourier modes of density at a location in the developing wake were Fourier-

transformed in time. Figure 6.25 shows the amplitudes of selected azimuthal modes

versus the Strouhal number based on diameter for all forced cases. In all cases a

significantly broader range of time-scales and larger amplitudes than for the unforced

case could be observed. This is in agreement with the previous observation, that the

intermittency of the unforced calculations at this Reynolds number, is destroyed for

all cases investigated.

For the case employing periodic axisymmetric forcing, the forcing frequency clearly

manifests itself as a peak in k = 0, k = 2 and k = 3 at StD = 0.833, even though the

time signal was acquired in the trailing wake (note that the non-dimensionalization of
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Figure 6.24 Temporal development of Fourier modes of ρ in a region of high activity
for volume-forced cases; z = 10.13, r = 0.45, ReD = 30, 000, M = 2.46.

all quantities was performed with R as reference length whereas the Strouhal number

is based on the diameter D = 2R of the body). It can also be seen that subharmonics

with half and one quarter of the forcing-frequency are generated. Compared to the

unforced case, no significant reduction in the amplitudes of mode k = 2 can be

detected for the forced cases. However, the contribution of the other modes increases,

in particular the first azimuthal mode k = 1 shows multiple pronounced peaks in the

low-frequency range for the cases where longitudinal vorticity was introduced. In

order to determine how the different forcing mechanisms affect the generation and

evolution of coherent structures, visualizations of instantaneous iso-contours of Q =

0.1 are shown in the following figures. For the case employing periodic axisymmetric

forcing (6.26 a), the vortices appearing in the trailing wake are very similar to the

unforced case. The axisymmetric structures generated just upstream of separation

by the periodic forcing can be observed in the shear layer. However, an azimuthal

modulation caused by the dominant helical modes is visible. When employing steady

forcing of mode k = 4 (figure 6.26 b), the resulting base flow appears to be very similar
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Figure 6.25 Fourier decomposition in time of Fourier modes of ρ in a region of high
activity, periodic forcing of k = 0 top left, steady forcing of k = 4 top right, steady
forcing of k = 8 bottom left, steady forcing of k = 16 bottom right; z = 10.13,
r = 0.45, ReD = 30, 000, M = 2.46.

to the unforced case. This confirms that k = 4 is a significant mode in the natural

case. The same kind of (upstream travelling) helical structures can be detected in the

inner shear-layer and the longitudinal structures forming in the recirculation region

extend into the trailing wake. Once these structures detach, they travel downstream,

forming hairpin vortices. Consequently, forcing a low wavenumber such as k = 4 does

not seem to introduce structures that visibly affect the flow field. Figure 6.27 a) shows

that the opposite is true for the case where mode k = 8 is forced. Here, longitudinal

vortices emerge from the forcing location and can be observed in the initial shear-

layer. Also, a considerably larger amount of longitudinal structures can be observed

than for the unforced case or the two forced cases discussed above. The diameter of

these streamwise vortices appears to be smaller than for the other cases as well. Using

steady forcing of mode k = 16 (figure 6.27 b), longitudinal structures, originating in
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a) periodic axisymmetric forcing

b) steady forcing of k = 4

Figure 6.26 Instantaneous iso-contours of Q = 0.1 for forced cases, top- and side-
view (top and bottom, left) and perspective view from inflow towards outflow (right);
ReD = 30, 000, M = 2.46.

the approach flow, can be observed in the shear layer. As for the case where k = 8 is

forced, a denser clustering of streamwise structures with a reduced diameter (versus

the unforced case) can be detected in the recompression region and in the trailing

wake. This observation supports the notion that the longitudinal structures are a

consequence of additional instabilities that occur when the global modes with low

wavenumber reach high amplitudes and cause a significant circumferential modulation

of the near-wake. For the forced cases, the introduced longitudinal structures cause

a strong azimuthal variation of the shear layer, thereby leading to the formation of a

large number of streamwise vortices within the recirculation region.
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a) steady forcing of k = 8

b) steady forcing of k = 16

Figure 6.27 Instantaneous iso-contours of Q = 0.1 for forced cases, top- and side-
view (top and bottom, left) and perspective view from inflow towards outflow (right);
ReD = 30, 000, M = 2.46.

For all forced cases, a flapping motion of the far wake, as for the unforced case,

can be observed, implying that the contribution of mode k = 1 is considerable in

this region. This explains the significance of k = 1 in the frequency spectra shown in

figure 6.25. However, for the cases where steady forcing is applied to modes k = 8 or

k = 16, no significant lateral movement was observed for the near-wake or the initial

trailing-wake, suggesting that the introduction of longitudinal vortices prevents low-

wavenumber modes from becoming dominant in this region.

To evaluate the effect of the forcing on the mean flow, time-averaged quantities
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Figure 6.28 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from DNS, forcing k = 0, k = 4, k = 8 and k = 16 cases (from top to bottom); z = 2.5
(left), z = 9 (right); ReD = 30, 000, M = 2.46.
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are scrutinized in the following. The averaged radial profiles of several azimuthal

Fourier modes of the streamwise velocity component are shown in figure 6.28 for all

forced cases. Note that all graphs were scaled as in the unforced case in figure 6.13 to

allow for a direct comparison of the amplitudes. Comparing the data obtained from

the case where the axisymmetric mode was disturbed periodically to the unforced

case shows several differences: At the upstream location z = 2.5, the mode-shape

of the first azimuthal mode shows a changed radial distribution and possesses the

largest amplitude. The amplitude distributions of azimuthal modes with k > 1 are

quite similar to the unforced case, both in shape and magnitude. Looking at the

downstream location z = 9, the mode-shapes resemble those found in the unforced

case. Modes k = 4 and k = 6, which showed large amplitudes in the unforced case,

appear to be considerably weakened by the periodic forcing. For the case where mode

k = 4 is forced steadily, a significant peak in that mode is visible in the shear layer

(at r = 0.8) at the upstream location, z = 2.5. The mode-shape of the first mode

resembles that of the case employing axisymmetric forcing. For the higher modes,

except k = 4, the amplitude distributions are similar to those found in the unforced

case. The radial profiles obtained in the trailing wake again show a strong similarity

to the unforced case, except that modes k = 2, k = 4 and k = 6 are not as dominant.

When employing steady forcing of either mode k = 8 or k = 16, a significant peak

within the shear layer is visible at the upstream location in the forced mode. The

fact that several azimuthal modes possess larger amplitudes at the upstream location

than the first azimuthal mode confirms the observation made while discussing the

instantaneous visualizations of Q: The introduced longitudinal vortices prevent the

first mode from reaching large amplitudes. In the case where mode k = 8 is forced, the

large amplitude of that mode seems to be maintained in the downstream direction.

Therefore, a large contribution of k = 8 can be detected at the location in the trailing

wake. In general, however, the amplitudes of all modes possess considerably smaller

values than for all other cases. No large contribution of mode k = 16 can be observed



174

Figure 6.29 Endviews of time-averaged contours of total vorticity in the trailing wake
at z = 9; from left to right: periodic axisymmetric forcing, steady azimuthal forcing
of k = 4, steady azimuthal forcing of k = 8, steady azimuthal forcing of k = 16;
ReD = 30, 000, M = 2.46.

at z = 9 for the case where that mode is forced, even though it shows a pronounced

peak at z = 2.5. For the two latter cases, it can also be observed that modes k = 4

and k = 6 possess reduced amplitudes versus the unforced case.

Endviews of time-averaged total vorticity at z = 9 are shown in figure 6.29,

in order to assess whether the wake structure was modified by the various forcing

mechanisms. In contrast to the unforced case, which displayed a pronounced “four-

lobe” structure, the wake-structure of all forced cases becomes significantly more

circular. Even though no symmetries were introduced in form of longitudinal vortices

to weaken low wavenumber modes for this case, the resulting wake pattern differs

noticeably from the unforced case. For the case where steady forcing of k = 4 was

employed, a strong reduction in the level of total vorticity can be detected. The

wake pattern is also considerably changed from the unforced case. This is in good

agreement with the reduced amplitudes seen for the higher modes in the amplitude

distributions presented above. When forcing mode k = 8, the vorticity levels in the

trailing wake are higher than when k = 4 is forced. Remnants of the introduced

longitudinal structures can be detected, creating a weak “eight-lobe” pattern. This

was expected in light of the large amplitude of k = 8 visible in the radial profiles at

z = 9. When forcing k = 16, approximately the same vorticity level is present as

for the case forcing k = 8. In agreement with the small amplitude of k = 16 at the
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Figure 6.30 Pressure coefficient on base (left) and streamwise velocity along axis of
symmetry (right); unforced case (—), periodic forcing of k = 0 with ω = 0.4166 (+),
steady forcing of k = 4 (¤), steady forcing of k = 8 (◦), steady forcing of k = 16 (4);
ReD = 30, 000, M = 2.46.

downstream location z = 9, no trace of the introduced longitudinal structures can be

observed in the endview. Rather, the resulting pattern slightly resembles that of the

unforced case, albeit the four-lobe structure is by far not as pronounced.

The time-averaged streamwise velocity along the axis and the mean pressure co-

efficient along the base from the forced cases are compared to the unforced case in

figure 6.30. Forcing the axisymmetric mode periodically results in a similar stream-

wise axis-velocity profile than that obtained from the unforced case. However, the

mean pressure coefficient at the base is increased by approximately 3.5%. When forc-

ing higher azimuthal modes, the recirculation length is slightly decreased. This is

due to the increased entrainment of low-speed fluid from the recirculation region by

the longitudinal structures introduced into the shear layer. The same recirculation

length is predicted by the calculations where either mode k = 8 or k = 16 is forced.

However, when forcing k = 16, a further reduction of the recirculation length can be

observed. Responsible for the reduction is the increased mixing caused by the larger

number of longitudinal structures in the shear layer. It is noteworthy, however, that

in the near-wake region, the profiles of the streamwise axis-velocity differ significantly

for the cases forcing higher modes. When forcing mode k = 4, the data follows closely

that of the unforced case. In contrast, when mode k = 8 is forced, the slope at the
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base becomes shallower, but the profile dips to the same value of reverse velocity

obtained from all other cases further downstream. For the case, where the largest

number of streamwise vortices is introduced into the shear layer, the opposite is the

case and the slope at the base becomes steeper. The changing behavior of the stream-

wise axis-velocity distribution also translates to different mean pressure values at the

base. When forcing mode k = 4, a very similar pressure distribution on the base is

obtained as for the case where axisymmetric forcing was employed. Forcing mode

k = 8 appears to be the most successful case in augmenting base-pressure, showing

a 6% increase over the unforced case. For the case where k = 16 is forced, the gain

in preventing the dominance of the low wavenumbers seems to be outweighed by the

increased mixing in the shear layer, leading to a slightly decreased pressure coefficient

on the base.

In summary, for all cases employing flow control, except forcing k = 4, continuous

generation of small-scale structures was observed and no intermittency was present.

Forcing the axisymmetric mode has the same effect as observed in experiments (e.g.,

Bourdon & Dutton, 2001) at a much higher Reynolds number. Due to the high com-

pressibility in the shear layer, the two-dimensional mode is not significantly amplified,

but it diminishes the energy transfer from the mean flow to the helical modes. As a

consequence, the vorticity levels and mixing are decreased, resulting in less entrain-

ment and, thus, in a higher base-pressure. Furthermore, the structures present in the

flow are very similar to the unforced case, i.e., helical structures appear in the shear

layer and streamwise vortices are present in the recirculation region and in the trailing

wake. This is also true for the case where the fourth mode is forced, confirming that

mode k = 4 is an important mode in the unforced case. However, when forcing higher

modes, longitudinal structures emerge from the forcing location, leading to a reduced

flapping of the initial shear-layer and a larger amount of streamwise structures in the

trailing wake. The longitudinal vortices, introduced into the shear layer, lead to an
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increased entrainment and, for the case of forcing k = 16, the pressure is decreased, as

seen in the experiments. When forcing k = 4 or k = 8, however, the base-pressure is

increased. This is in contrast to the observations made by Bourdon & Dutton (2001),

where the introduced longitudinal structures always reduced the base-pressure. From

the data obtained when forcing k = 4 and k = 8, it is suggested that preventing the

dominance of the low wavenumber modes outweighs the increased mixing. Therefore,

it appears as if flow control is a viable tool for drag reduction in supersonic base flows.

6.1.6 Summary

Hydrodynamic stability investigations of supersonic axisymmetric wakes at ReD =

30, 000 andM = 2.46 were conducted using DNS and TDNS. One of the advantages of

conducting numerical experiments was exploited: The ability to deliberately exclude

certain physical effects. By employing DNS for various circumferential domain-sizes,

the influence of various azimuthal modes on the flow could be investigated. It was

confirmed that the flow is absolutely unstable with respect to at least the first eight

azimuthal modes. The unstable modes sporadically lead to the generation of large-

scale structures, causing the flow to exhibit an intermittent behavior. It was shown

that the structures in the initial shear-layer are of helical nature, due to the high

compressibility of the flow in this region. It is proposed that unstable global modes

within the recirculation region lead to the generation of longitudinal structures within

the recirculation region. These streamwise structures eventually overcome the adverse

pressure gradient in the recompression region and travel downstream, producing hair-

pin structures in the trailing wake.

For sufficiently large circumferential domain-sizes, the range of unstable modes is

sufficiently large to cause further instabilities that lead to the generation of small-scale

structures. For the smallest domain sizes investigated, a viscous cut-off of the high

wavenumbers prevents the azimuthal modes to grow linearly. In addition, because the
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long wavenumbers are eliminated in the small domain sizes, the large wavenumbers

cannot be generated nonlinearly either. Consequently, no small-scale structures are

generated for these cases. Local stability calculations suggest that the helical struc-

tures present in the shear layer and the longitudinal structures within the trailing

wake are a consequence of local instabilities. In addition, the baroclinic torque was

identified as another important vorticity production mechanism. The largest contri-

bution of vorticity production or destruction through baroclinic torque was found in

regions subject to high compressibility, i.e., the outer boundary of shear-layer and the

trailing wake.

The structures present in the flow have a substantial effect on the mean flow,

causing a decrease in recirculation length and base-pressure. Moreover, the azimuthal

modes with low wavenumbers are responsible for an entirely flat pressure-distribution

on the base. The azimuthal modes k = 2 and k = 4 appear to be the most domi-

nant for this Reynolds number, producing a “four-lobe” wake-pattern. Considerable

evidence was found that the first azimuthal mode receives a significant amount of

its energy through the nonlinear interaction of higher modes, in particular between

k = 3 and k = 4. Furthermore, turbulence statistics revealed that turbulence quanti-

ties, such as K and ε, experience a strong azimuthal variation. This necessitates the

implementation of a three-dimensional solver for turbulence transport equations.

It was illustrated that the base pressure was increased when the most dominant

modes were excluded. Consequently, flow control was applied to the base flow, de-

signed such that the (naturally) most dominant modes could be weakened. The

continuous introduction of structures resulted in a larger amount of small-scale struc-

tures than in the unforced case and the destruction of intermittency. An increase in

base-pressure of up to 6% was accomplished when introducing longitudinal structures

into the initial shear-layer by employing steady forcing of mode k = 8. It appears

that preventing the dominance of the low-wavenumber modes outweighs the increased

mixing caused by additional longitudinal structures in the shear layer.
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6.2 DNS for ReD = 60, 000

The linear stability calculations conducted in section 5.2 showed a significant increase

in the growth rates of disturbances at ReD = 60, 000 compared to lower Reynolds

numbers, in particular for the higher azimuthal modes. Therefore, the study that

was conducted for supersonic axisymmetric wakes at ReD = 30, 000, was repeated for

ReD = 60, 000 in order to evaluate whether a significant change in the wake-behavior

would occur. DNS were conducted for a half-cylinder, a quarter-cylinder, 1/6th, 1/8th

and 1/16th of a cylinder.

All calculations were performed on the same streamwise/radial grid, with 812×130
points in the streamwise and the radial directions, respectively, with the smallest grid-

spacing at the corner being ∆zc = ∆rc = 0.01. In the radial direction, the grid-spacing

was equidistant between 0 < r < 1 and then strong stretching was used between 1 <

r < 5. This grid enabled the use of less total radial points than in the lower Reynolds

number case, for which, in hindsight, a smaller amount of radial points would have

been sufficient. In the streamwise direction, stretching was used throughout the

entire domain. However, using 812 points for 0 < z < 10 resulted in only a modest

stretching with a ratio ∆zmax

∆zmin
= 2.35. In the azimuthal direction, the half-cylinder

case was computed with 128 Fourier modes after a preliminary calculation with 64

modes did not show a sufficient decay in the amplitudes of the highest Fourier modes.

The domains with smaller circumferential extent were then computed with 64, 42,

32, and 16 Fourier modes, respectively, in order to maintain the same grid resolution

for all cases. For all other relevant parameters, see table D.7 in Appendix D.

6.2.1 Time-Dependent Results

The amplitudes of the azimuthal Fourier modes were monitored at both the pulse lo-

cation and a location farther downstream. Exponential growth of the Fourier modes

was observed for all cases, until a nonlinear saturation state was reached, implying
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Figure 6.31 Temporal development of Fourier modes of (ρu) at disturbance location
z = 2.5, r = 0.5 at start-up for half-cylinder calculation; ReD = 60, 000, M = 2.46.

that the flow is absolutely unstable with respect to azimuthal modes for all circumfer-

ential domain-sizes investigated, i.e., for the azimuthal modes k ≤ 8. Representative

for all circumferential domain-sizes, the temporal development of the Fourier modes

of (ρu) for the start-up transient of the half-cylinder case is shown in figure 6.31. As

seen in the results obtained from the linearized N-S calculations at z = 2.5, modes

k = 3 and k = 4 possess the largest growth rates. The nonlinear interaction between

these two modes manifests itself in an increased growth of mode k = 1, starting at

t ≈ 110. For t > 115, the nonlinear interaction between k = 3 and k = 4 can be

observed in the increased growth rates of modes k = 6 and k = 7. For t > 125, the

amplitude of k = 4 appears to become large enough to induce an increased growth of

the subharmonic k = 8. From these observations, it appears that k = 4 is a strong

contributor in the nonlinear generation process of higher modes. In contrast to the

lower Reynolds number case, the first azimuthal mode k = 1 becomes the most am-

plified mode for t > 130.

Sideviews of instantaneous total vorticity for the plane θ = 0◦ and θ = θmax of

the respective calculations are shown in figures 6.32 (a) to (e). Unlike for the lower

Reynolds number, figures (a), (b) and (d) do not look significantly different. The

flow has fully transitioned to turbulence at a streamwise location of z ≈ 5 and dis-
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a) half-cylinder b) quarter-cylinder

c) 1/6th-cylinder d) 1/8th-cylinder

e) 1/16th-cylinder

Figure 6.32 Sideviews of instantaneous contours of total vorticity; top half θ = 0◦,
bottom half a) θ = 180◦, b) θ = 90◦, c) θ = 60◦, d) θ = 45◦ and e) θ = 22.5◦;
ReD = 60, 000, M = 2.46.

plays small-scale structures that presumably are a consequence of secondary/tertiary

instabilities occurring in the presence of large-scale structures. However, the 1/6th-

cylinder case (figure 6.32 c) appears to contain a smaller range of length-scales than

the two larger circumferential domain-sizes and the 1/8th-cylinder case, and transition

occurs further downstream. This hints at a high significance of modes k = 2, 4 at

this Reynolds number, as the second and fourth modes are included in (a) and (b),

but not in (c). Also, in the calculation of the 1/16th-cylinder, where k = 4 is elim-

inated, a considerably smaller range of length-scales can be observed. Nevertheless,

a significantly larger amount of structures is visible than for the smallest azimuthal

domain-size at ReD = 30, 000, and several structures can be detected in the shear

layer. As in the lower Reynolds number case, structures can be seen to develop in
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the inner part of the shear layer, in qualitative agreement with the higher Reynolds

number experiments of Herrin & Dutton (1995).

The temporal development of the Fourier modes of density in a region of high

activity, here at z = 7.85 and r = 0.465, once a fully nonlinear saturation state is

reached, is shown in figures 6.33 (a) to (e). The decay in energy over the azimuthal

modes amounts to approximately three orders of magnitude for cases (a) to (d), indi-

cating that a significantly broader range of length-scales than for the lower Reynolds

number flow is present. Also, no intermittency can be observed for any of the cases

(a)–(d). Note, that only an interval of 10 time-units is shown in contrast to 60 time-
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Figure 6.33 Temporal development of higher Fourier modes of ρ in a region of high
activity; z = 7.85, r = 0.465, ReD = 60, 000, M = 2.46.
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units for the lower Reynolds number cases, due to the smaller time-scales present.

Only the smallest domain size, depicted in figure 6.33 (e), shows a high degree of in-

termittency, and the amplitudes of the higher modes are several orders of magnitude

smaller than for the larger domain sizes.

The Fourier-decomposition of the time signal for all cases is shown in figure 6.34.

In contrast to the ReD = 30, 000 case, it is evident that a significant amount of

energy is contained in frequencies with StD ≥ 1. The temporal resolution appears

to be sufficient for these cases, as exponential decay is observed towards higher StD.

For the half-cylinder case, mode k = 1 shows a prominent peak at StD = 0.175. This

value is noticeably higher than for the ReD = 30, 000 case (StD = 0.08). Structures

with this frequency seem to have a great effect on the azimuthal mean flow, evidenced
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Figure 6.34 Fourier decomposition in time of higher Fourier modes of ρ in a region
of high activity, half-cylinder top left, quarter-cylinder top center, 1/6th-cylinder top
right, 1/8th-cylinder bottom left, 1/16th-cylinder bottom center; z = 7.85, r = 0.465,
ReD = 60, 000, M = 2.46.
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by the peak of k = 0 at twice the frequency StD = 0.35. Mode k = 2 and k = 4

appear to have the largest impact on the azimuthal mean in the lower frequency

range for the quarter-cylinder case, displaying several peaks at StD < 1. For larger

Strouhal numbers, mode k = 2 appears to be the dominant higher mode. However,

for this region no further assumptions can be made of which modes have the most

pronounced effect on mode k = 0. It can only be observed that the mean flow

possesses a dominant frequency with StD = 1.63.

In contrast to the lower Reynolds number case, for the 1/6th-cylinder case the

largest amount of energy is contained in k = 3. A significant maximum of k = 3 at

StD = 0.09 coincides with k = 9 and nonlinearly generates a peak in the azimuthal

mean at the same frequency. It is likely that this maximum of k = 3 is responsible for

a higher harmonic of k = 0, k = 6 and k = 9 at StD = 0.18. The global maximum of

k = 0 found at StD = 0.28 appears to be generated by the third mode as well, which

shows a pronounced peak at StD = 0.14.

The 1/8th-cylinder case is dominated by modes k = 4 and k = 8 which exhibit

strong peaks at frequencies as high as StD = 5 with significant nonlinear effects on the

azimuthal mean. Mode k = 4 has its most prominent maximum at StD = 0.12 which

is double the frequency of that found in the lower Reynolds number case. In contrast

to the lower Reynolds number case, the 1/16th-cylinder result displays a broad range

of frequencies for modes k = 0, k = 8 and k = 16.

In summary, all cases with a circumferential domain-size larger than 0 ≤ θ ≤ π/4

appear to fully transition to turbulence downstream of the recompression region and

no intermittency can be detected. In contrast to the lower Reynolds number case,

a considerable amount of energy can be found in frequencies with StD ≥ 1 while

maxima for lower azimuthal modes at low frequencies confirm the presence of large-

scale structures in the flow. Preliminary evidence was found that modes k = 2 and

k = 4 might be the most significant azimuthal modes for the current flow conditions.
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6.2.2 Coherent Structures

The Q-criterion was chosen in order to visualize coherent structures in the flow.

Figure 6.35 shows two perspective views and a time-sequence of sideviews of instan-

taneous iso-contours of Q = 0.1 for the half-cylinder case. The difference between

the time-levels is ∆t = 3.08, allowing free-stream fluid to travel approximately 3

radii downstream. Qualitatively, a similar picture can be observed as in the lower

Reynolds number case, i.e., helical structures are present within the shear layer and

streamwise structures reside in the recirculation region, extending into the trailing

wake. However, the amount of longitudinal structures has drastically increased, in

particular in the inner part of the shear layer. Also, a much larger amount of hairpin

structures, such as the structure denoted by “C”, can be detected downstream of the

recompression region. Most certainly this is due to the increased number of unstable

modes at the higher Reynolds number. In addition, larger growth rates enable distur-

bances to reach large amplitudes on a shorter time-scale. This enables the formation

of structures before the disturbances are convected out of the unstable region. Thus,

potentially a larger amount of large-scale structures can occur. These, in turn, lead

to additional instabilities, responsible for the generation of small-scale structures, as

shown by means of total vorticity in figure 6.32 (a).

Recall that, at the lower Reynolds number (see section 6.1.2), the helical structures

were found to travel upstream. This was attributed to the considerably smaller com-

pressibility in the negative velocity region of the shear layer, permitting disturbances

to reach sufficiently large amplitudes such that structures can be detected. When

scrutinizing the time-sequence of the present case, it can be observed that the visi-

ble helical structures, marked “A” and “B”, do not show any significant transitional

movement over roughly one flow-through-time. This implies that the amplification

rate is increased such that disturbances reach a nonlinear saturation level in a higher

compressibility region, i.e., where the mean shear-layer velocity is close to zero.
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Visualizations of iso-contours of Q for the quarter-cylinder case (not shown for

brevity) did not reveal significant differences from the half-cylinder case. A large

amount of streamwise structures was observed within the recirculation region. Nev-

ertheless, the helical structures in the shear layer were by far not as pronounced as

for the larger domain size. Contrary to the ReD = 30, 000 case, the trailing wake also

appears to contain a large amount of hairpin vortices. This implies that the exclusion

of odd azimuthal modes at this Reynolds number does not change the wake-behavior

significantly.

C

A B
t = 197.20

C

A B
t = 200.28 t = 200.28

A B
t = 203.36

A B
t = 206.44 t = 206.44

Figure 6.35 Instantaneous iso-contours of Q = 0.1 for half-cylinder case, sideviews
(left) and perspective views from inflow towards outflow (right); ReD = 60, 000,
M = 2.46.
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1/6th-cylinder

1/8th-cylinder

Figure 6.36 Instantaneous iso-contours of Q = 0.1; top- and sideviews (left) and
perspective view from inflow towards outflow (right); ReD = 60, 000, M = 2.46.

Several visualizations of iso-contours of Q = 0.1 are shown for the 1/6th- and

the 1/8th-cylinder cases in figure 6.36. It can be observed that for both cases, in

spite of the considerably reduced azimuthal domain-size, a large amount of structures

is present. Even though mode k = 3 is contained in the 1/6th-cylinder calculation,

which was shown to exhibit the (linearly) largest growth rates of all azimuthal modes,

the amount of streamwise structures in the recirculation region and hairpin vortices

in the trailing wake is decreased. However, in the 1/8th-cylinder case, a large amount

of longitudinal structures can be detected within the recirculation region, in partic-

ular in the inner part of the shear layer. As already suggested when discussing the

sideviews of total vorticity (figure 6.32), this implies that mode k = 4 is important

for the flow currently discussed. Further evidence for the importance of mode k = 4

can be found when scrutinizing the visualizations of instantaneous iso-contours of
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Figure 6.37 Instantaneous iso-contours of Q = 0.1 for 1/16th-cylinder case; time-
sequence of sideviews (left) and perspective view from inflow towards outflow (right);
ReD = 60, 000, M = 2.46.

Q = 0.1 for the 1/16th-cylinder case in figure 6.37. Here, the exclusion of k = 4 leads

to a considerably smaller amount of structures. It is, however, interesting to ob-

serve the formation of “braids”, denoted with “B”, associated with an axisymmetric,

upstream travelling, clockwise rotating roller, marked with “A”. Similar structures

were observed in LES of a mixing layer by Lesieur & Metais (1996). This scenario

also strongly resembles figure 6.6 in Terzi (2004), where a narrow spanwise domain

was chosen for the simulation of a backward facing step at low Mach number. In the

present case, the azimuthal extent of the integration domain is comparable in size and

the axisymmetric structure occurs in a subsonic region. Therefore, a comparison of

the two cases appears to be feasible. Terzi (2004) concluded that the braids possibly

form as a consequence of an centrifugal instability of the instantaneous streamlines

of the axisymmetric rollers. It could be that this mechanism might also be partly re-

sponsible for the generation of the streamwise structures observed in the current case.

In conclusion, helical structures can be detected in the shear layer as for the lower

Reynolds number case. However, due to the increased number of unstable modes at
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the higher Reynolds number, a considerably larger amount of streamwise structures

within the recirculation region can be detected. These structures, in addition to

increased growth-rates of instabilities, lead to a greater number of hairpin vortices in

the trailing wake. As opposed to the lower Reynolds number case, the 1/8th-cylinder

calculation displays a large amount of hairpin vortices. As for the lower Reynolds

number, it is suggested that a large number of streamwise structures is generated

within the recirculation region through the azimuthal modulation of the near-wake

due to the presence of global modes. In addition, it is also proposed that axisymmetric

rollers within the recirculation region might contribute to the generation of streamwise

structures. Further evidence was found that modes k = 2 and k = 4 are significant

for the current flow conditions.

6.2.3 Mean Flow and Turbulent Statistics

Running averages, taken over at least ten flow-through times, were obtained from all

calculations in order to evaluate the impact of the most dominant azimuthal Fourier

modes on the mean flow. The time-averaged radial profiles of several azimuthal

Fourier modes for all three conservative velocity components are shown in figures

6.38 – 6.40. The same characteristic streamwise locations were chosen as in the lower

Reynolds number case and the amplitude range was matched to allow for a direct

comparison of the amplitudes. In general, it can be observed that the streamwise

component is considerably larger than the remaining velocity components. There-

fore, the discussion of the radial profiles will focus on the streamwise component. At

the location z = 2.5 the radial and the azimuthal components possess similar magni-

tudes. Within the trailing wake, however, the magnitude of the radial component is

considerably larger than the azimuthal component.

For the half-cylinder case at z = 2.5, the overall values of the first mode are of

the same order as those of the dominant modes, in spite of a significantly smaller
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Figure 6.38 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from DNS for half-, quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5
(left), z = 7 (right), ReD = 60, 000, M = 2.46.
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Figure 6.39 Time-averaged radial profiles of azimuthal Fourier modes of (ρv) obtained
from DNS for half-, quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5
(left), z = 7 (right), ReD = 60, 000, M = 2.46.
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Figure 6.40 Time-averaged radial profiles of azimuthal Fourier modes of (ρw) obtained
from DNS for half-, quarter-, 1/6th- and 1/8th-cylinder (from top to bottom); z = 2.5
(left), z = 7 (right), ReD = 60, 000, M = 2.46.
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amplification rate observed in the linear calculations. This constitutes additional

evidence that the first azimuthal mode might be a subharmonic of the most important

higher modes. This is supported by the observation that the mode-shape of k = 1 has

little in common with the results obtained from linear calculations, i.e., it is likely to

mainly be the result of nonlinear interaction with other modes. In fact, the amplitude

distribution shows similarities with some of the higher modes. Furthermore, mode

k = 2 possesses the largest magnitude, even though, in the linear calculations, the

largest linear growth was found for k = 3 and k = 4. The significance of mode k = 3

at this streamwise position is strongly decreased, compared to the lower Reynolds

number. In contrast to the lower Reynolds number case, none of the azimuthal modes

shows strong resemblance with the mode-shapes obtained in the linear calculations.

This implies that, even at this upstream location, significant nonlinear interactions

with other modes occur. For the downstream location z = 7, the nonlinear interaction

between the modes is even more pronounced as evidenced by the similarity between

the mode-shapes of all modes (top right graphs of figures 6.38 – 6.40). The amplitude

distributions resemble those obtained for the lower Reynolds number, with the second

mode showing the largest amplitude. Furthermore, large amplitudes are found for

modes k = 2, 4, 6 and even k = 5 and k = 8.

When scrutinizing the amplitude distributions for all domain sizes computed, the

following observations can be made: The profiles are fairly similar to those found

in the lower Reynolds number case, except for the high-amplitude regions which are

confined to a smaller radial extent. For all domain sizes, the first higher harmonic of

the fundamental wavelength is the most dominant mode, i.e., in the quarter-cylinder

case the most dominant mode is k = 4, in the 1/6th-cylinder case mode k = 6, etc.

Furthermore, regardless of the wavenumber, the mode-shape of the most dominant

mode is always the same and possesses roughly the same amplitude for all domain

sizes. The amplitude distributions of modes k = 4, 6, 8, 12 remain fairly unchanged

for both streamwise locations.
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To conclude the discussion of the amplitude distributions, it is found that the first

higher harmonic of the fundamental wavelength is the most dominant one, possessing

the same mode-shape for all cases. For all domain sizes with θ < π, the maxima of

the dominant modes are considerably larger than the corresponding maximum am-

plitudes found for the half-cylinder case. It is supposed that this is due to the fact

that the energy that would be distributed among the most important modes in the

half-cylinder case now is mostly contained in the dominant mode.

The same two characteristic locations as for the low Reynolds number case are

selected to show time-averaged endviews of total vorticity, the streamwise vorticity

component and the azimuthal velocity component for all cases. Figure 6.41 shows the

endviews for all circumferential domain-sizes at the downstream location z = 3 (close

to the position for which the radial amplitude distributions were shown in figures 6.38

– 6.40). The endviews of the half-cylinder case confirm the results found in the radial

amplitude distributions: In contrast to the lower Reynolds number, mode k = 3 is

insignificant and the second azimuthal mode dominates the flow at this streamwise

location. On the inside of the shear layer, negative streamwise vorticity and positive

azimuthal velocity are found in the mean for 0 ≤ θ < π
2
. Positive values of streamwise

vorticity and negative azimuthal velocity are seen for θ > 2π
3
. The occurrence of the

sign-change at θ > π
2
supports that k = 2 is dominant. The superposition of higher

modes with k = 2 most likely is the reason for the sign-change not occurring exactly

at θ = π
2
. In the interior of the recirculation region, a noticeable azimuthal variation

of regions of positive and negative vorticity is visible, in particular when looking at the

streamwise vorticity component. This indicates a significant contribution of higher

azimuthal modes.

For all smaller circumferential domain-sizes, two counter-rotating structures ap-

pear to be confined within the azimuthal domain boundaries. However, unlike the

ReD = 30, 000 case, the separation between the structures on the inside of the shear-
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Figure 6.41 Endviews of time-averaged total vorticity (left), streamwise vorticity
(center), and azimuthal velocity (right) upstream of the recompression region at
z = 3 for half-, quarter-, 1/6th-, 1/8th- and 1/16th-cylinder (from top to bottom);
ReD = 60, 000, M = 2.46.
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layer and the pair within the recirculation region is not as pronounced. For the

1/6th-, 1/8th- and 1/16th-cylinder cases, the inner and outer regions of positive az-

imuthal velocity are connected to each other. Furthermore, the amplitude distri-

butions showed that the fundamental azimuthal mode for each domain size plays a

significantly larger role than in the lower Reynolds number case. These modes appear

to be non-oscillatory, evidenced by the fact that the “k-lobe” wake patterns possess

n dominant “lobes”, where k is the first higher harmonic and n is the fundamental

azimuthal wavelength of the respective calculation.

To adjust for the difference in mean recirculation length, the locations selected

downstream of the recompression region are z = 7 for the four largest domain sizes

and z = 9 for the smallest case, depicted in figure 6.42. For all cases, the streamwise

vorticity component does not change versus the location at z = 3, suggesting that

the longitudinal structures present in the mean persist throughout the recompression

region. In the half-cylinder case, it is evident that the wake pattern is the result

of a superposition of several dominant modes. Looking at the visualization of total

vorticity and recalling the data presented in the radial amplitude distributions of the

azimuthal modes, the wake-structure is most likely composed of non-oscillatory (in

time) modes k = 2, 4, 5, 6 and k = 8. The largest extent of the wake is in the θ = 0 and

θ = π directions, for the same reasons as stated for the lower Reynolds number case.

For the quarter-cylinder case, also considering the amplitude distribution presented

in figures 6.38–6.40, the wake pattern most likely is composed of steady contributions

of modes k = 4 and k = 8, leading to an “eight-lobe” structure. Because the mode

k = 4 is dominant for this case, every second “lobe” is more significant, which can be

seen particularly well in the visualization of the streamwise vorticity component.

In order to assess the effect of the most dominant structures on the mean flow, the

time-averaged streamwise velocity along the axis and the pressure coefficient along

the base are compared for all cases in figure 6.43. In the half-cylinder case, the en-

ergetic large structures reduce the recirculation length by 24.4% compared to the
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Figure 6.42 Endviews of time-averaged total vorticity (left), streamwise vorticity (cen-
ter), and azimuthal velocity (right) downstream of the recompression region at z = 7
for half-, quarter-, 1/6th-, and z = 9 for 1/8th- and 1/16th-cylinder (from top to
bottom); ReD = 60, 000, M = 2.46.
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Figure 6.43 Time-averaged pressure coefficient (left) and streamwise axis-velocity
(right) for all circumferential domain-sizes; ReD = 60, 000, M = 2.46.

axisymmetric calculation, i.e., the mean reattachment point moves from z = 6.9 to

z = 5.2. Note that the reduction of the recirculation length amounted to only 13.2%

in the lower Reynolds number case. The pressure distribution along the base is en-

tirely flat, albeit the mean value is slightly decreased compared to the lower Reynolds

number case. As the contribution of the higher azimuthal modes has increased for

the present case, it can be concluded that helical modes are indeed responsible for

decreasing the base-pressure, and thus, increasing the base-drag. The data from the

quarter-cylinder case is very close to that of the half-cylinder case. Only a minimal

radial variation of base-pressure can be observed. This implies that the effect of mode

k = 1 on the mean flow becomes less significant as the Reynolds number is increased.

The base-pressure profile obtained from the 1/6th-cylinder calculation only shows a

marginal peak at the axis. However, the recirculation length is longer than for both

the quarter-cylinder and the 1/8th-cylinder calculations, reconfirming that the struc-

tures generated by k = 2 and k = 4 are most energetic, entraining a large amount

of fluid from the recirculations region and thereby shortening the separation bubble.

The streamwise velocity along the axis obtained from the 1/8th-cylinder case nearly

coincides with that of the quarter-cylinder case for z > 5. However, in the recircu-

lation region, the magnitude of the reverse flow is significantly higher. Compared to

the lower Reynolds number case, the base-pressure profile of the 1/8th-cylinder case is
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fairly flat. Only the result from the smallest domain size exhibits a very pronounced

peak, approaching the solution of the axisymmetric calculation. The behavior ob-

served here is in line with the findings for the lower Reynolds number case, namely

that modes with large wavelengths are mainly responsible for producing an entirely

flat pressure distribution on the base.

Sideviews of the averaged turbulent kinetic energy, K, the turbulent dissipation

rate, ε, and two Reynolds-stress components, u′iu
′
j, are shown in figure 6.44 for data

obtained from the half-cylinder calculation. The results are similar to the lower

Reynolds number case, i.e., the main contribution of the turbulent quantities occurs

in the inner shear-layer and the recompression region. However, significant fluctua-

tions already appear roughly 1.5 radii downstream of the base due to the accelerated

transition at the higher Reynolds number. In addition, the overall magnitudes of the

turbulent quantities are considerably increased compared to the ReD = 30, 000 case.

From figure 6.44, it can also be extracted that all turbulent quantities reach their

maximum values downstream of the mean reattachment point. Only the Reynolds

shear-stress appears to exhibit its global maximum upstream of the recompression

region, due to the decreasing mean shear-layer gradient. Endviews were also scruti-

nized (not shown here) and displayed a strong azimuthal variation of all turbulent
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Figure 6.44 Azimuthal average of turbulent statistics; sideviews for half-cylinder case;
ReD = 60, 000, M = 2.46.
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quantities. This confirms that a three-dimensional solver for turbulent transport

equations is required for calculations employing turbulence models in the present re-

search. The distribution of the turbulent dissipation rate, ε, was used to estimate

the Kolmogorov length-scale, in order to verify that the resolution of the DNS was

adequate. The largest value of ε was found to be ∼ 3 · 103, resulting in LK ∼ 2 · 103.
At this maximum location, the numerical grid-resolution in the radial direction was

∆r = 0.01 = O(LK), ∆z = 0.022 = O(10·LK) and r∆θ = 0.4· π
256

= 0.0049 = O(LK).

Thus, the numerical resolution in the radial and the azimuthal direction are on the

order of the Kolmogorov length-scale. As for the lower Reynolds number case, the

grid-resolution in the streamwise direction is at the lower limit of what is considered

adequate for resolving the relevant length-scales. Nevertheless, the grid-spacing be-

comes finer when approaching the base. Therefore, the spatial resolution is considered

to be sufficient. The temporal resolution of the simulations was already determined

to be adequate in section 6.2.1.

To summarize, further evidence was gathered suggesting that modes k = 2 and

k = 4 are the dominant modes at ReD = 60, 000. However, the mean wake pattern

observed in the half-cylinder case cannot be attributed to a single dominant mode, but

rather is a result of the superposition of several higher azimuthal modes. By reducing

the circumferential extent of the integration domain and, thereby, excluding azimuthal

modes, the importance of modes k = 2, 4 could be verified. For all smaller domain

sizes, it was found that the first higher harmonic of the fundamental wavelength is the

most dominant mode, possessing a similar amplitude and mode-shape. Sideviews of

several turbulent quantities reveal that the turbulence level is considerably increased

over the lower Reynolds number case. The Kolmogorov length-scale was estimated

and it was verified that the grid resolution of the DNS was sufficient to resolve all

relevant scales.
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6.2.4 Summary

DNS of supersonic axisymmetric wakes at ReD = 60, 000 and M = 2.46 were con-

ducted for various circumferential domain-sizes. All cases with a circumferential

domain-size larger than 0 ≤ θ < π/8 fully transition to turbulence downstream

of the recompression region and do not exhibit intermittency. As opposed to the

lower Reynolds number case, a considerable amount of energy can be found in fre-

quencies with StD ≥ 1 while maxima for lower azimuthal modes at low frequencies

attest the presence of large-scale structures in the flow. As for the lower Reynolds

number case, helical structures can be detected in the shear layer. However, both

the increased amount of unstable modes and larger growth-rates result in a greater

number of streamwise structures within the recirculation region and hairpin vortices

in the trailing wake. In addition to the mechanisms identified for the lower Reynolds

number, it is also suggested that axisymmetric rollers within the recirculation region

might contribute to the generation of streamwise structures.

Overall, it was found that k = 2 and k = 4 are the most important modes

for the half-cylinder case. This was verified by conducting simulations of domains

with smaller circumferential extents, thus excluding various azimuthal modes. The

mean wake pattern observed in the half-cylinder case appears to be composed of a

superposition of multiple azimuthal modes. Similar to the ReD = 30, 000 case, for all

smaller domain sizes, the first higher harmonic of the fundamental wavelength is the

most dominant mode. Finally, the magnitudes of the turbulent quantities were found

to be considerably increased over the lower Reynolds number case.



202

6.3 DNS for ReD = 100, 000

Calculations for several azimuthal domain sizes were performed for an additional

Reynolds number: ReD = 100, 000. This was the highest Reynolds number feasible

using DNS with the resources that were available for the present work. DNS of a

half-cylinder, a quarter-cylinder, 1/8th and 1/16th of a cylinder were conducted. For

the lower Reynolds numbers, the 1/16th-cylinder case did not exhibit any significant

deviation from the axisymmetric solution in the mean. However, at ReD = 100, 000,

the flow fully transitioned to turbulence for the 1/16th-cylinder case and the mean

flow was altered significantly versus the axisymmetric solution. For that reason, a

calculation with a domain size further reduced to a 1/32nd-cylinder was conducted.

All calculations were performed on the same streamwise/radial grid with 1272x160

points in the streamwise and the radial direction, respectively. The smallest grid-

spacing at the corner was ∆zc = ∆rc = 0.008. In the azimuthal direction, the

simulation of the half-cylinder was conducted with 128 symmetric spectral modes, for

the cases with smaller circumferential extents, 64, 32, 24 and 16 Fourier modes were

used. All further parameters are compiled in table D.7 in Appendix D.

6.3.1 Time-Dependent Results

Sideviews of instantaneous total vorticity are shown for several cases in figures 6.45

(a) to (d). In contrast to the lower Reynolds numbers, all cases, including the 1/16th-

cylinder case, exhibit a broad range of length-scales. In the half-cylinder case, the

flow appears to transition to turbulence considerably farther upstream than at lower

Reynolds numbers. This is attested by the occurrence of small-scale structures in

the inner part of the shear layer at z ≈ 2. The sideviews of computations with a

smaller domain size reveal that the transition to turbulence is delayed, with small-

scale structures appearing at z ≈ 3.5. This implies that the first mode k = 1, which

is eliminated in all calculations with 0 ≤ θ < π, plays a significant role within the
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a) half-cylinder b) quarter-cylinder

c) 1/8th-cylinder d) 1/16th-cylinder

Figure 6.45 Sideviews of contours of instantaneous total vorticity; top half θ = 0◦,
bottom half a) θ = 180◦, b) θ = 90◦, c) θ = 45◦ and d) θ = 22.5◦; ReD = 100, 000,
M = 2.46.

recirculation region. The fact that the 1/16th-cylinder case exhibits a broad range of

length-scales indicates that mode k = 8 reaches sufficiently large amplitudes which

permit additional instabilities to arise.

For all circumferential domain-sizes, exponential growth of the azimuthal Fourier

modes was observed until a nonlinear saturation state was reached. This implies that

the flow is absolutely unstable with respect to azimuthal modes for all circumferential

domain-sizes investigated, i.e., for the azimuthal modes k ≤ 8.

The temporal development of the Fourier modes of density in a region of high

activity, at z = 8.27 and r = 0.3362, is shown in figures 6.46 (a) to (d). At this

Reynolds number, the decay in energy over the azimuthal modes amounts to approx-

imately three orders of magnitude, indicating that a broad range of length-scales is

present.

For all cases shown, no intermittency can be observed. Note, that only an interval

of 8 time-units is shown, in contrast to 60 and 10 time-units for the ReD = 30, 000

and ReD = 60, 000 cases, respectively. The high-frequency fluctuations within this

short time-interval attests that the range of time-scales has increased as well. As



204

mentioned before, the 1/16th-cylinder case looks very similar to the larger azimuthal

domain sizes, as opposed to lower Reynolds numbers, where the smallest domain

sizes showed strong intermittency and hardly any high-frequency oscillations. Here,

significant temporal variations of the azimuthal mean k = 0 at the probe point can

be observed, indicating that the amplitudes of the azimuthal modes are sufficiently

large to cause considerable nonlinear interaction with the zeroth mode. Because 24

Fourier modes were used for the 1/16th-cylinder, the highest mode corresponds to

k = 192 and is included in figure 6.46 (d).

The 1/32nd-cylinder was simulated using 16 Fourier modes. This corresponds to

256 azimuthal modes in the half-cylinder case. The data obtained from this calcu-

lation indicates that the azimuthal modes do not reach large enough amplitudes to

alter the mean flow. Thus, for the smallest domain size, the flow remains axisymmet-

ric, implying that the circumferential extent of the domain is close to the short-wave

cutoff for the helical instabilities. Recalling that this behavior was observed for the

1/16th-cylinder case at ReD = 30, 000 confirms that a viscous cutoff is responsible for
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Figure 6.46 Temporal development of Fourier modes of ρ in a region of high activity;
z = 8.27, r = 0.336, ReD = 100, 000, M = 2.46.
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Figure 6.47 Fourier decomposition in time of Fourier modes of ρ in a region of high
activity, half-cylinder, quarter-cylinder and 1/16th-cylinder from left to right; z =
7.85, r = 0.465, ReD = 100, 000, M = 2.46.

the flow becoming stable with respect to three-dimensional instabilities for sufficiently

small azimuthal domain-sizes.

The Fourier-decompositions of the time signal for three cases are shown in figure

6.47. As for the ReD = 60, 000 case, it is evident that a significant amount of energy

is contained in frequencies with StD ≥ 1, even for the 1/16th-cylinder case. The

temporal resolution appears to be sufficient for these cases, as exponential decay

is observed towards higher StD. For the half-cylinder case, mode k = 1 shows a

local maximum, at a slightly higher Strouhal number (StD = 0.19) than for the

ReD = 60, 000 case. A prominent peak in the first mode, however, can be found at

a noticeably higher Strouhal number of 0.62. Structures with this frequency seem to

have a great effect on the azimuthal mean flow, evidenced by the peak of k = 0 at

twice the frequency, StD = 1.24. In addition, mode k = 4 displays multiple peaks

in both the high- and low-frequency range. For the quarter-cylinder case, mode

k = 2 exhibits the largest amplitudes in the lower frequency range, showing peaks at

StD = 0.1 and StD = 0.21. Nevertheless, mode k = 4 appears to have the largest

impact on the azimuthal mean, as the peak at StD = 0.16 nonlinearly creates spikes

in mode k = 0 at StD = 0.32 and StD = 0.64. For larger Strouhal numbers, it is
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not clear whether k = 2 or k = 4 is the dominant higher mode. The 1/8th-cylinder

case (not shown here) is dominated by modes k = 4 and k = 8 which exhibit strong

peaks at frequencies as high as StD = 2 with significant nonlinear effects on the

azimuthal mean. In contrast to the lower Reynolds number cases, the 1/16th-cylinder

data displays a broader range of frequencies for modes k = 0, k = 8 and k = 16.

The most pronounced peak for k = 8 is found at StD = 0.05, creating the largest

amplitudes in k = 0 at twice the frequency (StD = 0.1).

In summary, at ReD = 100, 000, the flow fully transitions to turbulence for all

circumferential domain-sizes, except the 1/32nd-cylinder, and does not display inter-

mittency. A large amount of energy is contained in the high-frequency range, with

the temporal spectra indicating that modes k = 2 and k = 4 are dominant.

6.3.2 Coherent Structures

Instantaneous streamwise density gradients are shown in figure 6.48. To illustrate the

topology of the flow field, figure 6.48 shows streamwise density gradients. Display-

ing density gradients is similar to using a Schlieren technique with the light source

z
-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

r
-2.0

-1.0
0.0

1.0
2.0

dρ/dz
-1.0 -0.5 0.0 0.5 1.0

Figure 6.48 Instantaneous streamwise density gradient; ReD = 100, 000, M = 2.46.
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upstream of the body. The most prominent features of the flow are visible: The

expansion fan emanating from the base corner, the recompression shock system re-

aligning the shear layer with the axis and, most importantly, the occurrence of large,

coherent structures. First large-scale structures are visible at approximately 1 ra-

dius downstream of the base, evidenced by shocklets. A broad range of large- and

small-scale structures can be observed, causing a significantly decreased recirculation

length, as will be shown when discussing mean flow results in section 6.3.3.

With the flow transitioning rapidly after separation and displaying a broad range

of length- and time-scales, a comparison to the (higher Reynolds number) UIUC

case is attempted. In the experiments, the identification of coherent structures was

achieved through a Mie-scattering technique. Bourdon & Dutton (1998) exploited

the fact that ethanol vapor, that is carried in the supply air, condenses at flow speeds

close to sonic conditions. The condensing vapor was illuminated with planar laser-

sheets and high-speed snapshots were taken to obtain instantaneous visualizations

of large-scale structures. In order to compare data obtained from DNS with the

experimental data, contours of instantaneous local Mach number were chosen for

visualization and the color map was adjusted such that the resulting picture resembles

the figures presented by Bourdon & Dutton (1998). Endviews of DNS data are shown

in figure 6.49 for streamwise positions that correspond to locations “C”, “D” and “E”

in Bourdon & Dutton (1998), and are compared to the figures obtained from the

experiments.

At the location upstream of mean reattachment, z = 3.5, mushroom-like struc-

tures can be detected within the inside of the shear layer. These structures strongly

resemble those visualized in the experiments at a comparable location (“C”) and

indicate the existence of streamwise vortices within the shear layer. Over a longer

time-interval, approximately 12–14 mushroom-like structures could be observed in-

stantaneously, in good agreement with the typical number of 10–14 observed in the
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Figure 6.49 Endviews of contours of instantaneous local Mach number; ReD =
100, 000,M = 2.46 (bottom), compared with visualizations from experiment by Bour-
don & Dutton (1998); ReD = 3, 300, 000, M = 2.46 (top); locations “C”, “D” and
“E” are shown from left to right.

experiment. The streamwise location z = 4.0 is within the recompression region and

corresponds to position “D” in the experiments. Here, the number of instantaneous

mushroom-shaped structures has reduced to roughly 8–10 structures, comparable

with the number of vortices observed at UIUC. This indicates that the streamwise

structures undergo an amalgamation in the streamwise direction which intuitively

seems inevitable in light of the lateral convergence of the shear layer. In the devel-

oping wake, at z = 6.5 (corresponding to location “E” in the experiments), only four

structures are visible for some instances, as was also the case in the experiments.

The four-lobe structure observed in the developing wake is a further indication that

modes k = 2 and k = 4 might be the dominant modes. The off-center location of the

wake is a further indication of the flapping motion, most likely caused by mode k = 1.

Due to the strong similarities between the DNS results and the experimental data,
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a)
√
WikWik = 5 b) 1

ρ2 |∇ρ×∇p| = 0.2

Figure 6.50 Instantaneous perspective views for half-cylinder case; ReD = 100, 000,
M = 2.46.

it is conjectured that the same instability mechanisms are present. It is therefore

proposed that modes k = 2 and k = 4 might also be dominant in the high Reynolds

number case investigated at UIUC.

For the purpose of obtaining a more detailed picture of the flow-field, visualiza-

tions of iso-surfaces of the total vorticity
√
WikWik and the magnitude of baroclinic

torque ( 1
ρ2 |∇ρ×∇p|) are shown in figure 6.50. The visualization of

√
WikWik = 5

confirms the presence of streamwise vortices within the shear layer, which are re-

sponsible for the mushroom-shaped structures observed in the endviews. Note, that

these vortices were not introduced with forcing as in the cases presented in section

6.1.5, but occur naturally. This is an indication that in this region, modes with high

wavenumbers reach large amplitudes. It appears that the streamwise structures do

not persist throughout the recompression region. Instead, they seem to break up,

forming a considerable number of hairpin vortices downstream of the recompression

region. Nevertheless, this does not exclude the occurrence of a four-lobe wake struc-
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ture, as seen in the endviews above. The small-scale structures merely cause an

additional modulation of the lobes. When scrutinizing the visualization of the mag-

nitude of baroclinic torque, it can be observed that a significant amount of vorticity

generation occurs in the shear layer. Just downstream of separation, it appears as if

“patches” with a regular azimuthal spacing are present. These might be responsible

for the generation of the longitudinal vortices visible in contours of total vorticity.

Upstream of the recompression region, it seems as if mainly the axisymmetric vortic-

ity component is produced by the baroclinic torque mechanism, albeit experiencing a

strong circumferential variation. In the trailing wake, a large amount of hairpin vor-

tices can be observed. The above results lead to the conclusion that the visualization

of the magnitude of baroclinic torque is another viable diagnostic tool for identifying

coherent structures (c.f. Terzi, Sandberg & Fasel, 2006).

The visualization of contours of Q = 0.1, shown in figure 6.51, reveals several

additional features of the flow. First, helical structures are present in the shear

layer. These structures possess a considerably smaller streamwise extent and exhibit

an azimuthal modulation with a considerably higher wavenumber than in the lower

Figure 6.51 Instantaneous iso-contours of Q = 0.1 for half-cylinder case, topview
and sideview (left) and perspective view from inflow towards outflow (right); ReD =
100, 000, M = 2.46.
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Reynolds number cases. This is consistent with the observation of the streamwise vor-

tices, which constitute evidence for the presence of high-amplitude short wavelength

modes. Furthermore, the helical structures can only be observed in the initial part of

the shear layer. Farther downstream, the increased growth rate of further instabilities

causes the structures to break down to smaller scales. In a time-series (not shown

here), it was observed that the helical structures slowly travel downstream. Second,

the sideview reveals that a noticeable flapping of the wake occurs, implying that

mode k = 1 is a significant contributor to the overall solution. Third, a great amount

of streamwise structures within the recirculation region can be observed, featuring a

considerably decreased diameter when compared to the lower Reynolds number cases.

The visualizations for the quarter- and 1/8th-cylinder cases are not presented at this

point, as they did not reveal any additional information.

However, a time-sequence for the 1/16th-cylinder case is shown in figure 6.52 to

support the hypothesis proposed in section 6.2.2: Longitudinal structures within the

recirculation region, or braids, might possibly be a consequence of centrifugal in-

stabilities that arise in the presence of strong instantaneous streamline- curvature.

In general, it can be observed that, in spite of the narrow domain, a large number

of hairpin structures can be observed in the trailing wake. For better visibility, an

enlargement of the recirculation region is shown for the time-series. A pair of axisym-

metric rollers, that are composed of several smaller-scale structures, are present in the

recirculation region at t = t0 and are denoted by “A” and “B”. A streamwise struc-

ture (“C”) is most likely formed as a consequence of a centrifugal instability, caused

by strong instantaneous streamline curvature. Furthermore, an axisymmetric struc-

ture, denoted by “D” is positioned close to the axis, roughly one radius downstream

of the base. At the next time-step, the two clockwise rotating rollers are located

farther upstream, with C following their motion. In the following time-instant, it can

be observed that D is deflected off the base in the radial direction towards the shear

layer. The lack of azimuthal variation of D indicates that an axisymmetric stagnation
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Figure 6.52 Instantaneous iso-contours of Q = 0.1 for 16th-cylinder case; time-
sequence of sideviews (left) and perspective view from inflow towards outflow (right);
ReD = 100, 000, M = 2.46.

point flow impinges on the base. This leads to a pressure peak at the axis, as will

be shown later when discussing mean flow results. At t = t0 + 3.2, streamwise struc-

tures (“E”) can be observed which closely resemble those found in figure 6.9 for the

1/8th-cylinder case at ReD = 30, 000. In the last time-instance shown, even smaller

axisymmetric rollers can be observed (“F”), which in turn appear to generate addi-

tional streamwise structures within the recirculation region. In conclusion, it appears

as if at least two separate mechanisms for the generation of longitudinal structures
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are present within the recirculation zone: Firstly, as discussed for the ReD = 30, 000

case in section 6.1.2, the global modes lead to the generation of longitudinal struc-

tures within the recirculation region. Secondly, braids appear to be generated in the

presence of axisymmetric rollers and are, therefore, most likely a consequence of a

centrifugal instability.

In summary, transition to turbulence occurs rapidly and shocklets are visible

roughly one radius downstream of the base, indicating the presence of large-scale

structures. Endviews were compared with the UIUC data and a remarkable resem-

blance was found. At an upstream location, the same kind and number of mushroom-

like structures was detected as in the experiments. Contours of total vorticity revealed

that streamwise vortices in the initial shear-layer form the mushroom-shaped struc-

tures. In the developing wake, the DNS data instantaneously displayed a four-lobe

structure, in good agreement with the visualizations obtained at UIUC. This four-lobe

structure is a further indication that modes k = 2 and k = 4 are the dominant modes,

both in the DNS at ReD = 100, 000 and the experiments at ReD = 3, 300, 000. Visual-

izations of Q confirmed the presence of helical structures within the shear layer, which

are subject to a strong high-wavenumber azimuthal variation, most likely caused by

the streamwise structures in the shear layer. In light of the observations made for

the lower Reynolds number cases, it is suggested that the longitudinal structures are

partly generated as a consequence of global modes within the recirculation region. Ad-

ditional evidence was gathered for the hypothesis that longitudinal structures within

the recirculation region are generated as a consequence of centrifugal instabilities,

occurring in the presence of axisymmetric rollers. In general, the strong similarities

between the DNS and the UIUC case suggest that the same instability mechanisms

are present, implying that results obtained from the DNS might be transferrable to

the UIUC case.



214

0 0.2 0.4 0.6 0.8 1
r

-0.02

-0.016

-0.012

-0.008

-0.004

0

0.004

0.008

0.012

0.016

0.02

(ρ
u)

k

k=1
k=2
k=3
k=4
k=6
k=8
k=12
k=16

0 0.2 0.4 0.6 0.8 1
r

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

(ρ
u)

k

k=1
k=2
k=3
k=4
k=6
k=8
k=12
k=16

0 0.2 0.4 0.6 0.8 1
r

-0.02

-0.016

-0.012

-0.008

-0.004

0

0.004

0.008

0.012

0.016

0.02

(ρ
u)

k

k=2
k=4
k=6
k=8
k=12
k=16

0 0.2 0.4 0.6 0.8 1
r

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

(ρ
u)

k

k=2
k=4
k=6
k=8
k=12
k=16

0 0.2 0.4 0.6 0.8 1
r

-0.02

-0.016

-0.012

-0.008

-0.004

0

0.004

0.008

0.012

0.016

0.02

(ρ
u)

k

k=4
k=8
k=12
k=16

0 0.2 0.4 0.6 0.8 1
r

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

(ρ
u)

k

k=4
k=8
k=12
k=16

Figure 6.53 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from DNS for half-, quarter- and 1/8th-cylinder (from top to bottom); z = 2.5 (left),
z = 7 (right), ReD = 100, 000, M = 2.46.

6.3.3 Mean Flow and Turbulent Statistics

Running averages were taken over at least ten flow-through-times for all domain sizes

in order to evaluate the impact of the most dominant azimuthal Fourier modes on

the mean flow. The averaged radial profiles of several azimuthal Fourier modes for all

three conservative velocity components are shown in figures 6.53 – 6.55. For the half-
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Figure 6.54 Time-averaged radial profiles of azimuthal Fourier modes of (ρv) obtained
from DNS for half-, quarter- and 1/8th-cylinder (from top to bottom); z = 2.5 (left),
z = 7 (right), ReD = 100, 000, M = 2.46.

cylinder case at z = 2.5, the streamwise component appears to be the dominant one

and, therefore, will be the main focus in the discussion of the modes-shapes. However,

compared to the linear calculations and the lower Reynolds number DNS, the radial

and the azimuthal components have considerably increased their significance. For the

lower Reynolds number cases, it was suggested that the first mode is a subharmonic of

some of the higher modes, evidenced by a shape fundamentally different from the one
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Figure 6.55 Time-averaged radial profiles of azimuthal Fourier modes of (ρw) obtained
from DNS for half-, quarter- and 1/8th-cylinder (from top to bottom); z = 2.5 (left),
z = 7 (right), ReD = 100, 000, M = 2.46.

obtained in the linear calculations. For the present case the amplitude distribution of

the first azimuthal mode is similar to that found in the linear calculations (see figures

5.4 – 5.6). This suggests that k = 1 might not be a subharmonic of other azimuthal

modes, but is generated autonomously. As opposed to the lower Reynolds number

cases, all higher modes exhibit their maxima at z ≈ 0.65. This confirms the findings of

the linear stability calculations: The shear-layer mode becomes increasingly dominant
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for larger Reynolds numbers. Several mode-shapes resemble each other and possess

similar amplitudes, with the most significant modes being k = 2, 4, 6, 8. The large

amplitudes of higher modes within the shear layer constitute further evidence for the

presence of longitudinal structures in the shear layer.

For the downstream location (top right graphs in figures 6.53 – 6.55), several qual-

itative differences compared to the lower Reynolds numbers can be observed: Firstly,

all modes exhibit smaller amplitudes, in particular the low-wavenumber modes. It is

suggested that an increased energy transfer to higher modes, caused by the consid-

erably increased level of turbulence, is the reason for this observation. Secondly, the

maximum amplitude of the first azimuthal mode is close to an order of magnitude

smaller than the dominant modes, even though it was the most dominant mode at

the upstream position. In addition, it can be observed that modes k = 2 and k = 4

display the largest amplitudes in the mean. This confirms that they are dominant

modes, as was supposed when observing a four-lobe wake-pattern in the trailing wake

in figure 6.49.

The amplitude distributions obtained for all other domain sizes are fairly similar

to those found at ReD = 60, 000. For all domain sizes, the first higher harmonic of

the fundamental wavelength is the most dominant mode, i.e., in the quarter-cylinder

case the most dominant mode is k = 4, in the 1/8th-cylinder case mode k = 8, etc.

In addition, the shape of the most dominant mode is similar for all cases.

To conclude the discussion of the amplitude distributions at ReD = 100, 000, it is

found that within the trailing wake, modes k = 2 and k = 4 possess the largest ampli-

tudes. In addition, the first azimuthal mode does not appear to be a subharmonic of

higher modes. As for the lower Reynolds numbers, for smaller domain sizes, the first

higher harmonic of the fundamental wavelength is the most dominant one, possessing

a similar mode-shape. In contrast to the lowest Reynolds number investigated, higher

modes display a maximum at r ∼ 0.65, confirming TDNS results that the shear-layer

mode becomes dominant at this Reynolds number.
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z = 1 z = 7 z = 1 z = 7

Figure 6.56 Endviews of time-averaged streamwise vorticity (left two) and total vor-
ticity (right two); ReD = 100, 000, M = 2.46.

Endviews of time-averaged streamwise and total vorticity are shown for z = 1 and

z = 7 in figure 6.56. In contrast to the lower Reynolds number cases, the visualization

of streamwise vorticity reveals several structures on the inside of the shear layer

at z = 1. For the contours of total vorticity, a strong azimuthal variation within

the shear layer can be observed. This further confirms the presence of streamwise

structures within the shear layer, as observed in the figures of instantaneous flow

quantities above. At the streamwise location z = 7, a pronounced four-lobe structure

is visible in both streamwise and total vorticity. This supports the results found in

the discussion of instantaneous endviews and time-averaged radial profiles, leading to

the conclusion that k = 2 and k = 4 are the most important modes. For the smaller

domain sizes, the results correspond to the data deduced from the radial mode-shapes.

Thus, as the dominant modes of the respective case are the first subharmonic of the

fundamental wavelength, a k-lobe structure is visible, with k being the number of the

dominant mode. The results resemble those presented for the ReD = 60, 000 case and

are, therefore, not shown here.

The effect of the dominant structures on the recirculation length and the base-

pressure is compared for all cases in figure 6.57. As for the lower Reynolds number

cases, in the half-cylinder calculation the pressure-distribution along the base is en-

tirely flat. However, the mean pressure value has decreased considerably and is more
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Figure 6.57 Time-averaged pressure coefficient (left) and streamwise axis-velocity
(right) for all circumferential domain-sizes; ReD = 100, 000, M = 2.46.

than 10% smaller than for the ReD = 60, 000 case. A fast transition process, leading

to energetic structures is responsible for a dramatic decrease in recirculation length

(the mean reattachment shifts from z = 8.5 to z = 5.3) and a strongly reduced reverse

flow velocity within the recirculation region. With the mean reattachment point con-

siderably closer to the base, the turning angle at the base-corner is increased, leading

to a larger pressure drop over the expansion fan. Invoking the thin-layer approxi-

mation of pressure only changing marginally across the shear layer can be used to

explain the decreased base-pressure.

Unlike the lower Reynolds number cases, the results obtained from both the

quarter-cylinder and the 1/8th-cylinder calculations are very similar to each other.

The mean pressure coefficient is higher than in the half-cylinder case and a slight

radial variation with a peak at the axis can be observed. Furthermore, the mean

reattachment location is considerably farther downstream, and the reverse flow maxi-

mum is much higher than in the half-cylinder case. The drastic differences that result

in the elimination of mode k = 1 for these cases support the above observations, that

mode k = 1 is significant within the recirculation region for this Reynolds number.

The similarity in the data from the quarter-cylinder and the 1/8th-cylinder calcu-

lations suggest that the flow-pattern and the structures generated by the dominant

modes of the respective calculation (k = 4 and k = 8) are similar.



220

As already indicated by the above results, the 1/16th-cylinder case produces suf-

ficiently energetic structures to considerably reduce the recirculation length. In fact,

the mean reattachment point is located only marginally downstream of that of the

two larger cases, in spite of a significantly larger maximum reverse flow velocity within

the recirculation region. The pressure peak at the axis is more pronounced. However,

in contrast to the lower Reynolds numbers, the deviation from the larger circumfer-

ential domain-sizes is confined to a considerably smaller radial extent. Thus, it can

be concluded that the long-wavelength modes, i.e., k = 1, k = 2 are essential in

obtaining an entirely flat profile. Because the higher modes do not reach amplitudes

large enough to affect the mean flow, the results from the 1/32nd-cylinder calculation

deviate significantly from the other cases and are fairly similar to those obtained in

the axisymmetric calculations.

The radial maxima of turbulence quantities over the streamwise coordinate are

shown in figure 6.58. In contrast to the lower Reynolds number cases, the radial
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maxima of TKE and u′u′ are located upstream of the mean reattachment point for

all cases. This is in agreement with the observations by Herrin & Dutton (1997)

and constitutes further proof that the base flow at ReD = 100, 000 is similar to the

experiment at ReD = 3, 300, 000. The maximum dissipation rate can be found just

downstream of the mean reattachment point, however, this quantity was not mea-

sured in the experiments and, therefore, no comparison can be made. In general, the

values of all quantities are higher than at the lower Reynolds numbers, in particular

the 1/8th- and 1/16th-cylinder cases exhibit strongly increased amplitudes even ex-

ceeding those found for the larger domain sizes. As suggested earlier, this can most

likely be explained by the fact that a large amount of energy is transferred directly to

the most important modes. Due to the omission of modes by conducting calculations

with smaller domain sizes, this energy cannot be redistributed to the modes excluded

through nonlinear interaction and results in highly energetic structures.

In conclusion, the mode-shapes suggest that the first azimuthal mode is generated

autonomously at the upstream location z = 2.5. For the higher modes, the shear-

layer mode appears to become dominant, confirming results obtained with linear

stability simulations. Large amplitudes of the higher modes in the shear layer are an

indication of streamwise vortices, which were observed in endviews of time-averaged

streamwise and total vorticity. In the trailing wake, k = 2 and k = 4 display the

largest amplitudes, leading to a very pronounced four-lobe structure of the wake in

the mean. For all smaller domain sizes, the first higher harmonic of the fundamental

wavelength is the most dominant mode, possessing a similar amplitude and mode-

shape. The mean base-pressure of the current case is further decreased over the

lower Reynolds number cases. Only the mean base-pressure value for the 1/16th-

cylinder case is noticeably higher than in the half-cylinder case. In light of the forced

cases presented in section 6.1.5, this implies that the dominance of modes k = 1 to

k = 4 needs to be diminished in order to possibly achieve a drag-reduction. Finally,
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turbulence statistics support the notion that the case at ReD = 100, 000 is similar to

the UIUC experiments.

6.3.4 Summary

DNS of supersonic axisymmetric wakes at ReD = 100, 000 and M = 2.46 were con-

ducted for several azimuthal domain-sizes. The increased amplification rates of in-

stabilities resulted in transition to turbulence for domain sizes up to 0 ≤ θ ≤ π/8.

No intermittency could be observed for these cases. Considerable evidence was found

showing that modes k = 2 and k = 4 are the dominant modes. Contours of instan-

taneous total vorticity revealed that streamwise structures are present in the shear

layer. These longitudinal structures appear to reside in the shear layer over long time-

periods, as they were also detected in time-averaged endviews of streamwise and total

vorticity. Helical structures that were observed in visualizations of Q experience a

strong azimuthal variation, presumably caused by the streamwise structures in the

shear layer. A time-sequence of Q = 0.1 for the 1/16th-cylinder case showed further

evidence for the hypothesis that longitudinal structures within the recirculation re-

gion are possibly generated as a consequence of centrifugal instabilities, occurring in

the presence of axisymmetric rollers.

Endviews of instantaneous Mach number revealed the presence of mushroom-

shaped structures in the shear layer, caused by the streamwise vortices in the shear

layer. These mushroom-like structures are similar in shape and number to those

observed in the (higher Reynolds number) experiments. At a location farther down-

stream, a four-lobe wake pattern can be observed, in good agreement with the exper-

imental results. These strong similarities between the DNS data and the experiments

suggest that the same instability mechanisms are present for both cases. Therefore

it is speculated that modes k = 2 and k = 4 might also be dominant modes in the

UIUC experiments, generating the four-lobe structure in the developing wake.
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7. RESULTS - FLOW SIMULATION METHODOLOGY

As has already been mentioned in the introduction, high Reynolds number flows

feature a very broad spectrum of time- and length-scales. Direct Numerical Simula-

tions (DNS) of wakes at high Reynolds numbers, as investigated in the experiments

at UIUC, with sufficient resolution in all three dimensions and in time are out of

reach with present supercomputers, as will be shown in this chapter. Even fully re-

solved DNS of the transitional wakes, like those presented in the previous chapter

are computationally very expensive, with typical run times of several thousand CPU

hours per flow-through time. Therefore, other approaches will now be considered for

the calculation of supersonic base flows. Axisymmetric RANS and three-dimensional

FSM calculations will be presented first for the transitional cases and then for the

high Reynolds number UIUC-case.

The FSM was first employed for transitional wakes for several reasons: Primarily,

in order to evaluate whether the approach is able to represent a transitional flow

in general. Capturing the laminar-turbulent transition is a tough task for any flow

simulation strategy, as the additional dissipation from turbulence models frequently

inhibits or significantly delays the mechanisms leading to transition. Furthermore,

a vast amount of data were available from the previously discussed DNS, such that

a detailed comparison between FSM results and DNS data could be made. Finally,

as the FSM is still in the development process, a large number of calculations was

anticipated. Choosing a lower Reynolds number resulted in more moderate grid-

requirements and, therefore, reasonable computational times. In particular, the fact

that the approach boundary layer is laminar for the transitional cases significantly

decreased the necessary grid-spacing in the radial direction at the wall and, thus, also

allowed for considerably larger time steps, substantially reducing the turn-around

time for each calculation.
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For the transitional cases, first axisymmetric RANS calculations were conducted,

employing a variety of turbulence models. These calculations were essential in order

to generate an initial condition for the three-dimensional FSM calculations, and to

determine which closure was best suited as the underlying turbulence model for FSM.

The same code was used for both RANS and FSM calculations. In order to conduct

RANS calculations, the contribution function presented in section 2.3 was set to unity,

therefore using the sub-grid quantities computed with the specified turbulence closure

in an unmodified way. When conducting FSM calculations, the contribution function

was computed as specified in equation (2.38). As for the DNS, for all transitional

cases, it was assumed that the approach flow is laminar. Therefore, the contribution

function was manually set to zero in the approach flow, such that no model was

employed and the boundary layer remained laminar.

7.1 Transitional Wake at ReD = 30, 000

Initially, an axisymmetric computation using no turbulence model was carried out

on a grid significantly coarser than that used for the DNS calculations presented in

section 6.1. 152 and 85 points were used in the streamwise and the radial directions,

respectively, with the smallest grid spacing ∆rc = ∆zc = 0.01R at the corner. The

converged solution served as initial condition for the axisymmetric RANS calculations

and will be denoted by “no model” in the following. For a complete listing of all

relevant parameters, see table D.8 in Appendix D.

7.1.1 Axisymmetric RANS Calculations

Axisymmetric RANS calculations were conducted, employing the “standard” K −
ε model (STKE), the original explicit algebraic stress model (EASM) by Speziale

(1997) and the generalized version of the explicit algebraic stress model EASMα by

Rumsey et al. (2000), all presented in section 2.2.1. For the calculations employing
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the EASM, the constants αi (equation 2.14) were computed assuming that P
ε

=

cε2−1
cε1−1

. It turned out, that for the lowest Reynolds number investigated, the wall-

distance independent function fε2 (equation 2.34) reached values significantly larger

than unity. The destruction term in the transport equation for ε was thereby scaled

to unphysically large values, creating an imbalance between the turbulence quantities.

This either lead to an unsteady solution of the flow field, or a decay of TKE to zero.

Therefore, for the lowest Reynolds number discussed here, the standard, wall-distance

dependent wall-damping function fε2(N) (see equation 2.33) was employed.

As mentioned above, for all cases where the approach boundary layer was assumed

to be laminar, the contribution function was set to zero, such that no model contri-

butions were added to the filtered Navier-Stokes equations. The transport equations

for K and ε, however, were still solved for in the approach flow region, constituting an

inflow condition for K and ε at the inflow of the wake-region. Thereby the values of

K and ε in the approach flow region have a considerable effect on the global solution

of the calculations. For the transitional cases, K was initially set to zero in the ap-

proach flow to be consistent with the laminar flow assumption. Regardless of which

turbulence model was used, at this Reynolds number, K did not evolve to non-zero

values in the approach region. If, however, a non-zero initial condition was specified

for K, the calculation would “see” the laminar inflow profile as a thick, high Reynolds

number boundary layer and produce large values of K in the approach flow. This

led to an overprediction of the eddy-viscosity in the shear layer, and, consequently,

resulted in a shortened recirculation region.

Figure 7.1 shows the pressure coefficient cp over the base and the streamwise ve-

locity component along the axis, obtained from axisymmetric “no model”, STKE

model, EASM and EASMα calculations. For reference, the data from the DNS, dis-

cussed in section 6.1 is added to the graphs. In contrast to the axisymmetric “no

model” computation, all axisymmetric RANS calculations underpredict the recircu-

lation length significantly and, consequently, also predict too low a pressure on the
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Figure 7.1 Pressure coefficient (top) and streamwise axis-velocity (bottom) from
RANS calculations; data from DNS with 64 modes (—), axisymmetric “no model”
calculation (· · ·), STKE model (– –), EASM (− · −), EASMα (◦), EASMα without
c.e. (+), EASMα with K non-zero in approach flow (×); ReD = 30, 000, M = 2.46.

base. The pressure distribution on the base also shows a considerable radial varia-

tion, albeit with different strength for different models. The calculation employing

the STKE model yields the shortest recirculation length and the lowest pressure value

with the strongest radial variation. This is most likely due to the overprediction of

the eddy viscosity in the shear layer and within the recirculation region. When using

the original EASM, the recirculation length is slightly increased over the results from

the STKE calculation, as is the base-pressure. This behavior is due to the predic-

tion of lower levels of turbulent viscosity, as shown below in figure 7.2. The EASM

calculations, however, required smaller time-steps, presumably due to an increased

stiffness of the equations, caused by the function f(η, ξ) (see equation 2.15) reaching

values larger than unity in the expansion wave and at the base/axis intersection. The

results obtained from the calculation employing the EASMα showed a significant im-
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provement in terms of the numerical stability, most likely because of the decreased

stiffness of the equations by computing the production over dissipation ratio locally.

This resulted in the largest permissible time-step being close to twice as large as for

the other two models. The pressure distribution from the EASMα calculation showed

the highest value and the least radial variation of all models used. Also, the largest

recirculation length was obtained with the most recent model and the maximum re-

verse velocity was not overpredicted as strongly as when using the other closures.

An additional axisymmetric RANS calculation, employing the EASMα was con-

ducted, neglecting the compressible extensions (c.e.) in order to evaluate their impact

on the solution. It can be observed that both the base-pressure and the recirculation

length are slightly decreased if no c.e. are used. This was expected as figures showing

the distribution of the turbulent Mach number (not included here) revealed that MT

reaches values of up to 0.5 in the recompression region. The turbulent Mach number

is a measure for the compressibility of the flow and the basis of the models by Sarkar

et al. (1991) for both the pressure dilatation and the compressible dissipation (see

equation 2.26). In addition, the calculation employing the EASMα was repeated,

allowing for a non-zero distribution of K in the approach flow. The recirculation
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Figure 7.2 Distribution of TKE obtained from axisymmetric RANS calculations;
STKE model (top left), EASMα (top right), EASMα without c.e. (bottom left),
EASMα with K non-zero in approach flow (bottom right); ReD = 30, 000, M = 2.46.
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length was also shortened and the base-pressure was slightly decreased for this case.

Figure 7.2 shows the distribution of the TKE obtained from the axisymmetric RANS

calculations. When compared to the results obtained with DNS, shown in figure 6.21,

all RANS models overpredict K throughout the recirculation region, with the STKE

model showing the highest values, leading to the shortest recirculation length, as

shown in figure 7.1. In addition, the maxima of K are located much further upstream

than for the DNS. Also, a peak can be observed at the axis/base intersection, caused

by the stagnation point. Comparing the data from the EASMα calculations with

each other confirms that either neglecting the compressible extensions, or allowing

for a non-zero K-distribution in the approach flow lead to increased levels of TKE

in the shear layer and the recirculation region, resulting in larger values of turbulent

viscosity and, consequently, to a decreased recirculation length.

In conclusion, the EASMα appears to be the best suited model for the flow under

consideration, showing a recirculation length and a base-pressure closest to the DNS

results, due to appropriately reduced levels of turbulent production. It also appears as

if the compressible extensions used in the current work slightly improve the solution.

Nevertheless, even the most successful RANS calculation is far from reproducing the

physically correct flat base-pressure distribution and streamwise velocity distribution

along the axis of the DNS. It is therefore suggested, that in order to correctly predict

supersonic base flows, the unsteady structures need to be included in the simulations.

This hypothesis will be tested in the next section.

7.1.2 3-D FSM Calculations

The FSM calculations were conducted, using the STKE model, the EASM and the

EASMα as underlying closures. The results from the respective axisymmetric RANS

computations discussed above were used as initial conditions. The same coarse
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streamwise/radial grid was employed for the calculations and only four azimuthal

Fourier modes were used. For further parameters, see table D.8 in Appendix D.

Once the flow field was fully three-dimensional, calculations with different closures

and varying the constant β in the contribution function were conducted over at least

15 flow-through-times in order to obtain converged averages of various flow quantities.

In figure 7.3 contour plots of the time-averaged contribution function for different

values of β are presented. Note that the model contribution decreases for decreas-

ing β. For all cases, the contribution is clearly largest in the shear layer and in the

recompression region. These are locations where the computational grid is not fine

enough to resolve the large local gradients. The contribution function maintains ele-

vated values downstream of the recompression region, mainly because the streamwise

resolution becomes very coarse due to the highly stretched grid. Within the recircula-

tion region, the values of f(∆/LK) are merely a few percent and, therefore, unsteady

structures that are present in the flow are only barely damped by the turbulent vis-

cosity of the utilized closure. The unsteadiness leads to the modification of the mean
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Figure 7.3 Mean contribution function f(∆/LK) for FSM using EASMα for, top to
bottom, β = 6 · 10−4, β = 1 · 10−3, β = 2 · 10−3; ReD = 30, 000, M = 2.46.
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Figure 7.4 Time-averaged pressure coefficient (top) and streamwise axis-velocity (bot-
tom) from FSM calculations; data from DNS with 64 modes (—), axisymmetric
EASMα calculation (· · ·), FSM using STKE model with β = 1 · 10−3 (+), FSM using
EASM with β = 1 · 10−3 (×), FSM using EASMα with β = 6 · 10−4 (¤), FSM using
EASMα with β = 1·10−3 (◦), FSM using EASMα with β = 2·10−3 (¦); ReD = 30, 000,
M = 2.46.

flow as can be seen in the pressure distribution on the base or from the streamwise

axis-velocity in figure 7.4.

In order to determine what the best choice for β is, the time-averaged base-pressure

coefficient cp and the streamwise velocity component along the axis, obtained from

all FSM calculations are shown in figure 7.4. For comparison, the data from the DNS

and the results from the axisymmetric RANS, using the EASMα, are added to the

graphs. For all FSM calculations, the base-pressure distribution is reasonably flat and

the mean value corresponds quite well with the DNS result. The fact that the FSM

calculations, using only 4 azimuthal Fourier modes, can reproduce the flat pressure

profile on the base confirms the conclusion made in section 6.1.3: The flat pressure

distribution on the base is caused by unsteady structures which are a consequence of
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azimuthal modes with large wavelengths, i.e., modes k = 1 through k = 4.

The FSM calculations also show much better agreement with the DNS data for

the streamwise axis-velocity. Not only is the recirculation length predicted more

accurately, also the maximum reverse velocity is located at approximately z = 3.5.

Even the small plateau, present at z ≈ 1.3 and most likely an artefact of the unsteady

structures, is reproduced. When scrutinizing the time-averaged quantities shown in

figure 7.4, it appears as if the solution depends more strongly on the choice of β than

on the underlying turbulence model employed in the calculation. For the smallest

value of β investigated here, the mean pressure value at the base is underpredicted and

the recirculation length is the shortest obtained from any FSM calculation conducted

for this case. The best agreement with the DNS data is found for β = 1 · 10−3 or

β = 2 · 10−3, regardless of the closure employed for the calculation.

To demonstrate that good agreement of the significantly coarser FSM calculations

with the DNS data is not only achieved for individual, one-dimensional profiles, the

mean radial velocity and pressure fields of an FSM calculation are compared to the

DNS results in figure 7.5. Good agreement is found for the entire flow-field.
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Figure 7.5 Time-averaged radial velocity field (right) and mean pressure field (left)
from DNS (top) and FSM (STKE) with β = 2 · 10−3 (bottom); ReD = 30, 000,
M = 2.46.
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Figure 7.6 Time-averaged mode-shapes of (ρu)k obtained from FSM calculations using
the EASMα with β = 1 · 10−3; z = 2.5 (left) and z = 9 (right), ReD = 30, 000,
M = 2.46.

Finally, the time-averaged mode-shapes of the streamwise velocity component for

the first four azimuthal modes, obtained from the FSM calculation employing the

EASMα with β = 1 · 10−3, are shown in figure 7.6. The range of the y-coordinate

was chosen to be the same as in figure 6.13, thus allowing for a direct comparison

of the magnitudes of the individual modes to the DNS results. Good agreement is

found for the mode-shape of the second azimuthal mode. For modes k = 3 and

k = 4, the mode-shapes are similar to the DNS data, except that the amplitudes

are significantly reduced, due to the damping effect of the turbulence model, which

affects larger wavenumbers to a larger degree. The first azimuthal mode exhibits a

different behavior than that obtained from DNS, however, the mode-shapes resemble

closely those found in the linear calculations, shown in figure 5.4. This confirms the

assumption made previously, that the mode-shape of the first mode might be the

result of nonlinear interaction between higher modes, in particular k = 3 and k = 4.

By neglecting modes with k > 4 and/or reducing the amplitudes of modes k = 3 and

4, the nonlinear interaction is reduced and the mode-shape of the first mode remains

fairly unchanged from that predicted by linear theory.

The calculations discussed so far were conducted using very coarse computational
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grids and, therefore, approach the URANS limit of the FSM, i.e., the contribution

function possesses values larger than 10%. For that reason, only the largest struc-

tures are resolved (and not dissipated by the turbulence model). The identification

of coherent structures is therefore deferred to FSM calculations of higher Reynolds

numbers, where finer grids were utilized.

In summary, FSM calculations of supersonic axisymmetric wakes at ReD = 30, 000

and M = 2.46 are capable of reproducing DNS results with reasonable accuracy. In

particular the pressure distribution on the base is predicted accurately. FSM appears

to succeed in sufficiently scaling down the model contribution in the relevant regions

so as not to inhibit the physical instability mechanisms which give rise to the genera-

tion of large structures. These structures need to be captured by the calculations to

obtain a physically accurate flow field. The decreased spatial and temporal resolution

requirements, compared to a DNS, by far outweigh the increased computational effort

required for solving additional transport equations and assembling all closure terms.

This leads to a significant reduction in computational cost, as shown in table 7.1.

The above results also illustrate that the FSM approach is not linked to a specific

turbulence model but is a general strategy for solving unsteady, three-dimensional

flows. However, for the case currently discussed, the EASMα showed several advan-

DNS FSM (STKE) FSM (EASMα)

points in z 516 152 152
points in r 200 85 85
modes in θ 64 4 4
dt 1.19 · 10−3 1.5 · 10−3 2.6 · 10−3

CPU hours 1780∗ 2.65 1.64

Table 7.1 Comparison of computational cost on HP Alpha per flow-through-time
(t−t0 ≈ 12) for FSM and DNS calculations; * denotes CPU time on SGI Origin 3900,
for a comparison of the performance of both computer architectures, see Appendix
C.6.2; ReD = 30, 000, M = 2.46.
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tages over the other closures employed, amongst others increased numerical stability

reducing the computational time, and more accurate levels of eddy-viscosity in the

shear layer and the recirculation region. Finally, the results obtained by FSM calcu-

lations confirm that for the ReD = 30, 000 case, the first azimuthal mode is highly

influenced by the nonlinear interaction of higher modes and that the flat pressure

distribution at the base is caused by structures generated by modes k = 1 to k = 4.

7.2 Transitional Wake at ReD = 60, 000

As for the lower Reynolds number case, an axisymmetric computation using no tur-

bulence model (“no model”) was carried out to obtain an initial condition for the

axisymmetric RANS calculations. Two separate computational grids were utilized.

The coarse grid had 162 points in the streamwise direction and 90 points in the radial

direction with the smallest grid spacing ∆rc = ∆zc = 0.02R at the corner. For the

fine computational grid, 302x130 points were employed in the streamwise and the

radial directions, respectively, and the finest spacing at the corner of the body was

∆rc = ∆zc = 0.01R. For additional parameters, see table D.8 in Appendix D.

7.2.1 Axisymmetric RANS Calculations

In contrast to the ReD = 30, 000 case, the Reynolds number appears to be sufficiently

large to allow for the use of the wall-distance independent version of the EASMα,

using the wall-damping function fε2 given in equation (2.34). Several calculations

were conducted on both computational grids, varying the constant cT , and using the

wall-distance dependent version fε2(N) given in equation (2.33) for comparison, to

determine the influence of the choice of wall-treatment on the global solution. Based

on the results from the above case, the EASMα was employed for this study. For all

cases conducted at ReD = 60, 000, the contribution function was again set to zero in

the approach flow to account for laminar flow. As discussed above, K was initially set
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Figure 7.7 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom); data from DNS, 128 modes (¦), coarse grid fε2(N) (—), coarse
grid cT = 4.56 (– –), coarse grid cT = 4.65 (◦), coarse grid fε2(N), STKE model (· · ·),
fine grid fε2(N) (+), fine grid cT = 4.56 (×); ReD = 60, 000, M = 2.46.

to zero in the boundary layer region to be consistent with the laminar approach-flow

assumption.

Figure 7.7 shows the centerline velocities and the radial distributions of the pres-

sure coefficient cp on the base. For reference, the DNS results discussed in section

6.2.3 are included. The calculation employing the STKE model, which was con-

ducted for comparison, displays the shortest recirculation region, resulting in a far

too low base-pressure with a strong radial variation. The difference to the solutions

obtained from the calculations using the EASMα is more pronounced than for the

lower Reynolds number. When looking at the streamwise axis-velocity, the data ob-

tained from calculations employing the EASMα with fε2(N), cT = 4.56 or cT = 4.65

practically collapse into one curve, independent of the computational grid that was

utilized. However, the recirculation length is still significantly underpredicted. This
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is likely caused by the large values of K close to the base and in the initial shear-layer,

as the model mistakes this laminar region for a turbulent region.

Only when scrutinizing the base-pressure, a difference between the coarse and the

fine computational grid becomes visible. For the fine grid, cp is slightly larger than

for the coarse grid. Nevertheless, the data of calculations using fε2(N) or cT = 4.56

coincide for both grids. Overall, the values found for cT with calibration calculations

of turbulent boundary layers (section 4.5) appear to be transferrable to the base flow

case. It is noteworthy that, for the wake, the global solution is less sensitive to the

value of cT than for the turbulent boundary layer. In addition to producing superior

axisymmetric RANS results, the EASMα was, as for the lower Reynolds number case,

numerically more stable than both the STKE model and the original EASM.

7.2.2 3-D FSM Calculations

For the FSM calculations, only the EASMα was employed as it produced the best

axisymmetric results and allowed for the largest time-steps. As initial condition for

the FSM calculations, the axisymmetric RANS data was used and the desired number

of azimuthal Fourier modes was added. The flow was then initially pulsed in the higher

Fourier modes of density to achieve faster development of three-dimensionality. From

the experience with the lower Reynolds number wake and following the suggestion by

Speziale (1998b), the value of the constant β in the contribution function, equation

(2.38), was initially set to β = 2 · 10−3 and then varied.

Figure 7.8 (a) – (d) shows sideviews of instantaneous total vorticity for FSM

calculations on both computational grids with different values of β compared to the

DNS. The DNS calculation displays a broad range of scales. For both the FSM

calculation on the fine grid and the FSM using the coarse grid with β = 2 · 10−4,

the small-scale structures vanish and only some large-scale structures (on the order

of the shear-layer thickness) are resolved on the respective computational grid. The
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a) DNS, kh = 128 b) FSM, fine grid, kh = 16, β = 1 · 10−3
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c) FSM, coarse grid, kh = 4, β = 2 · 10−4 d) FSM, coarse grid, kh = 4, β = 1 · 10−3

Figure 7.8 Sideviews of contours of instantaneous total vorticity; ReD = 60, 000,
M = 2.46.

values of the time-averaged contribution functions are shown in figure 7.9 for the

plane θ = 0◦. Clearly, the largest contribution of the turbulence model is provided

in the shear layer, reaching values of up to 5% downstream of recompression. The

very low value of f(∆/LK) within the recirculation region and the initial shear layer

allows for the formation of structures. Increasing β to 1 · 10−3 on the coarse grid

leads to much higher values of the contribution function, as can be seen in figure 7.9.

The distribution of f(∆/LK) is very similar to other cases, however, the absolute

values are significantly larger, with a maximum of f(∆/LK) > 10% downstream of

recompression. This results in the complete removal of structures, as can be seen

in figure 7.8 d), and only a flapping motion of the flow remains, implying that the

calculation approaches the URANS-limit of the FSM strategy.

The above results show that similar shapes and values of the contribution function

can be obtained with either very coarse grids, using a small value of β, or using finer

grids with larger values of β. For a quantitative evaluation of the performance of the

FSM on different computational grids and varying β, the time-averaged streamwise

velocity along the axis of symmetry and the time-averaged pressure coefficient on the

base are examined.
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Figure 7.9 Time-averaged contribution function f(∆/LK) for FSM; ReD = 60, 000,
M = 2.46.

First, the results obtained on a fixed computational grid with varying β are shown

in figure 7.10. The data from the DNS and the axisymmetric RANS calculation used

as initial condition are included for reference. In contrast to the axisymmetric RANS

calculations, the pressure distribution obtained by all FSM computations is practically

flat, with the magnitude close to the value predicted with DNS. This further confirms

that the flat base-pressure is a consequence of the unsteadiness caused by azimuthal

modes with low wavenumbers. The best agreement between an FSM calculation and

the DNS is achieved by setting β = 1 · 10−3 or β = 2 · 10−3. The best match between

an FSM calculation and the DNS data in terms of streamwise axis-velocity is also

achieved for β = 2 · 10−3. For smaller values of β, the recirculation region becomes

too long. Keeping β constant at 4 · 10−3 and increasing the number of Fourier modes

from 4 to 8 on the coarse computational grid only marginally affects the solution.

However, when employing 16 Fourier modes with the same computational grid and

β = 4 · 10−3, the recirculation length is overpredicted and, as a consequence, so is the
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Figure 7.10 Time-averaged pressure coefficient (top) and streamwise axis-velocity
(bottom) for FSM on coarse grid with 4 Fourier modes unless noted otherwise; DNS,
128 modes (—), axisymmetric RANS (· · ·), β = 2 · 10−4 (+), β = 1 · 10−3 (×),
β = 2 · 10−3 (◦), β = 4 · 10−3 (?), β = 4 · 10−3 and 8 modes (4), β = 4 · 10−3 and 16
modes (5); ReD = 60, 000, M = 2.46.

base pressure. In fact, the results resemble the data obtained with 4 Fourier modes

utilizing β = 2 ·10−4, shown in figure 7.10. Increasing the resolution, here the number

of Fourier modes, has the same effect as decreasing β: It leads to smaller values of the

contribution function. Consequently, a larger amount of structures has to be resolved

by the grid in order to reproduce a physically correct flow field. The streamwise/radial

grid, however, apparently is too coarse to capture all relevant structures that are

not accounted for by the proper amount of turbulence model. In other words, the

contribution from the turbulence model is too small to remove the scales that cannot

be resolved on the computational grid. This can be confirmed by looking at the

radial amplitude distributions of the FSM calculation on the coarse grid, using too

small a value of β, shown in figure 7.11. At the upstream location, as a result of the

small values of the contribution function in this region, the magnitudes of all modes
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Figure 7.11 Time-averaged mode-shapes of (ρu)k; FSM calculation on coarse grid with
4 Fourier modes and β = 2 · 10−4; z = 2.5 (left) and z = 7 (right); ReD = 60, 000,
M = 2.46.

correspond roughly to those found in DNS. However, mode k = 4 is significantly larger

in the FSM case. At the downstream location z = 7, the fourth mode even possesses

the largest magnitude of all modes, an indication that an accumulation of energy in the

highest azimuthal mode of the calculation occurs. The energy accumulations reveals

the lack of resolution or, alternatively, too little model contribution. In general, at

the downstream location, the amplitudes of all modes are strongly reduced versus the

DNS case, due to the larger value of the contribution function in this region with larger

grid-spacing. Nevertheless, even though the computation was underresolved and the

turbulence model contribution was insufficient, the mode shapes show reasonable

agreement with the DNS results.

To avoid the above deficiency of the FSM approach, the grid was refined in order

for the calculation to resolve the important scales on the computational grid when

they are not removed by the model. Because the resolution in the streamwise direction

was significantly coarser than in the DNS and since high-order compact stencils are

employed in the radial direction with just 40 points less than in the DNS, it was

decided to only increase the streamwise resolution to 392 points with ∆zc = 0.01R at

the corner. Further details of calculations conducted on the fine grid, can be found

in table D.8 in Appendix D. The streamwise/radial grid-resolution in combination



241

-1 -0.5 0 0.5 1
r

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

c p

0 1 2 3 4 5 6 7 8
z

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u ax
is

Figure 7.12 Time-averaged pressure coefficient on base (top) and streamwise velocity
along axis (bottom) for FSM calculations on fine grid; DNS, 128 modes (—), axisym-
metric RANS (· · ·), β = 1 · 10−3 and 16 modes (4), β = 1 · 10−3 and 32 modes (5),
β = 4 · 10−3 and 8 modes (◦), β = 4 · 10−3 and 16 modes (+), β = 4 · 10−3 and 32
modes (×); ReD = 60, 000, M = 2.46.

with a larger number of Fourier modes approaches the requirements of “traditional”

LES, such as Smagorinsky-type LES.

Figure 7.12 shows the averaged streamwise velocity along the axis of symmetry

and the averaged pressure coefficient on the base, obtained from FSM calculations

on the fine grid for changing β and different numbers of azimuthal Fourier modes.

Choosing β = 1 · 10−3, the recirculation length and the base-pressure are slightly

overpredicted. However, unlike for the coarse-grid case, increasing the number of

azimuthal modes from 16 to 32, the same mean base-pressure profile is obtained and

the streamwise axis-velocity distribution changes only marginally. It also appears as

if the dependence of the solution on the constant β is not as strong as for the FSM

calculation on the coarser grid. When increasing the value of β to 4 ·10−3, the results

are only slightly changed from the cases using β = 1 · 10−3 and the best agreement
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with the DNS results is achieved. Again, when increasing the number of azimuthal

Fourier modes from 8 to either 16, or even to 32, the solutions continue to agree

well with the DNS results. This implies that the model contribution provided by

f(∆/LK) corresponds to what is required for a particular resolution, i.e., the FSM is

successful in removing the appropriate amount of energy that cannot be resolved on

the respective grid. However, it seems as if this behavior can only be observed if the

resolution of the calculations approaches that of “traditional” LES in all directions.

It should also be noted, that the value of β which leads to the best agreement with

the DNS data is similar to the value that resulted in the best match for the lower

Reynolds number case.

For a more detailed comparison of an FSM calculation on the fine grid with DNS

data, the time-averaged mode-shapes of the streamwise velocity component are shown

in figure 7.13. The computation on the fine grid using 32 Fourier modes with β =

1 · 10−3 was selected, as the contribution function showed values f(∆/LK) < 5% for

the entire computational domain, justifying a classification as (non-traditional) LES.

In contrast to the data from the underresolved calculation shown in figure 7.11, the

ratio between the energy of higher azimuthal modes to the first mode is similar to
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Figure 7.13 Time-averaged mode-shapes of (ρu)k; FSM calculation on fine grid with
32 modes and β = 1 ·10−3; z = 2.5 (left) and z = 7 (right), ReD = 60, 000, M = 2.46.
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that found for the DNS presented in figure 6.38. In fact, the amplitudes of the higher

modes possess smaller values relative to the first mode than in the DNS calculation.

As the mode-shapes are only shown for the resolved quantities, this implies that the

remaining energy of the higher azimuthal modes is provided by the turbulence model,

scaled appropriately with the contribution function. Similar to the lower Reynolds

number case, the amplitude distributions of most modes agree reasonably well with

the mode-shapes found with DNS. Merely the first mode, k = 1, does not compare

well with the DNS data, and, unlike for the ReD = 30, 000 case, shows similarity with

the mode-shape found in linear calculations (see figure 5.4) only for the inner part

(r < 0.4).

In order to assess whether the FSM succeeds in producing the same kind of coher-

ent structures as those found in the DNS, instantaneous iso-contours of Q = 0.1 for

the calculation using the fine grid with 32 Fourier modes and β = 1·10−3 are shown in

figure 7.14. Qualitatively, similar flow features can be observed as in the DNS cases,

i.e., helical structures within the shear layer, encircling longitudinal structures within

the recirculation region. Also, the same type of streamwise structures are present in

the trailing wake. However, due to the larger values of the contribution function in

Figure 7.14 Instantaneous iso-contours of Q = 0.1 for FSM calculation on fine grid,
32 modes and β = 1 · 10−3, top- and sideview (top and bottom, left) and perspective
view from inflow towards outflow (right); ReD = 60, 000, M = 2.46.
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this region, and, consequently, an increased amount of turbulence viscosity, a con-

siderably smaller amount of small-scale structures appears in the FSM calculation.

Nevertheless, considering the good agreement of the mean flow results with the DNS,

these small scales seem to be represented reasonably well by the turbulence model.

In summary, the results obtained with the FSM in the URANS-limit show reason-

able agreement with the data from the DNS calculation. This is particularly remark-

able, considering the drastic savings in computational cost due to the dramatically

decreased temporal and spatial resolution requirements as shown in table 7.2. The

FSM calculations conducted with a grid-resolution approaching “traditional” LES,

albeit still using considerably less azimuthal Fourier modes than would be required

for a Smagorinsky-type LES calculation, show even better agreement with DNS. For

a constant value of β, the grid-resolution in the azimuthal direction can be signifi-

cantly increased, maintaining the same correct solution. This implies that the FSM

strategy successfully removes the appropriate amount of energy from the calculations

that cannot be resolved on the respective grid. The FSM calculations conducted on

the fine grid also appear to be successful in predicting the same kind of coherent

structures as observed in the DNS. Only the amount of small scales is reduced, as

they are removed by the turbulence model. Even when employing the FSM approach

DNS FSMc FSMc FSMc FSMf FSMf FSMf

points in z 812 194 194 194 392 392 392
points in r 130 90 90 90 90 90 90
modes in θ 128 4 8 16 8 16 32
∆t 1 · 10−3 2.6 · 10−3 2.6 · 10−3 1.54 · 10−3

CPU hours 3798∗ 1.93 3.98 8.76 10.27 21.67 76.1

Table 7.2 Comparison of computational cost per flow-through-time (t − t0 ≈ 12) on
HP Alpha of FSM using the coarse computational grid (FSMc), FSM conducted on
the fine grid (FSMf) and DNS calculations; * denotes CPU time on SGI Origin 3900;
for a comparison of the performance of both computer architectures, see Appendix
C.6.2; ReD = 60, 000, M = 2.46.
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using the fine grid, the computational costs are still considerably lower than for DNS

(c.f. table 7.2).

7.3 Transitional Wake at ReD = 100, 000

In order to show that the contribution function f(∆/LK) not only provides the ade-

quate amount of turbulence modelling for varying grid-resolutions, as shown above,

but also when the Reynolds number is changed, several FSM calculations were con-

ducted for ReD = 100, 000. This was the highest Reynolds number for which DNS

data was available. The set-up of the FSM calculations follows the FSM calculations

of the ReD = 60, 000 cases on the coarse grid, with all parameters listed in table D.8

in Appendix D. The time-averaged pressure coefficient and streamwise axis-velocity

obtained from two FSM calculations employing 16 Fourier modes. Recall that it was
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Figure 7.15 Time-averaged pressure coefficient on base (top) and streamwise velocity
along axis (bottom) for FSM calculations on coarse grid with 16 modes; DNS, 128
modes (—), axisymmetric RANS (· · ·), β = 2 · 10−3 (◦), β = 4 · 10−3 (¤); ReD =
100, 000, M = 2.46.
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shown in section 6.2.4 that at this Reynolds number, azimuthal modes up to k = 16

contain a considerable amount of energy. are shown in figure 7.15. As for the FSM cal-

culations at lower Reynolds numbers, best agreement with the DNS data is achieved

when choosing β = 2 · 10−3 or β = 4 · 10−3. An entirely flat pressure-distribution

on the base is predicted with the correct mean value and the recirculation length

agrees very well with that obtained using DNS. The reduction in computational time

for this case is even more dramatic than for the lower Reynolds number cases, as

the DNS calculation required an increased number of grid-points and, consequently,

smaller time-steps. Because the FSM calculations were conducted on the same com-

putational grids as that used for the ReD = 60, 000 case, the computational cost did

not increase and is listed in the sixth column of table 7.2. The above results illus-

trate, that on a given computational grid, the contribution function, using the same

values of β, successfully provides the appropriate amount of turbulence modelling for

varying Reynolds numbers.

7.3.1 Flow Control

Flow control mechanisms that were tested successfully atM = 2.46 andReD = 30, 000

using DNS are applied to supersonic base flows at M = 2.46 and ReD = 100, 000

using FSM. The same active and passive control techniques are employed as discussed

previously for ReD = 30, 000.

For reference and comparison, in Figure 7.16, dominant flow structures are shown

for the “unforced” wake. Shown are perspective top- and sideviews of iso-contours of

Q = 0.05 obtained from an FSM calculation of the unforced case at ReD = 100, 000.

Helical structures can be observed in the shear layer close to the base. In addition,

a large number of longitudinal structures can be seen within the recirculation region

and hairpin vortices are present downstream of the recompression region.

For ReD = 100, 000, FSM calculations were performed with steady forcing of
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(a) topview

(b) sideview

Figure 7.16 Instantaneous iso-contours of Q = 0.05 for the unforced case, Perspective
topview and sideview with flow from left to right; FSM for ReD = 100, 000

modes k = 2, 4, 8, 16 and periodic forcing of the zeroth mode, k = 0. Contours of

time-averaged streamwise vorticity of endviews at z = 1 are shown in figure 7.17 to

illustrate the different development of the structures in the shear layer when employing

steady forcing. Visualizations of instantaneous iso-contours of Q = 0.05 are shown

in figure 7.18. When steady forcing with an amplitude Adist = 1.0 is applied to

the azimuthal/helical modes k = 2 and k = 4 (see Figures 7.18a and 7.18b), the

flowfield resembles the unforced case and no significant longitudinal vortices emerging

from the forcing location can be observed. However, once the higher modes k = 8
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Figure 7.17 Endviews of time-averaged streamwise vorticity in the initial shear-layer
at z=1; steady azimuthal forcing of k = 4, k = 8 and k = 16 from left to right; FSM
for ReD = 100,000.
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(a) steady forcing of k = 2

(b) steady forcing of k = 4

(c) steady forcing of k = 8

(d) steady forcing of k = 16

Figure 7.18 Instantaneous iso-contours of Q = 0.05 for steady forcing cases with
Adist = 1.0, perspective topview with flow from left to right; FSM for ReD = 100,000.

and 16 are forced (see Figures 7.18c and 7.18d), the flowfield differs considerably

from the unforced case. As in the lower Reynolds number case investigated using

DNS, longitudinal structures can be seen emanating from the forcing location with

the azimuthal spacing of these structures decreasing for the higher mode numbers.

Overall, when steady forcing of the higher modes is employed, energetic longitudinal

structures are produced which increase the mixing within the recirculation region.

When applying periodic axisymmetric forcing, several different frequencies were
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(a) ω = 0.4166

(b) ω = 1.0

(c) ω = 2.0

(d) ω = 2.5

Figure 7.19 Instantaneous iso-contours of Q = 0.05 for periodic forcing cases with
Adist = 1.0, perspective topview with flow from left to right; FSM for ReD = 100,000.

investigated. First, calculations were carried out with a frequency ω = 0.4166

which corresponds to the most unstable frequency of the axisymmetric mode at

ReD = 30, 000. However, for the unforced case at ReD = 100, 000, DNS conducted

by Sandberg & Fasel (2004, 2006b,a) has revealed that a significant amount of energy

is contained in frequencies with a Strouhal number greater than one. This suggests

that a strong response might occur when forcing at higher frequencies. Therefore, a

range of higher frequencies, ω = 1.0, 2.0, 2.5, and 3.0, was investigated. Results from
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these investigations are shown in figure 7.19. Axisymmetric structures generated just

upstream of the corner separation can be observed in the shear layer. However, the

azimuthal modulation due to the dominant helical modes is less pronounced than was

observed at ReD = 30, 000. When the axisymmetric mode was forced with amplitude

Adist = 1.0 and frequency ω = 0.4166, the flow structures far downstream from the

base the flow resemble those of the unforced flow. Higher frequencies, ω = 1.0 and

2.0, produce an increasing number of axisymmetric structures but far downstream the

flow is still similar to the unforced flowfield. Finally when a high frequency ω = 2.5 is

used, the hair pin vortices that are present in the trailing wake for the unforced flow

and low frequency cases disappear. It is suggested that at this high frequency, the

energy otherwise transferred to the helical structures is now transferred to the axisym-

metric mode which does not exhibit significant spatial growth. As the helical modes

are far less energetic in this case, the formation of hairpin vortices is suppressed.

The time-averaged pressure coefficient along the base and the streamwise velocity
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Figure 7.20 Pressure coefficient on base (left) and streamwise velocity along axis of
symmetry (right) using steady forcing of higher azimuthal modes with Adist = 1.0;
unforced case (—), forcing k = 2, (◦), forcing k = 4, (4), forcing k = 8, (∗), forcing
k = 16, (−−−); FSM for ReD = 100,000.
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along the axis are shown in figure 7.20 for steady forcing of the higher azimuthal modes

and for the unforced reference case. When forcing mode k = 2, the recirculation length

is slightly increased, resulting in a slight pressure increase. When forcing azimuthal

modes with k > 2, the recirculation length decreases due to the entrainment of low-

speed fluid from the recirculation region, as seen already in the earlier investigation

of base flows at ReD = 30, 000. However, in contrast to the lower Reynolds number

cases, the base pressure also decreases for all calculations where steady forcing was

applied to k > 2. This is in agreement with experiments by Bourdon & Dutton (2001)

at an even higher Reynolds number who did not find an increase in base pressure when

generating longitudinal vortices by means of tabs on the axisymmetric body.

For periodic forcing of the axisymmetric mode, the time-averaged base-pressure

coefficient and the streamwise axis-velocity are shown in figure 7.21. When forcing

with a frequency ω = 0.4166 the recirculation length is decreased, and, in contrast to

the lower Reynolds number case, the base pressure is considerably decreased. But as
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Figure 7.21 Pressure coefficient on base (left) and streamwise velocity along axis
of symmetry (right) for cases with periodic forcing of axisymmetric mode, k = 0,
Adist = 1.0 ; unforced case (—), ω = 0.4166 (◦), ω = 1.0 (¤), ω = 2.0 (¦), ω = 2.5
(4); FSM for ReD = 100,000.
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the frequency increases, both the recirculation length and the base pressure increase.

In fact, for ω = 2.5 the base pressure is increased by 5% over the unforced case.

This result is consistent with the findings of Bourdon & Dutton (2001) who found an

increase in base pressure only when forcing the axisymmetric mode. Note, however,

that in the experiment mode k = 0 was forced using an axisymmetric trip, i.e., with

a steady perturbation, in contrast to the periodic forcing in our simulations.

7.4 High Reynolds Number UIUC Case

It was shown in the above sections that the FSM is capable of reproducing DNS

results of transitional axisymmetric wakes with reasonable accuracy at significantly

lower computational cost. However, most applications that involve base flows, such as

projectiles or coasting missiles, are subject to considerably higher Reynolds numbers.

As mentioned in the introduction, an extensive investigation of high Reynolds number

base flows has been conducted by Dutton and co-workers at the University of Illinois

at Urbana Champaign (UIUC). The results published in Herrin & Dutton (1994)

will be used for reference and are denoted as “UIUC case” in the following. The

flow investigated in the experiments is fully turbulent, i.e., a turbulent approach flow

separates at the base corner and the shear layer that forms immediately downstream

of the base also is turbulent. It will be demonstrated that fully resolved DNS of the

UIUC case are out of reach for present supercomputers. Therefore, calculations of

the UIUC case were conducted, employing turbulence simulation strategies.

The turbulent approach boundary layer of the high Reynolds number case con-

stitutes an additional difficulty for the calculations. For both axisymmetric RANS

and FSM calculations, a very fine grid close to the wall would be necessary in order

to obtain the required resolution of y+ ≈ 1 for a good representation of the ap-

proach boundary layer. With the present explicit code, the small grid-spacing close

to the wall would led to time-steps so small that calculations of the entire base flow
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geometry would become unpractical. To circumvent this problem, the following set-

up was realized for all calculations: The RANS solution of the approach boundary

layer, computed in section 4.5.2, showed very good agreement with the experimental

data. Therefore, it was interpolated onto the (coarser) radial grid of the respective

calculation and fixed, i.e., the approach flow remained unchanged throughout the

simulations.

This approach is considerably different from what other researchers have at-

tempted, such as full LES of the inflow (see Fureby, 1999). However, the concept

is not unlike the procedure inherent in the DES approach, where the wall bounded

flow region is represented by a steady RANS solution (see Forsythe & Hoffmann, 2000;

Forsythe et al., 2002, for example). Several aspects appear to justify this procedure

for the present case: The approach boundary layer is thin relative to the radius of

the base (δc = 0.1), thereby most likely not introducing significant (low frequency)

unsteadiness into the initial shear-layer. Furthermore, with the flow being supersonic

and an expansion wave forming at separation, no significant feedback from the re-

circulation region with the approach flow is expected. This is supported by pressure

measurements in the approach boundary layer by Herrin & Dutton (1994), who re-

ported that no upstream influence from the base corner separation was evident in the

data.

7.4.1 Axisymmetric RANS Calculations

Axisymmetric RANS calculations of the UIUC case were performed, in order to eval-

uate their performance for a fully turbulent base flow and serving as initial conditions

for FSM computations. Several computational grids were used for the RANS calcu-

lations to determine the grid-dependence of the turbulence closure. The coarsest grid

employed possessed 210 points in the radial direction and 256 points in the streamwise

direction, with the smallest grid-spacing at the base corner being ∆rc = ∆zc = 5·10−3.
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Figure 7.22 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) obtained from axisymmetric RANS calculations; UIUC case (¥),
STKE using c.e. (—), STKE omitting c.e. (– – –), EASMα using c.e. (+), EASMα

omitting c.e. (¦); ReD = 3, 300, 000, M = 2.46.

The finest grid used contained 350 and 512 points in the radial and the streamwise

directions, respectively, with ∆rc = ∆zc = 4 · 10−4. For a complete listing of all

relevant parameters, see table D.9 in Appendix D.

For all calculations employing the EASMα, the wall-distance independent version

with cT = 4.45 was used. For reference, axisymmetric RANS calculations employing

the STKE model were conducted. Figure 7.22 shows the streamwise axis-velocity and

the radial distributions of the pressure coefficient cp on the base obtained from several

axisymmetric RANS calculations. The data from the experiments conducted at UIUC

are included for comparison. Only the results from the calculations using the coarse

grid are presented, as they showed no difference from the calculations performed on

the fine grid, implying that the grid-resolution was adequate. Consistent with all pre-

vious axisymmetric results, the base-pressure distribution displays a significant radial

variation, which is not present in the experimental data. It can be observed, that the
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calculations employing the EASMα overpredict the recirculation length significantly,

resulting in too high a pressure at the base. When the STKE closure is used, the

recirculation length becomes slightly shorter, however, the base-pressure is underpre-

dicted. The calculations were repeated omitting the c.e., which reduce the turbulence

production, and it can be seen in figure 7.22 (bottom) that the recirculation length

is reduced. In fact, the STKE model solution shows quite good agreement with the

experiment in terms of recirculation length. However, the reverse flow maximum is

too large and the base-pressure is underpredicted even more strongly than when the

c.e. were included. The solution obtained with the EASMα also shows a reduction

in the recirculation length and a decrease in mean base-pressure when omitting the

c.e., albeit the effect is not as pronounced as when the STKE model is used.

In order to get a more complete picture of the solution predicted with the ax-

isymmetric RANS calculations, radial profiles of the streamwise and radial velocity

components, the TKE and the dominant Reynolds shear-stress component u′v′ are

shown in figure 7.23 for two streamwise locations at which experimental data was

available. At the streamwise location closest to the base, z = 0.078, the velocity

profiles obtained numerically show reasonable agreement with the experimental data.

However, the maximum TKE value in the shear layer is underpredicted by all turbu-

lence closures, most severely when using the EASMα. In addition, the EASMα also

predicts too low values of K within the recirculation region. The distribution of the

Reynolds shear stress u′v′ is predicted reasonably well, however, the measured peak

value in the shear layer is not reached by any of the RANS calculations. At the mean

reattachment point z = 2.67, reverse flow is predicted at the axis with all turbulent

closures due to the overprediction of the recirculation length, shown in figure 7.23, ex-

cept when using the STKE omitting the c.e. The EASMα significantly underpredicts

the TKE, regardless of wether the c.e. are used or not. In contrast, the level of K has

increased to values comparable to the experimental data when employing the STKE

model including the c.e. The TKE is even considerably overpredicted when neglect-
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Figure 7.23 Radial profiles of u, v, K and u′v′ from axisymmetric RANS calculations;
experiments at UIUC (¥), STKE using c.e. (—), STKE omitting c.e. (– – –), EASMα

using c.e. (+), EASMα omitting c.e. (¦); ReD = 3, 300, 000, M = 2.46.

ing the compressibility modifications. Reasonable agreement with the experiments in

terms of the Reynolds shear stress is also found when using the turbulence closures

without c.e. The above observations lead to the conclusion that the TKE level at the

inflow might not be sufficiently large. For that reason, the inflow conditions for K and

ε were rescaled by a factor of 6, in order to correspond with the data by Dutton and

co-workers at the streamwise position z = 0.078. Axisymmetric RANS calculations,

employing both the EASMα and the STKE model, were repeated using the changed

inflow.

In addition to the modified approach flow conditions, the effect of altering several

coefficients in the turbulence closures were investigated. Launder & Sharma (1974)

specifically calibrated the coefficients contained in the transport equations for K and

ε for high Reynolds number jet flows and suggested the following values: cε1 = 1.43

and cε2 = 1.92. Furthermore, Papp et al. (2002) recognized that the EASMα was cali-

brated for homogeneous turbulent wall-bounded flows, leading to an under-prediction

of mixing rates in shear layers. They therefore made an attempt to recalibrate the

EASMα for high Reynolds number jet flows and determined that an increase of a1

from 0.4866 to 0.5416, in addition to using the coefficients by Launder & Sharma
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(1974), had the desired effect of increasing the turbulence levels in the shear layer

without adversely affecting the pressure-strain rate correlation. The similarities be-

tween the base flow and jets, such as a mean streamwise velocity profile featuring two

inflection points might suggest that the coefficients calibrated for jets might also be

applicable to base flows.

Results obtained from the axisymmetric RANS calculations, investigating the in-

fluence of various coefficients in the turbulence closures using rescaled inflow values

for K and ε are presented in figure 7.24. The calculation employing the EASMα with

the original coefficients and using c.e. is the only case that was also conducted for

the original inflow conditions, presented in figure 7.22. The effect of the significantly

increased levels of K and ε in the approach flow is a drastic decrease in recircula-
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Figure 7.24 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) obtained from axisymmetric RANS calculations with modified
inflow; UIUC case (¥), STKE using c.e. and cε1 = 1.43, cε2 = 1.88 (· · ·), STKE using
c.e. and cε1 = 1.44, cε2 = 1.92 (—), STKE omitting c.e. and cε1 = 1.44, cε2 = 1.92 (– –
–), EASMα using c.e. and original coefficients (+), EASMα using c.e. and coefficients
according to Papp et al. (2002) (◦), EASMα omitting c.e. and coefficients according
to Papp et al. (2002) (¦); ReD = 3, 300, 000, M = 2.46.
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tion length and, consequently, base pressure. When the coefficients in the EASMα

closure are changed to the values suggested by Papp et al. (2002), the recirculation

length is further decreased and the mean reattachment point corresponds well with

the experimental data when the c.e. are included. The base pressure, however, is also

further decreased and therefore underpredicts the reference data even more strongly,

in particular when the compressibility extensions are not included. All calculations

that were conducted with the STKE model underpredicted both the recirculation

length and the base pressure significantly, especially when choosing the values of the

coefficients for the turbulence closure according to Launder & Sharma (1974).

Radial profiles of the streamwise and radial velocity components, the TKE and the

dominant Reynolds shear-stress component u′v′ are shown for the cases with the mod-

ified inflow in figure 7.25. Four streamwise locations are selected, one immediately

downstream of separation, one within the recirculation region, one at the mean reat-

tachment point in the experiments and finally a location within the trailing wake. At

the streamwise location closest to the base, z = 0.078, the velocity profiles obtained

numerically show quite good agreement with the experimental data. In contrast to

the results discussed earlier, the distribution of K corresponds well with the experi-

mental data when using the EASMα. The STKE closure overpredicts the TKE at this

location. The Reynolds shear-stress obtained from all RANS calculations shows good

agreement with the experimental data. When looking at the profiles obtained within

the recirculation region, at z = 1.26, it can be observed that the STKE model severely

overpredicts the TKE and the Reynolds shear-stress. Quite good agreement with the

experimental data is found for the turbulence quantities when employing the EASMα

with the modification according to Papp et al. (2002). Using the original coefficients

for the EASMα, both K and u′v′ are underpredicted. The converse, however, is the

case for locations farther downstream. At the locations z = 2.67 and z = 4, best

agreement with the experimental data for the turbulence quantities is found when us-

ing the EASMα with the original coefficients. The recalibrated EASMα overpredicts
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Figure 7.25 Radial profiles of u, v, K and u′v′ from RANS calculations using modified
inflow conditions; experiments at UIUC (¥), STKE using c.e. and cε1 = 1.43, cε2 =
1.88 (· · ·), STKE using c.e. and cε1 = 1.44, cε2 = 1.92 (—), STKE omitting c.e. and
cε1 = 1.44, cε2 = 1.92 (– – –), EASMα using c.e. and original coefficients (+), EASMα

using c.e. and coefficients according to Papp et al. (2002) (◦), EASMα omitting c.e.
and coefficients according to Papp et al. (2002) (¦); ReD = 3, 300, 000, M = 2.46.

both K and u′v′ at the mean reattachment points and in the trailing wake. At the

two latter locations, the STKE model considerably overpredicts the maxima of both

K and u′v′.

From the axisymmetric RANS calculations conducted for the UIUC case, it was

determined which turbulence closure, including the choice of coefficients, was the

most promising underlying model for the FSM calculations. Furthermore, the RANS

results will be used as initial condition for the three-dimensional unsteady simula-
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Figure 7.26 Estimate of the Kolmogorov length-scale, based on ε obtained from ax-
isymmetric RANS calculation; ReD = 3, 300, 000 and M = 2.46.

tions. Also, the data obtained from the axisymmetric RANS calculations could be

used to estimate the resolution requirements of a fully resolved DNS. To that end,

the Kolmogorov length-scale was computed according to LK =
(

µ
ρRe

)3/4
/ε1/4, using

the ε distribution obtained from the calculation employing the EASMα with c.e. The

resulting distribution of LK is shown in figure 7.26. It can be observed that the lowest

values of the turbulent length-scale are reached in the approach boundary layer, the

initial shear-layer and the recompression region. In those regions, LK ∼ 1 ·10−4, while

the Kolmogorov length-scale estimate exhibits values of up to 5 · 10−4 in the remain-

ing region of interest, i.e., the recirculation region and the developing trailing wake.

Assuming that a numerical code was available that either employs adaptive mesh

refinement or the numerical grid was a priori generated such that discrete points are

clustered in region where LK takes the smallest values, the following estimate can

be made for the grid-point requirement: Provided that the generation of turbulent

inflow data is successfully accomplished, in the streamwise direction, roughly 8, 000

points would be required for the interval 0 ≤ z ≤ 5, in order to reach a resolu-

tion on the order of the Kolmogorov length-scale. From the validation calculations

for the turbulent approach boundary layer (section 4.5.2), it was found that a wall-

normal grid-resolution of ∆rwall = 5 · 10−5 was required to obtain y+ ≈ 1. Taking

this into account and assuming that strong stretching can be used, the number of

points required in the radial direction can be estimated to be approximately 3, 000.
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In the azimuthal direction, at least 1, 000 Fourier modes would have to be used in

order to provide sufficient grid-resolution, in particular where r = O(1). In total,

the computational grid for a DNS of the UIUC case would therefore require O(1010)
points. In addition, even if employing a fully implicit numerical code, to conduct a

time-accurate simulation, one would have to adhere to the CFL limit, resulting in

time-steps on the order of dt ≈ 5 · 10−5. Recall, that the largest grid used for the

simulations of the transitional case at ReD = 100, 000 contained 5.6 · 107 grid-points,

employing a time-step dt = 1.2 · 10−3. The simulation required computation times of

several months on current supercomputers. Clearly, a DNS of the UIUC case is out

of reach for current high-performance computers, hence the current effort in finding

other simulation strategies for unsteady high Reynolds number flows.

In summary, axisymmetric RANS calculations, using the STKE model and the

EASMα were conducted of the UIUC case. The effect of compressible extensions and

varying model coefficients was investigated. It was shown that choosing cε1 = 1.43

and cε2 = 1.92 and using the modifications to the EASMα suggested by Papp et al.

(2002) leads to an increase in the TKE and the Reynolds shear stress, causing a

decrease in recirculation length and base pressure. Conversely, incorporating c.e. as

presented in section 2.2.4 resulted in decreased values ofK and u′v′ and, consequently,

an increase in recirculation length and base pressure. The inflow values for the tur-

bulent quantities K and ε were shown to play a significant role in the global solution.

Larger values of K and ε at the inflow produce a smaller base pressure and a re-

duced recirculation length. In general, the EASMα appears to produce more accurate

distributions of turbulence quantities and a flatter base pressure distribution while

allowing for faster convergence due to increased numerical stability. However, none

of the RANS calculations is able to reproduce the UIUC results accurately, implying

that it is essential to capture the unsteady dynamics of the large-scale structures, as

was demonstrated for the transitional base flows. Finally, the RANS data was used
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to illustrate the tremendous requirements of computational resources if a DNS of the

UIUC case was to be attempted.

7.4.2 3-D FSM Calculations

Considering the results obtained from the axisymmetric RANS calculations, all FSM

calculations of the UIUC case were conducted employing the EASMα using compress-

ible extensions and coefficients according to Papp et al. (2002). Initially, the same

constant β for equation (2.38) was employed as for all transitional cases. However,

even with the finest grid-resolution used in the r−z-plane and up to 32 Fourier modes,

the contribution function was on the order of 40%. Such a large amount of model

contribution did not permit the formation of structures. Thus, to reduce the values

of the contribution function sufficiently to allow for the generation and evolution of

structures in the flow, a significantly finer grid would have been required. Instead,

to enable computations not exceeding approximately one week of computing time,

the constant β was decreased to values of the order of O (10−4). This resulted in

f(∆/LK) < 10% in the initial shear-layer and within the recirculations region, and

increasing values in the trailing wake due to the strong streamwise stretching of the

grid.

FSM calculations were conducted on the coarse grid presented for the axisym-

metric RANS calculations and on a grid composed of the same radial grid as the

coarse grid, but with a refined grid in the streamwise direction. In the experiments

conducted at UIUC, longitudinal structures were observed within the shear layer. In

order to capture streamwise structures within the initial shear-layer, it was deter-

mined that at least 16 Fourier modes were required. Therefore, the FSM calculations

were exclusively conducted with kh ≥ 16. For all further parameters, see table D.9

in Appendix D.

A time sequence of instantaneous iso-contours of Q = 0.5, obtained from the FSM
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Figure 7.27 Instantaneous iso-contours of Q = 0.5 for FSM calculation using 16
modes and β = 1 · 10−4, perspective sideviews with flow from left to right; base of
body shaded dark grey; ReD = 3, 300, 000, M = 2.46.

calculation using the refined grid and 16 azimuthal modes are presented in figure 7.27.

The time difference between each consecutive time-level is ∆t = 1, which corresponds

to free-stream fluid travelling one base-radius downstream. Helical structures in the

shear layer can clearly be identified. In contradistinction to the low Reynolds num-

ber cases, the helical structures within the shear layer travel downstream (see, e.g.,

structures marked with “A” or “C”). Following the arguments used when discussing

the transitional DNS results (c.f. section 6.1.2), this implies that the growth rates

of the applicable instabilities are large enough to overcome the high compressibil-

ity in this region, such that visible structures form in the supersonic region of the

shear layer. The high-wavenumber variation of the helical structures most likely is

caused by streamwise structures in the shear layer, as observed in endviews of the

experimental data and DNS data of the ReD = 100, 000 case. In addition, this result

is also in accordance with the trend established with TDNS and LNS calculations,

showing that higher azimuthal modes appear to play a significant role for increasing
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Reynolds numbers. As in the transitional cases, streamwise structures are present

within the recirculation region and extend into the developing wake. The structures

vanish downstream of the mean reattachment point due to the large contribution of

the turbulence model.

Another distinction from the transitional cases is the formation of hairpin vortices,

as marked with “B”, upstream of the recompression region. These might be generated

by secondary instabilities affecting the initial helical structures in the shear layer.

Alternatively, they could be produced by fluid forming streamwise structures when

passing the chevron-like structure of the inner shear-layer, as discussed in section

6.1.2.

In order to evaluate whether the FSM calculations are capable of reproducing the

mean flow data available from the experiments, the base-pressure distribution and
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Figure 7.28 Time-averaged pressure coefficient on base (top) and streamwise velocity
along axis of symmetry (bottom) obtained from FSM calculations; UIUC case (¥),
axisymmetric RANS calculation (· · ·), FSM with 256 streamwise points, β = 1 · 10−4

and 16 modes (+), FSM with 512 streamwise points, β = 1 · 10−4 and 16 modes (¦),
FSM with 512 streamwise points, β = 1 · 10−4 and 32 modes (◦); ReD = 3, 300, 000,
M = 2.46.
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the streamwise axis-velocity are presented in figure 7.28. As opposed to the RANS

solution, shown for comparison, the data obtained from the FSM calculations show

good agreement with the experimental curve, in particular considering the radial dis-

tribution. The mean-pressure values depend on the grid-resolution of the respective

calculation. Both calculations employing 16 Fourier modes show the smallest de-

viation from the experimental data. For the calculation on the fine grid, using 32

azimuthal modes, the pressure value is slightly underpredicted. In spite of the good

results obtained for the pressure distribution, all FSM calculation overpredict the

recirculation length by approximately 0.7 radii. Several reasons for this behavior are

suggested: First, the values of K and ε in the (fixed) approach flow might not corre-

spond to those present in the experiments. It was shown above, that the magnitudes

of the turbulent quantities at the inflow have a pronounced effect on the global solu-

tion, in particular on the recirculation length. Second, a very small value of β was

chosen for a grid that most likely was too coarse to resolve the relevant length-scales

(see discussion in section 7.2.2). Third, a steady approach boundary layer is pre-

scribed and, therefore, the generation of unsteadiness is delayed, i.e., the flow must

“transition” from a steady to an unsteady state downstream of the base. The shallow

slopes of the streamwise axis-velocity profiles might indeed be an indication that this

is the case. The slopes resemble those found for all transitional cases from both DNS

and FSM calculations. In the fully turbulent UIUC case, the slope at the base-wall

is considerably steeper. All axisymmetric RANS calculations produce an even larger

slope, presumably because turbulence production is overpredicted in this region.

Finally, the time-averaged mode-shapes of all resolved velocity components are

presented in figure 7.29 for two streamwise locations, one within the recirculation re-

gion (z = 2) and one downstream of the mean reattachment point (z = 4). At z = 2,

the first azimuthal mode is by far the most dominant mode. Modes k = 2 and k = 3

possess roughly the same amplitude but exhibit different mode-shapes. Higher modes

exhibit fairly small amplitudes, due to the damping effect of the turbulence model.
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Figure 7.29 Time-averaged mode-shapes obtained from FSM calculation; fine grid (16
modes), β = 1 · 10−4; z = 2 (left) and z = 4 (right), ReD = 3, 300, 000, M = 2.46.

At the second location, z = 4, a clear dominance of mode k = 2 can be observed.

Recall, that in the ReD = 100, 000 case, mode k = 2 was also the most dominant

mode, along with k = 4. These two modes were responsible for producing a four

lobe-pattern of the wake, that compared very well with the UIUC data (see figure
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6.49). However, in the figures presently discussed, the amplitudes of mode k = 4

are at most 20% of the most dominant mode k = 2. As only the time-average of

the resolved scales are shown, a significant amount of the energy of k = 4 might be

contained in the modelled portion of the spectrum.

In summary, the FSM calculations conducted of the UIUC case succeeded in

reproducing the pressure distribution of the experiments with reasonable accuracy.

The streamwise velocity at the axis did not agree well with the experimental data,

which might be attributed to prescribing a steady approach-flow boundary layer and

to overly small values of turbulent quantities at the inflow. Helical structures were

identified in the shear layer, with a modulation at high wavenumbers, implying that

higher azimuthal modes are relevant in this case.

7.5 Summary

Axisymmetric RANS and three-dimensional FSM calculations were conducted of tran-

sitional supersonic base flows and the UIUC case. In all cases, axisymmetric RANS

calculations failed to accurately reproduce the DNS or experimental data, indicating

that relevant physical mechanisms could not be captured. A strong radial variation of

the base pressure was predicted by all closures and, for most cases, the recirculation

length was underpredicted. Overall, the EASMα appears to be the best closure of the

ones considered for the calculation of supersonic base flows. It was demonstrated that

the values of the turbulent quantities K and ε at the inflow have a strong impact on

the global RANS solution, with larger levels of K leading to a smaller base-pressure

and a decreased recirculation length. Compressible extensions were shown to decrease

the turbulence levels in the shear layer, whereas the choice of model-coefficients sug-

gested by Papp et al. (2002) increased turbulence levels. The results obtained from

axisymmetric RANS calculations were used in order to estimate the computational



268

requirements for a DNS of base flow at practical Reynolds numbers, as investigated

at UIUC.

For all transitional cases, FSM is capable of reproducing the DNS data with rea-

sonable accuracy at a fraction of the computational cost. The optimal value of the

parameter in the contribution function appears to be 1 · 10−3 ≤ β ≤ 4 · 10−3 for all

transitional Reynolds numbers. It was shown that the FSM approach is not derived

for a specific turbulence model but is a general strategy for solving unsteady, three-

dimensional flows. FSM appears to sufficiently scale down the model contribution in

the relevant regions so as not to inhibit the physical instability mechanisms responsi-

ble for the generation of large structures. The same kind of structures in the flow field

are predicted by FSM calculations as by DNS, i.e., mainly helical structures in the

shear layer and streamwise structures within the recirculations region and in the trail-

ing wake. The FSM calculations of transitional base flows confirmed that azimuthal

modes k = 1 to k = 4 are responsible for a flat base-pressure distribution. Further-

more, FSM results supported that the first mode is most likely nonlinearly generated.

FSM calculations of the UIUC case revealed the presence of helical structures in the

shear layer with a strong azimuthal modulation caused by higher azimuthal modes.

A significant amount of streamwise structures was observed within the recirculation

region and the formation of hairpin vortices upstream of the recompression region

was detected.

For transitional base flows at ReD = 100,000, FSM calculations have been em-

ployed to investigate the performance of flow control. For ReD = 100, 000, consis-

tent with high Reynolds number experiments by Bourdon & Dutton (2001), applying

steady forcing of higher azimuthal modes and thereby generating longitudinal vortices

in the shear layer does not succeed in reducing the base drag. However, when forcing

the axisymmetric mode, an increase of base pressure can be achieved. In the present

study, it was shown that the degree of drag reduction varies with the frequency of the

forcing, showing better results for increasing frequencies. Overall, from the present
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preliminary investigations, it appears that periodic forcing of the axisymmetric mode

has the greatest potential with regard to drag reduction.
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8. SUMMARY OF THE MOST IMPORTANT RESULTS

Transitional and fully turbulent axisymmetric wakes were investigated numerically

using DNS, TDNS, LNS and state-of-the-art RANS and FSM calculations. Partic-

ular emphasis was placed on identifying hydrodynamic instability mechanisms, and

relating these to coherent structures that were identified with various visualization

techniques. The premise for this approach is the assumption that flow instabilities

lead to the formation of coherent structures and determine their evolution. The effect

of unsteady structures on the mean flow and on turbulent statistics was investigated,

with a particular interest on the resulting mean base-pressure which determines the

base drag. This was achieved by exploiting the ability of numerical experiments to

deliberately exclude certain physical effects. Employing DNS for various circumferen-

tial domain-sizes, certain azimuthal modes could be intentionally eliminated. Thus,

their impact on the global wake-behavior could be scrutinized. Flow control meth-

ods designed to exploit and/or counteract instability mechanisms present in the flow

were studied to determine if a drag reduction could be accomplished. Furthermore,

the performance of several RANS models and a novel simulation strategy (FSM) for

transitional and turbulent supersonic axisymmetric wakes was evaluated. The most

important results of each chapter are summarized in the following.

Simulations of sub- and supersonic TS waves and oblique disturbances in super-

sonic boundary layers were presented in chapter 4. The ability of the DNS, TDNS and

LNS codes, developed for this research, to accurately capture the growth of distur-

bance waves generated by a viscous instability was demonstrated. Low Mach number

simulations of the flow field behind an axisymmetric afterbody were carried out which

captured the development and evolution of coherent structures. The results quantita-

tively reproduced data from incompressible reference DNS. In addition, evidence was
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presented that, at ReD = 2, 000, the flow becomes absolutely unstable with respect to

both the first and the second helical mode. Wall-distance independent versions of the

EASM and EASMα, including compressibility extensions, were applied successfully to

incompressible, flat-plate turbulent boundary layers and the axisymmetric approach

flow of the UIUC experiments.

In chapter 5, results of linear stability simulations were discussed. Axisymmetric

wakes at M = 2.46 with an approach boundary layer thickness δc = 0.1 were shown

to be convectively unstable with respect to higher azimuthal modes at ReD = 5, 000.

For larger Reynolds numbers, a pulse disturbance led to temporal amplification of

higher azimuthal modes. It was concluded that the flow is absolutely unstable with

respect to modes k > 0 for ReD > 5, 000, with k = 3 possessing the highest growth

rate for Reynolds numbers up to ReD = 100, 000. In addition, for ReD > 100, 000, the

flow becomes absolutely unstable with respect to the axisymmetric mode, k = 0. By

comparing spatial with temporal results, circumstantial evidence was found suggest-

ing the coexistence of absolutely unstable global modes within the recirculation region

and convectively unstable shear-layer modes. Mode shapes obtained from spatial sim-

ulations illustrated that the global mode is dominant for low Reynolds numbers. For

increasing Reynolds numbers, the shear-layer mode appears to overcome the damp-

ing effect of compressibility and gains in importance. Local stability calculations

revealed that the shear-layer modes have non-zero streamwise wavenumbers, imply-

ing that they are of helical nature.

In chapter 6, DNS results were presented for three Reynolds numbers and M =

2.46. Special emphasis was placed on identifying the most important modes for each

case and their effect on the mean flow, in particular on the base-pressure. This was

accomplished by conducting simulations of various circumferential domain-sizes, de-

liberately eliminating azimuthal/helical modes. Thus, the effect of large-scale struc-



272

tures associated with particular azimuthal/helical modes on the global flow behavior

could be evaluated.

By conducting DNS of various circumferential domain-sizes, it was confirmed that

the flow is absolutely unstable with respect to at least the first eight azimuthal

modes. At ReD = 30, 000, the unstable modes intermittently lead to the genera-

tion of large-scale structures. For the 1/16th-cylinder case, a viscous cut-off of the

high wavenumbers prevents linear growth of the higher azimuthal modes. In addi-

tion, because the small wavenumbers are eliminated, the large wavenumbers cannot

be generated nonlinearly either. Consequently, no small-scale structures are generated

for this case. For increasing Reynolds numbers, the viscous cut-off is shifted towards

higher wavenumbers. This is evidenced by the 1/16th-cylinder case at ReD = 100, 000

fully transitioning to turbulence and displaying a broad range of length- and time-

scales. Only the 1/32nd-cylinder does not exhibit high-frequency fluctuations. At

both ReD = 60, 000 and ReD = 100, 000, all cases with a circumferential domain-size

larger than 0 ≤ θ < π/8 fully transition to turbulence downstream of the recompres-

sion region and do not exhibit intermittency. A considerable amount of energy can

be found in frequencies with StD ≥ 1 while maxima for lower azimuthal modes at

low frequencies attest the presence of large-scale structures in the flow.

The Q-criterion was employed to identify vortical structures within the flow. For

all Reynolds numbers investigated, helical structures within the initial shear-layer

were detected. All cases revealed a considerable amount of longitudinal structures

within the recirculation region. It is proposed that at least two instability mecha-

nisms are responsible for the generation of these structures: Firstly, it is suggested

that global modes cause a noticeable azimuthal modulation of the flow within the re-

circulation region. Therefore, a chevron-like pattern is imposed onto the recirculating

fluid, leading to the formation of streamwise structures. Secondly, simulations of small

circumferential domain-sizes enabled the observation of axisymmetric rollers. These

rollers result in instantaneous streamlines with strong curvature, most likely leading
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to a centrifugal instability which is responsible for the formation of braid-like longi-

tudinal structures. Partly, these structures travel towards the base and are deflected

towards the corner of the body. Just shy of the body-corner, the flow separates off the

base and the structures impinge on the shear layer, introducing disturbances. Because

the shear layer is convectively unstable, the perturbations experience amplification

in the streamwise direction which most likely results in the generation of additional

structures. Furthermore, structures within the recirculation region are entrained by

the shear layer. The vortices are strongly stretched and develop into hairpin vortices.

These hairpin vortices lead to additional instabilities responsible for the generation

of small-scale structures. Local stability calculations using TDNS suggest that the

helical structures present in the shear layer and the longitudinal structures in the

trailing wake are a consequence of local instabilities. The baroclinic torque was iden-

tified as another important vorticity production mechanism. The largest contribution

of vorticity production or destruction through baroclinic torque was found in regions

subject to high compressibility, i.e., the initial shear-layer and the trailing wake.

A qualitative difference that could be observed for increasing Reynolds numbers

was that at ReD = 100, 000 streamwise structures evolved within the initial shear-

layer. The longitudinal structures reside in the shear layer over long time-periods,

evidenced by their presence in time-averaged quantities. These vortices lead to the

presence of mushroom-shaped structures in the shear layer, observed in endviews of

instantaneous local Mach number. The mushroom-like structures are similar in shape

and number to those detected by Bourdon & Dutton (1998). At a location farther

downstream, a “four-lobe” wake pattern could be observed, in good agreement with

the experimental results. These strong similarities between the DNS data and the

experiments imply that the same instability mechanisms are present in both the DNS

at ReD = 100, 000 and the experiments at ReD = 3, 300, 000.

Time-averaged data illustrated that the structures present in the flow have a

substantial effect on the mean flow, causing a decrease in recirculation length and
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base-pressure. Furthermore, it was demonstrated that azimuthal modes with low

wavenumbers are responsible for an entirely flat pressure distribution on the base.

For all Reynolds numbers investigated, the azimuthal modes k = 2 and k = 4 were

found to be the most important modes in the trailing wake, producing a four-lobe

wake pattern. In addition, considerable evidence was found that the first azimuthal

mode receives a significant amount of its energy through the nonlinear interaction of

higher modes, in particular between k = 3 and k = 4.

For ReD ≤ 60, 000, turbulence statistics revealed that the maximum values of all

turbulence quantities, except the turbulent shear-stress, were located downstream of

the mean reattachment point. At ReD = 100, 000 the radial maxima of TKE and u′u′

were located upstream of the mean reattachment point. The Reynolds shear-stress

always exhibited a maximum upstream of the recompression due to the decreasing

radial gradient of the shear layer in streamwise direction. A strong azimuthal variation

in the turbulence quantities was also observed, suggesting that turbulence quantities

need to be computed using fully three-dimensional transport-equations when helical

structures are present.

Simulations of domain sizes with decreased circumferential extent illustrated that

the base-pressure was increased when the most dominant modes were excluded. Con-

sequently, flow control was applied to axisymmetric wakes at ReD = 30, 000, designed

such that the (naturally) most dominant modes could be weakened. The continuous

introduction of structures resulted in a larger amount of small-scale structures than in

the unforced case and the destruction of intermittency. An increase in base-pressure

of up to 6% was accomplished when introducing longitudinal structures into the initial

shear-layer by employing steady forcing of mode k = 8. It appeared that preventing

the dominance of the low wavenumber modes outweighed the increased mixing caused

by additional longitudinal structures in the shear layer.

In chapter 7, axisymmetric RANS calculations, employing different turbulent clo-
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sures, and three-dimensional FSM calculations were conducted of transitional super-

sonic axisymmetric wakes and the UIUC case. Axisymmetric RANS calculations

predicted a strong radial variation of the base-pressure and, in most cases, underpre-

dicted the recirculation length, indicating that certain relevant physical mechanisms

could not be captured. It was demonstrated that the global solution is sensitive to the

values of the turbulent quantities K and ε at the inflow, with larger levels of K lead-

ing to a smaller base-pressure and a decreased recirculation length. Compressibility

extensions were shown to decrease the turbulence levels in the shear layer, whereas

the choice of model coefficients suggested by Papp et al. (2002) increased turbulence

levels. Of the closures considered, the EASMα appeared to be the best suited for the

calculation of supersonic axisymmetric wakes.

FSM was capable of reproducing the DNS results of transitional axisymmetric

wakes with reasonable accuracy at a fraction of the computational cost. This was

mainly due to the ability of FSM to sufficiently scale down the model contribution in

relevant regions. Consequently, the physical instability mechanisms resulting in the

generation of the structures observed in DNS were not inhibited. FSM calculations of

transitional axisymmetric wakes confirmed that low wavenumber azimuthal modes are

responsible for a flat base-pressure distribution. The optimal value of the parameter

in the contribution function appears to be 1 · 10−3 ≤ β ≤ 4 · 10−3. In addition, it was

demonstrated that the FSM approach is not derived for a specific turbulence model

but is a general strategy for solving unsteady, three-dimensional flows.

FSM calculations have been employed to investigate the performance of flow con-

trol for transitional base flows at ReD = 100,000. For ReD = 100, 000, consistent with

high Reynolds number experiments by Bourdon & Dutton (2001), applying steady

forcing of higher azimuthal modes and thereby generating longitudinal vortices in the

shear layer does not succeed in reducing the base drag. However, when forcing the

axisymmetric mode, an increase of base pressure can be achieved. From the present

preliminary investigations, it appears that periodic forcing of the axisymmetric mode
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has the greatest potential with regard to drag reduction.

FSM calculations of the UIUC case revealed the presence of helical structures in

the shear layer with a strong azimuthal modulation caused by higher azimuthal modes.

A significant amount of streamwise structures was observed within the recirculation

region and the formation of hairpin vortices upstream of the recompression region

was detected. Time-averaged mode-shapes showed that modes k = 1 and k = 4

contain the largest amount of energy within the recirculation region and downstream

of recompression, respectively.
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Appendix A: EQUATIONS IN CYLINDRICAL COORDI-

NATES

A.1 Resolved Navier-Stokes Equations
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The full expansion of the turbulent production terms in cylindrical coordinates results

in
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The compressible extensions involving the turbulent mass-flux can be written out as
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− ∂τ rz

∂z

)
∂

∂r

(
1

ρ̄

)

+

(
∂p

∂z
− ∂τ rz

∂r

)
∂

∂z

(
1

ρ̄

)

+

(
1

r

∂p

∂θ
− ∂τ θz

∂z

)
1

r

∂

∂θ

(
1

ρ̄

)

+

(
∂p

∂z
− 1

r

∂τ θz
∂θ

)
∂

∂z

(
1

ρ̄

)

+

(
1

r

∂p

∂θ
− ∂τ θr

∂r

)
1

r

∂

∂θ

(
1

ρ̄

)

+

(
∂p

∂r
− 1

r

∂τ θr
∂θ

)
∂

∂r

(
1

ρ̄

)}
.

(A.6)
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The individual components of the viscous stress-tensor and the strain-rate tensor

are, respectively,

τ zz =
2µ

Re

[
S̃zz −

1

3

(
S̃zz + S̃rr + S̃θθ

)]
(A.7)

τ rr =
2µ

Re

[
S̃rr −

1

3

(
S̃zz + S̃rr + S̃θθ

)]
(A.8)

τ θθ =
2µ

Re

[
S̃θθ −

1

3

(
S̃zz + S̃rr + S̃θθ

)]
(A.9)

τ rz =
2µ

Re
S̃rz (A.10)

τ θz =
2µ

Re
S̃θz (A.11)

τ θr =
2µ

Re
S̃θr (A.12)

S̃zz =
∂ũ

∂z
(A.13)

S̃rr =
∂ṽ

∂r
(A.14)

S̃θθ =
1

r

∂w̃

∂θ
+
ṽ

r
(A.15)

S̃rz =
1

2

(
∂ũ

∂r
+
∂ṽ

∂z

)
(A.16)

S̃θz =
1

2

(
∂w̃

∂z
+

1

r

∂ũ

∂θ

)
(A.17)

S̃θr =
1

2

(
1

r

∂ṽ

∂θ
+ r

∂

∂r

w̃

r

)
. (A.18)

A.2 Derivation of Turbulent Kinetic Energy Equation

To derive the turbulent kinetic energy equation, the primitive-variable form of the

instantaneous momentum equation is multiplied by the fluctuating velocity vector

(u′′i ) and averaged in time. For simplicity the asterisks are dropped while deriving

the equations, however, the variables are all dimensional:

ρu′′i ui,t + ρu′′i ukui,k = −u′′i p,i + u′′i τik,k (A.19)
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The unsteady term can be simplified as follows:

ρu′′i ui,t = ρu′′i (ũi + u′′i ),t (A.20)

= ρu′′i ũi,t + ρu′′i u
′′
i,t

= ρ

(
1

2
u′′i u

′′
i

)

,t

= (ρK),t −
1

2
u′′i u

′′
i ρ,t

using

ρK =
1

2
ρu′′i u

′′
i (A.21)

For the convective term the following steps are performed:

ρu′′i uk(ui),k = ρu′′i
[
(ũk + u′′k) ũi,k + uku′′i,k

]
(A.22)

= ρu′′i ũkũi,k + ρu′′i u
′′
kũi,k + ρuku′′i u

′′
i,k

= ρσikũi,k + ρuk

(
1

2
u′′i u

′′
i

)

,k

= ρσikũi,k +

(
ρuk

1

2
u′′i u

′′
i

)

,k

− 1

2
u′′i u

′′
i (ρuk),k

= ρσikũi,k +

(
ρuk

1

2
u′′i u

′′
i + ρu′′k

1

2
u′′i u

′′
i

)

,k

− 1

2
u′′i u

′′
i (ρuk),k

= ρσikũi,k +

(
ρũkK + ρu′′k

1

2
u′′i u

′′
i

)

,k

− 1

2
u′′i u

′′
i (ρuk),k

The pressure term can be simplified as follows:

u′′i p,i = u′′i p,i + u′′i p
′
,i = u′′i p,i +

(
u′′i p

′
)
,i
− p′u′′i,i (A.23)

And finally the diffusion term is just rewritten:

u′′i τik,k =
(
τiku′′i

)
,k
− τiku′′i,k (A.24)

This gives

∂

∂t
(ρK) +

∂

∂xk

[
ρũkK − τiku′′i − ρu′′k

1

2
u′′i u

′′
i − u′′i p′

]
(A.25)

= −ρσikũi,k − ρσiku′′i,k − u′′i p,i + p′u′′i,i
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The first term on the right-hand-side is the turbulent kinetic energy production, the

second is by definition the dissipation rate

τiku′′i,k = ρε , (A.26)

the second last is the pressure work and the last term is called the pressure dilatation

(those two also appear in the term Πp of the averaged energy equation). On the

left hand side, the spatial derivative is taken of molecular diffusion and turbulent

transport of turbulent kinetic energy (2nd, 3rd and 4th terms) which is modelled as

follows (c.f. Wilcox, 1998):

τiku′′i + ρu′′k
1

2
u′′i u

′′
i + u′′i p

′ =

(
µ+

µT

σK

)
∂K

∂xk

(A.27)

The final form of the K-equation is:

∂

∂t
(ρK) +

∂

∂xk

[
ρũkK −

(
µ+

µT

σK

)
∂K

∂xk

]
= −ρσik

∂ũi

∂xk

− ρε− u′′i
∂p

∂xi

+ p′
∂u′′i
∂xi

(A.28)

So far, the transport equation for turbulent kinetic energy has only been presented in

index notation. The extension to the cylindrical coordinate system is straight-forward

for all vector operators. For the expansion of the tensor products, i.e., the production

terms, see equations A.2–A.4

A.3 Derivation of Linearized Navier-Stokes Equations

The derivation of the linearized Navier-Stokes equations is demonstrated in detail for

the continuity equation. For brevity, only the final result is given for the remaining

equations. The continuity equation is

∂

∂t
(ρ) +

∂

∂z
(ρu) +

∂

∂r
(ρv) +

1

r

∂

∂θ
(ρw) +

1

r
(ρv) = 0 . (A.29)
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Decomposing all variables into a basic state
(
φ̆
)
and a disturbance variable

(
φ́
)
, as

described in section 2.5, yields

∂

∂t
(ρ̆+ ρ́) +

∂

∂z
[(ρ̆+ ρ́) (ŭ+ ú)] +

∂

∂r
[(ρ̆+ ρ́) (v̆ + v́)]

+
1

r

∂

∂θ
[(ρ̆+ ρ́) (w̆ + ẃ)] +

1

r
[(ρ̆+ ρ́) (v̆ + v́)] = 0 (A.30)

Subtracting products of basic-state variables, as they satisfy the continuity equation

for the basic state, setting w̆ = 0 and dropping all products containing more than

one disturbance variable results in

∂

∂t
(ρ́) +

∂

∂z
(ρ́ŭ+ ρ̆ú) +

∂

∂r
(ρ́v̆ + ρ̆v́) +

1

r

∂

∂θ
(ρ̆ẃ) +

1

r
(ρ́v̆ + ρ̆v́) = 0 . (A.31)

The final form of the linearized axial momentum equation is

∂

∂t
(ρ́ŭ+ ρ̆ú) +

∂

∂z
(ρ̆ŭú+ ρ̆úŭ+ ρ́ŭŭ+ ṕ− τ́zz) +

∂

∂r
(ρ̆ŭv́ + ρ̆úv̆ + ρ́ŭv̆ − τ́rz)

+
1

r

∂

∂θ
(ρ̆ŭẃ − τ́θz) +

1

r
(ρ̆ŭv́ + ρ̆úv̆ + ρ́ŭv̆ − τ́rz) = 0 , (A.32)

where the viscous stresses can be linearized as follows:

τik =
2(µ̆+ µ́)

Re

[(
S̆ik + Śik

)
− 1

3

(
S̆jj + Śjj

)
δik

]
, (A.33)

τ́ik =
2µ̆

Re

[
Śik −

1

3
Śjjδik

]
+

2µ́

Re

[
S̆ik −

1

3
S̆jjδik

]
. (A.34)

By using Sutherland’s law, the molecular viscosity is a nonlinear function of temper-

ature. A Taylor series approximation is computed for Sutherland’s law:

µ̆+ µ́ = (T̆ + T́ )
3

2

1 +RSu

(T̆ + T́ ) +RSu

, (A.35)

µ̆+ µ́ = T̆
3

2

1 +RSu

T̆ +RSu

[
1 +

3

2

T́

T̆
− T́

T̆ +RSu

]
. (A.36)
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Using only the leading order term of the Taylor series approximation, the linearized

disturbance viscosity becomes

µ́ = µ̆T́

[
3

2T̆
− 1

T̆ +RSu

]
with µ̆ = T̆

3

2

1 +RSu

T̆ +RSu

. (A.37)

Following the procedure discussed above, the final form of the linearized radial mo-

mentum equation is

∂

∂t
(ρ́v̆ + ρ̆v́) +

∂

∂z
(ρ̆ŭv́ + ρ̆úv̆ + ρ́ŭv̆ − τ́rz) +

∂

∂r
(ρ̆v̆v́ + ρ̆v́v̆ + ρ́v̆v̆ + ṕ− τ́rr)

+
1

r

∂

∂θ
(ρ̆v̆ẃ − τ́rθ) +

1

r
(ρ̆v̆v́ + ρ̆v́v̆ + ρ́v̆v̆ − τ́rr + τ́θθ) = 0 . (A.38)

The linearized azimuthal momentum equation becomes

∂

∂t
(ρ̆ẃ) +

∂

∂z
(ρ̆ŭẃ − τ́θz) +

∂

∂r
(ρ̆v̆ẃ − τ́rθ)

+
1

r

∂

∂θ
(ṕ− τ́θθ) +

1

r
(2ρ̆v̆ẃ − 2τ́rθ) = 0 . (A.39)

The linearized energy equation can be written as

∂

∂t

(
ρ̆É + ρ́Ĕ

)
+

∂

∂z

(
ρ̆ŭH́ + ρ̆úH̆ + ρ́ŭH̆ + q́z − ´(uτzz)− ´(vτrz)− ´(wτθz)

)

+
∂

∂r

(
ρ̆v̆H́ + ρ̆v́H̆ + ρ́v̆H̆ + q́r − ´(uτrz)− ´(vτrr)− ´(wτrθ)

)

+
1

r

∂

∂θ

(
ρ̆ẃH̆ + q́θ − ´(uτθz)− ´(vτrθ)− ´(wτθθ)

)
(A.40)

+
1

r

(
ρ̆v̆H́ + ρ̆v́H̆ + ρ́v̆H̆ + q́r − ´(uτrz)− ´(vτrr)− ´(wτrθ)

)
= 0 .

The total energy of the basic state, the linearized total energy and the linearized

heat-flux vector are

Ĕ =
1

γEc
T̆ +

1

2
(ŭŭ+ v̆v̆) , É =

1

γEc
T́ + (ŭú+ v̆v́) ,

q́i = −
1

PrEcRe

(
κ̆
∂T́

∂xi

+ κ́
∂T̆

∂xi

)
, (A.41)
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respectively. The ratio of pressure and density that is contained in the total enthalpy

is again linearized using a Taylor series approximation

1

ρ̆+ ρ́
≈ 1

ρ̆
− ρ́

ρ̆2
+
ρ́2

ρ̆3
. . . (A.42)

p̆+ ṕ

ρ̆+ ρ́
≈ (p̆+ ṕ)

(
1

ρ̆
− ρ́

ρ̆2

)

H̆ = Ĕ +
p̆

ρ̆
, H́ = É +

ṕ

ρ̆
− p̆ρ́

ρ̆2
. (A.43)

Furthermore, the linearized dissipation terms are

´(uiτik) = ŭiτ́ik + úiτ̆ik with τ̆ik =
2µ̆

Re

[
S̆ik −

1

3
S̆jjδik

]
. (A.44)

In the linearized code, the variables

U =




U1

U2

U3

U4

U5




=




ρ́
ρ́ŭ+ ρ̆ú
ρ́v̆ + ρ̆v́
ρ̆ẃ

ρ̆É + ρ́Ĕ




(A.45)

are solved for. In contrast to the full N-S code, where the conservative variables are

Fourier transformed into physical space so that the RHS, containing nonlinear terms,

can be assembled, the primitive disturbance quantities need to be deduced from the

conservative variables as follows

ú =
U2 − ρ́ŭ

ρ̆
, (A.46)

v́ =
U3 − ρ́v̆

ρ̆
, (A.47)

ẃ =
U4

ρ̆
, (A.48)

T́ = γEc

[
U5 − ρ́Ĕ

ρ̆
− (úŭ+ v́v̆)

]
. (A.49)

In order to close the system of equations, the disturbance pressure is then computed

through the linearized equation of state for a perfect gas

ṕ =
1

γM2

(
ρ̆T́ + ρ́T̆

)
. (A.50)
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A.3.1 High Reynolds Number Extension

Pursuing the approach described in section 2.5, only the knowledge of the basic state

of the eddy viscosity is required. It can be computed from the basic states of ρK and

ρε (which are known, e.g., from axisymmetric RANS calculations) as

µ̆T = cµ
˘(ρK)2

˘(ρε)
= cµ

ρ̆K̆2

ε̆
, (A.51)

with cµ = 0.09. For the closure of the turbulent Reynolds stress-tensor, only the

linear term is used from the EASMα, and the nonlinear terms are dropped

ρσik =
2

3
ρKδik − 2µT

(
Sik −

1

3
Sjjδik

)
. (A.52)

With µ́T = 0, the disturbance Reynolds stress-tensor becomes

´(ρσik) =
2

3
ρ́K̆δik − 2µ̆T

(
Śik −

1

3
Śjjδik

)
, (A.53)

and can be subtracted from τ́ik before the outer derivatives are taken. The turbulent

heat flux vector is

Q́i = −
1

γEc

µ̆T

PrT

∂T́

∂xi

. (A.54)

Furthermore, the following source term needs to be added to the energy equation

´(ρσik)S̆ik + ˘(ρσik)Śik + ρ́ε̆ , (A.55)

where

˘(ρσik) =
2

3
˘(ρK)δik − 2µ̆T

(
S̆ik −

1

3
S̆jjδik

)
. (A.56)

Finally, when computing the linearized dissipation terms for the energy equation (see

equation A.44), τ̆ik needs to be replaced by τ̆ik − ˘(ρσik).

A.4 Equations in Fourier Space

A.4.1 Azimuthal Fourier Transforms

For the present investigation, exclusively symmetric Fourier transforms were used

in the azimuthal direction. Therefore, the symmetry with respect to the azimuthal



287

direction of every flow variable needs to be established in order to replace the physical

function values with the appropriate sine or cosine transform. Table A.1 shows the

symmetry with respect to the azimuthal direction for all flow variables. Rewriting

the governing equations (equations 3.1) as Fourier series gives

∂

∂t

kh∑

k=0




Ûk
1 cosαk

θθ

Ûk
2 cosαk

θθ

Ûk
3 cosαk

θθ

Ûk
4 sinα

k
θθ

Ûk
5 cosαk

θθ

Ûk
6 cosαk

θθ

Ûk
7 cosαk

θθ




+
∂

∂z

kh∑

k=0




Âk
1 cosα

k
θθ

Âk
2 cosα

k
θθ

Âk
3 cosα

k
θθ

Âk
4 sinα

k
θθ

Âk
5 cosα

k
θθ

Âk
6 cosα

k
θθ

Âk
7 cosα

k
θθ




+
∂

∂r

kh∑

k=0




B̂k
1 cosα

k
θθ

B̂k
2 cosα

k
θθ

B̂k
3 cosα

k
θθ

B̂k
4 sinα

k
θθ

B̂k
5 cosα

k
θθ

B̂k
6 cosα

k
θθ

B̂k
7 cosα

k
θθ




+
1

r

∂

∂θ

kh∑

k=0




Ĉk
1 sinα

k
θθ

Ĉk
2 sinα

k
θθ

Ĉk
3 sinα

k
θθ

Ĉk
4 cosα

k
θθ

Ĉk
5 sinα

k
θθ

Ĉk
6 sinα

k
θθ

Ĉk
7 sinα

k
θθ




+
1

r

kh∑

k=0




D̂k
1 cosα

k
θθ

D̂k
2 cosα

k
θθ

D̂k
3 cosα

k
θθ

D̂k
4 sinα

k
θθ

D̂k
5 cosα

k
θθ

D̂k
6 cosα

k
θθ

D̂k
7 cosα

k
θθ




= 0 , (A.57)

where all Fourier coefficients are a function of the radial and streamwise direction

φ̂ = φ̂(r, z), k is the azimuthal mode-number and αk
θ is the azimuthal wavenumber.

The Fourier transform routines are implemented such that if αk
θ = k, the azimuthal

domain-length spans the interval [0, π]. However, when computing domains with a

circumferential extent less than π, in addition to changing the boundary conditions

and the symmetry conditions at the axis (section 3.2 and Appendix B), the wavenum-

ber needs to be scaled according to the computed domain-size. The scaling factor is

determined as the fraction of π that shall be computed. For example, if 1/8th of a

cylinder is to be computed (0 ≤ θ ≤ π
4
), then αk

θ = 4 · k.
For the validation cases described in section 4.3, the wavenumber (for λθ ¿ rwall)

can be calculated as

αk
θ =

k · rwall

λθ

. (A.58)

The azimuthal derivatives are taken in Fourier space and thus the derivatives for
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each azimuthal Fourier mode k are
(
∂φ̂

∂θ

)

k

= ±αk
θ φ̂k , (A.59)

where + holds for symmetric variables and − for anti-symmetric variables, respec-

tively (see table A.1).

By commuting the derivatives and the summation, and by exploiting linear inde-

pendence of the sine and cosine bases, an equation for each mode k can be obtained:

∂

∂t




Ûk
1

Ûk
2

Ûk
3

Ûk
4

Ûk
5

Ûk
6

Ûk
7




+
∂

∂z




Âk
1

Âk
2

Âk
3

Âk
4

Âk
5

Âk
6

Âk
7




+
∂

∂r




B̂k
1

B̂k
2

B̂k
3

B̂k
4

B̂k
5

B̂k
6

B̂k
7




+
1

r




αk
θ Ĉ

k
1 + D̂k

1

αk
θ Ĉ

k
2 + D̂k

2

αk
θ Ĉ

k
3 + D̂k

3

−αk
θ Ĉ

k
4 + D̂k

4

αk
θ Ĉ

k
5 + D̂k

5

αk
θ Ĉ

k
6 + D̂k

6

αk
θ Ĉ

k
7 + D̂k

7




= 0 , (A.60)

k = 0, . . . , kh .

Finally, this set of equations is discretized employing finite differences in the radial

and the streamwise directions as described in section 3.3.

variable / equation θ z

ρ, E even even
u even odd
v, w odd even
K, ε even even

continuity, r-momentum and energy-equation even even
z-momentum even odd
θ-momentum odd even
K-equation, ε-equation even even

Table A.1 Symmetries for FFTs in the streamwise (z) and the azimuthal (θ) directions
for all variables and equations.



289

A.4.2 Streamwise Fourier Transforms for Temporal Simulations

For temporal simulations, full Fourier transforms are utilized in the streamwise direc-

tion. However, it was decided to write the code flexible enough to have the capability

of using symmetric Fourier transforms in the streamwise direction for flow scenarios

justifying that assumption. To that end, a “symmetry” was defined for full Fourier

transforms in the streamwise direction that rather denotes the arrangement of the

Fourier coefficients than describes a physical property of a variable. The full Fourier

series has the real form

φ(r, z) = φ̂0(r) + 2
lh∑

l=1

[
φ̂l
C(r) cosα

l
zz − φ̂l

S(r) sinα
l
zz
]
, (A.61)

where the subscripts C and S denote the coefficients for the cosine and sine parts

of the series, respectively, and lh is the number of utilized “full” modes containing

both a sine and a cosine part. In the streamwise direction, the domain-length is a

parameter of the calculation, in contrast to the azimuthal direction which is fixed to

π or fractions of π. Therefore, the streamwise wavenumber αl
z is defined as

αl
z =

{
2πl
λz

: 1 ≤ l ≤ lh,

−2π(l−L)
λz

: lh + 1 ≤ l ≤ ls+ la
(A.62)

where λz is the fundamental wavelength and, at the same time, the streamwise length

of the domain. The number of cosine and sine modes are denoted by ls and la. The

full transforms are separated into “symmetric” and “antisymmetric” transforms which

arrange the sine and cosine parts in different ways. For a “symmetric” variable, the

coefficients for the cosine-series are always stored before the coefficients of the sine-

series and vice versa. This has the advantage, that when the modes ls+1 ≤ l ≤ ls+la

are dropped, symmetric Fourier transforms are recovered in the streamwise direction

with the correct symmetry properties of all variables. Even more important is that

this approach also works in the other direction, i.e., a symmetric calculation can easily

be extended to a simulation with full Fourier transforms by appending the missing
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sine or cosine parts (coefficients set to zero). Table A.1 shows the “symmetries” of the

flow variables in the streamwise direction. Substituting the appropriate streamwise

Fourier series representation of all flow variables1 into equation A.60 results in

∂

∂t




ls∑

l=0




Û l,k
1C(r) cosα

l
zz

Û l,k
2S (r) sinα

l
zz

Û l,k
3C(r) cosα

l
zz

Û l,k
4C(r) cosα

l
zz

Û l,k
5C(r) cosα

l
zz




+
ls+la∑

l=ls+1




Û l,k
1S (r) sinα

l
zz

Û l,k
2C(r) cosα

l
zz

Û l,k
3S (r) sinα

l
zz

Û l,k
4S (r) sinα

l
zz

Û l,k
5S (r) sinα

l
zz







+
∂

∂z




ls∑

l=0




Âl,k
1C(r) sinα

l
zz

Âl,k
2S(r) cosα

l
zz

Âl,k
3C(r) sinα

l
zz

Âl,k
4C(r) sinα

l
zz

Âl,k
5C(r) sinα

l
zz




+
ls+la∑

l=ls+1




Âl,k
1S(r) cosα

l
zz

Âl,k
2C(r) sinα

l
zz

Âl,k
3S(r) cosα

l
zz

Âl,k
4S(r) cosα

l
zz

Âl,k
5S(r) cosα

l
zz







+
∂

∂r




ls∑

l=0




B̂l,k
1C(r) cosα

l
zz

B̂l,k
2S(r) sinα

l
zz

B̂l,k
3C(r) cosα

l
zz

B̂l,k
4C(r) cosα

l
zz

B̂l,k
5C(r) cosα

l
zz




+
ls+la∑

l=ls+1




B̂l,k
1S(r) sinα

l
zz

B̂l,k
2C(r) cosα

l
zz

B̂l,k
3S(r) sinα

l
zz

B̂l,k
4S(r) sinα

l
zz

B̂l,k
5S(r) sinα

l
zz







+
1

r

∂

∂θ




lh∑

l=0




Ĉ l,k
1C(r) cosα

l
zz

Ĉ l,k
2S (r) sinα

l
zz

Ĉ l,k
3C(r) cosα

l
zz

Ĉ l,k
4C(r) cosα

l
zz

Ĉ l,k
5C(r) cosα

l
zz




+
ls+la∑

l=ls+1




Ĉ l,k
1S (r) sinα

l
zz

Ĉ l,k
2C(r) cosα

l
zz

Ĉ l,k
3S (r) sinα

l
zz

Ĉ l,k
4S (r) sinα

l
zz

Ĉ l,k
5S (r) sinα

l
zz







+
1

r




ls∑

l=0




D̂l,k
1C(r) cosα

l
zz

D̂l,k
2S(r) sinα

l
zz

D̂l,k
3C(r) cosα

l
zz

D̂l,k
4C(r) cosα

l
zz

D̂l,k
5C(r) cosα

l
zz




+
ls+la∑

l=ls+1




D̂l,k
1S(r) sinα

l
zz

D̂l,k
2C(r) cosα

l
zz

D̂l,k
3S(r) sinα

l
zz

D̂l,k
4S(r) sinα

l
zz

D̂l,k
5S(r) sinα

l
zz






= 0 .(A.63)

Again the derivatives and the summation are commuted, and linear independence

of the sine and cosine bases is exploited. With the understanding that the Fourier

coefficients φ̂l,k
i (r) contain both the cosine and the sine coefficients, ordered in the

1For brevity, only the DNS transport equations are presented here. For calculations employing
certain turbulence models, the additional transport equations for K and ε can be treated like the
energy equation.
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following way for “symmetric” and “antisymmetric” variables or equations

“symmetric”




φ̂0(r)

φ̂1C(r)
...

φ̂ls
C(r)

φ̂ls+1
S (r)
...

φ̂ls+la
S (r)




,




φ̂0(r)

φ̂1S(r)
...

φ̂ls
S (r)

φ̂ls+1
C (r)
...

φ̂ls+la
C (r)




“anti-symmetric” ,

(A.64)

the final set of the transport equations in double spectral space takes the form:

∂

∂t




Û l,k
1 (r)

Û l,k
2 (r)

Û l,k
3 (r)

Û l,k
4 (r)

Û l,k
5 (r)




+ αl
z




Âl,k
1 (r)

Âl,k
2 (r)

Âl,k
3 (r)

Âl,k
4 (r)

Âl,k
5 (r)




+
∂

∂r




B̂l,k
1 (r)

B̂l,k
2 (r)

B̂l,k
3 (r)

B̂l,k
4 (r)

B̂l,k
5 (r)




(A.65)

+
1

r




αk
θĈ

l,k
1 (r) + D̂l,k

1 (r)

αk
θĈ

l,k
2 (r) + D̂l,k

2 (r)

αk
θĈ

l,k
3 (r) + D̂l,k

3 (r)

−αk
θ Ĉ

l,k
4 (r) + D̂l,k

4 (r)

αk
θĈ

l,k
5 (r) + D̂l,k

5 (r)




= 0

k = 0, . . . , kh , l = 0, . . . , ls+ la .

The equations have now reduced to a system of PDEs that only depends on time

and the radial direction. As already mentioned in section 3.9, due to the short

streamwise extent of the computational domain, no domain-decomposition can be

utilized. In order to reduce computational time, a parallelization over the Fourier

modes is therefore implemented. To that end, the azimuthal and streamwise Fourier

modes are collected to combined modes. The benefit of this arrangement is that the

number of combined modes typically becomes sufficiently large (kl = (kh + 1)(lh +

1) − 1) to ensure an efficient parallelization over the modes. Additionally, looping

over a single index also improves the parallel efficiency by decreasing the number of

loops and simplifies the algorithm. For the radial derivatives, finite differences are

used which are described in section 3.3.
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Appendix B: SYMMETRY CONDITIONS

variable/equation 1/2 1/4 1/6 1/8 1/16

ρ, ρu, ρE even/odd even/even even/odd even/even even/even
ρv, ρw odd/even odd/odd odd/even odd/odd odd/odd
ρK, ρε even/odd even/even even/odd even/even even/even

continuity even/odd even/even even/odd even/even even/even
z-momentum odd/even odd/odd odd/even odd/odd odd/odd
r-momentum odd/even odd/odd odd/even odd/odd odd/odd
θ-momentum even/odd even/even even/odd even/even even/even
energy even/odd even/even even/odd even/even even/even
K-transport even/odd even/even even/odd even/even even/even
ε-transport even/odd even/even even/odd even/even even/even

Table B.1 Symmetries of computational azimuthal Fourier modes (even modes/odd
modes) at the axis for all variables and equations for different azimuthal domain-sizes.

variable mode kN 1/2 1/4 1/6 1/8 1/16

0 non-zero non-zero non-zero non-zero non-zero
ρ, ρu, ρE 1 zero zero zero zero zero

> 1 zero zero zero zero zero
0 zero zero zero zero zero

ρv, ρw 1 non-zero zero zero zero zero
> 1 zero zero zero zero zero
0 non-zero non-zero non-zero non-zero non-zero

ρK, ρε 1 zero zero zero zero zero
> 1 zero zero zero zero zero

Table B.2 Boundary conditions of computational azimuthal Fourier modes at the axis
for all variables for different circumferential domain-sizes.
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Appendix C: NUMERICAL DETAILS

C.1 Runge-Kutta Time Integration

Four intermediate time-steps are used, which Tannehill et al. (1997) writes as

φ1 = φn +
∆t

2
f(φn)

φ2 = φn +
∆t

2
f(φ1) (C.1)

φ3 = φn +∆tf(φ2)

φn+1 = φn +
∆t

6
[ f( φn ) + 2f(φ1) + 2f(φ2) + f(φ3)

]
,

where n and n + 1 denote the old and the new time-level, respectively. This time-

integration can be shown to be fourth-order accurate. When formulated as given

above, three intermediate levels of variables (φ1, φ2, φ3) are needed. For very large

DNS, the required memory can be a limiting factor for performing the calculation

on a given computer. It is therefore essential to allocate as few arrays as possible.

To that end, the above algorithm is manipulated to a more memory-conserving form,

that only requires two intermediate variables:

φ1 = φn +
∆t

2
f(φn)

φ2 = φn +
∆t

2
f(φ1)

φ1 = φ1 + 2φ2 (C.2)

φ2 = φn +∆tf(φ2)

φ1 =
1

3

(
−φn + φ1 + φ2

)

φn+1 = φ1 +
∆t

6
f(φ2) .

C.2 Finite Difference Stencils

Further details concerning grid stretching and the derivation of finite differences for

non-uniform grids is given in this section. In the radial direction, three different
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options of grid stretching are available:

1. The region behind the base (0 ≤ r ≤ 1) is equidistant and the slope of a

5th-order polynomial for r ≥ 1 is matched at r = 1.

2. The slope of a 5th-order polynomial for the region behind the base (0 ≤ r ≤ 1)

is matched at r = 1 with the slope of another 5th-order polynomial for r ≥ 1.

3. A single 5th-order polynomial is used for the full radial extent (0 ≤ r ≤ rmax).

For all three cases, the number of radial points in the approach boundary layer, mr1,

the number of radial points between axis and freestream, mr2, the radial extent

of the domain, rmax, and the slope of the functions at r = 1 have to be specified.

Enforcing the additional constraints of the first grid-point being zero (at the axis)

and the inflection point of the grid-function being at r = 1, a linear system can be

solved for the coefficients of the polynomials

fr(r) = ar + brr + crr
3 + drr

5 . (C.3)

For the grid in the streamwise direction, the slopes of two separate 5th-order

polynomials for the approach boundary layer and the wake-region, are matched at

the corner location (z = 0). The length of the approach flow (za), the length of

the wake-region (zmax), and the slope of the grid-function at the corner need to be

specified. Again, employing the constraint that the grid function has its inflection

point at z = 0, a linear system can solved for the coefficients of the polynomials

fz(z) = az + bzz + czz
3 + dzz

5 . (C.4)

Typical grids for a base flow calculation at moderate Reynolds number using DNS

and a calculations at high Reynolds number, using RANS and FSM, are shown in

figure C.1. In both cases, a significant clustering of grid-points in the corner region

is realized, which is even more pronounced in figure C.1 (right). The grid for RANS
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z
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Figure C.1 Typical grid for base flow calculations using DNS (left) or RANS and
FSM calculations (right), for clarity only every fourth grid-point in the streamwise
direction and every third point in the radial direction are shown.

and FSM calculations used a very fine resolution at the walls which is required for

high Reynolds number cases. Note that for boundary layer calculations, only the

polynomial for r ≥ 1 and for za ≤ z ≤ 0 need to be specified.

As mentioned in section 3.3, fourth-order split finite-differences were previously

used by Tourbier (1996) and Harris (1997). However, they were employed on an

equidistant computational grid. For the present code, the derivative stencils are

derived for non-equidistant grids. To obtain the split finite-differences for a non-

uniform grid, first a central, fourth-order accurate finite difference stencil is derived as

follows. Let a, b, c, d, e be the coefficients sought for the finite difference representation

of the first derivative of a variable

∂φ

∂x

∣∣∣∣
i

= aφi−2 + bφi−1 + cφi + dφi+1 + eφi+2 , (C.5)

and let h(j) = z(j)− z(j − 1), for j = −1, ..., 2 be the grid-spacing between the five

grid-points used for the stencil. Through Taylor series expansion, the coefficients can
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be determined as

a =
h(0) · h(1) · [h(1) + h(2)]

h(−1) · [h(−1) + h(0)] · [h(−1) + h(0) + h(1)] · [h(−1) + h(0) + h(1) + h(2)]

b = − [h(−1) + h(0)] · h(1) · [h(1) + h(2)]

h(−1) · h(0) · [h(0) + h(1)] · [h(0) + h(1) + h(2)]

c =
h(−1) · {h(1) · [h(1) + h(2)]− h(0) · [2 · h(1) + h(2)]}

h(0) · [h(−1) + h(0)] · h(1) · [h(1) + h(2)]
(C.6)

+
h(0) · {2 · h(1) · [h(1) + h(2)]− h(0) · [2 · h(1) + h(2)]}

h(0) · [h(−1) + h(0)] · h(1) · [h(1) + h(2)]

d =
h(0) · [h(−1) + h(0)] · [h(1) + h(2)]

h(1) · [h(0) + h(1)] · [h(−1) + h(0) + h(1)] · h(2)

e = − h(0) · [h(−1) + h(0)] · h(1)
h(2) · [h(1) + h(2)] · [h(0) + h(1) + h(2)] · [h(−1) + h(0) + h(1) + h(2)]

.

In order to obtain the split differences, let c+, d+, e+ and a−, b−, c− be the coefficients

for the forward and backward stencils

∂φ−

∂x

∣∣∣∣
i

= a−φi−2 + b−φi−1 + c−φi (C.7)

∂φ+

∂x

∣∣∣∣
i

= c+φi + d+φi+1 + e+φi+2 ,

respectively. The coefficients are determined using the following relationship with the

original coefficients given in equation (C.6)

a− = 2 · a e+ = 2 · e
b− = 2 · b d+ = 2 · d
c− = 2 · [c+ d+ e] c+ = 2 · [a+ b+ c]

(C.8)

On an equidistant grid with h(j) = ∆x, the central difference takes the familiar form

∂φ

∂x

∣∣∣∣
i

=
φi−2 − 8φi−1 + 8φi+1 − φi+2

12∆x
, (C.9)

and the split differences result in

∂φ+

∂x

∣∣∣∣
i

=
−7φi + 8φi+1 − φi+2

6∆x
,

∂φ−

∂x

∣∣∣∣
i

=
φi−2 − 8φi−1 + 7φi

6∆x
. (C.10)

The derivation of compact finite difference stencils for non-equidistant grids was con-

ducted by Burke (2001). To obtain the one-sided stencils required for the splitting,

the same procedure as shown above for the standard differences was applied.
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C.3 Derivation of Parity Conditions

The derivation of the parity conditions at the axis was performed by Burke (2001) and

is reproduced in the following. Due to the pseudospectral approach in the azimuthal

direction, all variables are given in Fourier modes according to

φ(r, θ) =
∞∑

k=0

φ̂k(r)e
ikθ . (C.11)

Specify a cartesian coordinate system (x, y), rotated by an angle κ in the r− θ plane

as shown in figure C.2. On y, the cylindrical coordinates and unit vectors are given

y

x

κ

r θ

Figure C.2 Cartesian coordinate system rotated by angle κ in the r − θ plane.

by,

r = |y| , θ =

{
κ, y > 0

κ+ π, y < 0
(C.12)

dn

dyn
= sgnn(y)

dn

drn
, eikθ = sgnk(y)eikκ (C.13)

Parity conditions for the Fourier modes are derived by requiring the existence of all

derivatives on y at the origin. For the scalar case, this is

lim
y→0−

dnφ

dyn
= lim

y→0+

dnφ

dyn
(C.14)

Even if φ is a smooth function, radial derivatives of φ need not be continuous at the

origin due to the coordinate singularity. Even so, the Fourier modes of functions that

are the radial derivatives of smooth functions have notable parity properties. These
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are seen almost by inspection of the Fourier representation, given that φ̂k(r) is either

even or odd in r. One may note that any odd order of radial differentiation will

switch the parity ”state” relative to the original function, while an even number will

not. Define “even parity” as being an even function in r in the even Fourier modes,

while being an odd function in r in the odd modes. “Odd parity” is then being an

even function in the odd modes, etc. For functions with even parity,

φ̂
(n)
k (r) =

{
even k + n even

odd k + n odd
(C.15)

Functions with odd parity have

φ̂
(n)
k (r) =

{
even k + n odd

odd k + n even
(C.16)

Note that derivatives in θ do not change the parity of a function.

C.3.1 Scalars

The Fourier representation of φ is

φ(y) =
∞∑

k=0

φ̂k(|y|)eikκsgnk(y) , (C.17)

and the nth derivative of φ can be written as

φ(n)(y) =
∞∑

k=0

φ̂
(n)
k (|y|)eikκsgnk(s)sgnn(s) . (C.18)

Substituting this into equation C.14 results in

∞∑

k=0

φ̂
(n)
k (0)eikκ(−1)(k+n) =

∞∑

k=0

φ̂
(n)
k (0)eikκ , (C.19)

or
∞∑

k=0

φ̂
(n)
k (0)eikκ

[
1− (−1)(k+n)

]
= 0 , (C.20)

or
∞∑

k=0,n+k odd

2φ̂
(n)
k (0)eikκ = 0 . (C.21)
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Since this is required for all κ,

φ̂
(n)
k (0) = 0, n+ k odd, (C.22)

that is, scalar functions have even parity.

C.3.2 Vectors

Consider now the velocity vector ui with the Fourier representation

ui (r, θ, z) =
∞∑

k=0

(v̂k(r, z)er + ŵk(r, z)eθ + ûk(r, z)ez) e
ikθ (C.23)

with

er = sgn(y)ey (C.24)

eθ = sgn(y)ex (C.25)

On y, ui is represented by,

ui (s, z) =
∞∑

k=0

[(v̂k(|y|, z)ey + ŵk(|y|, z)ex) sgn(y) + ûk(|y|, z)ez] eikκsgnk(y) (C.26)

Taking the nth derivative in y and taking the two-sided limit as before

0 =
∞∑

k=0





v̂
(n)
k (0, z)ey

[
1− (−1)n+k+1

]

+ŵ
(n)
k (0, z)ex

[
1− (−1)n+k+1

]

+û
(n)
k (0, z)ez

[
1− (−1)n+k

]




eikκ (C.27)

or,

0 =
∞∑

k=0
n+k even

2v̂
(n)
k (0, z)eye

ikκ +
∞∑

k=0
n+k even

2ŵ
(n)
k (0, z)exe

ikκ +
∞∑

k=0
n+k odd

2û
(n)
k (0, z)eze

ikκ

(C.28)

Again invoking orthogonality,

v̂
(n)
k (0, z) = 0, n+ k even

ŵ
(n)
k (0, z) = 0, n+ k even

û
(n)
k (0, z) = 0, n+ k odd,

(C.29)

so the radial and azimuthal vector components have odd parity, while the axial com-

ponent has even parity. The parity conditions for all cases are listed in table B.1.
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C.4 Stability of the Numerical Method

In order to evaluate whether split finite-differences for the spatial discretization in

combination with a Runge-Kutta method for the time advancement are suitable for

the present research, a von Neumann stability analysis, as described in Tannehill

et al. (1997), is performed for a simplified model-equation. The compressible Navier-

Stokes equations can be classified as hyperbolic partial differential equations (PDE)

and, therefore, wave-like solutions are expected. Furthermore, the Reynolds number

for the flows of interest in this work is sufficiently high to justify neglecting the viscous

term in the stability analysis. In order to conduct the Neumann stability analysis,

also known as Fourier stability analysis, the model equation needs to be linear. Thus

the one-dimensional, simplified wave-equation

∂φ

∂t
+ c

∂φ

∂x
= 0 (C.30)

was chosen for the stability analysis. Harris (1997) derived the “modified equation”

(see, e.g., Tannehill et al., 1997) for the split finite-differences (equation C.10) in

combination with the Runge-Kutta method given in equation C.1 applied to the

wave-equation (C.30). He found that the method could be considered to be of order

O(∆x3) with the leading error term being an even derivative, thus the major error

would be dissipative rather than dispersive.

C.4.1 Low-Order Discretization

For the sake of simplicity, a second-order Runge-Kutta time-discretization will be

employed in combination with second-order spatial derivatives for illustrating the

advantages of using split finite-differences for hyperbolic problems. The second-order

Runge-Kutta method can be written as

φ1 = φn +∆tf(φn)

φn+1 = φn +
∆t

2

(
f(φn) + f(φ1)

)
. (C.31)
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Inserting the second-order central difference for an equidistant grid

∂φ

∂x
=
φn
i+1 − φn

i−1

2∆x
(C.32)

into this algorithm, the resulting scheme becomes

φn+1
i = φn

i −
CFL

4

(
2φn

i+1 − 2φn
i−1

)
+
CFL2

8

(
φn
i+2 − 2φn

i + φn
i−2

)
, (C.33)

with CFL = c∆x
∆t

.

It is assumed that an infinitesimally small error εni can be written as a Fourier

series of the form

εni =
∑

m

eateikmx , (C.34)

with km being the wavenumber of the corresponding Fourier mode. The error must

satisfy the same difference equation as the solution, i.e., the error possesses the same

growth behavior in time as the solution. Therefore, one term of the series1 given in

equation C.34 can be inserted into the difference equation. Setting km∆x = Θ and

using the trigonometric relations eiΘ + e−iΘ = 2 cosΘ and eiΘ − e−iΘ = 2i sinΘ, the

amplification factor becomes

G =
εn+1

εn
= ea∆t = 1− CFL2

2
sin2Θ− iCFL sinΘ . (C.35)

The absolute value of the complex amplification factor can be written as

|G| =
√

1 +
CFL4

4
sin4Θ . (C.36)

The condition for stability (|G| ≤ 1) can therefore never be satisfied for this method,

i.e., the method is unconditionally unstable.

The stability analysis is now repeated using split finite-differences, which approx-

imate the spatial derivative as follows

∂φ+

∂x
=

φn
i+1 − φn

i

∆x
, (C.37)

∂φ−

∂x
=

φn
i − φn

i−1

∆x
, (C.38)

1Due to the linearity of the difference equation, superposition can be used and it suffices to
analyze the behavior of a single term of the Fourier series.
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for the upwind and downwind differences, respectively. In order to achieve the same

spatial order of accuracy as when using a central finite-difference, two full time-steps

need to be computed with half the time-step for each. Therefore, the algorithm for

the time integration now becomes

φ1 = φn +∆tf+(φn)

φn+1 = φn +
∆t

2

(
f+(φn) + f−(φ1)

)
(C.39)

where f+ denotes an upwind difference stencil and f− a downwind difference stencil.

After one full Runge-Kutta cycle and the time-level ∆t, the amplification rate is

G = 1− 2CFL2 sin2
Θ

2
− iCFL sinΘ , (C.40)

with the only difference to the amplification factor of the central difference method

(equation C.36) being the factor 1
2
in the argument of the trigonometric function

in the real part. This difference, however, significantly alters the stability behavior,

as the method now becomes conditionally stable for CFL ≤ 1. As can be seen

in figure C.3, the method also shows no phase error when CFL = 1. For smaller

values of CFL, however, the method exhibits significant phase lag and damping.
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Figure C.3 Amplification factor (left) and phase shift (right) for linearized wave equa-
tion using 2nd-order split differences with 2nd-order Runge-Kutta time integration for
several values of CFL.
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The additional cost associated with splitting (two Runge-Kutta cycles need to be

computed) is, therefore, compensated by obtaining a conditionally stable method.

Additionally, for higher-order methods, the overhead is reduced by the fact that the

split finite-differences become more compact, i.e., they contain less discrete points

than the central differences for the same order of accuracy.

C.4.2 High-Order Discretization

The analysis of Appendix C.4.1 was repeated for high-order methods. The stability

behavior of the finite-difference stencils derived in section C.2 in combination with

the fourth-order accurate Runge-Kutta method presented in section C.1 was tested

with the simplified wave equation (equation C.30). Inserting the central finite dif-

ference stencil (equation C.9) in the fourth-order Runge-Kutta method yields the

amplification factor

G = 1− 65

144
CFL2 +

13059

125
CFL4 +

(
CFL2

9
− 4192CFL4

125

)
cosΘ (C.41)

+

(
4CFL2

9
− 16768CFL4

125

)
cos 2Θ +

(
−CFL

2

9
− 6240CFL4

125

)
cos 3Θ

+

(
CFL2

144
− 3324CFL4

125

)
cos 4Θ− 2016CFL4

125
cos 5Θ +

384CFL4

125
cos 6Θ

− 32CFL4

125
cos 7Θ +

CFL4

125
cos 8Θ

+ i

[(
−4CFL

3
− 1584CFL3

3 · 123
)
sinΘ +

(
CFL

6
− 387CFL3

3 · 123
)
sin 2Θ

− 488CFL3

3 · 123 sin 3Θ +
192CFL3

3 · 123 sin 4Θ− 24CFL3

3 · 123 sin 5Θ +
CFL3

3 · 123 sin 36Θ
]
.

When plotting the absolute value of the complex amplification factor, shown in figure

C.4, it can be seen that in contrast to the low order example given above, the method

appears to be stable for values of CFL up to 2.0 (it was iteratively determined that

the limit is CFL = 2.06). This is in good agreement with the result presented by Hu

et al. (1996), who state that the fourth-order Runge-Kutta scheme is stable if ∆t is



304

0 1 2 3
θ

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

|G
|

0 1 2 3
θ

0

0.2

0.4

0.6

0.8

1

1.2

φ/
φ e

CFL=0.2
CFL=0.6
CFL=1.0
CFL=1.4
CFL=2.0
CFL=2.2

Figure C.4 Amplification factor (left) and phase shift (right) for linearized wave equa-
tion using 4th-order central differences with 4th-order Runge-Kutta time integration
for several values of CFL.

chosen such that ck∗max∆t ≤ 2.83, where, for a 5-point finite difference for the spatial

discretization, k∗max = 1.4
∆x

. This results in CFL = 2.02. The figure also reveals that

this method exhibits considerable amplitude errors for CFL > 1. When considering

the phase shift, a significant phase lag in all frequencies for CFL ≤ 1.4 and a leading

phase error for the intermediate frequency range for CFL ≥ 1.4 can be observed.

For the split differences shown in equation C.10, the amplification factor after one

Runge-Kutta cycle becomes

G = 1− 228
CFL2

122
+

42572

3

CFL4

124
+

(
256

CFL2

122
− 61952

3

CFL4

124

)
cosΘ

+

(
−28CFL

2

122
+

22768

3

CFL4

124

)
cos 2Θ

− 3584

3

CFL4

124
cos 3Θ +

196

3

CFL4

124
cos 4Θ

+ i

[(
−16CFL

12
+

3680

3

CFL3

123

)
sinΘ +

(
CFL

12
− 2504

3

CFL3

123

)
sin 2Θ

+ 160
CFL3

123
sin 3Θ− 28

3

CFL3

123
sin 4Θ

]
. (C.42)

Figure C.5 reveals, that the maximum value of CFL to maintain a stable solution is

between 1.2 and 1.4. The limit was found iteratively to be CFL = 1.298. In contrast

to the case when central differences are employed, the dominant amplitude error
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Figure C.5 Amplification factor (left) and phase shift (right) for linearized wave equa-
tion using 4th-order split differences with 4th-order Runge-Kutta time integration for
several values of CFL.

occurs for the high wavenumber range and the phase lag appears to be considerably

reduced for CFL > 0.4.

By performing a von Neumann stability analysis using the simplified wave-equation

it was shown that using split finite-differences increases dissipation (larger amplitude

errors) in the higher wavenumber range and reduces dispersion errors (phase shift) for

CFL > 0.4. Presumably, for the problems under consideration, amplitude errors are

preferred over phase errors because phase errors can influence where and if vortices

are generated and affect their interaction whereas the amplitude error will most likely

only modify the intensity of the vortices.

The model equation used up to this point is linear and with the results obtained

so far, little can be said about how the numerical methods tested above will perform

for nonlinear PDEs. Consequently, to investigate the performance of some numerical

schemes for a nonlinear problem, several tests were conducted for a nonlinear model

problem. Following the same reasoning for dropping the viscous term as above, the

inviscid form of Burger’s equation

∂φ

∂t
+ φ

∂φ

∂x
= 0 (C.43)
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Figure C.6 Calculation of the propagation of a discontinuity using the inviscid
Burger’s equation; time levels shown t = 0, t = 0.01 and t = 0.05; 4th-order cen-
tral differences with 4th-order Runge-Kutta time integration for CFL = 0.2 (left)
and CFL = 1.0 (right) with ∆x = 0.002 and ∆t = CFL ·∆x.

is selected as a test case. Due to the non-linearity of the equation, the von Neumann

analysis cannot be repeated for this example because superposition of individual

Fourier terms is no longer valid. Instead, the propagation of a discontinuity is ex-

amined numerically, a phenomenon that is expected to occur in the calculations of

supersonic wake flows (e.g., shocklets caused by large structures that travel with the

convection speed of the structure). Figure C.6 shows that using central differences for

computing the propagation of a discontinuity, for no value of CFL a stable solution

can be obtained.

Switching to the split finite-differences, given in equation (C.10), it can be seen

in figure C.7 that the propagation of the discontinuity is properly represented for

CFL = 1.0. A slight dispersion error (caused by a phase error of the scheme) is visible

but appears to not be amplified in time. However, when decreasing the CFL number,

the solution deteriorates slightly, and considerable oscillations can be observed for

CFL = 0.2. This is consistent with the increased phase lag that was found for small

values of CFL for the wave equation (see figure C.5). Nevertheless, using the split

finite-differences in combination with the fourth-order Runge-Kutta method, a stable
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Figure C.7 Calculation of the propagation of a discontinuity using the inviscid
Burger’s equation; time levels shown t = 0, t = 0.01 and t = 0.05; 4th-order split
differences with 4th-order Runge-Kutta time integration for CFL = 0.2 (left) and
CFL = 1.0 (right) with ∆x = 0.002 and ∆t = CFL ·∆x.

solution is obtained, in contradistinction to the case where central differences were

employed.

Following this analysis, it can be concluded that the fourth-order split finite dif-

ferences in combination with a fourth-order Runge-Kutta method are suitable for the

present research. The analysis described above is based on simplified model equa-

tions, however, the applicability of the numerical method for the full Navier-Stokes

equations is illustrated by several validation cases in section 4.3.

C.5 Filtering

In order to allow for an efficient parallelization of the codes using domain-decomposition,

explicit filters for the streamwise direction are derived.

C.5.1 Derivation

The most general form of a filter application utilizing a central stencil is

i+l∑

j=i−l

αjφ̃j =
i+l∑

j=i−l

cjφj , (C.44)
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where φ̃j represent the filtered values at the grid-points j and φj are the function

values at the respective nodes. The width of the stencil and thereby the order of the

filter operation is specified by l. In this section, only explicit filters are considered,

hence αi = 1 and αj = 0 if j 6= i.

For the purpose of analyzing the filter operation, an equidistant grid is assumed

in order to enable a straight-forward Fourier representation of the function φ and the

function to be filtered is assumed to be periodic on the interval [0, L]. Then φ can be

represented as

φj =

N
2∑

k=−N
2

Ak exp

(
2πikzj
L

)
, (C.45)

where N is the number of points in the interval [0, L] and zj is the streamwise location

of the function value. For an equidistant grid, the grid-spacing is defined as h = L
N

and a wavenumber and a scaled coordinate are introduced of the form Θ = 2πkh
L

= 2πk
N

,

sj =
zj
h
, respectively. The Fourier series of equation (C.45) can now be rewritten as

φj =

N
2∑

k=−N
2

Ak exp(iΘsj) , (C.46)

where the wavenumber Θ is in the interval [0, π]. Substituting the Fourier represen-

tation (C.46) into equation (C.44), one obtains the equation

φ̃i =

N
2∑

k=−N
2

Ãk exp(iΘsi) =

N
2∑

k=−N
2

(
i+l∑

j=i−l

Akcj exp(iΘsj)

)
. (C.47)

Due to the linearity of the Fourier series, an evaluation of every individual mode k

is possible. Dividing by Ak exp(iΘsi) and using si+1 = zi+h
h

= si + 1, the transfer

function

T (Θ) =
Ãk

Ak

=
i+l∑

j=i−l

cj exp(ijΘ) (C.48)

is obtained. The transfer function can also be written in the form

T (Θ) = c0 + 2c1 cosΘ + 2c2 cos 2Θ + 2c3 cos 3Θ . . . (C.49)
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Figure C.8 Transfer functions for explicit and compact filters over scaled wavenumber
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The motivation of the filter was to remove the highest frequencies, to that end it is

required that

T (π) = 0 . (C.50)

That leads to the constraint on the coefficients cj

i+l∑

j=i−l

cj exp(ijπ) =
i+l∑

j=i−l

(−1)j−icj = 0 . (C.51)

The transfer function for several filters, both explicit and compact are shown in figure

C.8. Clearly, for higher-order accurate filters, only the high frequencies are removed

whereas the cut-off occurs much earlier for lower-order accurate filters. By using a

formally higher-order accurate filter and optimizing the scheme by posing specific

conditions on the shape of the transfer function, the location of the cut-off can be

adjusted. A 4th-order compact filter, which is optimized such that the cut-off is

delayed until Θ = 2 was derived in Lele (1992) and is included in figure C.8. This

filter was used in the radial direction in most calculations presented in this research.

In order to derive a filter for a non-equidistant grid, the grid-spacing between the

grid-point i and all other nodes used in the filter-stencil (i− l ≤ j ≤ i+ l) is denoted

by ∆j. The function values adjacent to node i are expanded in a Taylor series

φj =
n∑

k=0

1

l!
(∆j)

k φ
(k)
i , i− l ≤ j ≤ i+ l . (C.52)



310

The Taylor-series representation of each point i − l ≤ j ≤ i + l is substituted into

equation (C.44) and all terms with the same power (∆j)
l are collected. The first

constraint on the coefficients cj that is imposed is

l∑

j=−l

cj = 1 . (C.53)

By requiring a linear combination of coefficients cj multiplying (∆j)
k to equal zero,

the filter becomes (k + 1)th-order accurate. The powers 1 ≤ k ≤ 2l − 1 are consid-

ered, consequently the truncation error is of (2l)th order. Note that also including a

constraint for the (2l)th power results in a degenerate matrix and the trivial solution

φ̃j = φj would be obtained. In lack of a better condition, the last constraint that will

be used for the system to be solved is the result of equation (C.51), in spite of being

derived for an equidistant grid. The effect of this inconsistency will be discussed in

section C.5.2.

In summary, equation C.53, the constraint by the transfer function and cancelling

out the lower order terms of the Taylor-series result in a linear system of 2l + 1

equations for the 2l + 1 unknown coefficients cj that now can be solved

Ajl · cj = sj . (C.54)

The entries of the matrix and the vectors are Ajl =




(∆i−l)
2l−1 (∆i−l+1)

2l−1 · · · 0 · · · (∆i+l−1)
2l−1 (∆i+l)

2l−1

(∆i−l)
2l−2 (∆i−l+1)

2l−2 · · · 0 · · · (∆i+l−1)
2l−2 (∆i+l)

2l−2

...
...

...
...

...
...

...
1 1 · · · 1 · · · 1 1

(∆i−l) (∆i−l+1) · · · 0 · · · (∆i+l−1) (∆i+l)
...

...
...

...
...

...
...

±1 · · · −1 1 −1 · · · ±1




(C.55)
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cj =




ci−l

ci−l+1
...
ci
...

ci+l−1

ci+l




and sj =




1
0
...
0
...
0
0




(C.56)

The coefficients cj for every interior grid-point l ≤ i ≤ nz1tot+ nz2tot− l are solved

for during initialization of the code, once the grid is known, and stored in a common

array.

So far, only central filter-stencils that can be used for interior nodes have been de-

rived. At the boundaries and for the boundary-next points, one-sided or offset stencils

are derived. The derivation of these one-sided stencils (offset for the boundary-next

points) follows the above derivation, i.e., a Taylor series expansion is employed, the

sum of all coefficients needs to equal unity (see equation C.53) and the last equation

of the system is chosen to be the transfer function. As an example, all entries for the

system Ajl · cj = sj of the base-next point (i = 2) for a 4th-order offset stencil are

given



(∆1) 0 (∆3) (∆4) (∆5)
1 1 1 1 1

(∆1)
2 0 (∆3)

2 (∆4)
2 (∆5)

2

(∆1)
3 0 (∆3)

3 (∆4)
3 (∆5)

3

−1 1 −1 1 −1



·




c1
c2
c3
c4
c5




=




0
1
0
0
0




. (C.57)

C.5.2 Validation and Observations

To ensure a correct implementation of all filter-stencils, first an equidistant grid was

generated and the stencils were computed for the interior points and the boundary

and boundary-next points. All values of the coefficients (given in table C.1) were

found to correspond to the coefficients derived for equidistant grids by Lele (1992).

For stretched grids, the accuracy of the derived filters was tested employing analytic

test-functions. The filter-stencils were computed for a particular grid and the flow
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type i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6

6th c 1
64

− 3
32

15
64

11
32

15
64

− 3
32

1
64

6th b 63
64

3
32

−15
64

5
16

-15
64

3
32

- 1
64

6th b+1 1
64

29
32

15
64

− 5
16

15
64

− 3
32

1
64

6th b+2 − 1
64

3
32

49
64

5
16

−15
64

3
32

- 1
64

4th c − 1
16

1
4

5
8

1
4

− 1
16

4th b 15
16

1
4

-3
8

1
4

- 1
16

4th b+1 1
16

3
4

3
8

-1
4

1
16

4th b+2 - 1
16

1
4

5
8

1
4

- 1
16

Table C.1 Coefficients of 4th- and 6th-order accurate filter-stencils for an equidistant
grid (c=central, b=boundary, b+1=boundary-next, etc.)

field was initialized with a test function Ψ. The test-function was then filtered once

and the difference between the original test-function and the filtered function was

computed and scaled with the local grid-spacing as

ε∆ =
Ψ̃−Ψ

∆i+1

. (C.58)

The results of that analysis for both 4th-order accurate and 6th-order accurate filters

for different grids are shown in figure C.9. The parameters of the grids employed are

listed in table C.2. Note that for the exponential grids, the grid-spacing constantly

increases whereas for polynomial grids, the grid-function has an inflection point, i.e.,

points A b az bz cz dz

50 154.91 1 n/a
100 41.18 1 n/a
200 21.05 1 n/a
400 10.00 1 n/a
100 n/a 0.61 4.94 21.92 0.55

Table C.2 Parameters for computational grids employed for testing accuracy of filter-
operations on stretched grids (1 ≤ z ≤ 10). A and b are the coefficients of the
grid-function fz(z) = Aebz and az, bz, cz and dz are the coefficients for the standard
polynomial grid-function given in equation (C.4).
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Figure C.9 Errors normalized with the local grid-spacing (∆i+1) for the explicit filters
on stretched grids; 6th-order accurate (left) and 4th-order accurate (right); lines denote
exponential grids, symbols denote polynomial grids with an inflection point at z = 2.

the grid-spacing first decreases and then increases again as is the case for the grids

employed in base flow calculations. For the results shown, a sine-wave was chosen

as a test-function. The prominent ’kink’ seen in all curves marks the location where

the sine-wave changes sign. For all cases employing an exponential grid, the error

ε∆ increases monotonically with downstream distance (except at the sign change of

the test-function). This was expected, because the grid-spacing was increasing. The

error can be estimated as

ε∆4 ≈ ∆4

∆i+1
≈ ∆3

ε∆6 ≈ ∆6

∆i+1
≈ ∆5

}
⇒ ε∆6 = O(∆2) · ε∆4 . (C.59)

This behavior can be observed when comparing the results for the 6th-order accurate

filter with the results for the 4th-order accurate filter, shown in figure C.9. Note

also, that the order of accuracy (O(∆l)) for the boundary and boundary-next points

is preserved. Only the constant multiplying O(∆l) for the one-sided stencils differs

from the constant that would be obtained for the interior central stencil.

In order to study the behavior of the different filters under conditions that were

expected to occur for the planned investigation, a test-case was chosen with the

following requirements: A thin approach boundary layer so that strong grid-stretching

needed to be employed in radial direction to resolve the high gradient at the wall with

a small number of radial points. Supersonic flow conditions to generate an expansion
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fan emanating from the base. Slow convergence, thus requiring a large number of

time-steps and therefore a large number of filter-operations.

The calculations of an axisymmetric wake at ReD = 10, 000 and M = 2.46 with

and approach boundary layer thickness at the separation point of δc = 0.1 was deter-

mined to satisfy the above characteristics. In order to fully converge the calculations

to a steady-state solution, 100,000 time-steps were required. In the radial direction,

the 4th-order accurate compact filter, introduced in section C.5.1, was employed. For

comparison, 4th- and 6th-order accurate explicit filters, derived following the above

described method, were employed in the radial direction. In the streamwise direction,

only 4th- and 6th-order accurate explicit filters were used in order to ensure an efficient

parallelization. The tests were performed on both an equidistant and a stretched grid.

As figure of merit, contours of ρu were chosen. The contour of ρu = 0 is shown

as a dashed line and visualizes the extent of the separation region. Note, that for

an equidistant grid, all filters employed are “exact”, i.e. no error is introduced by

choosing a transfer function that applies to an equidistant grid. Looking at the results

from the calculations on the equidistant grid (not shown here), no differences can be

observed in the converged solution when employing either the compact filter or the

6th-order accurate explicit filter in the radial direction. However, when employing

the 4th-order accurate explicit filter in the radial direction, the recirculation length

slightly decreases compared to the cases employing higher-order filtering in the radial

direction, implying that, for the utilized resolution in the radial direction, the filter

introduces an unacceptable error.

The picture changes, when all filter combinations are tested on stretched grids

(figure C.10). The stretching in the radial direction is significantly stronger than in

the streamwise direction. Now, an additional error is introduced when deriving the

filter weights by using a transfer function that is applicable for an equidistant grid.

The solution obtained when using the compact filter in the radial direction and the

6th-order accurate explicit filter in the streamwise direction reproduces the result of
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Figure C.10 Converged streamwise velocity field employing different filters; axisym-
metric “DNS” on stretched grid; M = 2.46 and ReD = 10, 000 (first number denotes
order of accuracy of filter in radial direction, second number denotes order of accuracy
of filter in streamwise direction, c: compact, e: explicit).

the reference calculation on the equidistant grid. This implies that the filters do

not deteriorate the solution when employing stretching. However, when employing

either the compact or the 6th-order accurate explicit filter in the radial direction, the

flow-filed shows differences. Using the 6th-order accurate explicit filter in the radial

direction, a standing wave can be observed in the radial direction (visible through the

interruption of the contours in the expansion fan) that has a wavelength corresponding

to the filter-width. That, in combination with an overpredicted recirculation length,

renders the solution useless.

The reason for this behavior is assumed to lie in the use of a transfer function for

an equidistant grid as a condition for deriving the filter-stencils for stretched grids.
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It is speculated that, if a transfer function for a stretched grid could be established,

it would most likely possess a value larger than unity for low wavenumbers, leading

to the occurrence of the (unphysical) standing wave in the radial direction. The

error made by using the “equidistant transfer function” depends on the degree of

stretching and also becomes larger, the wider the utilized stencil becomes, because

the ratio of the smallest to the largest ∆ increases with the stencil-width. The latter

can be observed in figure C.10, where the 4th-order accurate explicit filter is used

in the radial direction. The amplitudes of the observed standing waves in radial

direction are not as large as for the higher-order accurate explicit filter, however, the

solution still suffers from the unphysical effects introduced by the filter and shows too

small a recirculation length, independent of which filter was chosen in the streamwise

direction.

Finally, for the three different options of filtering in the radial direction, it can be

observed that no noticeable difference in the converged solution originates from the

choice of the streamwise filter. This was to be expected in light of the lack of sig-

nificant gradients in the streamwise direction. Also, the stretching in the streamwise

direction was moderate for most calculations performed in the present investigation.

On grids with only moderate stretching in the streamwise direction, both explicit fil-

ters could be used. The choice of which one to employ depended solely on the amount

of additional dissipation desired for the given calculation. For all calculations denoted

by “DNS” in this work, the 6th-order explicit filter was employed.

To conclude, for all calculations presented in this work, the compact filter was

chosen for the radial direction. It was determined, that the explicit filters for the

streamwise direction, allowing for a significantly more efficient parallelization, were

adequate. The results in the validation chapter 4 confirmed that a correct representa-

tion of various flow-fields was achieved with the current numerical method, including

the above discussed filters.
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C.6 Parallelization

C.6.1 Domain Decomposition

As shown in figure 3.1, the computational domain is divided into a boundary layer and

a wake region. Each region can be divided into sub-domains. At compile-time, the

total number of streamwise points for region 1 (nz1tot) and for region 2 (nz2tot) and

the number of sub-domains desired for each region (ndom1 and ndom2, respectively)

needs to be specified. The streamwise number of points for the sub-domains in region

1 and 2 are given as

nz1 =
nz1tot

ndom1
, nz2 =

nz2tot

ndom2
, (C.60)

with the constraint, that both nz1 and nz2 need to be integer numbers and larger

than the widest derivative- or filter-stencils.

Two different modes of parallelization are possible with the current implementa-

tion: Both regions are divided into the same number of sub-domains (as shown in

figure C.11). For this approach, first the sub-domains in region 1 and then the sub-

domains in region 2 are computed, or vice-versa, depending on the splitting direction.

This mode of parallelization has the advantage that the size of the sub-domains in

region 1 and 2 (mr1 ·nz1 and mr2 ·nz2, respectively) can be highly disparate without

causing a reduction in efficiency of the parallelization due to idle-time of individual

z

r

Figure C.11 Domain decomposition for base flow simulations with 4 processors.
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z

r

Figure C.12 Domain decomposition for base flow simulations with 8 processors.

CPUs that have a smaller work-load than others. However, this approach is only of

practical use for small numbers of CPUs, as the main interest of the present work

is on investigating the wake flow and not the incoming boundary layer, hence typi-

cally nz1tot < 100. Here, the maximum number of CPUs that can be used for the

full simulation is restricted by ndom1. For this reason, the second approach, where

both regions contain a different number of sub-domains (an example for that option is

shown in figure C.12) was implemented. The smallest number of sub-domains allowed

in this case is one for region 1 and two for region 2. Here, while calling loops over the

total number of domains (1 ≤ nd ≤ ndom1+ndom2), it is distinguished, whether nd

corresponds to a sub-domain in region 1 or 2. For this case, it is now crucial that the

size of the sub-domains in region 1 and 2 is roughly the same in order to allow for an

efficient parallelization

mr1 · nz1 ' mr2 · nz2 . (C.61)

Note that for both approaches, the number of utilized CPUs does not necessarily have

to correspond to the number of sub-domains. The number of CPUs must be less or

equal to the number of sub-domains. To ensure an efficient parallelization in both

cases, the following constraints need to be satisfied

ndom1

CPUs
=
ndom2

CPUs
= integer or

ndom1 + ndom2

CPUs
= integer , (C.62)

respectively.



319




























Figure C.13 Flow chart of parallel loops and implicit synchronization contained in
one Runge-Kutta cycle for a boundary-layer calculation.

Before calling the subroutines that compute streamwise derivatives, the required

number of radial/azimuthal planes2 of the neighboring upstream (nd − 1) or down-

stream (nd + 1) sub-domain, depending on the splitting direction, is copied into a

temporary array that will be passed into the respective subroutine in addition to the

function values for the current sub-domain (nd). In the case of streamwise filtering,

no passing of extra information is required because the filtering routine accesses a

temporary array defined solely for that purpose. This array contains the data to be

filtered for all sub-domains (after implicit synchronization, as described below and

shown in figure C.13).

2This number depends on the width of the finite-difference stencil and is two for the 4th-order
accurate split-differences and one for the low order stencils used for the sub-grid mass-fluxes.
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Synchronization is required before information of neighboring domains can be

accessed, as described above. The code does not contain explicit synchronization

statements, but the fact is exploited that in Open MP, at the end of a “do-loop” over

the number of sub-domains, all CPUs have to return the result of their respective

work before the next operation will be executed, thereby performing an implicit syn-

chronization. To illustrate this method, a flow-chart of the simplest case, a boundary

layer calculation, where only region 1 is computed, is given in figure C.13. It can be

seen, that before information of a neighboring domain needs to be accessed (stream-

wise derivatives required for the stress-tensor and temperature gradients, streamwise

derivative of vector A of equation 3.1, streamwise filtering, etc.) an implicit synchro-

nization in form of closing the loop over the sub-domains has been executed. The

efficiency of the algorithm will be discussed in the next section.

C.6.2 Performance Study

For the present investigation, most large-scale simulations were conducted on SGI

Origin 3k-type computers. That particular series features R12k or R16k processors

with 400 or 700 MHz, respectively, and each processor contains 8 MB cache. Several

calculations were also conducted on HP Alpha machines. Before conducting large

calculations, the efficiency of the code was thoroughly tested for several different

problem sizes. As described in Terzi (2004), optimizing the scheduling environment

of multi-processor computers on the SGI Origin systems can increase efficiency of

the parallelization significantly. Therefore the settings found optimal in his work

were adapted and used for all test-cases and final simulations. For evaluation of the

efficiency of the parallelization, two different quantities are used: the speed-up that

is defined as the ratio of the required time for a computation using one processor over

the required time using n processors

Sp =
t(1)

t(n)
, (C.63)
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and the parallel efficiency that is formed by the fraction of speed-up over the number

of processors

ηP =
Sp

n
. (C.64)

According to Amdahl’s law

Sp =
1

fp
n
+ 1− fp

, (C.65)

the speed-up is limited by the parallel fraction fp of the code. Profiling of the code

on the SGI system revealed that the parallel fraction is approximately fp = 99%,

most likely due to communication delays of the hardware.

The parallel performance of the code was tested conducting several calculations

with different domain-sizes, i.e., memory requirements. Initially, several calcula-

tions were performed where the domain-size was chosen such that the job would

be contained fully in cache for a sufficiently large number of CPUs. The num-

ber of CPUs needed to contain the entire calculation in cache can be computed as

job-size
8MB/CPU

= CPUsC . Table C.3 lists the domain-size, along with the resulting job-size

and CPUsC for the test-calculations.

Figure C.14 illustrates, that for all cases, when the number of utilized processors

approaches CPUsC , the speed-up and therefore the efficiency increases significantly.

For the smallest case (squares), the calculation fits into cache for all parallel calcula-

tions which results in “super-linear” speed-up, i.e., the efficiency is larger than unity.

From the case requiring 155MB, it becomes obvious that even if only a portion of the

mr1 mr2 nz1tot nz2tot kh size (MB) CPUsC

50 80 64 448 0 28 4
50 80 64 448 4 155 19
50 80 64 448 8 409 52

Table C.3 Parameters of test-cases conducted for illustration of importance of cache-
effects for parallel calculations, CPUsC denotes the number of CPUs required to fit
the entire calculation into cache on an SGI Origin 3900.
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Figure C.14 Speed-up (left) and efficiency (right) over number of CPUs for calcula-
tions with different problem-sizes on an SGI Origin 3900; vertical bars denote the
number of CPUs required to fully fit the respective calculation into cache.

required memory fits into cache, “super-linear” speed up can be achieved, as most of

the needed memory is accessible very quickly. The largest case (denoted by circles)

initially shows a decrease in efficiency because too small a portion of the memory can

be stored in cache. As the number of utilized CPUs increases, the efficiency recovers

and for CPUs ≥ CPUsC , super-linear speed up is achieved again. As a consequence,

it is highly desirable to utilize a sufficient number of CPUs to exploit cache-effects as

they can achieve considerable savings in computational time.

However, typical DNS of supersonic base flows require an amount of memory

significantly exceeding the available cache memory. For that reason, a case with a job

size of 4GB, that would require 4,000MB
8MB/CPU

= 500 CPUs to be fully contained in cache

on the SGI Origin was conducted on both the SGI and the HP machines in order

to evaluate the performance in absence of cache-effects. The results obtained from

the benchmark calculations are shown in figure C.15. Note that on the HP machine,

each node was configured with 64 CPUs, therefore, the benchmarks could only be

completed up to that number. On the SGI Origin 3900, the efficiency reaches very

low levels for large numbers of CPUs due to the fact that a large amount of memory

has to be distributed across the machine. This leads to high communication penalties
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Figure C.15 Speed-up (left) and efficiency (right) over number of CPUs on SGI Origin
3900 and HP Alpha computers; size of calculation was approximately 4GB.

when each CPU needs to retrieve information. However, when the number of CPUs is

increased to 128 on the SGI, the efficiency significantly improves, suggesting that part

of the memory most frequently needed can be placed into cache. The architecture

of the HP Alpha computer appears to be better suited for the large problem-size

tested here. The parallel efficiency does not drop below 85% for all numbers of

CPUs tested, well above the values obtained from Amdahl’s law using fp = 99%.

This indicates that the parallel fraction of the code obtained on the SGI system is

hardware dependent.

In addition to the parallel efficiency, the number of operations that can be per-

formed per second also determines the wall-time required to conduct a calculation.

A profiler was therefore employed to determine the floating-point operations per sec-

ond (FLOPS). Note that the FLOPS value obtained by the profiler constitutes a

lower bound, as the hardware counter only counts one instruction for a multiply-add,

which, strictly speaking, are two floating-point operations. The values obtained for

the benchmark computations are included in table C.4. The MFLOPS-rate of the

HP computer is up to four times higher than that of the SGI machine. This is

in part due to the better parallel efficiency. More important, however, is, that the
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SGI Origin 3900 HP Alpha
CPUs t[s]/step MFLOPS Sp ηP t[s]/step MFLOPS Sp ηP

1 42.92 147 1 1.00 18.50 341 1 1.00
4 12.29 500 3.49 0.88 4.83 1,273 3.83 0.96
8 6.49 913 6.62 0.83 2.46 2,411 7.52 0.94
16 4.47 1,395 9.6 0.60 1.25 4,979 14.8 0.93
32 2.37 2,599 18.11 0.57 0.66 9,400 28.03 0.88
64 1.28 4,638 33.53 0.52 0.33 17,705 56.06 0.88
128 0.43 10,523 99.81 0.78 N/A N/A N/A N/A

Table C.4 Time in seconds per time-step, MFLOPS-rate, speed up Sp and efficiency
ηp for large wake-computation (4,000 MB) on SGI Origin 3900 with R16k, 700MHz
CPUs and HP Alpha.

MFLOPS-rate already is a factor of 2.32 larger on a single CPU. The efficiency of

the algorithm also was shown to be satisfactory, achieving 147 MFLOPS per CPU

on the SGI Origin 3900 and up to 341 MFLOPS per CPU on the HP Alpha. The

highest sustained performance achieved with the parallel code was 10.5 GFLOPS

and 17.7 GFLOPS on the SGI Origin 3900 and the HP Alpha, respectively.

In conclusion, several benchmark cases with varying job-sizes were conducted

on different computer architectures. A high efficiency of the algorithm itself and a

good parallel efficiency of the parallel code were established on large shared-memory

systems. For cases, where the job-size was small enough to fit into cache memory,

super-linear speed-up was achieved. It was demonstrated that even in the absence of

cache-effects, the parallel efficiency of the code maintains values exceeding 85% for

up to 64 CPUs on an HP Alpha.
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Appendix D: FLOW PARAMETERS

quantity TDNS LNS, COARSE LNS/DNS, FINE

Re 10, 000 100, 000
M 0.25
Pr 0.71
γ 1.4

RSu/T 0.36866
λz =

2π
αz

2.51327 N/A

z0 N/A 0.2583
Reδ1 at inflow 1, 000 280.674 280.677

mr1 80 68 88
nz1/lh N/A / 4 288 / N/A 576 / N/A
∆z N/A 0.0133 0.00665

∆rwall 0.002 7.94 · 10−4 5 · 10−4

rwall 1 · 103 1 · 103 1 · 103
rmax − rwall 3 · δ 5.3198 · 10−2 9.75 · 10−2

Adist 1 · 10−5 1 · 10−4 1 · 10−4/2 · 10−2

ω = β
2π

N/A 2.228169 2.228169
rb N/A 7.146 · 10−3 4.5 · 10−3

re N/A 1.2704 · 10−3 8 · 10−3

zb N/A 0.3780 0.31815
ze N/A 0.4578 0.35805
dt 5 · 10−4 2.805 · 10−4 1.496 · 10−4

CPU hours/period N/A 0.04298 0.20713

Table D.1 Parameters for 2-D TS wave validation calculations with the DNS, TDNS
and the LNS code; CPU time on HP Alpha per forcing period.
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case 2-D wave 3-D oblique wave
quantity LNS DNS TDNS LNS DNS

Re 100, 000 1, 578, 102
M 1.6 3
Pr 0.71 0.71
γ 1.4 1.4

RSu/T 0.36866 1.06757
λz N/A 0.05194 N/A
ψ 0 60◦

λθ 0 0.02998
z0 0.2250 N/A 1.5917 · 10−3

Reδ1 at inflow 438.802 3842.68 274.857
mr1 150 120 130

nz1 / lh 300 / N/A N/A / 6 280 / N/A
kh 0 4 1
∆z 0.03704 N/A 1.6228 · 10−3

∆rwall 1.25 · 10−3 4 · 10−5 3.51 · 10−5

rwall 1 · 103 1 · 103
rmax − rwall 3.2283 0.0191 4.702 · 10−2

Adist 1 · 10−4 2 · 10−2 5 · 10−5 1

ω = β
2π

0.7961726 N/A 12.558136
rb 5 · 10−3 N/A 1.40403 · 10−4

re 1.375 · 10−2 N/A 3.86378 · 10−4

zb 0.55836 N/A 2.59337 · 10−2

ze 0.78060 N/A 3.56705 · 10−2

dt 1.04667 · 10−3 5 · 10−5 3.3179 · 10−5

CPU hours 0.0968 N/A 0.3226 0.4266

Table D.2 Parameters for supersonic TS wave validation calculations with the DNS,
TDNS and the LNS code; CPU time on HP Alpha per forcing period.
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quantity 2-D TS wave quantity 2-D TS wave

Re 5, 000 - 200, 000 mr2 130
M 2.46 lh 16
Pr 0.71 kh 8
γ 1.4 Adist 1 · 10−8

RSu/T 0.36866 dt 1 · 10−3

λz =
2π
αz

2 · π CPU hours 8.935

λθ =
2π
αθ

2 · π

Table D.3 Parameters for stability investigations using the temporal code; CPU time
on HP Alpha per forcing period.

Method DNS LNS
quantity COARSE FINE 3D COARSE 3D FINE 3D COARSE

M 0.25
Re 500-8,000 500-2,000 500-2,000 2,000 500-2,000
Pr 0.71
γ 1.4
RSu/T 0.36866
za 6
rmax 7.6
zmax 42
probe (r, z) (1,1)
∆rc = ∆zc 0.01 0.02 0.01 0.02 0.01
nz1 80 64 80 64 80
nz2 200 660 200 660 200
mr1 50 50 50 50 50
mr2 90 100 90 100 90
kh 0 0 8 8/16/32 4
dt 2.897 · 10−3 4.0 · 10−3 2.897 · 10−3 3/2/2 · 10−3 1.932 · 10−3

CPU hours 4.52 4.70∗ 14.86 61/128/268 3.49

Table D.4 Parameters used for DNS and LNS code validation calculations of subsonic
axisymmetric and 3-D wake; CPU time on HP Alpha until converged for axisym-
metric cases and per flow-trough time for unsteady cases; ∗ using the result from the
coarse calculation as initial condition.
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Method temporal RANS spatial RANS
quantity EASM EASMα EASMα

M 0.25 2.46
Reδ 1, 700 50, 000 165, 000
Pr, γ 0.71, 1.4
RSu/T 0.36866
zmax N/A 1.73
∆z N/A 0.02− 0.07
rwall 1 · 103 1
rmax − rwall 2.4 0.56
∆rwall 4 · 10−4/1 · 10−3 2 · 10−4/2 · 10−3 2 · 10−4 5 · 10−5

mr1 60 80 160 120 80
nz1 / lh N/A / 0 52 / N/A
dt 1 · 10−4/2.5 · 10−3 2.5 · 10−5/4 · 10−3 2 · 10−5 4 · 10−5

CPU hours 0.14/0.06 0.74/0.05 1.1/0.07 0.13 2.0∗

Table D.5 Parameters for validation calculations of turbulent boundary layers; CPU
time until converged on Pentium 4 PC; ∗ CPU time on SGI Origin 3900.

quantity DNS LNS

M 2.46
Re 20,000 {5, 10, 20, 200} · 103 30,000 60,000 100,000
Pr, γ 0.71, 1.4
RSu/T 0.36866
δc, za 0.1, 1
(rmax, zmax) (6,10)
probe (r, z) (0.5,2.5)
∆rc = ∆zc 0.008 0.01 0.008
nz1 32
mr1 45
nz2 780 420 780 1240
mr2 130 160
kh 8 16 8
dt 2.4 · 10−3 3.0 · 10−3 2.4 · 10−3

CPU hours 19.55 9.14 8.49∗ 44∗ 53.99∗

Table D.6 Parameters used for DNS and LNS calculations of supersonic base flows;
CPU time on HP Alpha per flow-trough time; ∗ CPU time on SGI Origin 3900.
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quantity SDNS1a SDNS1b SDNS2 SDNS3

M 2.46
Re 30,000 30,000 60,000 100,000
Pr, γ, RSu/T 0.71, 1.4, 0.36866
δc, za, rmax 0.1, 1, 6
zmax 12 10 15
probe∗ (r, z) (4.82, 0.24) (4.82, 0.24) (7.85, 0.465) (8.27, 0.336)
∆rc = ∆zc 0.008 0.01 0.01 0.008
nz1 64 32 32 32
nz2 456 420 780 1240
mr1 75 45 45 45
mr2 200 130 130 130
kh 64 32 128 128
dt 1.19 · 10−3 1.5 · 10−3 1.375 · 10−3 8.0 · 10−4

CPU hours 1, 780 104 (HP Alpha) 3, 731 19, 132

Table D.7 Parameters used for DNS of supersonic base flows; CPU time on SGI Origin
3900 per flow-trough-time; values for kh and CPU hours for half-cylinder calculations;
* for initial growth of higher modes, probe was set at disturbance point (2.5, 0.5) .

quantity RANS/FSM RANS/FSM
Coarse Fine

M 2.46
Re 30,000 60,000
Pr, γ, RSu/T 0.71, 1.4, 0.36866
δc, za, (rmax, zmax) 0.1, 1, (6, 12)
∆rc = ∆zc 0.01 0.02 0.01
nz1 32 32 32
nz2 120 130 270
mr1 50 45 45
mr2 85 90 130
kh 0/4 0/4–16 0/8–32
dt {7, 3∗/2.5} · 10−3 {7/2.6} · 10−3 {7/1.54} · 10−3

CPU hours 3.6/1.6 4.0/1.9–8.8 24/10.3–76.1
cT , cε1, cε2 N/A, 1.44, 1.88 4.56, 1.44, 1.88 4.56, 1.44, 1.88

Table D.8 Parameters used for RANS/FSM calculations of transitional supersonic
base flows; all values for calculations employing EASMα, except when marked with
* (EASM model); CPU time on HP Alpha until converged for axisymmetric RANS
and per flow-trough-time for FSM; values for kh applies to half-cylinder calculations.
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quantity RANS FSM
Coarse Fine Coarse Fine

Re 3.3 · 106
M 2.46
Pr, γ 0.71, 1.4
RSu/T 0.816
δc 0.1
za 0.16
rmax 6
zmax 12
∆rc = ∆zc 0.005 0.0004 0.005 0.005
nz1 16 16 16 16
nz2 256 512 256 512
mr1 50 50 50 50
mr2 220 350 210 210
kh 0 0 16–32 16–32
dt 4 · 10−4 8.45 · 10−5 3 · 10−4 3 · 10−4

CPU hours 42∗ 460∗ 273 545 – 1200

cT 4.45 4.45 4.45 4.45
cε1 1.43/1.44 1.43/1.44 1.43 1.43
cε2 1.92/1.88 1.92/1.88 1.92 1.92
a1 0.4866/0.5416 0.4866/0.5416 0.5416 0.5416

Table D.9 Parameters used for RANS/FSM calculations of UIUC case; all values
for calculations employing EASMα; CPU time on HP Alpha until converged for
axisymmetric RANS and per flow-trough-time for FSM; * CPU time on SGI Origin
3900.
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