
Architecture-Based Refinements for Secure
Computer Systems Design

Jie Zhou and Jim Alves-Foss1

Center for Secure and Dependable Systems
University of Idaho

Abstract— The successful design and implementation of secure
systems must occur from the beginning. A component that must
process data at multiple security levels is very critical and
must go through additional evaluation to ensure the processing
is secure. It is common practice to isolate and separate the
processing of data at different levels into different components. In
this paper we present architecture-based refinement techniques
for the design of multi-level secure systems. We discuss what
security requirements must be satisfied through the refinement
process, including when separation works and when it does not.
The process oriented approach will lead to verified engineering
techniques for secure systems, which should greatly reduce the
cost of certification of those systems.
Keywords: Architectural Refinement, Non-functional require-
ments, computer security.

I. INTRODUCTION

In recent years, security has been a growing concern in
software engineering research, especially software architecture
research. In IEEE/ANSI 830-1993, security is defined as one
of the thirteen non-functional (or quality) requirements (NFRs)
that must be included in the software requirements document.
Other NFRs include performance, verification, acceptance,
portability, reliability, maintainability, and safety [1]. NFRs
refer to the whole software and thus cannot be presented
in software architecture as components or functions offered
by the system [2]. The overall software architecture and
NFRs are closely related and should be studied together
during architectural development. In the literature, much of the
research focuses on how to satisfy NFRs such as reliability and
performance [1], [3], [4], [5], [6], [7], instead of security. There
has been some work on security architecture modelling [8],
[9], but not on providing security architecture design guidance
for architects. Banerjee et al. relate a software system’s archi-
tecture and its trustworthiness (security, reliability, availability,
fault-tolerance, and survivability) in general [10]. However,
there is no additional detailed guidance.

The notion of enforcing security requirements at the archi-
tectural level is attractive because it allows security concerns
to be recognized early in the development process and can
be given sufficient attention in subsequent stages. By control-
ling system security during architectural refinement, we can
decrease software production costs and speed up the time to
market. This approach also enhances the role of the software

1Contact Author: Jim Alves-Foss, Center for Secure and Dependable
Systems, University of Idaho 83844-1008, jimaf@uidaho.edu, ph: 1-208-885-
5196, fx: 1-208-885-9052

architects by requiring that their decisions be not only for
functional decomposition, but also for NFR fulfillment. In this
paper, we present a set of architectural refinement patterns for
system design architects to follow to achieve secure system
architectures.

As some researchers have pointed out [2], [3], [5], effective
refinement must be technology- and domain-specific. Also,
Garlan [11] points out that refinement patterns must be explicit
about what kinds of properties they are preserving in the
refined design. In this paper, the type of systems within
which our design refinement patterns are valid is a multi-
level secure (MLS) system. We focus specifically on achieving
confidentiality, not availability or integrity, for secure systems.

This paper is organized as follows: Section II introduces
MLS systems and the concept of architecture; Section III
proposes architectural refinement patterns that can be applied
to MLS systems design. Section IV presents an example of
MLS system design to illustrate the refinement patterns we
proposed. Finally, we provide a discussion in Section V and
conclusion and future work in Section VI.

II. BACKGROUND

A. MILS, MLS, MSLS and SLS

Traditionally, the military model of a secure system includes
the concept of multi-level security (MLS). The idea behind
this concept is that the system will be processing data items
that are classified at different levels of security, and the
security requirements that prevent the transfer of high-level
classified information into low-level objects must be preserved.
Therefore, we define an MLS system as one that must be
certified to process and output co-mingled data at multiple
classification levels. Classic security models, such as the Bell-
LaPadula (BLP) model [12], have been used to specify the
secure behavior of such MLS systems. Given a set of subjects,
each with a clearance level, and a set of objects, each with a
classification level, the BLP model requires that information
does not flow downward by imposing the following require-
ments.

The Simple Security Property. A subject is allowed a read
access to an object only if the subject’s clearance level is
identical to or higher than the object’s classification level.

The *-Property. A subject is allowed a write access to an
object only if the subject’s clearance level is identical to or
lower than the object’s classification level.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Architecture-Based Refinements for Secure Computer Systems Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In this paper, we use security level to represent both the
classification level and the clearance level.

The problem with full MLS systems is that they must be
rigorously analyzed for security before they can be certified.
Every portion of the MLS system must be analyzed to ensure
that it properly handles labelled data and that there is no
possible violation of the security requirements. Even with
a trusted computing base (TCB) architecture or reference
monitor [13], there is often too much to evaluate.

The Multiple Independent Levels of Security/Safety (MILS)
architecture was developed to resolve the difficulty of cer-
tification of MLS systems by separating out the security
mechanisms and concerns into manageable components [14].
These components are classified based on the way they process
data:

• SLS Single-Level Secure component that only processes
data at one security level.

• MSLS Multiple Single-Level Secure component that
processes data at multiple security levels but always
maintains separation between classes of data. An MSLS
process or device separates the data into independent
streams with no communication between streams. A
device that processes messages one at a time (such as
an I/O device driver) may be such a device.

• MLS Multi-Level Secure component that deals with data
at multiple security levels and transforms the data from
one level to another according to internal MLS security
requirements of this component. Because of the potential
seriousness of violating its security requirements, an MLS
component requires the highest level of scrutiny and
verification. Typically this can be a device that will
downgrade information from a higher level of security
to a lower level through either filtering or the application
of encryption technology.

A MILS system isolates processes into partitions, which
define a collection of data objects, code and system resources.
These individual partitions can be evaluated separately, if the
MILS architecture is implemented correctly. This divide-and-
conquer approach will exponentially reduce the proof effort for
secure systems. The MILS architecture is MLS if it enforces
the MLS security requirements to regulate the communica-
tion between the applications and the resources, which is
application-specific and not part of the MILS architecture.

B. Software Architecture

In the literature, a software architecture is usually described
by components, connectors, and architectural configurations
[15]. The following concepts are derived from Medvidovic
and Taylor [15].

A component in an architecture is a unit of computation or
a data store. They may be as small as a single procedure or as
large as an entire application. Each component may require its
own data or execution space, or it may share them with other
components. The features of a component include interfaces,
semantics, constraints, NFRs, etc.

Connectors are architectural building blocks used to model
interactions between components and rules that govern those
interactions. They may be message routing devices, shared
variables, buffers, dynamic data structures, client-server proto-
cols, pipes, SQL links between a database and an application,
and so on. Connectors are characterized by their interfaces,
semantics, constraints, NFRs, etc.

A component’s interface is a set of interaction points
between it and the external world. It specifies the services
(messages, operations, and variables) a component provides
to or that are required of other components in an architecture.
In our approach, we augment the interface with security levels
for each service.

A connector’s interface is a set of interaction points be-
tween the connector and the components and other connectors
attached to it. A connector does not perform any application-
specific computations, and it exports as its interface those
services it expects of its attached components. In our approach,
we also augment the interface with security levels for each
service.

Architectural configurations are connected graphs of com-
ponents and connectors that describe architectural structure.
In this paper, we represent architectures as directed graphs.
The graphs are integral to our refinement method, as they are
used to represent the architectures throughout the refinement
process and to specify pre- and post-conditions on each
refinement step.

III. REFINEMENT PATTERNS

When designing secure systems, we do not want to sepa-
rately construct abstract and concrete architectures and then
prove that the concrete architecture satisfies the security prop-
erties of the abstract one. Instead, the concrete architecture
should satisfy the security properties by construction, requiring
no explicit proofs in its derivation. This can be accomplished
through a series of small, local refinements, each of which
involves the application of a secure refinement pattern. Then,
the local refinements are combined to form the larger com-
posite concrete architecture, which is guaranteed to correctly
implement the abstract architecture, meaning that the security
properties are not violated by the concrete architecture. In this
way, the architecture can be refined to be more and more
concrete until the implementation architecture is achieved.

In our paper, we do not focus on how to do functional
requirements (FR) refinement, which has already been re-
searched for many years with many approaches described in
the literature (e.g., [16] and [17]). Instead, we focus on how
to augment architectural refinement with security concerns.
We present and justify informally a set of refinement pat-
terns for refining components, connectors, and interfaces. The
proposed patterns allow architects to decompose, aggregate,
and eliminate components, connectors, and ports securely. In
Section IV we apply these patterns to a simple example for
illustration. Each refinement pattern is represented by a pair
of directed graphs representing the pre- and post-condition of
the refinement. In the graphs, a box represents a component,

an arrow represents a connector, and a dot represents a port. In
the rest of this paper, we use ports to represent the interaction
points of an interface.

A component/connector is said to be trusted if it is or will be
designed to satisfy security requirements, while an untrusted
component/connector has no security requirements. The secu-
rity requirements associated with components/connectors de-
scribe not what they should do (e.g., send some data), but how
they should do it (e.g., send data embedded in legal CORBA
messages and with correct security labels). In our work we
explicitly define two types of security requirements, intra-
level requirements and inter-level requirements. Intra-level
requirements are security requirements that are not related to
information flow between security levels. For example, “Mes-
sages from Database must be CORBA reply messages” is such
an intra-level requirement. This requirement is not on cross-
level information flow, but on message types. Inter-level re-
quirements are security requirements that are related to cross-
level information flows. For example, “A top-secret message
cannot flow to a secret component unless it is downgraded”
is such an inter-level requirement. An SLS component only
has intra-level requirements. An MSLS component, however,
has not only intra-level requirements for each security level,
it must also have an MSLS inter-level requirement that there
is no cross-level information flow. An MLS component may
have intra-level requirements for each security level and will
have some MLS inter-level requirements to regulate cross-
level information flow. In the final concrete architecture, if
a connector has some security requirements, they must be
application-independent.

Definition 1. (Secure Refinement) We say that a refinement
on a part of the architecture (on components, connectors, ports,
or a combination of these entities) is secure if and only if the
new security requirements on this part after the refinement do
not violate the original security requirements.

The refinement may add some new requirements, either
functional or security requirements, but the new added require-
ments should not violate the original security requirements.
This means that the security requirements after the refinement
should be as strict as or stricter than those before the refine-
ment.

In the following subsections, we present a basic set of refine-
ment patterns for decomposition, aggregation, and elimination
of components, connectors, and ports. We informally justify
that these refinement patterns are secure if the pre- and post-
conditions of the refinements are satisfied.

A. Decomposition Patterns

In the refinement process, it is typical to divide an ar-
chitectural entity into smaller parts through decomposition.
Decomposition can be applied to components, connectors, and
ports.

1) Component Decomposition Patterns: A component can
be decomposed into two components that are composed
through product, cascade, or feedback [18], [19]. These three
types of component decomposition are depicted in Figs. 1, 2,

Fig. 1. Component Decomposition Product Pattern

and 4, respectively. Depending on the security requirements
of the initial component, Cm1, there are different possible
requirements of the subcomponents, Cm11 and Cm12. We
discuss these in detail in this section and summarize them in
Table I. Specifically, in Table I we list the initial component
type (SLS, MSLS or MLS) as a pre-condition and then
the possible refinements to subcomponent types as a post-
condition, based on three different architectural decomposition
approaches.

In addition to the post-conditions listed in Table I, there is an
additional post-condition for all refinement patterns: services
and security levels associated with each port connected to the
environment are the same before and after the refinement. We
will not repeat this condition when we elaborate pre-conditions
and post-conditions of each secure refinement pattern.

Product Pattern. The first component decomposition pat-
tern we discuss is Product (Fig. 1). In this pattern, Cm1 is
constructed by the parallel composition of Cm11 and Cm12.

Product Condition 1 (SLS): If component Cm1 is an SLS
component, it can be securely refined into a product of Cm11

and Cm12 when both Cm11 and Cm12 are SLS components
and where Cm11 and Cm12 together enforce the intra-level
requirements of Cm1.

Product Condition 2 (MSLS): If component Cm1 is an
MSLS component, there are three different secure refinements
into the two SLS components, Cm11 and Cm12.

1) The refinement is secure when Cm11 and Cm12 are both
SLS components and each component enforces intra-
level requirements for one security level, where Cm1

is an MSLS component with just two different security
levels.

2) The refinement is secure when one of the components
(e.g., Cm11) is an SLS component while another (e.g.,
Cm12) is an MSLS component. In this case, usually
Cm1 is an MSLS component with more than two
different security levels, Cm11 enforces intra-level re-
quirements for one security level, and Cm12 enforces
not only intra-level requirements for other security levels
but also the inter-level requirement that there is no cross-
level information flow.

3) The refinement is secure when both Cm11 and Cm12

are MSLS components. In one case, Cm11 or Cm12

enforces part of the intra-level security requirements
in Cm1 for all security levels in Cm1 and enforces

TABLE I
SECURE COMPONENT DECOMPOSITION PATTERNS

Decomposition Pre-condition Post-condition
Approach Cm1 Cm11 Cm12

SLS MSLS MLS SLS MSLS MLS
Product SLS

√ √

MSLS
√ √
√ √

√ √

MLS
√ √

√ √
√ √

Cascade SLS
√ √

√∗ √∗

MSLS
√ √

√∗ √∗

MLS
√ √

√ √
√ √

√ √
√ √

Feedback SLS
√ √

√∗ √∗

MSLS
√ √

√∗ √∗

MLS
√ √

√ √
√ √

√ √
√ √

∗ Extra inter-level requirements added in these cases

the inter-level security requirement that there is no
cross-level information flow. Otherwise Cm11 or Cm12

enforces all intra-level security requirements in Cm1 but
for only some of the security levels (more than one),
and enforces an inter-level requirement that there is no
cross-level information flow.

Product Condition 3: If component Cm1 is an MLS compo-
nent, there are three secure refinements into two components,
Cm11 and Cm12.

1) The refinement is secure when one of the components
(e.g., Cm11) is an SLS component while the other
(e.g., Cm12) is an MLS component. In this case, Cm11

enforces the intra-level requirements for one security
level, while Cm12 enforces the intra-level requirements
for other security levels, and the inter-level requirements
in Cm12 do not violate those in Cm1.

2) The refinement is secure when one of the components
(e.g., Cm11) is an MSLS component while the other
(e.g., Cm12) is an MLS component. In this case, Cm11

enforces the intra-level requirements for more than one
security level and an inter-level requirement to prohibit
cross-level information flow; Cm12 enforces the intra-
level requirements for the other security levels, and the
inter-level requirements in Cm12 do not violate those in
Cm1.

3) The refinement is secure when both Cm11 and Cm12

are MLS components. In one case, Cm11 or Cm12

enforces part of the intra-level requirements in Cm1

for all security levels in Cm1 and enforces inter-level

requirements in Cm1. Otherwise both Cm11 and Cm12

enforce all intra-level security requirements in Cm1 but
each for only some of the security levels (more than
one), and the inter-level requirements in each component
do not violate those in Cm1.

In all of the product decomposition cases, we decompose
the original component into two sub-components. The de-
composition can separate our security concerns by separat-
ing the processing of difference security levels. When this
happens, we get a more secure system. However, sometimes
the decomposition does not separate security levels. In that
case we need to still enforce inter-level security requirements
as discussed above. In either case, the security requirements
of the subcomponents, when composed, need to satisfy the
requirement of the main component.

Cascade Pattern. The second decomposition pattern is
Cascade (Fig. 2). In this pattern, Cm1 is constructed through
serial composition of Cm11 and Cm12.

Cascade Condition 1: If component Cm1 is an SLS com-
ponent, there are two different secure refinements.

1) The refinement is secure when both Cm11 and Cm12 are
SLS components and Cm11 and Cm12 together enforce
the intra-level security requirements of Cm1.

2) The refinement is secure when both Cm11 and Cm12 are
MLS components. In this case, the intra-level require-
ments can be enforced by either Cm11 or Cm12 or by
the two components together, and both need to enforce
additional inter-level requirements that do not allow
infomration flow between levels. Such a refinement

Fig. 2. Component Decomposition Cascade Pattern

Fig. 3. Component Decomposition Cascade Pattern Example

could occur if one of these two MLS components is
an up-grader while the other is a down-grader. This
means that one component enforces an inter-level re-
quirement to up-grade while the other enforces an inter-
level requirement to down-grade. A typical example is
shown in Fig. 3. In this example, Cm1 is an abstract
SLS communication component that takes in messages
at Top Secret (TS) level and transfers the messages
to output them also at TS. A possible refinement of
Cm1 would involve encrypted communication over an
insecure channel (connector Cn). We could have Cm11

be an encryption device which takes in TS messages,
encrypts them with a key for TS messages, then outputs
Unclassified (U) messages, and Cm12 be a decryption
device which takes in U messages, decrypts them with
TS keys, then outputs TS messages. Obviously, Cm11

and Cm12 are both MLS components and with their
composition, the transfer of TS messages is secure, with
no message leakage to lower levels, as long as they
support the new inter-level requirements.

Cascade Condition 2: If component Cm1 is an MSLS
component, there are two different secure refinements.

1) The refinement is secure when both Cm11 and Cm12 are
MSLS components. Cm11 and Cm12 together enforce
the intra-level security requirements of Cm1, and each
of them has an inter-level requirement to prohibit cross-
level information flow.

2) The refinement is secure when both Cm11 and Cm12

are MLS components. In this case, the intra-level re-
quirements can be enforced by either Cm11 or Cm12 or
by the two components together. Similar to when Cm1

is an SLS component, such a refinement could occur
if one of these two MLS components is an up-grader
while the other is a down-grader. Both subcomponents
must satisfy the new inter-level requirements that state
they do not violate the original security requirement.

Fig. 4. Component Decomposition Feedback Pattern

Cascade Condition 3: If component Cm1 is an MLS
component, there are five different secure refinements.

1) The refinements are secure when Cm11/Cm12 is an SLS
component while Cm12/Cm11 is an MLS component.
In these two cases, components Cm11 and Cm12 to-
gether enforce the intra-level requirements of Cm1, and
Cm12/Cm11 has MLS inter-level requirements which
do not violate those of Cm1.

2) The refinements are secure when Cm11/Cm12 is an
MSLS component and Cm12/Cm11 is an MLS com-
ponent. In these two cases, Cm11 and Cm12 together
enforce the intra-level requirements of Cm1, and the
MLS requirements of Cm12/Cm11 do not violate the
MLS inter-level requirements of Cm1.

3) The refinement is secure when both Cm11 and Cm12

are MLS components. In this case, Cm11 and Cm12

together enforce the intra-level security requirements of
Cm1, and the MLS inter-level requirements of Cm11

and Cm12 do not violate those of Cm1.
Feedback Pattern. The final decomposition pattern is Feed-

back (Fig. 4). In this pattern, Cm1 is constructed by two
communication components Cm11 and Cm12.

The three secure refinement cases summarized in Table I are
similar to those for Cascade pattern and are omitted here to
save space. However, it is important to note that some security
properties are not preserved under feedback composition [18],
[19], [20]. In Section V, we discuss feedback composition
further.

2) Connector and Port Decomposition Patterns: In addition
to component decomposition, we need to discuss connector
and port decomposition as well.

As discussed in Section II, in the final concrete architecture,
a connector does not perform any application-specific com-
putations. Therefore, during the architectural refinement, for
any connector with application-specific security requirements
on it, we should refine this connector using ConnDec pattern
(Fig. 5). In pattern ConnDec, connector Cn is decomposed
into connectors Cn1 and Cn2 and component Cm. After the
ConnDec refinement, all application-specific security require-
ments of Cn are put on component Cm and no application-
specific security requirements are put on connectors Cn1 and
Cn2. Effectively, Cm is a guard that enforces the application-
specific security requirements of Cn. The connectors Cn1

and Cn2 and the component Cm together should enforce the

Fig. 5. Connector Decomposition ConnDec Pattern

Fig. 6. Port Decomposition PortDec1 Pattern

security requirements on Cn.
Two other post-conditions are: Cn1.ip has the same services

and security levels as those of Cn.ip while Cn2.op has the
same services and security levels as those of Cn.op; Cn1.op
has the same security levels as Cn1.ip, and Cn2.ip has the
same security levels as Cn2.op.

When a connector has application-independent security re-
quirements on it, it is secure to refine this connector into a
serial composition of two connectors if these two connectors
together enforce the application-independent security require-
ments (not pictured here).

For port decomposition, we decompose a port into multiple
ports, splitting the services and security levels of the original
port to associate them with the new ports. When a port of
a component decomposes, nothing changes in the component
and no security requirements will be violated. For the connec-
tor to this port, in one case, such a port decomposition causes
the connector to decompose also (Fig. 6). In this case, we need
to split the security requirements of the connector Cn to put
them into Cn1 and Cn2. Possible inter-level requirements on
Cn1 and Cn2 should not violate the inter-level requirements
on Cn.

In another case, a port decomposition does not cause the
connector to decompose (Fig. 7). In this case, connectors Cn1

and Cn2 remain the same, meaning the security requirements
in these two connectors remain the same.

B. Aggregation Patterns

When refining an architecture, we may find it is necessary
to merge two more abstract entities into a single lower level
entity. Aggregation can be applied to components, connectors,

Fig. 7. Port Decomposition PortDec2 Pattern

Fig. 8. Component Aggregation ComAgg Pattern

and ports.
If two components are not connected directly, when we

merge them as one component, we say we aggregate them.
If two components are connected directly, we can consider
them as part of a bigger component, but not an aggregation.

ComAgg Pattern. The component aggregation pattern we
provide in this paper is ComAgg (Fig. 8). The six secure
refinement cases are summarized in Table II.

TABLE II
COMPONENT AGGREGATION PATTERNS TABLE

Pre-condition Post-condition
Cm1 Cm2 Cm12

SLS MSLS MLS
SLS SLS

√
√∗

SLS MSLS
√∗

SLS MLS
√∗

MSLS MSLS
√

MSLS MLS
√

MLS MLS
√

∗ Extra inter-level requirements added in these cases

ComAgg Condition 1: If both Cm1 and Cm2 are SLS
components, after aggregation, Cm12 could be an SLS or
MSLS component. When Cm1 and Cm2 have the same
security level, Cm12 is an SLS component that has the intra-
level requirements of Cm1 and Cm2; when Cm1 and Cm2

have different security levels, Cm12 should be an MSLS
component that has not only the intra-level requirements of
Cm1 and Cm2, but also a new MSLS inter-level requirement
to prohibit cross-level information flow.

ComAgg Condition 2: If one of the components, Cm1 or
Cm2, is an SLS component and the other is an MSLS com-
ponent, Cm12 is an MSLS component that has not only the
intra-level requirements of Cm1 and Cm2, but also an MSLS
inter-level requirement to prohibit cross-level information flow.

ComAgg Condition 3: If either component Cm1 or Cm2

is an SLS component (e.g., Cm1) and the other is an MLS
component (e.g., Cm2), Cm12 should be an MLS component
that has the intra-level requirements of Cm1 and Cm2. The
MLS inter-level requirements of Cm12 should not violate
those of Cm2.

ComAgg Condition 4: If both Cm1 and Cm2 are MSLS
components, Cm12 must be an MSLS component that en-
forces all intra-level requirements of Cm1 and Cm2 and has
an MSLS inter-level requirement to prohibit any cross-level
information flow.

ComAgg Condition 5: If either Cm1 or Cm2 is an MSLS
component while the other is an MLS component, Cm12

Fig. 9. Component and Connector Aggregation ComConnAgg Pattern

should be an MLS component that has all intra-level require-
ments of Cm1 and Cm2. The MLS inter-level requirements
of Cm12 should not violate those of Cm1 or Cm2. If there
is any conflict between the MLS inter-level requirements and
the MSLS inter-level requirements of the original components,
(e.g., in the MLS inter-level requirements, there is cross-
level information flow between TS and S, but in the MSLS
inter-level requirements, there should not be any cross-level
information flow) we require the stricter requirement. That
means in Cm12 we follow the MSLS inter-level requirement
instead of the MLS inter-level requirement when conflict
occurs.

ComAgg Condition 6: If both Cm1 and Cm2 are MLS com-
ponents, Cm12 should be an MLS component that enforces
all intra-level requirements of Cm1 and Cm2, and the MLS
inter-level requirements of Cm12 should not violate those of
Cm1 and Cm2.

It is important to note that in ComAgg, though the two
components do not interact directly with each other, they
both interact with their environment, and in some cases, their
aggregation may cause a subtle situation that needs to be
examined closely, as will be discussed in Section V.

ComConnAgg Pattern. We propose an aggregation pattern
ComConnAgg (Fig. 9). In this pattern, connectors Cn1 and
Cn2 and component Cm are aggregated to a new connector
Cn. This aggregation is secure if Cn is trusted to enforce all
the security requirements of Cn1, Cn2, and Cm.

Also, two connectors composed serially can be aggregated
to one connector if the new connector does not violate any
security requirements of the two original connectors.

PortAgg1 and PortAgg2 Patterns. For port aggregation,
we aggregate multiple ports into one, merging the services
and security levels of the original ports to associate them
with the new port. When the ports of a component are
aggregated, nothing changes in the component and security
is not violated. For the connectors to these ports, in one case,
such a port aggregation causes the connectors to aggregate as
well (Fig. 10). In this case, Cn12 should have all the security
requirements of Cn1 and Cn2. Only when Cn12.ip, Cn1.op,
and Cn2.ip have the same security level will there be no inter-
level requirements on Cn12; otherwise, there should be inter-
level requirements on Cn12, and these should not violate the
inter-level requirements of Cn1 and Cn2.

In another case, ports aggregation does not cause connectors
with these ports to aggregate (Fig. 11). In this case, after the
port aggregation, connectors Cn1 and Cn2 remain the same,
meaning all security requirements of these two connectors
remain the same.

Fig. 10. Port Aggregation PortAgg1 Pattern

Fig. 11. Port Aggregation PortAgg2 Pattern

C. Elimination Patterns

Simply stated, for any connector with no semantics, mean-
ing no functionality is provided by it, we can securely elim-
inate this connector. Elimination of a component is secure if
the component has no connection to other components. Also,
elimination of a port is secure if it has no connection to its
environment.

IV. A MILS APPLICATION DESIGN EXAMPLE

In this section, we present an example of a MILS application
system to illustrate how to refine a system design according to
the refinement patterns described in the previous section. The
system is simple enough to avoid complexity for the purposes
of discussion but sufficient to illustrate the concepts discussed.
The specifications for the system are: A distributed, MLS
secure (suppose there are two security levels used, TS and
S), MILS application system that allows users with different
security levels to store and retrieve data on an MLS database
using legal CORBA messages (i.e., legal means read, write
methods for users and reply method for database). Assume
user U1 is at TS level while user U2 is at S level and the
database DB is remotely accessible by both U1 and U2.
The functional requirements of this application are: store and
retrieve data. The security requirements are: 1. inter-level
requirements: store/retrieve data obeying BLP model; 2. intra-
level requirements: all messages sent should be legal CORBA
messages.

The abstract architecture of this system is depicted in Fig.
12.

In the abstract architecture, connector CnU1−DB has the FR
that it forwards messages from U1 to DB, located at different
computers. The security level associated with the ports of

Fig. 12. The Abstract Architecture of the Application Example

Fig. 13. An Architecture of the Example after Step 1: ConnDec

Fig. 14. An Architecture after Step 2: ComAgg

this connector is TS. The security requirements of CnU1−DB

are listed in Table III, No. 1 and 2. Connectors CnU2−DB ,
CnDB−U1 , and CnDB−U2 have similar functionality and
security requirements.

We now illustrate several refinement steps of the application
system design to obtain a secure concrete system architecture.

Step 1. The abstract architecture can be first refined by
applying the connector decomposition pattern ConnDec to
the connector CnU1−DB . The original connector is decom-
posed into connector CnU1−X1 , component X1, and connec-
tor CnX1−DB (Fig. 13). According to the post-conditions
of pattern ConnDec, we place application-specific security
requirements on component X1 and make the connectors
CnU1−X1 and CnX1−DB application-independent. After the
refinement, CnU1−X1 has the FR that it forwards messages
between different partitions in MILS architecture, and the
NFR that the security level associated with the ports of this
connector remains TS. The FR of connector CnX1−DB is the
same as that of CnU1−X1 , and the security level associated
with the ports of this connector remains TS. Component X1

has the security requirements in Table III, No. 7 and 8.
Also, X1 has the functionality to forward messages between
different computers. Similarly, the decomposition pattern Con-
nDec is applied to the connectors CnU2−DB , CnDB−U1 , and
CnDB−U2 , and the new architecture is achieved (Fig. 13).

Here, we can say that this is a big-step refinement which
includes multiple mini-steps. A mini-step refinement applies
one refinement pattern to a component, connector, or inter-
face, while a big-step is a set of mini-steps applied to the
architecture refinement sequentially.

Step 2. We take the architectural refinement further by
applying component aggregation pattern ComAgg to the ar-
chitecture of Fig. 13, resulting in the architecture in Fig. 14.

In this step of refinement, the component aggregation pat-
tern ComAgg is applied to X1 and X3. After the refinement,
the security requirements of component X13, No. 13 and 14 in
Table III, do not violate the security requirements of X1 and
X3. Also, X13 has the FR of forwarding messages between
different computers. Similarly, the component aggregation
pattern ComAgg is applied to X2 and X4 to get a component
X24. The services and security levels of all ports remain the
same as those in Fig. 13.

Step 3. Further, we apply ComAgg pattern to the previous
architecture to aggregate components X13 and X24, and the

Fig. 15. An Architecture after Step 3: ComAgg

Fig. 16. Part of Architecture after Step 4: Feedback

new architecture is in Fig. 15.
After the refinement, component X has the security require-

ments No. 17 and 18 in Table III which do not violate the
security requirements of X13 and X24. Also, component X has
the FR of forwarding messages between different computers.
Services and security levels associated with all ports remain
the same as those in Fig. 14.

Step 4. Now, we apply component decomposition pattern
Feedback to decompose component X to a feedback compo-
sition of X ′ and X ′ shown in Fig. 16.

In this step of refinement, component X ′ has the security
requirements No. 19 and 20 in Table III, which also do not
violate the security requirements of X . X ′ has new MLS inter-
level requirements, No. 21, to downgrade TS/S messages to U
messages by encrypting them with a TS/S key before forward-
ing, and to upgrade U messages to TS/S by decrypting them
with a TS/S key before forwarding. These new MLS inter-
level requirements do not violate the security requirements of
X . Connectors CnX′−X′ transfer messages between different
computers. These connectors are application-independent. The
security level associated with the ports of these connectors is
U.

Step 5. We continue refining component X ′ in Fig. 16
by applying component decomposition pattern Feedback to
decompose X ′ into a feedback composition of X ′′ and a
component named TNIU as shown in Fig. 17. The component
TNIU has the MLS inter-level requirements, No. 24 in Table
III, to downgrade/upgrade all messages it receives before for-
warding them. Component X ′′ has the security requirements
No. 22 and 23 in Table III, which do not violate the security
requirements No. 19 and 20 of X ′. Connectors CnX′′−TNIU

and CnTNIU−X′′ can transfer messages using direct process
calls.

Step 6. Now, the component X ′′ in Fig. 17 can be de-
composed into components MMR and GG by applying
component decomposition pattern Feedback as shown in Fig.

Fig. 17. Part of the Architecture after Step 5: Feedback

TABLE III
APPLICATION REQUIREMENTS ENFORCEMENT TABLE

Com/Conn No. Intra-level Requirements Inter-level Requirements
CnU1−DB 1 Messages are legal CORBA messages.

2 TS level, read and write according to BLP.
CnU2−DB 3 Messages are legal CORBA messages.

4 S level, read and write according to BLP.
CnDB−U1 5 Messages are legal CORBA messages.
CnDB−U2 6 Messages are legal CORBA messages.

X1 7 Messages are legal CORBA messages.
8 U1 read/write TS messages and read S messages.

X2 9 Messages are legal CORBA messages.
10 U2 read/write S messages and write TS messages.

X3 11 Messages are legal CORBA messages.
X4 12 Messages are legal CORBA messages.
X13 13 Messages from U1 to DB are legal CORBA mes-

sages; messages from DB to U1 are legal CORBA
messages.

14 U1 read/write TS data and read S data.
X24 15 Messages from U2 to DB are legal CORBA mes-

sages; messages from DB to U2 are legal CORBA
messages.

16 U2 read/write S data and write TS data.
X 17 Messages from U1 and U2 to DB are legal CORBA

messages; messages from DB to U1 and U2 are
legal CORBA messages.

18 U1 read/write TS data and read S data; U2 read/write S data
and write TS data.

X′ 19 Messages from U1 and U2 to DB are legal CORBA
messages; messages from DB to U1 and U2 are
legal CORBA messages.

20 U1 read/write TS data and read S data; U2 read/write S data
and write TS data.

21 Downgrading TS/S messages to U by encrypting with TS/S
key; upgrading U messages to TS/S by decrypting with TS/S
key.

X′′ 22 Messages from U1 and U2 to DB are legal CORBA
messages; messages from DB to U1 and U2 are
legal CORBA messages.

23 U1 read/write TS data and read S data; U2 read/write S data
and write TS data.

TNIU 24 Downgrading TS/S messages to U by encrypting with TS/S
key; upgrading U messages to TS/S by decrypting with TS/S
key.

MMR 25 Forwarding different types of messages to the correct
type checking components.

26 Messages from different partitions must be labelled correctly
with security levels of the partitions.

GG 27 All messages received must be checked to be legal
CORBA messages.

28 U1 read/write TS data and read S data; U2 read/write S data
and write TS data.

DB 29 Reply with legal CORBA messages.
30 Reply to requests with data at proper classification levels.

Fig. 18. Part of the Architecture after Step 6: Feedback

18.
In this step of refinement, the component MMR enforces

the intra-level requirement No. 25 and the MSLS inter-

level requirement No. 26 in Table III. The component GG,
representing a GIOP Guard, enforces security requirements
No. 27 and 28 in Table III. Connectors CnMMX−GG and
CnGG−MMX can transfer messages using direct process calls,
and the security levels associated with the ports of this
connector are TS and S.

After all these steps, we take one additional refinement step
by applying port aggregation patterns PortAgg2 and PortAgg1
sequentially to aggregate the ports and connectors between the
MMR and DB to get the final concrete architecture shown
in Fig. 19. The security levels associated with the ports of the
connectors between MMR and DB are TS and S.

Fig. 19. Final Concrete Architecture of the Application Example

Fig. 20. Trace of Security Requirements Enforcement

Through the justification of each step of refinement, we can
informally guarantee that this concrete architecture is a secure
design of the application example, if components MMR,
GG, TNIU , and DB are trusted to enforce all security
requirements put on them during the refinement as in Table
III.

The trace of how the original security requirements are
enforced during the refinement process is presented in Fig.
20. The numbers in the figure represent the respective security
requirements in Table III.

By walking through the design of this application example,
we can see that our refinement patterns can be guidance for
architects to apply them to each step of architecture design
refinement and to justify each mini-step to reach a concrete
architecture with no need for additional proofs.

V. DISCUSSION

In this paper, when we design a secure MLS system,
we enforce intra-level requirements and prohibit any direct
information flow that is not permitted by the inter-level re-
quirements, but we do not address indirect information flow. If
a system needs to achieve a stringent security property, such as
generalized non-interference (GNI) [20], [18], [19], feedback
composition of two components must be examined closely. As
pointed out in the literature, in some cases, the direct feedback
composition of two secure components could be insecure in
terms of GNI.

In the refinement patterns we presented, the direct feedback

Fig. 21. Feedback Composition of Two Components after Aggregation

Fig. 22. Possible Insecure Component Aggregation Example

composition of two components occurs in the component
decomposition pattern Feedback. Alternatively, the feedback
composition of two components could occur after applying the
component aggregation ComAgg (Fig. 21), where components
Cm1 and Cm3 aggregate to a component Cm13 and Cm13

is feedback composed with Cm2 after the refinement.
In some cases, a feedback composition is secure before

refinement, but after refinement, the composition could be
insecure (Fig. 22). In this component aggregation, the direct
feedback composition of Cm1 and Cm2 is secure before the
aggregation; however, if Cm1 and Cm3 deal with different
security levels, the direct feedback composition of Cm13

and Cm2 could be insecure when these two components are
aggregated.

No matter what causes the feedback composition of two
non-SLS components, the architect should not only put MSLS
requirements or MLS requirements on the components, but
also refer to secure composition approaches [20], [19] to check
and eliminate any unpermitted indirect cross-level information
flow. For example, one approach is to add a buffer in the
feedback connection between these two components. Only
when Cm1 and Cm2 are both SLS components and at the
same security level do architects not need to consider this
subtle situation.

In component decomposition pattern Cascade, when Cm1

is an MSLS component, either Cm11 or Cm12 could be an
MSLS component while the other is an SLS component (Fig.
23). However, we do not list these post-conditions in Table
I since such a decomposition can be achieved by applying
a set of refinement patterns sequentially (Fig. 24). We can
consider Cascade(MSLS→SLS+MSLS) as a pattern of big-

Fig. 23. A Cascade Pattern (MSLS→SLS+MSLS)

Fig. 24. Applying a Set of Mini-step Refinements

step refinement which can be achieved through applying a set
of mini-steps.

For component decomposition pattern Feedback, when
Cm1 is an MSLS component, either Cm11 or Cm12 could be
an MSLS component while the other is an SLS component. We
do not list these post-conditions in Table I for similar reason
as for pattern Cascade.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a set of refinement patterns
for components, connectors, and interfaces in architectures.
With informal justification of these patterns, we provide a
framework for secure system architecture design.

In subsequent work, we will formally verify that these
refinement patterns are secure by mathematically modelling
these patterns and providing mathematics theorems as criteria
for secure refinement.

We will work on deciding a necessary and sufficient set of
basic refinement patterns on which other refinement patterns
can be built. For example, the Cascade(SLS→SLS+SLS) is
such a pattern, but Cascade(MSLS→SLS+MSLS) discussed in
Section V is not. We call this set the Core set, or Level-0 set.
New patterns can be built on patterns in Level-0, and a Level-
1 set consists of the new patterns. Intuitively, the architects
can build their own patterns in any Level-n set based on the
patterns in Level-0 to Level-(n-1) sets. The verification of
patterns in Level-n can build on the verification of patterns
in lower level sets, which can reduce the verification efforts.

Finally, we will work on formalizing the secure architectural
refinement framework by using Unified Modeling Language
(UML). Since UML is used during software development from
early phases to detailed design, performing and presenting
the architectural refinements of secure systems in UML will
make them comprehensible to everyone involved. With a for-
mal framework of secure architectural refinements in system
design, we can perform solid components interaction analysis
and verify that their composition results in desired behavior
and security properties.

ACKNOWLEDGMENT

This material is based on research sponsored by AFRL
and DARPA under agreement number F30602-02-1-0178. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expresses or implied, of AFLR and DARPA or the U.S.
Government.

REFERENCES

[1] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha, “A framework for building
non-functional software architectures,” in Proc. 2001 ACM Symposium
on Applied Computing (SAC’01), Las Vegas, Nevada, United States,
2001, pp. 141–147.

[2] V. Ambriola and A. Kmiecik, “Architectural transformations,” in Proc.
14th International Conference on Software Engineering and Knowledge
Engineering (SEKE’02), Ischia, Italy, 2002, pp. 275–278.

[3] K. S. Barber, T. Graser, and J. Holt, “Enabling iterative software
architecture derivation using early non-functional property evaluation,”
in Proc. 17th IEEE International Conference on Automated Software
Engineering (ASE ’02), 2002, p. 172.

[4] L. Chung, B. A. Nixon, and E. Yu, “An approach to building quality
into software architecture,” in Proc. 1995 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON’95), Toronto,
Ontario, Canada, 1995, p. 13.

[5] M. Denford, J. Leaney, and T. O’Neill, “Non-functional refinement of
computer based systems architecture,” in Proc. 11th IEEE International
Conference and Workshop on the Engineering of Computer-based Sys-
tems (ECBS’04), 2004, p. 168.

[6] X. Franch and P. Botella, “Putting non-functional requirements into
software architecture,” in Proc. of the 9th International Workshop on
Software Specification and Design (IWSSD’98), 1998, p. 60.

[7] N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha, “Incorporating non-
functional requirements into software architectures,” in Proc. 15 IPDPS
2000 Workshops on Parallel and Distributed Processing (IPDPS’00),
2000, pp. 1009–1018.

[8] Y. Deng, J. Wang, J. J. P. Tsai, and K. Beznosov, “An approach
for modeling and analysis of security system architectures,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp.
1099–1119, 2003.

[9] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong, “Secure
software architectures,” in Proc. 1997 IEEE Symposium on Security and
Privacy (SP’97), 1997, p. 84.

[10] S. Banerjee, C. A. Mattmann, N. Medvidovic, and L. Golubchik,
“Leveraging architectural models to inject trust into software systems,”
in Proc. 2005 Workshop on Software Engineering for Secure Systems
Building Trustworthy Applications (SESS’05), St. Louis, Missouri, 2005,
pp. 1–7.

[11] D. Garlan, “Style-based refinement for software architecture,” in Joint
Proc. 2nd International Software Architecture Workshop (ISAW-2) and
International Workshop on Multiple Perspectives in Software Devel-
opment (Viewpoints ’96) on SIGSOFT ’96 Workshops, San Francisco,
California, United States, 1996, pp. 72–75.

[12] D. E. Bell and L. LaPadula, “Secure computer systems: Unified ex-
position and multics interpretation,” MITRE Technical Report, MITRE
Corporation, Bedford Massachusetts, vol. 2997, p. ref A023 588, 1976.

[13] J. P. Anderson, “Computer security technology planning study,” Fort
Washing, Pennsylvania, Tech. Rep., 1972.

[14] J. Alves-Foss, W. S. Harrison, P. Oman, and C. Taylor, “The MILS ar-
chitecture for high-assurance embedded systems,” International Journal
of Embedded Systems, vol. 1, no. 1, Jan. 2005.

[15] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE Trans-
actions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[16] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct architecture
refinement,” IEEE Transactions on Software Engineering, vol. 21, no. 4,
pp. 356–372, 1995.

[17] J. Philipps and B. Rumpe, “Refinement of pipe-and-filter architectures,”
in Proc. World Congress on Formal Methods in the Development of
Computing Systems (FM’99)-Volume I, 1999, pp. 96–115.

[18] J. McLean, “A general theory of composition for a class of “possibilistic”
properties,” IEEE Transactions on Software Engineering, vol. 22, no. 1,
pp. 53–67, Jan. 1996.

[19] A. Zakinthinos, “On the composition of security properties,” Ph.D.
dissertation, University of Toronto, Mar. 1996.

[20] D. McCullough, “Noninterference and the composability of security
properties,” in Proc. IEEE Symposium on Security and Privacy, 1988,
pp. 177–187.

