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(4) Introduction 

Computer-aided diagnosis (CAD) has been shown to be useful as a second opinion to 
radiologists for breast cancer detection on mammograms.  All current CAD systems have been 
developed for digitized screen-film mammograms (DFM).  With the recent advent of full field digital 
mammography (FFDM) systems, it is important to develop CAD systems specifically designed for 
direct digital mammograms (DMs) in order to fully exploit the advantages of FFDM.  Although many 
computer vision techniques developed for digitized films may be used for DMs, proper adaptation 
and extensive training of the current algorithms for the new type of images will be required.  More 
importantly, new techniques still need to be developed to further improve the current algorithms for 
DFMs as well as for adapting to FFDM. 

The goal of the proposed research is to develop a CAD system for breast cancer diagnosis 
using advanced computer vision techniques. The proposed CAD system will assist radiologists with 
detection and classification of breast lesions. Previous CAD methods for lesion detection and 
characterization are generally based on image features extracted from a single view.  Our proposed 
approach is based on two steps: the first step uses single view detection to identify lesion candidates 
on individual mammograms, the second step is to fuse image information from multiple views to 
reduce false positives and thus to improve the overall accuracy. Although the main goal of this 
project is to develop a CAD system for DMs, we plan to extend the CAD development to DFMs for 
the following reasons: (1) digital mammography only became available in the last few years, 
multiple-view film mammograms with breast lesions are more commonly available in existing patient 
files, and (2) screen-film mammography will still be the main modality for breast cancer screening in 
the near future.  Therefore, we will first develop the multiple-view correlation techniques for the 
CAD system of the DFMs.  These new techniques will then be adapted to the CAD system for DMs.  
We believe that this approach is more efficient and we will obtain a CAD system for DMs as well as 
improve the CAD system for DFMs. 
  The following specific aims will be addressed: (1) Collection of databases of both DMs and 
DFMs and design of a database management system.  (2) Improvement of single-view computer 
vision techniques for mass detection and classification in DFMs.  (3) Improvement of single-view 
computer vision techniques for microcalcification detection and classification in DFMs.  (4) 
Development of methods for correlation of image information from two-view DFMs.  (5) 
Comparison of the detection and classification accuracy of the multiple-view fusion CAD system 
with the performance of the single-view CAD system by receiver operating characteristic (ROC) and 
free response ROC (FROC) analyses.  (6) Adaptation of the computer vision techniques to the CAD 
system for DMs. (7) Adaptation of the multiple-view fusion methods to the CAD system for DMs. 

We will develop novel regional registration methods for identifying corresponding lesions on 
craniocaudal (CC) and mediolateral oblique (MLO) views.  The multiple image information will be 
fused with specially designed correspondence classifiers or fuzzy classification to reduce false 
positives and to improve lesion detection sensitivity. Multiple-view features of a lesion will be 
merged using neural networks or other classifiers for classification of malignant and benign lesions.  
In addition, new computer vision techniques will be developed in each of the four areas to improve 
the current methods. The techniques will be first developed for DFMs.  The algorithms for DFMs 
will then be adapted to DMs, taking into account the differences in the imaging characteristics 
between DMs and DFMs.   Databases of DFMs and DMs will be collected from our patient 
population with IRB approved protocol and extensive training and independent testing of the new 
CAD system will be performed.  The test performance of the multiple-image correlation CAD 
algorithms for detection and characterization of lesions on DFMs will be compared with the one-
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view approach on DFMs as well as the performances of CAD systems for DMs using ROC 
methodology. 
 DM or DFM not only has the potential to detect breast cancer in an early stage, it will also 
facilitate consultation via teleradiology in remote or rural regions where expert mammographers may 
not be readily available.  An effective CAD system will be particularly useful for providing an 
additional on-site or remote second opinion.  This will be highly relevant to women in the military, 
especially when they are stationed in remote areas.  DM in combination with CAD will fully utilize 
the potential of mammography to improve the health care of women both in the military and in the 
general population.  
 
(5) Body 
 
 This is the fourth year annual report of our project.  In the project period (5/1/05-4/30/06), we 
have extended our investigations to both the CAD systems for DMs and DFMs, and performed a 
number of studies to develop the CAD system for breast cancer diagnosis.  A summary of some of the 
important accomplishments follows. 
 
(A)  Collection of databases of digital mammograms and digitized film mammograms 
 

We continue to collect the database of digital mammograms (DMs) with mammographic 
masses or clustered microcalcifications for the development of our computer-aided diagnosis (CAD) 
algorithms.  We have collected about 280 cases containing more than 1120 mammograms. The 
patients were diagnosed with lesions in their mammograms during their normal clinical care, either 
by routine screening or by referral to our breast imaging clinic for evaluation.  Most of the cases 
contained both DMs and screen-film mammograms.  

As described in our previous reports, the digital mammograms are acquired with a GE 
Senographe 2000D full field digital mammography (FFDM) system.  After acquisition, the digital 
image files are transmitted to the Siemens Archive which is the PACS system used in our department 
for storage of all clinical digital images. With Institutional Review Board (IRB) approval, we 
download the DMs from the Siemens Archive to our laboratory and digitize the film mammograms 
from the same patient. The film mammograms are digitized with a Lumiscan 85 laser scanner.   

We have developed a database management program based on Microsoft Access to process 
the images downloaded to our system.  For each mammogram file, all patient identifiers are first 
removed from the image header.  The patient name is replaced with a code number.   The image is 
then named by the code number.  A record is generated in the database file for each image.  The 
record keeps the code number, the lesion type, the view, and the exam date information for each case.  
If the pathology of the case is available, the malignant or benign information of the lesion is also 
entered.  Each case in the database will be read by an experienced MQSA radiologist to mark the 
lesion location.  For microcalcification cases, the radiologist measures the diameter of the cluster, and 
provides description of its distribution, morphology, and visibility of the microcalcifications.  For 
mass cases, the radiologist measures the diameter of the mass, and provides description of its margin, 
shape, spiculated or non-spiculated, the visibility, and the density of the mass relative to that of the 
parenchyma.  For all cases, the radiologist also provides BI-RADS description of the breast density 
and estimates the likelihood of malignancy of the lesion.  These descriptions are entered into the 
database for each case as a reference for future analysis. 
 



 Page 6  

(B) CAD system for microcalcification detection on digital mammograms – comparison of 
detection accuracy on digitized film mammograms and digital mammograms 

 
We are developing CAD systems to detect microcalcification clusters automatically on DMs 

and on DFMs. In this study, we compared the detection accuracy of the CAD systems using a data set 
of matched DMs and DFMs from the same patients.  
 
Methods: 
 

Our CAD system for microcalcification detection includes five stages: preprocessing, image 
enhancement, segmentation of microcalcification candidates, false positive (FP) reduction based on a 
convolution neural network (CNN), and regional clustering. The image processing and computer-
vision techniques used in the CAD systems are the same for DMs and DFMs except that the 
preprocessing stage is different.  For the DM CAD system, raw images are used as input to reduce 
the dependence of the system on specific manufacturer's proprietary preprocessing methods. An 
inverted logarithmic transformation is applied to the raw pixel values to convert the image pixel 
depth to 12-bit, similar to that of the DFMs. For both the DM and DFM CAD systems, the image is 
then subjected to an automated breast boundary segmentation algorithm. Further steps are only 
applied to the segmented breast area to reduce computation time. At the enhancement stage, the 
image is processed using a difference-image technique to enhance the signal-to-noise ratio (SNR) of 
the microcalcifications. Then potential signals are segmented from the image background using 
global and locally adaptive segmentation techniques.  Rule-based classification is applied to the 
signal size, contrast and SNR to identify suspected individual microcalcifications. A convolution 
neural network (CNN) is trained to further exclude FP individual microcalcifications. A regional 
clustering procedure is then used to identify clustered microcalcifications. Finally, a trained LDA 
classifier is used to reduce FP microcalcification clusters from previous stage.  The parameters and 
the feature classifiers are trained separately for the FFDM and DFM  CAD systems. 

Two data sets, one for DM and one for DFMs were collected. Each data set contained 96 
cases with 192 images. All cases had two mammographic views: the CC view and the MLO view or 
the lateral (LM or ML) view. Twenty-eight cases contained biopsy-proven malignant clusters and 68 
cases were benign.  
 
Results: 
 

The detection performance of the CAD system is evaluated by free response receiver 
operating characteristic (FROC) analysis. FROC curves can be compared on a per-mammogram and 
a per-case basis.  For mammogram-based FROC analysis, the cluster on each mammogram is 
considered an independent true cluster.  For case-based FROC analysis, the same cluster imaged on 
the two-view mammograms is considered to be one true object and the detection of either or both on 
the two views is considered to be a true-positive (TP).  The FROC curves for the DM and DFM CAD 
systems are compared in Fig. 1. For case-based performance evaluation, the FFDM CAD system 
achieved detection sensitivities of 70%, 80%, and 90% at an average FP rate of 0.07, 0.16, and 0.63 
per image, compared with an average FP rate of 0.15, 0.38, and 2.02 per image for the DFM CAD 
system. The difference was statistically significant (p<0.05). When the FP rates were estimated using 
mammograms negative for microcalcifications, the corresponding FP rates were 0.04, 0.11, and 0.33 
per image for the FFDM CAD system, and 0.08, 0.14, and 0.50 per image for the DFM CAD system.   
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Fig. 1.  Case-based FROC curves of the CAD systems for digital (FFDM) and screen-

film (SFM) mammograms. The FP rates were estimated on mammograms with 
microcalcifications (left) and normal mammograms (right). 

 
Conclusion: 
 

The CAD system for microcalcification detection on DMs has a higher performance than that 
on DFMs in this data set.  Since the sample size is small, it is unknown if the results can be 
generalized to unknown patient cases. Further study is underway to collect a larger data set and to 
improve the performance of the systems. 
 
(C) CAD system for mass detection on mammograms – Two view information fusion 
 

In screening mammography, radiologists utilize information from the CC view and the MLO 
view to confirm true mass and eliminate FPs. We are developing two-view fusion technique to 
combine the information from two mammographic views, thereby emulating radiologists’ strategy in 
differentiating true masses and FPs. 
 
Methods: 
 

The fusion method used in this study is based on the assumption that the corresponding true 
mass on two different mammographic views will exhibit similarities in their geometric, 
morphological and textural features which are relatively invariant with respect to the imaging views.  
On the other hand, FPs detected by CAD system are expected to exhibit a lesser degree of similarity 
because they are usually objects formed by different normal tissues.   

A schematic of our two-view CAD system is shown in Fig. 2. The single-view mass CAD 
system is first applied to each mammographic view independently.  For a given detected object on 
one view, geometric pairing is performed using the nipple-to-object distance as the average radius of 
an annular region on the other view within which the detected objects can be paired with the given 
object.  Similarity measures between each pair of objects are derived from the pairs of individual 
object features.  The similarity features include morphological features, Hessian feature, correlation 
coefficients between the two paired objects and texture features.  A similarity classifier is trained to 
distinguish between true and false pairs by merging the similarity features into a similarity score for 
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each object.  The similarity score and the single-view object score of the object are then fused to form 
a final score for the object.   

We randomly separated the cases in our data set into two independent equal sized data sets: 
243 cases with 494 images and 232 cases with 478 images.  The training and testing were performed 
using the 2-fold cross validation method.  The detection performance of the CAD system was 
assessed by FROC analysis.  To evaluate the overall test performance, an average test FROC curve 
was obtained from averaging the FP rates at the same sensitivity along the two corresponding test 
FROC curves from 2-fold cross validation.  
 

Fig. 2.  Schematic of a two-view information fusion scheme for mass 
detection on mammograms. 

Results: 
 

When the single-view CAD system was applied to the test set, the FPs/image were 2.0, 1.5, 
and 1.2 at the case-based sensitivities of 90%, 85% and 80%, respectively.  With the two-view CAD 
system, the FP rates were improved to 1.7, 1.3, and 1.0 FPs/image at the same case-based 
sensitivities.  Fig. 3 shows the comparison of the test performance of the single-view CAD system 
and the two-view CAD systems by using image-based and case-based average FROC curves, 
respectively.  The improvements in the test FROC curves for both subsets were statistically 
significant (p<0.05). 
 
Conclusion: 
 

Two-view information fusion is a promising approach to improving the performance for mass 
detection. Further work is underway to optimize the different stages of our two-view CAD system. 
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Fig. 3. Image-based (left) and case-based (right) average FROC curves obtained 
from averaging the corresponding FROC curves of the two test subsets. 
One-view: detection by the single-view CAD system. Two view: detection 
by using the two-view information fusion scheme. 

 
(D) CAD system for mass detection on mammograms – Bilateral analysis for false positive 

reduction 
 

Radiologists routinely compare density patterns on mammograms of the same view from the 
two breasts in mammographic interpretation.  Asymmetric density can be caused by a new or 
developing lesion while symmetric density are more likely normal breast tissue.  Bilateral 
comparison can therefore be used to detect new masses or to reduce FPs.  We are developing 
computer-vision techniques to implement bilateral analysis in our CAD system for mass detection.  

 
Methods: 

 
 

Fig. 4.  Block diagram of the bilateral CAD system for FP reduction on 
mammograms. 
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A schematic of our bilateral analysis method is shown in Fig. 4.  We first detect the mass 
candidates on each view by utilizing our unilateral CAD system. For each detected object, the 
regional registration technique is used to define a region of interest (ROI) that is “symmetrical” to the 
object location on the contralateral mammogram. Spatial gray level dependence matrices (SGLD) 
texture features and morphological features are extracted from both the ROI containing the detected 
object on a mammogram and its corresponding ROI on the contralateral mammogram. Bilateral 
features are then generated from the extracted unilateral features and a final bilateral score is formed 
as a new feature to differentiate symmetric from asymmetric ROIs. By incorporating the unilateral 
features of the mass candidates and their bilateral scores, a bilateral classifier was trained to reduce 
the FPs.   

 
Results:  
 

The FROC curves obtained from the unilateral and bilateral CAD systems are compared in 
Fig. 5.  The bilateral CAD system achieved a case-based sensitivity of 70%, 80%, and 85% at 0.52, 
0.83, and 1.05 FPs/image on the test data set. In comparison to the FP rates for the unilateral CAD 
system of 0.67, 1.11, and 1.69, respectively, at the corresponding sensitivities, the FP rates were 
reduced by 22%, 25%, and 37% with the bilateral symmetry information.  
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(a)              (b) 
Fig. 5.  (a) Image-based and (b) case-based FROC curves from the unilateral and 

the bilateral CAD systems. 
 
Conclusion:  
 

Our preliminary results demonstrate that the bilateral features can be utilized to differentiate 
the similarity and dissimilarity between tissues at corresponding locations in the bilateral views, and 
can be useful for improving the performance of a unilateral CAD system by further reducing the 
FPs. Further investigation is underway to improve the bilateral CAD system. 
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(E) Computer-aided mass detection on digital tomosynthesis mammograms (DTM) – 
Dependence on reconstruction image quality 

 
Digital tomosynthesis mammography (DTM) is a new modality that holds the promise of 

improving breast cancer detection. Although it is not included in our original proposal, we believe 
that this new modality in combination with CAD will be an exciting new direction for improving 
breast cancer detection and diagnosis.  We thus performed a pilot study to investigate the feasibility 
of developing a CAD system for breast masses on DTMs.  In the annual report last year, we 
described the image processing methods used in our CAD system.  In this project period, we continue 
the feasibility study by evaluating the dependence of the performance of the CAD system on image 
quality of the reconstructed DTMs. 

 
Methods:  
 

In our CAD system for DTMs, 3D gradient field analysis is first applied to the DTM volume 
for prescreening of mass candidates. Each mass candidate is segmented from the surrounding 
structured background by 3D region growing with adaptive thresholding of the radial gradient. 
Morphological, gray level, and texture features were then extracted from the segmented object, and a 
linear discriminant classifier with stepwise feature selection was designed to reduce FPs.  

Our pilot data set consisted of 26 DTM cases including 23 masses (13 malignant) and 3 areas 
of architectural distortion (2 malignant). The cases were collected at the Massachusetts General 
Hospital (MGH) with IRB approval. The GE DTM prototype system at the MGH acquired 11 PVs of 
the compressed breast over a 50 deg arc in the MLO view. DTM slices were reconstructed at 1-mm 
slice spacing using an iterative maximum-likelihood (ML)-convex technique and a simultaneous 
algebraic reconstruction technique (SART). The image quality of the DTMs reconstructed using both 
methods depended on the number of iterations performed.  We trained the CAD system using a 
leave-one-out resampling scheme. The system was optimized separately for DTM mammograms 
reconstructed at different iterations. The performances of the CAD systems at the different image 
construction conditions were compared using FROC analysis. 

  
Results:  
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(c) 
Fig. 6. FROC curves of the CAD system for DTMs reconstructed with different 

techniques: (a) Maximum likelihood-convex technique at 6 to 11 iterations, 
(b) simultaneous algebraic reconstruction technique at 1 to 2 iterations, and 
(c) comparison of the two techniques. 

 
The FROC curves at selected conditions are shown in Fig. 6.  For the ML technique, the 

FROC curve improved as the number of iterations increased from 6 to 11. For the SART, the best 
FROC curve was obtained with two iterations using a step size of 0.1 at the second iteration. When 
the highest FROC curves from the two reconstruction techniques are compared, both can achieve 
80% sensitivity at about 1.2 FPs/case. 

 
Conclusion:  
 

CAD performance varied with the quality of the reconstructed DTM mammograms. It is 
important to evaluate the impact of reconstruction algorithms and their parameters on lesion detection 
accuracy for both CAD and human readers. 
  
(6) Key Research Accomplishments 
 
• Continue collection of a database of digital mammograms and digitized film mammograms for 

development of the CAD algorithms for both digital mammography and film mammography ---
--- (Task 1) 
 

• Improve microcalcification detection CAD systems for digital mammograms and digitized film 
mammograms and compare the performance or the two CAD systems by FROC analysis ------- 
(Task 3(a), Task 6(a)) 

 
• Develop two-view information fusion to improve the accuracy of the CAD system for mass 

detection and evaluate the system performance by FROC analysis ------- (Task 2(a), Task 4(a), 
Task 6(a)) 
 

• Develop computer-vision techniques for bilateral analysis of mammograms to improve the 
CAD system for mass detection ------- (Task 5(a), Task 5(b)) 
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• Explore computer-aided mass detection for digital tomosynthesis mammograms (DTM) and 

evaluate the effects of image reconstruction techniques on detection accuracy ------- (Task 2(a)) 
 
 
(7) Reportable Outcomes 
 
 As a result of the support by the PRMRP grant, we have conducted studies in CAD for 
mammography and published the results.  The publications in this project year are listed in the 
following. 
 
Peer-Reviewd Journal Articles: 
 
1. Wei J, Sahiner B, Hadjiiski LM, Chan HP, Petrick N, Helvie MA, Roubidoux MA, Ge J, Zhou 

C. Computer-aided detection of breast masses on full field digital mammograms. Medical 
Physics 2005; 32: 2827-2838. 

 
2. Chan HP, Wei J, Sahiner B, Rafferty EA, Wu T, Roubidoux MA, Moore RH, Kopans DB, 

Hadjiiski LM, Helvie MA. Computer-aided detection system for breast masses on digital 
tomosynthesis mammograms – Preliminary experience. Radiology 2005; 237:1075-1080. 

 
Accepted for Publication in Peer-Reviewd Journals:  
 
1. Hadjiiski LM, Sahiner B, Helvie MA, Chan HP, Roubidoux MA, Paramagul C, Blane C, 
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(8) Conclusions 
 

Under the support of this grant, we have investigated various computer-aided detection and 
diagnosis (CAD) methods for analysis of lesions on mammograms.  We continue to collect a database 
of digitized film mammograms (DFMs) and a database of full field digital mammograms (DMs) that 
contain mammographic lesions from our breast imaging division in the Department of Radiology.  
The digital images include the manufacturer’s processed images and unprocessed (raw) images. All 
collected cases are entered into our database management program that stores the coded case 
information to facilitate archiving and retrieval of the cases.  

As discussed in the annual report last year, we continue to develop computer-vision techniques 
using DFMs in parallel with DMs. These techniques should be readily transferable between DFMs 
and DMs with minor modifications and retraining of the system parameters. In this project year, we 
compared the performance of microcalcification detection for the CAD system trained for DMs to that 
trained for DFMs.  We found that both systems can provide high performances with the sensitivity 
slightly higher for DFMs.   

We also continue to improve the CAD system for mass detection.  We have developed two 
multiple-image analysis techniques for the mass detection system.  The first is a two-view information 
fusion technique that combines the image information from the CC-view and the MLO-view 
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mammograms of the same breast.  The second is a bilateral image analysis technique that compares 
the density patterns on left-breast and right-breast mammograms of the same view.  The results of 
FROC analysis demonstrate that both techniques can increase the accuracy of the mass detection CAD 
system.  These new image analysis techniques incorporate methods that are commonly used by 
radiologists in mammographic interpretation. The translation of human intelligence to computer 
vision is proven to be useful for improving the performance of the CAD system.   

We continue to explore the development of a CAD system for digital tomosynthesis 
mammography (DTM).  DTM is a new imaging modality that holds the promise to improve the 
detection and diagnosis of early breast cancer by reducing the camouflaging effect of dense breast 
tissue. In this project year, we evaluated the dependence of the performance of the CAD system on the 
image quality of reconstructed DTMs. We compared two reconstruction techniques – the iterative 
maximum likelihood and the simultaneous algebraic reconstruction techniques.  It was found that both 
techniques can provide high-quality reconstructed DTMs if the parameters are properly chosen, and 
the detection accuracy of the CAD system for DTMs reconstructed using either techniques are 
comparable.  However, the latter technique can reach high image quality with less number of 
iterations, thus reducing the computational costs. 

In summary, we have investigated a number of areas in computer-aided detection of 
mammographic lesions.  We have made progress in the six tasks proposed in the project in this and 
previous project years.  This lays the strong foundation for us to continue the development and to 
improve the robustness of the CAD systems for digital mammograms and digitized film mammograms 
in the coming years.   
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We are developing a computer-aided detection �CAD� system for breast masses on full field digital
mammographic �FFDM� images. To develop a CAD system that is independent of the FFDM
manufacturer’s proprietary preprocessing methods, we used the raw FFDM image as input and
developed a multiresolution preprocessing scheme for image enhancement. A two-stage prescreen-
ing method that combines gradient field analysis with gray level information was developed to
identify mass candidates on the processed images. The suspicious structure in each identified region
was extracted by clustering-based region growing. Morphological and spatial gray-level depen-
dence texture features were extracted for each suspicious object. Stepwise linear discriminant
analysis �LDA� with simplex optimization was used to select the most useful features. Finally,
rule-based and LDA classifiers were designed to differentiate masses from normal tissues. Two data
sets were collected: a mass data set containing 110 cases of two-view mammograms with a total of
220 images, and a no-mass data set containing 90 cases of two-view mammograms with a total of
180 images. All cases were acquired with a GE Senographe 2000D FFDM system. The true
locations of the masses were identified by an experienced radiologist. Free-response receiver oper-
ating characteristic analysis was used to evaluate the performance of the CAD system. It was found
that our CAD system achieved a case-based sensitivity of 70%, 80%, and 90% at 0.72, 1.08, and
1.82 false positive �FP� marks/image on the mass data set. The FP rates on the no-mass data set
were 0.85, 1.31, and 2.14 FP marks/image, respectively, at the corresponding sensitivities. This
study demonstrated the usefulness of our CAD techniques for automated detection of masses on
FFDM images. © 2005 American Association of Physicists in Medicine.
�DOI: 10.1118/1.1997327�

Key words: computer-aided detection, full field digital mammogram �FFDM�, multiresolution im-
age enhancement, gradient field analysis, stepwise linear discriminant analysis
I. INTRODUCTION

Breast cancer is one of the leading causes of death among
American women between 40 and 55 years of age.1 It has
been reported that early diagnosis and treatment can signifi-
cantly improve the chance of survival for patients with breast
cancer.2–4 Although mammography is the best available
screening tool for detection of breast cancers, studies indi-
cate that a substantial fraction of breast cancers that are vis-
ible upon retrospective analyses of the images are not de-
tected initially.5–8 Computer-aided diagnosis �CAD� is
considered to be one of the promising approaches that may
improve the sensitivity of mammography.9,10 Computer-
aided lesion detection can be used during screening to reduce
oversight of suspicious lesions that warrant further work-up.
Computer-aided lesion characterization can assist in the esti-
mation of the likelihood of malignancy of lesions by using
image and/or other information during the diagnostic stage.
The majority of studies to date show that CAD can improve
radiologists’ lesion detection sensitivity,11–16 although Gur et
al.17 found that CAD had no significant effect on the radi-
ologists in their academic setting when they averaged the
results from both low-volume and high-volume radiologists.

18
Further analysis of Gur’s data by Feig et al. indicated that
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the 17 low-volume radiologists in Gur’s study achieved simi-
lar increase in sensitivity as reported in other studies. The
outcome of CAD studies therefore depends on the study de-
sign and data analysis.

A number of investigators have reported CAD algorithms
for detection of masses on mammograms. Their approaches
to prescreening of mass candidates were based primarily on
mass characteristics including: �1� asymmetric density be-
tween left and right mammograms,19–22 �2� texture,23,24 �3�
spiculation,25,26 �4� gray level contrast,27–31 and �5�
gradient.32 Some of these approaches were refined with a
combination of the mass characteristics. Feature classifiers
were then used to further differentiate masses from normal
breast tissues.

Most mammographic CAD algorithms developed so far
are based on digitized screen-film mammograms �SFMs�. In
the last few years, full field digital mammographic �FFDM�
technology has advanced rapidly because of the potential of
digital imaging to improve breast cancer detection. Several
manufacturers have obtained clearance from the FDA for
clinical use. It is expected that FFDM detectors will provide
higher signal-to-noise ratio �SNR� and detective quantum ef-

ficiency, wider dynamic range, and higher contrast sensitivity

2827„9…/2827/12/$22.50 © 2005 Am. Assoc. Phys. Med.
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than digitized mammograms. The spatial resolution of digital
detectors may also be different from that of digitized SFMs
even when their pixel pitches are equal. Li et al. investigated
the performance of their CAD system on mass detection that
was developed for SFMs and modified for FFDMs.33 Their
preliminary results on a small data set showed that it
achieved 60% sensitivity at 2.47 false positives �FPs�/image.
It is expected that proper adaptation based on the imaging
characteristics of FFDMs and re-training of the CAD system
with FFDMs would improve the performance. Because of
the higher SNR and linear response of digital detectors, there
is also a strong potential that more effective feature extrac-
tion techniques can be designed to optimally extract signals
from the image and improve the accuracy of CAD. Several
commercial CAD systems already obtained FDA approval
for use with FFDMs. The commercial CAD systems gener-
ally reported similar performance on FFDMs and SFMs.
However, their study was not reported in peer-reviewed jour-
nals so that the data set and algorithm are unknown. Re-
cently, an assessment study34 to compare the performance of
two commercial and one research CAD system for SFMs
showed that their mass detection sensitivities ranged from
67% to 72% and the FP rates ranged from 1.08 to 1.68 per
four-view examinations. The differences in sensitivities were
not significant whereas the differences in the FP rates were
significant, depending on the examinations and CAD sys-
tems used.34

We have developed a CAD system for the detection of
masses on SFMs in our previous studies.30,35,36 We are de-
veloping a mass detection system for mammograms acquired
directly by a FFDM system. In this study, we adapted our
mass detection system developed for SFMs to FFDMs by
optimizing each stage and retraining. In an effort to develop
a CAD system that is less dependent on the FFDM manufac-
turer’s proprietary preprocessing methods, we used the raw
FFDM as input and developed a multiresolution preprocess-
ing scheme for image enhancement. A new technique was
also designed for prescreening of mass candidates on the
preprocessed images.

II. MATERIALS AND METHOD

A. Data sets

The mammograms were collected from patient files at the
Department of Radiology with Institutional Review Board
approval. Digital mammograms at the University of Michi-
gan are acquired with a GE Senographe 2000D FFDM sys-
tem. The GE system has a CsI phosphor/a :Si active matrix
flat panel digital detector with a pixel size of 100 �m
�100 �m and 14 bits per pixel. In this study, we used two
data sets: a mass set containing FFDMs with malignant or
benign masses and a no-mass set containing FFDMs without
masses. The no-mass set was obtained from microcalcifica-
tion cases collected for the development of our microcalcifi-
cation CAD systems. The cases were included as normal,
with respect to masses, only if they were verified to be free
of masses by an experienced Mammography Quality Stan-

dards Act �MQSA� radiologist. Our mass detection system
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aims at application to screening mammography so that the
mass cases, regardless of malignant or benign, are considered
positive. All cases had two mammographic views, the cran-
iocaudal view and the mediolateral oblique view or the lat-
eral �LM or ML� view. The mass set contained 110 cases
with a total of 220 images. The no-mass set contained 90
cases with a total of 180 images. The mass data set was used
to estimate the detection sensitivity and the no-mass data set
was used for estimating the FP rate. There were a total of 110
biopsy-proven masses in the mass data set. Eighty-seven of
the masses were benign and 23 of the masses were malig-
nant. A MQSA radiologist identified the locations of the
masses, measured the mass sizes as the longest dimension
seen on the two-view mammograms, provided descriptors of
the mass shapes and mass margins, and also provided an
estimate of the breast density in terms of BI-RADS category.
Figure 1 shows the information of our data set which in-
cludes the distributions of mass sizes, mass shapes, mass
margins, and breast density.

B. Methods

Our CAD system consists of five processing steps: �1�
preprocessing by using multiscale enhancement, �2� pre-
screening of mass candidates, �3� identification of suspicious
objects, �4� feature extraction and analysis, and �5� FP reduc-
tion by classification of normal tissue structures and masses.
The block diagram for the detection scheme is shown in Fig.
2. These steps are described in more detail in the following.

We randomly separated the mass data set into two inde-
pendent, equal sized subsets. Each subset contained 55 cases
with 110 images. Cross validation was used for training and
testing the algorithms. The training included selecting the
preprocessing Laplacian pyramid reconstruction weights, ad-
justing the filter weights for prescreening and clustering, de-
termining thresholds for rule-based classification, and select-
ing morphological and texture features and classifier
weights. Once the training with one subset was completed,
the parameters and all thresholds were fixed for testing with
the other subset. The training and test subsets were switched
and the training process was repeated. The overall detection
performance was evaluated by combining the performances
for the two test subsets. The trained algorithms with the fixed
parameters were also applied to the no-mass mammograms
to estimate the FP rate in screening mammograms.

1. Preprocessing

FFDMs are generally preprocessed with proprietary meth-
ods by the manufacturer of the FFDM system before being
displayed to readers. The image preprocessing method used
depends on the manufacturer of the FFDM system. To de-
velop a CAD system that is less dependent on the FFDM
manufacturer�s proprietary preprocessing methods, we use
the raw FFDM as input to our CAD system. We developed a
multiscale preprocessing scheme for image enhancement.

Multiscale methods have been used for contrast enhance-
ment of medical images. Since a multiscale method uses the

information from a large number of frequency channels ex-
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tracted from the image adaptively, it is more flexible and
versatile than the commonly used enhancement methods,
such as unsharp masking, which uses a small number of
frequency channels. Two types of multiscale methods have
been used as the preprocessing methods for the contrast en-
hancement of mammograms: the wavelet method and the
Laplacian pyramid method.37 A previous study has shown
that, for the purpose of image enhancement, using a Laplac-

FIG. 2. Schematic diagram of our CAD system for mass detection on
FFDM. The system is developed for screening mammography so that all
masses, regardless of malignant or benign, are considered positive. The FP
classification stage includes rule-based classification, a morphological LDA
classifier, and a texture feature LDA classifier for differentiating masses

from normal breast tissues.
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ian pyramid method is advantageous compared to using the
fast wavelet transformation which introduces visible
artifacts.38 In this project, therefore, we chose the Laplacian
pyramid method as our preprocessing method.

A flowchart of our preprocessing method is shown in Fig.
3. In brief, the mammogram is first segmented automatically
into the background and the breast region. Second, a loga-
rithmic transform is applied to the breast image. The Laplac-
ian pyramid method is used to decompose the breast image

FIG. 1. The information of our mass
data set: �a� distribution of mass sizes,
�b� distribution of mass shapes, �c�
distribution of mass margins, C: cir-
cumscribed, Ind: indistinct, M: mi-
crolobulated, Ob: obscured, Sp: spiqu-
lated, �d� distribution of the breast
density in terms of BI-RADS category
estimated by a MQSA radiologist.

FIG. 3. Schematic diagram for the image preprocessing stage of our mass
detection system, which includes breast boundary segmentation, logarithmic

image transformation, and Laplacian pyramid multiscale enhancement.
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into multiscales. A nonlinear weight function based on the
pixel gray level from each of the low-pass components is
designed to enhance the high-pass components.

Since the contrast between the breast and the background
in a raw FFDM is high, a two-step algorithm was developed
for the segmentation of breast region. First, Otsu’s method39

is used to calculate a threshold and binarize the original im-
age. Second, an eight-connectivity labeling method is used to
identify the connected regions below the threshold on the
binary image. The region with the largest area will be con-
sidered to be the breast region.

Clinical mammograms are usually viewed in a negative
mode of the raw images. In order to process an image with
the same format as the clinical mammograms, we first use an
inverted logarithmic function40 to transform the raw data. A
multiresolution method is then used to enhance the log-
transformed image. The inverted logarithmic function for
signal transfer can be expressed as

Sx = ln�Xmax

X
� �1�

where X is the gray level of the raw data, Xmax is the maxi-
mum of the 14 bit digital gray scale number �i.e., 16 383�.
The transformed image is then linearly scaled to 12 bit pixel
values.

The Laplacian pyramid decomposition is a multiscale
method that was first introduced as an image compression
technique.37 We previously evaluated the effect of Laplacian
pyramid data compression on the detection of microcalcifi-
cations on digitized mammograms.41 An illustration of a La-
placian decomposition tree is shown on the left-hand side of
Fig. 4. The Laplacian pyramid is a sequence of error images
L0 ,L1 , . . . ,Ln. Each is the difference between two consecu-
tive levels of the Gaussian pyramid G0 ,G1 , . . . ,Gn, where G0

is the original image. Each subsequent level of the Gaussian
pyramid in the decomposition tree is generated by convolu-
tion of the image at the previous level with a 5�5 kernel,
w�m ,n�, that has weights of 0.4 at the center, 0.25 at the
eight nearest neighbors of the center, and 0.05 at the 16
peripheral pixels, and then downsampled by a factor of 2, as
described in Eq. �4�. The decomposition of the image from
level k to level k+1 can be expressed mathematically by

Lk = Gk − Expand�Gk+1� , �2�

where

Expand�Gk+1� = 4 �
m=−2

2

�
n=−2

2

w�m,n� · Gk+1� i − m

2
,
j − n

2
� ,

�3�

Gk�i, j� = �
m=−2

2

�
n=−2

2

w�m,n�Gk−1�2i + m,2j + n� . �4�

The original image can be recovered by following the Gauss-
ian reconstruction tree shown on the right-hand side of Fig. 4
if no enhancement is applied to the Laplacian pyramid. At a

given level of the Gaussian reconstruction tree, the image is
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expanded �convolved and upsampled�, as shown in Eq. �3�,
and then added to the Laplacian error image of the corre-
sponding level. Details of the decomposition and reconstruc-
tion processes can be found in the literature.37

We enhance the reconstructed image to facilitate mass
detection. The image at each level of the Laplacian pyramid
that corresponds to a bandpass image is mapped by a non-
linear function. In this study, we use a nonlinear function that
incorporates the information from each bandpass image. A
Gaussian pyramid expansion is then used to reconstruct the
image from the low pass components and the enhanced
bandpass components, as shown in Fig. 4. The reconstruction
scheme is defined by

r�k� = � · Expand�Gk+1� + � · �Expand�Gk+1��p · Lk, �5�

where �, �, and p are constant values in the range of 0.2–2.0
experimentally chosen for each frequency level.

Figures 5�a� and 5�b� show an example of a GE raw im-
age and its processed image provided by the GE FFDM sys-
tem. The histograms of the raw image and the processed
image are shown next to the corresponding images. An ex-
ample of the processed image using our multiresolution en-
hancement method and the corresponding histogram are
shown in Fig. 5�c�.

2. Prescreening and segmentation
of suspicious objects

In our previous CAD system developed for digitized
SFMs, an adaptive density-weighted contrast enhancement

35

FIG. 4. Multiscale enhancement using the Laplacian pyramid decomposition
method: Laplacian decomposition tree on the left-hand side and the Gauss-
ian reconstruction tree on the right-hand side. The different levels of the
Gaussian pyramid images are denoted by Gi, �i=0, . . . ,n�. The error images
at different levels of the Laplacian pyramid are denoted by Li, �i
=0, . . . ,n�. The primed quantities Gi� and Li� denoted the images at different
levels after enhancement. ∑ denotes the summation operation. The image is
downsampled by a factor of 2 when it goes down every level of the decom-
position tree, and upsampled by a factor 2 when it moves up every level of
the reconstruction tree.
�DWCE� filter was developed for prescreening. Although
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the DWCE filter using the gray level information can iden-
tify the suspicious locations of masses on mammograms with
high sensitivity, the prescreening objects often include a
large number of enhanced normal breast structures.

In this study, we investigated the use of a new method that
combines gradient field information and gray level informa-
tion to detect mass candidates on FFDMs. Gradient field in-
formation is commonly used in computer vision or other
fields to extract objects or intensity field distributions. Ko-
batake et al.42 designed a filter, referred to as an iris filter, to
calculate the convergence of gradient index around each
pixel on SFMs which provided shape information for detec-
tion of masses. An extension of the iris filter, referred to as
an adaptive ring filter, was developed by Wei et al.43 for
detection of lung nodules on chest x-ray images. In this
study, we have developed a two-stage gradient field analysis
method which uses not only the shape information of masses
on mammograms but also incorporates the gray level infor-
mation of the local object segmented by a region growing
technique in the second stage to refine the gradient field
analysis.

To reduce noise in the gradient calculation, the image is
smoothed with a 4�4 box filter and subsampled to

FIG. 5. An example of �a� GE raw image, �b� GE processed image, and �c�
our processed image by using the Laplacian pyramid multiscale method.
The gray level histogram of each image is also shown. The GE raw image
has 14 bit gray levels but the histogram only plotted the lower 12 bits be-
cause very few pixels had gray levels higher than 4095.
400 �m�400 �m. The gradient field analysis is applied to
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the smoothed image. At each pixel c�i� within the breast,
concentric annular regions centered at c�i� with an average
radius, R�k�, of k pixels from c�i� and a radial width of
4 pixels are defined within a circular region of about 12 mm
in radius. The gradient vector at each pixel p�j� within an
annular region is computed and the gradient direction is ob-
tained by projecting the gradient vector to the radial direction
vector from c�i� to p�j�. The average gradient direction over
an annular region at the average radius R�k� is calculated as
the mean of the gradient directions over pixels on three ad-
jacent annular regions R�k−1�, R�k�, and R�k+1�. Finally,
the gradient field convergence at c�i� was determined as the
maximum of the average gradient directions among all an-
nular regions. A region of interest �ROI� of 256
�256 pixels in the 100 �m�100 �m images is identified
with its center placed at each location of high gradient con-
vergence. The object in each ROI is segmented by a region
growing method44 in which the location of high gradient
convergence is used as the starting point. After region grow-
ing, all connected pixels constituting the object are labeled.
Finally, the gradient convergence at the center location of the
ROI is recalculated within the segmented object. Objects
whose new gradient convergence is lower than 80% of the
original value are rejected.

After prescreening, the suspicious objects are identified
by using a two-stage segmentation method. First, the
background-corrected ROI was weighted by a Gaussian
function with �=256 pixels. Then, a k-means clustering us-
ing the pixel values in a background-corrected image and a
Sobel filtered image as features is used to find the object.
Figures 6�a� and 6�b� show the initial detection locations and
the grown objects, respectively, obtained by prescreening the
mammogram shown in Fig. 5�c�.

3. Feature extraction and FP reduction

FP classification in our mass detection system is accom-
plished by a three-stage classification scheme.36,44 For each
suspicious object, eleven morphological features are ex-
tracted. Rule-based classification and a linear discriminant
analysis �LDA� classifier using all 11 morphological features
as input predictor variables are trained to remove the de-
tected structures that are substantially different from breast
masses. The training data set alone was used for training the
classification rules and the weights of the LDA classifier.
After morphological classification, global and local multi-
resolution texture analyses45 are performed in each remain-
ing ROI by using the spatial gray level dependence �SGLD�
matrix. Briefly, the wavelet transform is employed to decom-
pose an ROI into three levels for global texture analysis.
Thirteen types of texture features44,46 are extracted from each
ROI. Each feature is calculated at 14 pixel distances and 2
angular directions. A total of 364 features �13 texture
measures�14 distances�2 directions� is extracted from
global texture analysis. Local texture features are extracted
from the local region containing the detected object �object
region� and the peripheral regions within each ROI. A total

of 208 features �104 features from the object region and 104



2832 Wei et al.: Computer-aided detection of masses on digital mammograms 2832
features from the peripheral regions� are extracted. The third-
stage FP reduction using the texture features is described
next.

4. Texture classification of masses
and normal tissue

In order to obtain the best texture feature subset and re-
duce the dimensionality of the feature space to design an
effective classifier, feature selection with stepwise LDA was
applied. At each step one feature was entered or removed
from the feature pool by analyzing its effect on the selection
criterion, which was chosen to be the Wilks’ lambda in this
study. The optimization procedure used a threshold Fin for
feature entry, a threshold Fout for feature removal, and a tol-
erance threshold T for excluding features that had high cor-
relation with the features already in the selected pool. Since
the appropriate values of Fin, Fout, and T were unknown, we
examined a range of Fin, Fout, and T values using an auto-
mated simplex optimization method. For a given combina-
tion of Fin, Fout, and T values, the algorithm used a leave-
one-case-out resampling method within the training subset to
select features and estimate the weights for the LDA classi-
fier. To evaluate the classifier performance, the test discrimi-

FIG. 6. An example demonstrating the processing steps with our CAD sys-
tem: �a� object locations identified in prescreening, �b� identified suspicious
objects, �c� detected objects after FP reduction, and �d� image superimposed
with ROIs identifying the detected objects. The true mass is indicated by an
arrow.
nant scores from the left-out cases were analyzed using re-
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ceiver operating characteristic �ROC� methodology.47 The
discriminant scores of the mass and normal tissue were used
as the decision variable in the LABROC program, which fits a
binormal ROC curve based on maximum likelihood estima-
tion. The accuracy for classification of mass and normal tis-
sue was evaluated as the area under the ROC curve, Az. The
test Az for the left-out cases in the leave-one-out resampling
within the training subset was used as a figure of merit to
guide the simplex algorithm to search for the best set of Fin,
Fout, and T values within the parameter space. In this ap-
proach, feature selection was performed without the left-out
case so that the test performance would be less optimistically
biased.48 However, the selected feature set in each leave-one-
case-out cycle could be slightly different because every cycle
had one training case different from the other cycles. In order
to obtain a single trained classifier to apply to the test subset,
a final stepwise feature selection was performed with the
entire training subset and a set of Fin, Fout, and T thresholds
chosen from the output of simplex training process. This set
of Fin, Fout, and T thresholds was chosen based not only on
the test Az values, which were generated when the simplex
procedure was searching through the parameter space, but
also on the average number of features selected. The appro-
priate thresholds were chosen as a balance between keeping
the number of selected features small and a relatively high
classification accuracy by LDA. The chosen thresholds were
then applied to the entire training subset to obtain the final
set of features using stepwise feature selection and estimate
the weights of the LDA. The LDA classifier with the selected
feature set was then fixed and applied to the test subset. The
test subset was independent of the training subset as de-
scribed in Sec. II B 2 and was not used in the above-
described leave-one-case-out classifier training process.

5. Evaluation methods

The detected individual objects were compared with the
“truth” ROI marked by an experienced radiologist. A de-
tected object was scored as true positive �TP� if the overlap
between the bounding box of the detected object and the
truth ROI was over 25%. Otherwise, it would be scored as
FP. The 25% threshold was selected as described in our pre-
vious study.36 The detection performance of the CAD system
was assessed by free response ROC �FROC� analysis. FROC
curves were presented on a per-mammogram and a per-case
basis. For mammogram-based FROC analysis, the mass on
each mammogram was considered an independent true ob-
ject; the sensitivity was thus calculated relative to 220
masses. For case-based FROC analysis, the same mass im-
aged on the two-view mammograms was considered to be
one true object and detection of either or both masses on the
two views was considered to be a TP detection; the sensitiv-
ity was thus calculated relative to 110 masses. Figure 6�c�
shows an example of the final detected objects and Fig. 6�d�
shows the locations of these objects superimposed on the
mammogram.

To evaluate the effect of the preprocessing methods on

mass detection, we also trained a CAD system using the GE
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processed image as input. This CAD system used the same
methods as those described earlier for the raw images except
that the Laplacian pyramid preprocessing step was not ap-
plied to the GE processed image, and that the prescreening
and feature classifiers were retrained specifically for the GE
processed images to obtain the best performance. The train-
ing and test subsets contained the same corresponding cases
as for the raw image subsets. The training and testing were
performed using the above-described cross validation
method. The performance of the CAD system using the GE
processed images was quantified by the average test FROC
curve and compared with that using the raw images.

III. RESULTS

With raw images as input and Laplacian pyramid en-
hancement, our CAD system using the two-stage gradient
field analysis detected 92.7% �204/220� of the masses with
an average of 18.9 �4152/220� objects/image at the pre-
screening stage, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone. After FP reduction using the rule-based and
linear classifier based on morphological features, there were
a total of 3412 mass candidates �15.5 objects/image� at a
sensitivity of 90.5% �199/220�.

The texture-based LDA classifier for FP reduction was
designed with stepwise feature selection and simplex optimi-
zation. The most effective subset of features from the avail-
able feature pool was selected for each of the training subsets
during the training procedure. Twenty �11 global and 9 local�
and 19 �12 global and 7 local� texture features were selected
from the two independent training subsets, respectively. The
test ROC curves are shown in Fig. 7. The training Az values
of the LDA classifier on the two training subsets were
0.87±0.02 and 0.88±0.01, respectively. The classifiers
achieved Az values of 0.89±0.02 and 0.85±0.02 on the in-
dependent test subsets, respectively. Figure 8 shows the
FROC curves for the two test subsets after FP reduction with
the corresponding trained LDA classifiers. An average FROC

FIG. 7. The test ROC curves from the two independent mass subsets. The
LDA classifiers using text features achieved an Az value of 0.89±0.02 for
test subset 1 and 0.85±0.02 for test subset 2 in the classification of mass and
normal breast tissues.
curve was derived from these two FROC curves by averag-
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ing the FP/images at the corresponding sensitivities. This
average test FROC curve is plotted in Fig. 9 for comparison
with the other FROC curves, described next.

In addition to using the mass data set containing 110 cases
for the cross validation training and testing, we used a no-
mass data set containing 90 cases with 180 images to evalu-
ate the FP detection rate in normal cases. Since two sets of
trained parameters were acquired as a result of the cross
validation training, we applied the two trained CAD systems
separately to the no-mass data set for FP detection. The num-
ber of FP marks produced by the algorithm was determined
by counting the detected objects on these normal cases only.
The mass detection sensitivity was determined by counting
only the abnormal objects on each of the test mass subsets.
The combination of the sensitivity from each of the test mass
subsets and the FP rate from the normal data set at the cor-
responding detection thresholds resulted in a test FROC
curve. The two test FROC curves were then averaged, as
described earlier, to obtain an overall FROC curve quantify-
ing the test performance of the CAD system. Figures 9�a�
and 9�b� show the comparison of the average FROC curves
with the FP rates estimated from the two data sets. The test
FROC curve with the FP rate estimated from the no-mass

FIG. 8. The test FROC curves from the two independent mass subsets for
the CAD system using the raw images as input and processed with the
Laplacian pyramid method. The FP rate was estimated from the mammo-
grams with masses. �a� Image-based FROC curves, �b� case-based FROC
curves.
data set showed a case-based detection sensitivity of 70%,
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80%, and 90% at 0.85, 1.31, and 2.14 FP marks/image,
which are slightly higher than the FP rates of 0.7, 1.1, and
1.8 marks/image, respectively, estimated from the mass data
set. Since our mass detection algorithm limits the maximum
number of output marks to be 3 at the final stage, the FP
marker rates will be slightly higher if the detection is per-
formed in no-mass images. However, many images do not
reach the maximum of 3 marks so that the difference in the
FP marker rate between the mass and no-mass set is less than
one. We also analyzed the detection accuracy of the system
for malignant and benign masses separately. Figures 10�a�
and 10�b� show the average FROC curves for detection of
malignant and benign masses.

The average test FROC curves of the CAD system using
the GE processed images as input were compared to those of
the CAD system using raw images as input and Laplacian
pyramid multiscale preprocessing as shown in Fig. 9. The
FROC curves were plotted as the detection sensitivity as a
function of the number of FP marks per image on the mass
data set. The CAD system using the GE processed images as

FIG. 9. Comparison of the average test FROC curves obtained from: �1� the
CAD system using raw images as input, with the FP rate estimated from the
mammograms with masses, �2� the CAD system using raw images as input,
with the FP rate estimated from the normal mammograms without masses,
and �3� the CAD system using GE processed images as input, with the FP
rate estimated from the GE processed mammograms with masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
input achieved a case-based sensitivity of 70%, 80%, and
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90% at 0.9, 1.6, and 3.1 FP marks/image, respectively, com-
pared with 0.7, 1.1, and 1.8 FP marks/image on the CAD
system using raw images as input.

IV. DISCUSSION

Several FFDM systems have been approved for clinical
applications. It is important to develop a CAD system that
can easily be adapted to images acquired by FFDM systems
from different manufacturers. In this study, we are develop-
ing a CAD system that uses the raw FFDMs as the input.
Since digital detectors generally have a linear response to
x-ray exposure, the raw pixel values are a linear function of
the absorbed x-ray energy in the detector. The signal range
between different digital detectors can therefore be normal-
ized linearly with respect to each other. Although the spatial
resolution and noise properties of the images from different
detectors are still different, the use of raw images already
reduces one of the major differences between mammograms
from different FFDM systems. For preprocessing of the raw
images, we developed a multiresolution enhancement
method. An example of a typical mammogram processed by
the GE method and our method is compared in Fig. 5. As
seen from this example, the enhancement of mammographic

FIG. 10. Comparison of the average test FROC curves for the malignant and
benign mass sets. The CAD system using raw images as input was used and
the FP rate was estimated from the mammograms without masses. �a�
Image-based FROC curves, �b� case-based FROC curves.
structures was stronger for our processed image than for the



2835 Wei et al.: Computer-aided detection of masses on digital mammograms 2835
GE processed image. From a comparison of their histograms,
it was found that the two histograms are very similar except
for the average gray level.

For the evaluation of the effect of the preprocessing meth-
ods on computerized mass detection, we observed that our
Laplacian pyramid preprocessing method provided higher
detection accuracy than the GE processing method. As
shown in Fig. 5, the Laplacian pyramid preprocessing
method applies a stronger edge enhancement to the image
than the GE method. Our preprocessing method aims at en-
hancing the image structures for computer vision whereas
the GE processing method was designed to enhance the im-
age for human visual interpretation. The stronger enhance-
ment used for preprocessing the raw images appeared to im-
prove the accuracy of the computer in detecting the masses.

Currently, there is no established statistical analysis
method for testing the significance of the difference between
two FROC curves generated by a CAD system. Chakraborty
et al. proposed using an alternative free-response ROC
�AFROC� method49 to transform the FROC data to AFROC
data, to which the curve fitting software and statistical sig-
nificance tests for ROC analysis can then be applied and
demonstrated its application to human observer performance
rating data. In the AFROC method, false-positive images
�FPIs� instead of FPs per image are counted. The confidence
rating of a FPI is determined by the highest confidence FP
decision on the image regardless of how many lower confi-
dence FP decisions are made on the same image. We applied
the AFROC method to evaluate the differences in pairs of
our FROC curves that used the no-mass set for estimation of
the FP rates. The ROCKIT software developed by Metz et al.47

was used to analyze the AFROC data. The comparison of A1

and p values is summarized in Table I. The area under the
fitted AFROC curve �A1� was 0.44 and 0.39, respectively, on
mass test subsets 1 and 2 for the CAD system using raw
images as input and processed with our Laplacian pyramid
method, and 0.37 and 0.31, respectively, on the same subsets
for the CAD system using GE processed images as input.
The difference between the fitted AFROC curve for our pro-
cessed images and that for the GE processed images was
statistically significant �p�0.05� for both test subsets. How-
ever, all four fitted AFROC curves deviated systematically
from the AFROC data �see two examples plotted in Fig. 11

TABLE I. Estimation of the statistical significance in th
system using the FFDM raw images as input and pro
CAD system using GE processed images as input.
no-mass data set �Fig. 9� were compared.

A1 �AFROC

Test
subset 1

Test
subset 2

Raw+LP processed 0.44 0.39
GE processed 0.37 0.31
for the test subset 1�. It is uncertain whether the AFROC
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method is applicable to our FROC data and thus whether the
statistical significance testing is valid.

More recently, Chakraborty et al.50 proposed a JAFROC
method and provided software to estimate the statistical sig-
nificance of the difference between two FROC curves. We
also applied the JAFROC analysis to the two pairs of FROC
curves. The figure-of-merit �FOM� from the output of the
JAFROC software was 0.46 and 0.41, respectively, on mass
test subsets 1 and 2 for the CAD system using raw images as
input and processed with our Laplacian pyramid method, and
0.39 and 0.34, respectively, on the same subsets for the CAD
system using GE processed images as input. The difference
between the FOM for our processed images and that for the
GE processed images was again statistically significant �p
�0.05�. The FOM values were about 0.02 higher than the
corresponding A1 values. The JAFROC software did not pro-
vide a fitted curve or a goodness-of-fit indicator in the output
so that it is not known whether this model fits our FROC
data better than the AFRPC method. Although both methods
indicate that the improvement in the FROC performance us-
ing our Laplacian pyramid processed images is statistically

ference between the FROC performance of the CAD
with our Laplacian pyramid method and that of the

FROC curves with the FP rates obtained from the

FOM �JAFROC�

p
values

Test
subset 1

Test
subset 2

p
values

0.012 0.46 0.41 0.006
0.0009 0.39 0.34 0.012

FIG. 11. Comparison of alternative free-response receiver operating charac-
teristic �AFROC� curves. The raw curves were transformed from the FROC
curves of mass detection on test subset 1 using either the raw images as
input and processed with the Laplacian pyramid method �LP� or the GE
processed images as input. The FP rate was estimated from the mammo-
grams without masses. The fitted AFROC curves were obtained by applying
e dif
cessed
The

�

the ROCKIT program to the transformed AFROC data.
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significant, further investigations are needed to study
whether these models are valid for analyzing the FROC per-
formance of CAD systems.

The prescreening technique is an important task in a CAD
system. A number of researchers have developed methods for
detection of suspicious masses on SFMs and CRs. The pre-
vious methods produced between 10 to 30 FPs/image for a
mass detection sensitivity of approximately 90%. However,
it is difficult to compare the effectiveness of the different
methods because of the differences in the image recording
systems and in the data sets. In this study, we developed a
new method that combines gradient field information, which
was originally developed for the detection of lung nodules on
chest x-ray images,43 and gray level information44 for pre-
screening mass candidates on the FFDMs. The new method
produced 18.9 objects/image at 93% sensitivity in the pre-
screening step, compared with an average of 23.8 objects/
image at the same sensitivity by using gradient field infor-
mation alone.

The texture features in this study were extracted by using
the SGLD matrix. A total of 572 features were included in
our initial feature pool. These features were also used by our
CAD system previously developed for SFMs. An average
number of 19.5 features were selected by using a stepwise
feature selection method. The Az values for the LDA classi-
fiers were 0.87±0.02 and 0.88±0.01 on the two training sub-
sets, and 0.89±0.02 and 0.85±0.02 on the test subsets, re-
spectively. The slightly higher test Az from the first test
subset than the Az from its training subset may indicate that
some relatively easy cases were assigned, by chance, to that
test set during random partitioning. We also investigated if
other features could improve the performance of our CAD
system. The different feature spaces that we examined in-
cluded features extracted from principal component analysis
applied to the ROI image, run length statistics texture fea-
tures extracted from the ROI images, and combination of one
or both of these feature spaces with the SGLD feature space.
However, the test results showed that a LDA classifier de-
signed in the SGLD feature space alone provided the best
performance. Although this was found to be true for both our
CAD mass detection system for SFMs developed previously
and the current system for FFDMs, it is still difficult to con-
clude that the SGLD features are the best feature set for
classification between breast masses and normal tissues. One
major concern of the SGLD feature space is that the depen-
dence of the feature values on the pixel pair distance and
angular direction leads to a feature pool with a large number
of features. Some features in such a large feature space may
provide good performance in classification of masses and
normal structures by chance. We attempted to alleviate this
problem by using an independent test set to evaluate the
classifier performance. However, since we chose the overall
system parameters with the knowledge of the performance
for the test sets, the evaluation would still amount to valida-
tion rather than true testing. We have verified that our CAD
system for SFMs can achieve reasonable performance in a

36
true independent data set and a prospective pilot clinical
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trial.16 The performance of the current CAD system for
FFDMs will have to be evaluated similarly when indepen-
dent data sets become available.

The detection performance of a CAD system for malig-
nant masses is more important than its performance for all
masses. Figures 10�a� and 10�b� indicate that the sensitivity
of the system is higher for malignant masses than for benign
masses. This is consistent with our observation in previous
studies of our CAD system for digitized SFMs.36 However,
since our current data set contained only 23 malignant cases,
there will be large statistical uncertainty in the evaluation of
sensitivity in this subset. A larger data set is being collected
for comparing the detection performances of the CAD sys-
tem between malignant and benign masses and also for the
purpose of classifying malignant and benign masses. Further-
more, CAD algorithms developed for SFMs have been
proven to be useful as a second opinion to assist radiologists
in mammographic interpretation. Because of the higher SNR
and linear response of digital detectors, there is also a poten-
tial that FFDMs can improve the sensitivity of breast cancer
detection, especially in dense breasts. Several studies have
been or are being conducted to compare FFDM with SFM in
screening cohorts. It is also important to compare the perfor-
mance of CAD systems between FFDMs and SFMs. A study
is under way to compare the performance of the two systems
on pairs of FFDM and SFM obtained from the same
patients.51

V. CONCLUSION

Several FFDM systems have been approved for clinical
applications. It is important to develop CAD systems for
breast cancer detection in FFDM. In this work, we developed
a CAD system that uses the raw FFDMs as the input. A
multiresolution Laplacian pyramid enhancement method was
devised to preprocess the raw FFDMs. A new prescreening
method that combined gradient field analysis with gray level
information was developed to identify mass candidates.
Rule-based and LDA classifiers in a feature space which con-
sisted of morphological features and SGLD texture features
were designed to differentiate masses from normal tissues. It
was found that our CAD system achieved a case-based sen-
sitivity of 70%, 80%, and 90% with an estimate of 0.85,
1.31, and 2.14 FP marks/image, respectively, on normal
cases. The results indicate that our mass detection CAD
scheme can be useful for detecting masses on FFDMs. Stud-
ies are under way to further optimize the processing param-
eters, the feature extraction, and the classifiers for FP reduc-
tion. Comparison of mass detection performance of our CAD
system for FFDMs and that for SFMs is also in progress.
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Computer-aided Detection
System for Breast Masses
on Digital Tomosynthesis
Mammograms: Preliminary
Experience1

The purpose of the study was to de-
sign a computer-aided detection
(CAD) system for breast mass detec-
tion on digital breast tomosynthesis
(DBT) mammograms and to perform a
preliminary evaluation of the perfor-
mance of this system. Twenty-six pa-
tients were imaged with a prototype
DBT system. Institutional review board
approval and written informed patient
consent were obtained. Use of the
data set in this study was HIPAA com-
pliant. The CAD system first screened
the three-dimensional volume of the
mass candidates by means of gradient-
field analysis. Each mass candidate was
segmented from the structured back-
ground, and its image features were
extracted. A feature classifier was de-
signed to differentiate true masses
from normal tissues. The CAD system
was trained and tested by using a
leave-one-case-out method. The clas-
sifier calculated a mean area under the
test receiver operating characteristic
curve of 0.91 � 0.03 (standard error of
mean). The CAD system achieved a
sensitivity of 85%, with 2.2 false-posi-
tive objects per case. The results dem-
onstrate the feasibility of the authors’
approach to the development of a
CAD system for DBT mammography.
© RSNA, 2005

Mammography is considered the most
cost-effective screening method for the
early detection of breast cancer. How-
ever, the sensitivity of mammography is
often limited by the presence of overlap-
ping dense fibroglandular tissue in the
breast. Dense parenchyma reduces the

conspicuity of abnormalities and thus
constitutes one of the main causes of
missed breast cancer (1). The advent of
full-field digital detectors offers opportu-
nities to develop advanced techniques
for improved imaging of dense breasts,
such as digital tomosynthesis (2), stereo-
mammography (3–7), and breast com-
puted tomography (CT) (8). To our
knowledge, these techniques are still un-
der development and their potential in-
fluences on breast cancer detection re-
main to be investigated.

Digital tomosynthesis is based on the
same principle as conventional tomogra-
phy, which involves the use of a screen-
film system as the image receptor for im-
aging body parts at selected depths. With
conventional tomography, a series of
projection exposures is accumulated on
the same film when the x-ray source is
moved about a fulcrum while the screen-
film system is moved in the opposite di-
rection. A drawback of conventional to-
mography is that each tomogram can de-
pict only one plane at a selected depth
with a relatively sharp focus. If the exact
depth of interest is not known in ad-
vance or the abnormality encompasses a
range of depths, then a tomogram at
each depth will have to be acquired at
separate imaging examinations, requir-
ing additional radiation doses and exam-
ination time.

With digital tomosynthesis, the series
of projection exposures is read out by the
digital detector as separate projection
views when the x-ray source moves to
different locations about the fulcrum. To-
mographic sections focused at any depth
of the imaged volume can then be gen-
erated from the same series of projection
images by using digital reconstruction
techniques. Because of the wide dynamic
range and the linear response of the dig-
ital detector, each projection image can
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be acquired with a fraction of the x-ray
exposure used to obtain a conventional
projection radiograph. The total radia-
tion dose required for digital tomosyn-
thesis imaging may be kept at nearly the
same as or only slightly higher than that
required for conventional radiography.
Properly designed digital reconstruction
techniques have an additional advantage
in that the depth resolution of tomosyn-
thesis is generally much higher than that
of conventional tomography. Thus, digi-
tal tomosynthesis makes it more practical
to apply tomography to breast imaging
in terms of radiation dose, examination
time, and spatial resolution.

Digital breast tomosynthesis (DBT)
mammography is one of the promising
methods that may help reduce the cam-
ouflaging effects of dense breast tissue
and improve the sensitivity of mammog-
raphy for breast cancer detection in
dense breasts. Several research groups are
developing digital tomosynthesis meth-
ods for the reconstruction of tomo-
graphic sections from series of projection
images (2,9–11). A study to compare DBT
mammograms with conventional mam-
mograms in breast cancer detection is
underway (12).

Computer-aided detection (CAD) has
been shown to improve breast cancer de-
tection at mammography (13–15). Al-
though the results of a preliminary eval-
uation indicated that breast lesions can
be visualized more easily on DBT images
than on conventional mammograms
(12), to our knowledge, the overall detec-
tion sensitivity and specificity of DBT
compared with those of conventional
mammography remain to be investi-
gated. With DBT, the number of recon-
structed sections of each breast is very
large. Even with 1-mm section thickness,
the number of sections per breast will
range from about 30 to more than 80.
The time required to interpret a DBT case
can be expected to be much longer than
that required to interpret a conventional
mammographic case.

With increases in radiologist work-
loads, the possibility of subtle lesions be-
ing overlooked may not be negligible.
CAD will probably have a role in the
reading of DBT mammograms, as it does
in the reading of conventional mammo-
grams. Thus, the purpose of our study
was to design a CAD system for the de-
tection of masses at DBT mammography
and to perform a preliminary evaluation
of the performance of this system.

Materials and Methods

Data Set

D.B.K. is the patent holder of the de-
scribed DBT system. A data set of DBT
cases was collected by the researchers
(D.B.K., E.A.R., R.H.M., T.W.) at the
Breast Imaging Research Laboratory of
Massachusetts General Hospital with in-
stitutional review board approval. The re-
cruited patients gave written informed
consent. Use of the data set in this study
was Health Insurance Portability and Ac-
countability Act compliant. The patients
were imaged with a prototype DBT sys-
tem (GE Medical Systems, Milwaukee,
Wis). This system has a flat-panel amor-
phous silicon detector with a pixel size of
0.1 � 0.1 mm. The DBT system acquired
11 projection-view mammograms of the
compressed breast over a 50° arc in the
mediolateral oblique view. The total ra-
diation dose used to obtain the 11 pro-
jection-view mammograms was designed
to be less than 1.5 times the dose used to
obtain a single conventional (ie, screen-
film) mammogram. DBT sections were re-
constructed with 1-mm intersection
spacing by using an iterative maximum-
likelihood algorithm (9).

In this preliminary study, the DBT
mammograms obtained in 26 patients
aged 41–77 years (mean, 56 years; me-
dian, 56 years) were used. The number of
DBT sections obtained per patient ranged
from 37 to 89 (mean, 60.1), depending
on the thickness of the compressed
breast. Each patient case consisted of
DBT sections of a single breast. The 26
cases included 23 breast masses and three
areas of architectural breast distortion.
Thirteen masses and two areas of archi-
tectural distortion were proved to be ma-
lignant at biopsy. Eight masses and the
other area of architectural distortion
were proved to be benign at biopsy. Two
masses were determined to be benign by
means of long-term follow-up or addi-
tional imaging. In each case, a Mammog-
raphy Quality Standards Act (MQSA)-ac-
credited radiologist (E.A.R.) with 5 years
of experience in breast imaging deter-
mined the true location of the mass or
area of architectural distortion on the ba-
sis of the diagnostic information. The
longest diameters of the lesions ranged
from 5.4 to 29.4 mm (mean, 14.2 mm;
median, 12.1 mm), as estimated on the
DBT section intersecting the lesion at ap-
proximately its largest cross section by an
MQSA-accredited radiologist (M.A.H.)
with 17 years of experience in breast im-
aging. The distribution of the longest di-

ameters of the masses or areas of archi-
tectural distortion is shown in Figure 1.
The distribution of breast density among
the 26 breasts in terms of Breast Imaging
Reporting and Data System category, as
estimated by one of the MQSA-accredited
radiologists (M.A.H.) by viewing the digi-
tized screen-film mammograms, is shown
in Figure 2.

An example of a DBT section intersect-
ing a spiculated mass is shown in Figure
3a. For comparison, the same mass de-
picted in the same view on a conven-
tional mammogram is shown in Figure
3b. The spicules of the mass are much
more conspicuous on the DBT section
than on the conventional mammogram,
probably because of the reduced struc-
tured background on the DBT image.

Computerized Detection

The CAD mass detection system was
developed in the CAD Research Labora-
tory at the University of Michigan. The

Figure 1. Distribution of longest diameters of
the 23 masses and three areas of architectural
distortion, as estimated on the DBT section
intersecting the lesion at approximately its
largest cross section.

Figure 2. Distribution of breast density in
terms of Breast Imaging Reporting and Data
System category for the 26 breasts, as estimated
from the conventional mammograms by an
MQSA-accredited radiologist (M.A.H.).
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system includes several major steps, in-
cluding prescreening, segmentation, fea-
ture extraction, and false-positive object
reduction, as shown in Figure 4. For a
given case, the DBT section containing
the entire breast volume was input into
the CAD system for processing. The sec-

tion thickness was linearly interpolated
to 0.1 mm in the direction perpendicular
to the detector plane so that the voxels in
the data set were converted to 0.1 �
0.1 � 0.1-mm isotropic cubes.

In the prescreening step, three-dimen-
sional (3D) gradient-field analysis of the
volumetric data set in each case was per-
formed to detect lesion candidates. To
reduce noise in the gradient calculation,
the image voxels were first averaged over
every 2 � 2-voxel region to obtain a
smoothed volumetric data set. The gradi-
ent-field analysis was performed in a
spherical region that had a radius of
about 6 mm and was centered at each
voxel of the breast volume. The gradient
vector at each smoothed voxel in the
spherical region was computed, and the
direction of the gradient vector was pro-
jected to the radial direction from the
central voxel to the smoothed voxel. The
average gradient direction over a spheri-
cal shell of voxels at a radius, R(k), of k
voxels from the central voxel was calcu-
lated as the mean of the gradient direc-
tions over voxels on three adjacent

spherical shells: R(k � 1), R(k), and R(k �
1). Finally, the gradient-field conver-
gence at the central voxel was deter-
mined to be the maximum of the average
gradient directions among all shells in
the spherical region. Gradient-field con-
vergence calculation was performed over
all voxels in the breast region to result in
a 3D gradient-field image.

The CAD algorithm then identified the
locations of high-gradient convergence
on the 3D gradient-field image as the lo-
cations of mass candidates. A 256 �
256 � 256-voxel volume of interest was
centered at each location. The object in
each volume of interest was segmented
by using a 3D region-growing method
with which the location of high-gradient
convergence was used as the starting
point and the object was allowed to
“grow” across multiple sections. In this
study, region growing was guided by the
radial gradient magnitude. The growth of
the object was terminated where the ra-
dial gradient reached a threshold value
that was adaptively selected for the local
object. After region growing, all con-

Figure 3. Mass (arrow) depicted in the mediolateral oblique view on (a) DBT and (b) screen-film mammograms. The spicules of the mass are much
more conspicuous in a.

Figure 4. Schematic outline of CAD system
steps for mass detection on DBT mammo-
grams. 3D � three-dimensional.
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nected voxels constituting the object
were labeled. The 3D object characteris-
tics could then be extracted from the ob-
ject.

Three groups of features—morpho-
logic features, gray-level features, and
texture features—were extracted from the
segmented object. Morphologic feature
descriptors included the volume in terms
of the number of voxels in the object, the
volume change before and after 3D mor-
phologic opening by a spherical element
with a 5-voxel radius, the surface area,
the maximum perimeter of the seg-
mented object among all sections inter-
secting the object, and the longest diam-
eter of the object. The compactness of the
object was described in terms of the per-
centage of overlap with a sphere of the
same volume centered at the centroid of
the object. The gray-level features in-
cluded the contrast of the object relative
to the surrounding background; the min-
imal and maximal gray levels; and the
characteristics derived from the gray-
level histogram of the object, such as
skewness, kurtosis, energy, and entropy.

The texture features were described by
using run-length statistics as follows: On
each section, the cross section of the 3D
object was treated as an object on a two-
dimensional image. We applied the rub-
ber-band straightening transform (RBST)
that we previously developed for analysis
of masses on two-dimensional mammo-
grams (16) to the object. A 60-pixel-wide
region around the object margin was
transformed into a rectangular coordi-
nate system. Sobel filtering in the x and y
directions was then applied to the RBST
image to generate gradient images in the
two directions. A gradient-magnitude im-
age of the transformed rectangular object
margin was derived from these gradient
images as the square root of the sum of
the squares of the gradients at each cor-
responding pixel of these images.

Five run-length statistics texture fea-
tures were extracted from the gradient-
magnitude image in the horizontal and
vertical directions: short-runs emphasis,
long-runs emphasis, gray-level nonuni-
formity, run-length nonuniformity, and
run percentage. A detailed description of
the RBST and of the run-length statistics
texture features for mammographic masses
can be found in the literature (16,17). For a
3D object in the DBT data set, each run-
length statistics texture feature was ob-
tained by averaging the corresponding fea-
ture values over sections containing the
segmented object.

Data and Statistical Analyses

Because of the limited data set avail-
able for this preliminary study, a leave-
one-case-out resampling technique was
used to train and test the performance of
the CAD system. A classifier was trained
to differentiate true masses from false-
positive objects. The classifier was based
on linear discriminant analysis and step-
wise feature selection (18) that were de-
signed with the training subset in each
leave-one-case-out cycle. The trained
classifier was applied to the lesion candi-
dates in the left-out case such that each
object was assigned a discriminant score.
The test performance of the linear dis-
criminant analysis classifier in differenti-
ating true from false masses in the feature
classification step of the CAD system was
evaluated by performing receiver operat-
ing characteristic (ROC) analysis (19) of
the discriminant scores of objects in the
left-out cases. The area under the ROC
curve and its standard error were ob-
tained by using the ROCKIT program
(version 9.1; Charles E. Metz, University
of Chicago, Chicago, Ill), which uses
maximum-likelihood estimation to fit a
binormal ROC curve to the test discrimi-
nant scores output by the classifier.

Free-response ROC analysis was used
to evaluate the test performance of the
CAD system. A decision threshold was
applied to the test discriminant score of
each detected object. When an object
had a discriminant score above the
threshold, the location of that object was
compared with the location of the true
mass in that case. An object was consid-
ered to be true-positive if the centroid of
the true mass marked by the radiologist
was within the volume of the object; oth-
erwise, the object was considered to be
false-positive. For each decision thresh-
old, the detection sensitivity and the av-
erage number of false-positive objects per
case were determined on the basis of the
entire data set. The free-response ROC
curve was generated by varying the deci-
sion threshold over a range of values.

Results

Figure 5a and 5b shows an example of
a section through a mass in a volume of
interest and of the mass boundary deter-
mined by using 3D region-growing seg-
mentation, respectively. An example of
RBST applied to the section containing
the mass and of the gradient image de-
rived from the RBST image is shown in
Figure 5c and 5d, respectively. The spi-
cules radiating from the mass are approx-

imately in the vertical direction, and the
segmented boundary of the mass is trans-
formed to a straight line, forming the
upper edge of the rectangular RBST im-
age.

To design the linear discriminant anal-
ysis classifier for false-positive object re-
duction, the stepwise feature selection
procedure was used to select the most
effective subset of features from the avail-
able feature pool and thus reduce the di-
mensionality of the feature space for the
classifier (18,20). An average of seven fea-
tures were selected from the available fea-
ture pool. The most often selected fea-
tures included object contrast, minimal
gray level, volume change before and af-
ter 3D morphologic opening, maximal
perimeter, compactness, and two run-
length statistics texture features—hori-
zontal short-runs emphasis and gray-
level nonuniformity. The ROC curve de-
rived from the test discriminant scores of
the masses and normal objects is shown
in Figure 6. The area under the ROC
curve reached 0.91 � 0.03.

In the prescreening step, 100% of the
masses and architectural distortions were
detected, with an average of 29 false-pos-
itive objects per case. The overall test per-
formance of the CAD system after false-
positive object reduction is illustrated by
the free-response ROC curve shown in
Figure 7. The system achieved sensitivi-
ties of 85% (22/26) with 2.2 false-positive
objects per case and 80% (21/26) with 2.0
false-positive objects per case in this pre-
liminary study.

Discussion

In this preliminary study, we used a 3D
approach that takes advantage of the
volumetric nature of tomosynthesis re-
construction. Prescreening of lesion can-
didates, image segmentation, and feature
extraction were performed in the volu-
metric data set for each breast. The pre-
screening and segmentation methods de-
veloped for 3D processing are effective
for locating true lesions. Although the
training samples in this study were small,
the overall performance of the system is
promising. Therefore, the results of this
study demonstrate the feasibility of our
approach to the development of a CAD
system for assisting radiologists in detect-
ing masses on DBT mammograms. Fur-
ther improvement in the performance of
the system can be expected with use of a
larger data set for training the algo-
rithms.

With DBT mammography, the struc-
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tured background such as the dense fi-
broglandular tissue was suppressed on
the reconstructed DBT sections. How-
ever, DBT is different from CT in that the
overlapping tissues are reduced but not
totally eliminated. Tomosynthesis recon-
struction left residual overlapping tissue
on the DBT sections. Similarly, the
shadow of a lesion can be seen on most
DBT sections, even though the actual size
of the mass may be only a fraction of the
breast thickness. In addition, the voxel
dimension in the z direction (ie, the di-
rection perpendicular to the sections) on
the reconstructed sections is 10 times
larger than that in the x-y plane (ie, the
planes of the sections). Therefore, the
boundary of an object in the z direction
is not as well defined as that in the x-y
plane.

The features extracted in three dimen-
sions may have a strong directional de-
pendence. For example, in this study we
extracted texture features along the x-y
plane only, and a 3D texture feature was
obtained by averaging the corresponding

two-dimensional texture values over sec-
tions containing the object. For true 3D
texture analysis, the texture feature val-
ues should be calculated in the shell of
voxels surrounding the object or on the
planes that intersect the object centroid
from different directions. We will inves-
tigate the potential directional effects of
the features on false-positive object re-
duction when a larger data set becomes
available.

A limitation caused by the small data
set in this study is the possibility that the
distributions of the characteristics of the
masses and the breast parenchyma in this
data set were not statistically similar to
those in the patient population. Al-
though the results appear to be promis-
ing, the methods and features used may
have been biased toward the specific data
set used. Further studies are needed to
evaluate the robustness of these com-
puter vision techniques in a larger data
set.

For DBT imaging, the raw data were
acquired as 11 projection-view mammo-

grams. On average, each projection-view
mammogram was obtained by using
about 14% of the radiation dose used to
obtain a conventional mammogram. A
projection-view mammogram is there-
fore noisier than a conventional mam-
mogram. However, the 11 projection-
view mammograms offer the advantage
that a lesion will be projected at slightly
different angles, and, thus, there will be
somewhat different overlapping tissues
on each view. A lesion that may be cam-
ouflaged by dense tissue on some views
may become more conspicuous on other
views. In addition, overlapping tissues
that mimic lesions on some views may
mimic lesions to a lesser degree on other
views. If a CAD lesion detection system is
applied to projection-view mammo-
grams, the complementary information
derived from the different projection-
view mammograms may be used to im-
prove sensitivity and reduce the number
of false-positive objects. We are studying
the feasibility of developing a CAD sys-
tem for detecting lesions on projection-
view mammograms and investigating
methods to merge the information from
the 11 projection-view mammograms. In
future studies, this approach will be com-
pared with the current approach of de-
tecting lesions on reconstructed DBT
volumetric data sets.

Furthermore, although with our cur-
rent lesion-detection algorithm, DBT sec-
tions reconstructed from the iterative
maximum-likelihood algorithm are used
as input, we expect that our image-pro-
cessing methods will not strongly de-
pend on the reconstruction method for

Figure 5. (a) DBT mammographic section intersecting a spiculated breast mass. (b) Mass in a
after 3D region-growing segmentation. (c) RBST image of a 60-pixel-wide region around the same
mass. The segmented mass boundary is transformed into a straight line, forming the upper
boundary of the rectangular RBST image. (d) Gradient-magnitude image derived from Sobel
filtering of the RBST image in c.

Figure 6. ROC curve showing the perfor-
mance of the linear discriminant classifier ob-
tained from leave-one-case-out testing. The
area under the ROC curve was 0.91 � 0.03,
indicating that the classifier was effective in
reducing the number of false-positive objects.
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generating the DBT sections as long as
the image quality of the reconstructed
sections is reasonable. The effects of the
factors that may affect image quality—
including image acquisition technique,
number of projection views, tomo-
graphic angle, reconstruction method,
and section thickness—on lesion detec-
tion accuracy will have to be investigated
when DBT cases obtained with different
methods and parameters become avail-
able in the future.
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ABSTRACT 
 

Automatic identification of the pectoral muscle on MLO view is an essential step for computerized analysis of 
mammograms. It can reduce the bias of mammographic density estimation, will enable region-specific processing in 
lesion detection programs, and also may be used as a reference in image registration algorithms. We are developing a 
computerized method for the identification of pectoral muscle on mammograms. The upper portion of the pectoral 
edges was first detected to estimate the direction of the pectoral muscle boundary. A gradient-based directional (GD) 
filter was used to enhance the linear texture structures, and then a gradient-based texture analysis was designed to 
extract a texture orientation image that represented the dominant texture orientation at each pixel. The texture 
orientation image was enhanced by a second GD filter. An edge flow propagation method was developed to extract 
edges around the pectoral boundary using geometric features and anatomic constraints. The pectoral boundary was 
finally generated by a second-order curve fitting. 118 MLO view mammograms were used in this study. The pectoral 
muscle boundary identified on each image by an experienced radiologist was used as the gold standard. The accuracy of 
pectoral boundary detection was evaluated by two performance metrics. One is the overlap percentage between the 
computer-identified area and the gold standard, and the other is the root-mean-square (RMS) distance between the 
computer and manually identified pectoral boundary. For 118 MLO view mammograms, 99.2% (117/118) of the 
pectoral muscles could be identified. The average of the overlap percentage is 94.8% with a standard deviation of 
20.9%, and the average of the RMS distance is 4.3 mm with a standard deviation of 5.9 mm. These results indicate that 
the pectoral muscle on mammograms can be detected accurately by our automated method.  
 
Keywords: Computer-aided detection, Pectoral muscle trimming, Breast density estimation, Directional gradient filter 
 
 

1. INTRODUCTION 
 
Breast cancer is one of the leading causes of cancer mortality among women1, 2. At present, the most successful method 
for the early detection of breast cancer is screening mammography3. It has been demonstrated that an effective 
computer-aided diagnosis (CAD) system can provide a second opinion to the radiologists and improve the accuracy of 
detection and characterization of mammographic abnormalities, which, in turn, may reduce unnecessary biopsies. 
Studies have shown that there is a strong positive correlation between breast parenchymal density on mammograms and 
breast cancer risk.1, 4-6 The relative risk is estimated to be about 4-6 times higher for women whose mammograms have 
parenchymal densities over 60% of the breast area, as compared to women with less than 5% of parenchymal densities. 
Mammograms are analyzed visually by radiologists, the qualitative response may vary from radiologist to radiologist 
due to the subjective nature of visual analysis. We have previously developed a computerized system, mammographic 
density estimator (MDEST), to estimate breast density automatically on digitized film mammograms.7 For each 
mammogram, the breast region was first segmented by breast boundary detection and, for the mediolateral oblique 
(MLO) view, with additional pectoral muscle trimming. A gray level threshold was then automatically determined to 
segment the dense tissue from the breast region. The breast density was estimated as the percentage of the segmented 
dense area relative to the breast area. Our preliminary study indicated that the computer-estimated mammographic 
breast density correlated closely with the “reference standard” obtained by averaging five experienced radiologists’ 
manual segmentations and the average bias was much less than that of the radiologists’ visual estimation.  
 
Automatic identification of the pectoral muscle is an essential step for computerized analysis of mammograms. 
Accurate segmentation of the pectoral muscle on MLO-view mammograms can reduce the bias of mammographic 
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density estimation and improve the performance of our MDEST method. It will enable region-specific processing in 
lesion detection programs to reduce false negatives. False positives can be reduced if the detected objects in the pectoral 
muscle area can be selectively suppressed. The identification of the pectoral muscle may also be used as a reference in 
image registration algorithm for multiple-view analysis of mammograms. 
 
In our preliminary study 7, the pectoral muscle was trimmed using a gradient-based pectoral edge detection method: the 
initial edge in the pectoral region was first found as the maximum gradient point by a line-by-line gradient analysis from 
the chest wall to the breast boundary. An edge validation process was then performed to remove the false pectoral 
muscle edges using a line fitting method, and a coarse direction of the pectoral edges was estimated from the validated 
edges. The remaining pectoral edges were extrapolated along the estimated pectoral direction. Finally, a second order 
curve was fitted to the detected pectoral edges to generate the pectoral boundary. Using the above method, 74.6% of the 
pectoral muscles were determined by visual judgment to be correctly identified in this preliminary study.  
 
The purpose of this study is to improve the performance of our previously developed pectoral muscle segmentation 
method. Accurate identification of the pectoral muscle on mammograms is challenging, especially for the improperly 
positioned MLO-view images and the images containing dense glandular tissues overlapping with the pectoral muscle 
region. In this work, we developed a two-stage gradient-based texture analysis method to detect the pectoral boundary. 
In the first stage, linear texture structures were enhanced and the directional gradients were computed using a 
directional filter. In the second stage, a texture orientation image was derived as the dominant texture orientation at each 
pixel. A diffusion filter was used to estimate the global direction of the pectoral boundary. An edge flow propagation 
method was developed to extract the pectoral edges with the guidance of the estimated global direction. 
 

2. MATERIALS AND METHODS 
 
2.1 Materials 
 
In this study, 118 MLO-view mammograms from 103 patients were randomly selected from the patient files in the 
Radiology Department at the University of Michigan. Data collection was approved by the Institutional Review Board 
and individual patient informed consent was waived. The mammograms were acquired with Mammography Quality 
Standards Act (MQSA) approved GE DMR (Milwaukee, Wisconsin) mammography units using Kodak MR2000 
screen/film systems. All films were digitized with a LUMISYS 85 laser film scanner with a pixel size of 50 µm×50 µm 
and 4096 gray levels. The resolution of the mammograms was reduced to 800 µm × 800 µm for segmentation of the 
pectoral muscle.  
 
2.2 Pectoral muscle identification 
 
Figure 1 summarizes the automatic pectoral muscle identification scheme. The interference due to overlapping of the 
glandular tissue on the pectoral muscle region is first reduced by smoothing the mammogram using an edge preserving 
anisotropic diffusion filter 8. Because less glandular tissue appears at the upper region of the pectoral muscle, the upper 
portion of the pectoral boundary usually remains sharp after smoothing and can be detected robustly by searching the 
maximum horizontal gradients on the diffused image. The extrapolation of the detected upper pectoral boundary 
provides a coarse global direction of the pectoral boundary. To refine the entire pectoral boundary, a gradient-based 
directional (GD) filter was first employed to enhance the linear texture structures on the mammogram. The orientation 
of the digitized image could be automatically determined by the curvature of the breast boundary. For example, if the 
image was positioned such that the chest wall was on the right side, it could be assumed that the pectoral boundary is at 
a direction approximately from the top-left to the bottom-right with less than 45 degree deviation. Therefore, in our 
study, the kernel of the GD filter was designed as a step function with 45 degree orientation. After the pectoral edge was 
enhanced by the GD filter, a gradient-based texture analysis9 was used to compute an orientation image which 
represented the dominant texture orientation at each pixel. The orientation image was smoothed using an edge 
preserving mean shift algorithm10 that iteratively shifted each pixel to the average of the pixels in its neighborhood. The 
texture patterns with dominant texture orientations directing from the top-left to the bottom-right, which were more 
likely to be the pectoral edges, were enhanced by applying a second GD filter to the smoothed orientation image. 
Candidate edges of the pectoral muscle were detected on the enhanced orientation image using a ridge-tracking 
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algorithm. The ridges were tracked by searching for the local maximum along the coarse global direction estimated, as 
described above, by the upper pectoral boundary on the anisotropic diffused image. With the guidance of the estimated 
global direction of the pectoral boundary and the anatomical constraints, an edge flow propagation algorithm was then 
used to extract the boundary points of the pectoral muscle by pruning the edges that are less likely to lie on the pectoral 
boundary. A second order curve fitting was finally used to generate the pectoral muscle boundary. Figure 2 shows 
examples of the intermediate images of pectoral boundary enhancement and edge tracking corresponding to the various 
stages shown in the flowchart in Figure 1. 
  

3. RESULTS 
 
 An experienced MQSA-radiologist used a graphical user interface to manually draw the pectoral muscle boundary on 
each MLO-view mammogram, which was then used as the gold standard for the evaluation of the performance of our 
pectoral muscle detection program. 
 
For each MLO view mammogram, the accuracy of pectoral boundary detection was evaluated by two performance 
metrics: the percentage of overlap, defined as the ratio of the overlap area between the computer detected pectoral 
muscle area and the gold standard relative to the gold standard, and the root-mean-square (RMS) distance obtained by 
calculating the shortest distance point by point between the computer-identified pectoral boundary and the manually 
marked pectoral boundary. For the data set of 118 MLO view mammograms, 99.2% (117/118) of the pectoral muscles 
could be identified, the average of the percent overlap area is 94.8% with a standard deviation of 20.9%, the average of 
the RMS distance is 4.3 mm with a standard deviation of 5.9 mm.  

 
Figure 3 shows some examples of pectoral boundary identification on mammograms. The computer identified pectoral 
boundaries were shown in white lines and the dark lines show the radiologist’s hand drawn boundaries. Figure 3 (a)-(b) 
show the pectoral boundary can be identified accurately on mammograms with weak pectoral edges (figure 3(a) ) and a 
large area of dense tissues overlapping on the pectoral muscle area (shown in figure 3(b) ). Figure 3(c)-(d) show two 
examples of less accurate pectoral boundaries detected by the computer. Figure 3(e) shows the only case in this data set 
that the computer failed to detect the boundary. 

 
4. CONCLUSION 

 
The newly developed gradient-based directional filter and the dominant texture orientation estimation method can 
enhance the pectoral boundary regions. The edge flow propagation method can accurately extract pectoral edges to 
generate the pectoral boundary. Automatic pectoral muscle identification will provide the foundation for many 
mammographic image analysis tasks in CAD applications.  
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Figure 1. Automated pectoral muscle detection scheme 
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(a) (b) (c) 

   
(d) (e) (f) 

  

 

(g) (h)  
Figure 2. Example of boundary enhancement and segmentation of pectoral muscle. (a) original image; (b) texture 

orientation image after first GD filter and texture-flow analysis; (c) ridge image enhanced by the 2nd 
GD filter; (d) tracked ridges; (e) smoothed image using anisotropic diffusion filter; (f) initial pectoral 
edges detected from the smoothed image in (e) for the estimation of the coarse direction of the pectoral 
boundary; (g) propagated pectoral edges on the ridge image (c) with the guidance of the coarse 
direction estimated from the smoothed image shown in (f); (h) the final identified pectoral boundary 
after 2nd order curve fitting.  
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(a) (b) 

  
(c) (d) 

 

 

                (e)  
 
Figure 3. Examples of pectoral boundary segmentation on mammograms. (a)-(b): accurate identification of 

pectoral boundary; (c)-(d): less accurate identification of pectoral boundary; (e) the only 
mammogram in our data set that the computer failed to identify the pectoral muscle due to the 
small portion of the pectoral muscle area within the breast region.  
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ABSTRACT 
 

We previously conducted an observer study evaluating radiologists’ performance for characterization of 
mammographic masses on serial mammograms with and without CAD. 253 temporal image pairs (138 malignant and 
115 benign) from 96 patients containing masses on serial mammograms were used. The interval change characteristics 
of the masses on each temporal pair were analyzed by our CAD program to differentiate malignant and benign masses. 
The classifier achieved a test Az value of 0.87 for the data set.  Eight MQSA radiologists and 2 fellows assessed the 
temporal masses and provided estimates of the likelihood of malignancy (LM) and BI-RADS assessment without and 
then with CAD.  The LM estimates were provided on a quasi-continuous confidence-rating scale (CRS) of 1 to 100.  In 
the current study we investigated the effects of using discrete CRS with fewer categories on ROC analysis.  We 
simulated three discrete CRSs containing 5, 10, and 20 categories by binning the radiologists’ LM quasi-continuous 
ratings.  For the ten radiologists, without CAD, the average Az in estimating the LM for the 5, 10, 20 and 100 category 
CRSs were 0.788, 0.786, 0.785, and 0.787, respectively. With CAD, the observers’ Az improved to 0.845, 0.843, 0.844, 
and 0.843, respectively. The improvement was statistically significant (p<0.011) for each CRS.  The partial area index 
for the four CRSs without CAD was 0.198, 0.204, 0.200, and 0.206, respectively. With CAD the partial area index was 
also significantly improved to 0.369, 0.365, 0.369, and 0.366, respectively (p<0.006 for all CRSs). The use of continuous 
and discrete confidence-rating scales in this study had minimal effect on the analysis of observer performance.   
    
 
Keywords: Computer-Aided Diagnosis, Continuous and Discrete Confidence Rating Scales, Interval Changes, ROC 

Observer Study, Classification, Mammography, Malignancy. 
 

1. INTRODUCTION 
 

The effect of the use of quasi-continuous or discrete confidence rating scales on receiver operating 
characteristic (ROC) observer study results has been studied by a number of researchers.  Rockette et al1 carried out an 
observer experiment using both five-point discrete scale and a quasi-continuous 100-point scale. The results of ROC 
analysis showed no statistically significant difference between the performance index Az achieved with the two scales.  
However, they suggested that the use of quasi-continuous scale can be more reliable for ROC analysis because it can 
avoid the problem of “degenerate” data sets.  King et al2 performed an observer study to estimate the likelihood of the 
presence of abnormality on chest images using a quasi-continuous scale. Then they mapped the quasi-continuous 
observer ratings to a 5-point rating scale using two different sets of criteria for determining the range of each category 
and used ROC methodology to analyze the results.  They concluded that the diagnostic accuracy derived from the quasi-
continuous rating data are insensitive to the particular way those data are mapped to discrete categories. They also 
suggested that the use of a quasi-continuous scale is better in observer studies because of the insensitivity of the 
mapping to discrete categories and the reduced likelihood of “degenerate” data. Wagner et al3 performed a Monte Carlo 
simulation study of multiple-reader, multiple-case ROC experiments to evaluate the data quantization effects. They 
concluded that the discretization in five categories can reduce the precision of ROC measurements, in comparison to 
that obtained from continues scale.  Berbaum et al4 suggested that quasi-continuous 101-point scale ratings fitted with a 
standard binormal model may sometimes yield inappropriate chance line crossings, reducing the statistical power to 
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detect the differences between two experimental conditions. They concluded that the use of proper ROC models with 
the discrete confidence rating data may present better results, however, they stressed that this should be investigated 
further.  

 
We have previously studied radiologists’ performance of characterizing malignant and benign masses in single-

view serial mammograms with and without CAD5,6 using ROC methodology.  The observers’ estimate of the likelihood 
of malignancy of the lesions was collected on a quasi-continuous 100-point confidence-rating scale.  We observed a 
statistically significant improvement (p=0.005) in the radiologists’ performance when they used CAD compared to their 
performance without CAD.  In this study, we examined the effects of the number of confidence ratings used in an ROC 
experiment on the results of ROC analysis.  The observer rating data collected from the CAD mass characterization 
experiment were used as an example.  We simulated the use of discrete confidence-rating scales with a small number of 
categories and compared the performance indices and statistical significance obtained with ROC analysis for the 
different confidence-rating scales. 

 
2. MATERIALS AND METHODS 

 
We previously conducted an observer ROC study evaluating radiologists’ performance for characterization of 

mammographic masses on serial mammograms with and without CAD6.  A brief description of the database used and 
the observer study design is given below. 
 
2.1  Data set 

 
Two hundred fifty three temporal image pairs (138 malignant and 115 benign) from 96 patients containing 

masses on serial mammograms were used.  The mammograms in the database were collected from the patients who had 
undergone breast biopsy in our department.  The selection criterion used in this study was that the case had serial exams 
in which a corresponding mass could be identified.  The mammograms thus contained masses covering a range of sizes 
and conspicuity that are seen in clinical practice.  Since all cases eventually underwent biopsy, interval change was 
observed for most of the masses even if they were found to be benign after biopsy.  Thirty-four additional temporal pairs 
containing corresponding normal structures in the serial mammograms were also included.  In this way the radiologist 
also had to distinguish mass-mimicking fibroglandular tissue from malignant masses, thus simulating a more realistic 
clinical situation.  The temporal pairs had a time interval of 6 to 48 months.  More than 55% of the pairs had a time 
interval of 12 months. 

 
The mammograms were digitized with a LUMISCAN 85 laser scanner at a pixel resolution of 50µm ×  50µm 

and 4096 gray levels. The image matrix size was reduced by averaging every 2 x 2 adjacent pixels and down-sampled by 
a factor of 2 to obtain images with a pixel size of 100µm × 100µm for analysis by the computer. The interval change of a 
mass on a corresponding temporal pair was analyzed by the CAD system developed in our laboratory.  

 
2.2  Classification of masses in serial mammograms 
 

We have previously developed a novel classification technique that utilizes the current and prior information on 
serial mammograms to characterize the masses on corresponding mammographic views.  The classification technique 
has been described in detail elsewhere6,7.  The classifier was based on texture, morphological, and different features 
extracted from current and prior ROIs.  The classifier was trained and tested using a leave-one-case-out resampling 
scheme and it achieved a test Az value of 0.87 for the data set.    

 
2.3  Observer ROC study 
 

The observer study was designed to compare radiologists’ performance on the classification of malignant and 
benign breast masses with and without CAD on single-view temporal pairs of mass ROIs. The ROIs extracted from the 
current and the prior mammograms containing the corresponding mass were displayed side-by-side on a display 
monitor. The observers’ performance was evaluated under two reading conditions – reading with and without CAD6.  In 
the first reading condition, the radiologist read the temporal image pair of the mass without computer aid.  In the second 
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reading condition, the radiologist read the temporal pair with the computer classifier’s relative malignancy rating of the 
mass displayed on the screen.  The observer was asked to provide an estimate of the likelihood of malignancy and BI-
RADS assessment of the mass under each reading condition (Fig. 1). The likelihood of malignancy estimates were 
provided on a quasi-continuous confidence-rating scale of 1 to 100 (1=benign, 100=high likelihood of malignancy).  
Eight MQSA radiologists and 2 fellows participated as observers. 

  
A counter-balanced design was used in arranging the reading orders in different modes and the case orders in 

different reading sessions for the observers.  This approach would minimize the potential effects such as learning, 
fatigue, and memorization on the outcomes of the observer experiments. A graphic user interface (GUI) was developed 
for the purpose of presenting the temporal pairs of mass ROIs to the radiologists and recording their ratings.  Each 
observer underwent a training session before the actual reading sessions to familiarize them with the performance of the 
CAD system and the experimental procedure. 

 
 

Figure 1.  The GUI for collection of the likelihood of malignancy and BI-RADS ratings in our ROC study. 

 
 

2.4  Quasi-continuous and discrete rating experiments 
 

In the current study, the radiologists’ quasi-continuous ratings on likelihood of malignancy without and with 
CAD were mapped to three discrete confidence-rating scales to simulate ROC experiments with fewer number of rating 
categories. A simple mapping by grouping every k adjacent ratings was chosen in this study (Fig. 2). We used three 
groupings of the adjacent ratings with k=20, k=10, and k=5, which resulted in three discrete rating scales, 5-point, 10-
point, and 20-point, respectively.  Based on the original quasi-continuous rating scale and the three simulated discrete 
rating scales, we studied the change in the observer performance accuracy and the change in the statistical significance 
of the results.  

 
2.5  ROC analysis 
 

The radiologists’ classification accuracy based on the different confidence-rating scales was analyzed with 
ROC methodology.  Their performances were quantified by the total area under the ROC curve, Az, as well as the 
partial area index 8 calculated above a sensitivity threshold of 0.9, Az

(0.90).  The area under the ROC curve was estimated 
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by the Dorfman-Berbaum-Metz (DBM) multi-reader multi-case (MRMC) methodology 9, in which the ROC curve was 
derived from binormal distributions fitted to the observer ratings by maximum likelihood estimation.  The statistical 
significance of the difference in Az between the different reading conditions for the different confidence-rating scales 
was also estimated by the DBM analysis. 
 

 
 

20-point
scale

MRMCMRMC MRMC

10-point
scale

5-point
scale

k = 5 k = 10 k = 20

Grouping every k
adjacent ratings

100-point
scale

Original

Simulation

 
 
 
 

Figure 2.  The block diagram of mapping the quasi-continuous confidence rating scale to the simulated discrete confidence rating 
scales. 

 
 
 

3. RESULTS 
 
For the ten radiologists, without CAD, the average Az in estimating the likelihood of malignancy for the 5, 10, 

20 and 100 category confidence rating scales was 0.788, 0.786, 0.785, and 0.787, respectively. The observers’ Az 
improved to 0.845, 0.843, 0.844, and 0.843, respectively with CAD. The improvement was statistically significant 
(p=0.008, 0.010, 0.007, and 0.005, respectively) for each of the confidence rating scales.  The partial area index for the 
four confidence rating scales without CAD was 0.198, 0.204, 0.200, and 0.206, respectively. With CAD, the partial area 
index was improved to 0.369, 0.365, 0.369, and 0.366, respectively. The improvement was also statistically significant 
for all four confidence rating scales (p=0.005, 0.004, 0.003, and 0.005, respectively).  The average ROC curves for the 
10 observers when reading with and without CAD were plotted in Fig. 3 based on the ratings using the original quasi-
continuous 100-point rating scale.  The difference between the average ROC curves based on the results from the quasi-
continuous rating scale and the three discrete confidence rating scales was very small, resulting in overlapping ROC 
curves.  We therefore did not plot the ROC curves for the three discrete confidence rating scales.  In Fig. 4, the 
individual Az values for the reading conditions without CAD by the 10 radiologists with quasi-continuous 100-point 
scale and the discrete 5-point scale are compared. A small difference in the Az values can be observed for the two 
different rating scales. Similarly, in Fig. 5 the individual Az values for the reading with CAD for both scales are shown. 
The difference between the Az values for the two confidence rating is also small as in the case of reading without CAD 
mode.  In both reading modes (Fig. 4 and Fig. 5) we can observe a little effect on the Az values when we use different 
confidence ratings scales.    
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Figure 3.  The average ROC curves for the 10 observers when reading with and without CAD. 
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Figure 4.  The individual Az values for the 10 radiologists under the reading condition of without CAD using the 
quasi-continuous 100-point scale and the discrete 5-point scale.  
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Figure 5.  The individual Az values for the 10 radiologists under the reading condition of with CAD using the 
quasi-continuous 100-point scale and the discrete 5-point scale.  

 
 

4. CONCLUSION 
 

We studied the effects of the number of confidence ratings used in an observer experiment on the results of 
ROC analysis.  An observer ROC study that was performed to evaluate the effects of computer-aided diagnosis on 
radiologists’ characterization of masses on serial mammograms was used an example. The original observer ratings 
were collected on a quasi-continuous 100-point scale.  Discrete rating scales of 20, 10, and 5 categories were simulated 
by grouping adjacent ratings in groups of 5, 10, and 20, respectively.   We found that the use of continuous and discrete 
confidence rating scales had minimal effects on the ROC analysis in this study.  The use of CAD significantly improved 
radiologists’ accuracy in classification of masses on serial mammograms for all confidence rating scales examined. 
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ABSTRACT 
 

We are developing a computer-aided detection (CAD) system to detect microcalcification clusters automatically 
on full field digital mammograms (FFDMs). The CAD system includes five stages: preprocessing, image enhancement 
and/or box-rim filtering, segmentation of microcalcification candidates, false positive (FP) reduction, and clustering. In 
this study, we investigated the performance of a nonlinear multiscale Laplacian pyramid enhancement method in 
comparison with a box-rim filter at the image enhancement stage and the use of a new error metric to improve the 
efficiency and robustness of the training of a convolution neural network (CNN) at the FP reduction stage of our CAD 
system. A data set of 96 cases with 200 images was collected at the University of Michigan. This data set contained 215 
microcalcification clusters, of which 64 clusters were proven by biopsy to be malignant and 151 were proven to be 
benign. The data set was separated into two independent data sets. One data set was used to train and validate the CNN 
in our CAD system. The other data set was used to evaluate the detection performance. For this data set, Laplacian 
pyramid multiscale enhancement did not improve the performance of the microcalcification detection system in 
comparison with our box-rim filter previously optimized for digitized screen-film mammograms. With the new error 
metric, the training of CNN could be accelerated and the classification performance in validation was improved from an 
Az value of 0.94 to 0.97 on average. The CNN in combination with rule-based classifiers could reduce FPs with a small 
tradeoff in sensitivity. By using the free-response receiver operating characteristic (FROC) methodology, it was found 
that our CAD system can achieve a cluster-based sensitivity of 70%, 80%, and 88% at 0.23, 0.39, and 0.71 FP 
marks/image, respectively. For case-based performance evaluation, a sensitivity of 80%, 90%, and 98% can be achieved 
at 0.17, 0.27, and 0.51 FP marks/image, respectively. 
 
Keywords: Computer-aided detection (CAD), Full-field digital mammography (FFDM), Multiscale pyramid 
enhancement, Artificial neural network 

 
1. INTRODUCTION 

 
Breast Cancer is the most frequently diagnosed cancer and ranks second among cancer deaths in women. An 

estimated 211,240 new cases of invasive breast cancer and an estimated 40,410 breast cancer death are expected to occur 
among women in the US during 20051. Studies indicate that the screening/diagnosis and treatment at early stage can 
improve the survival rate of women with breast cancer2-4. Mammography is the most effective method to date for the 
detection of breast cancers. However, it has been reported that a substantial fraction of breast cancers which are visible 
upon retrospective analyses of the images are missed initially5-7. The use of a computer-aided detection (CAD) system as 
an objective ‘second reader’ is considered to be one of the promising approaches that may help radiologists improve the 
sensitivity of mammography. Studies have shown that CAD can improve radiologists’ detection accuracy significantly8-

10. 
 
Mammographic CAD algorithms were developed for digitized screen-film mammograms before the advent of 

full-field digital mammography (FFDM). FFDM technology has advanced rapidly in the last few years. Several FFDM 
manufacturers have obtained clearance from FDA for clinical use to date. We have developed a CAD system for the 
detection of microcalcification clusters on digitized screen-film mammograms in our previous studies11-13. We are 
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developing a microcalcification cluster CAD system for digital mammograms acquired by FFDM detectors. In this study, 
we investigated the performance of a nonlinear multiscale Laplacian pyramid enhancement method in comparison with a 
box-rim filter at the image enhancement stage and the use of a new error function to improve the efficiency and 
robustness of the training of an artificial neural network at the false positive (FP) reduction stage of our CAD system. 

 
2. MATERIAL AND METHODS 

 
2.1 Materials 
  

The data set we used in this study contained 96 cases with 200 images. Institutional Review Board (IRB) 
approval was obtained to collect the mammograms in the Department of Radiology at the University of Michigan. The 
mammograms in this data set were acquired with a GE Senographe 2000D FFDM system. The GE system has a CsI 
phosphor/a:Si active matrix flat panel digital detector with a pixel size of mm µµ 100100 ×  and 14 bits per pixel.  Most 
of the cases had two mammographic views: the craniocaudal (CC) view and the mediolateral oblique (MLO) view or the 
lateral view, except for 8 cases that had three views. There are 215 microcalcification clusters in the data set, of which 64 
clusters were proven by biopsy to be malignant and 151 were proven to be benign. The true locations of the clusters were 
identified on each image by an experienced radiologist.  

 
2.2 Methods 
 

The design methodology used for detecting microcalcification clusters on digitized mammograms in our 
previous study12 was adapted to FFDMs. The CAD system includes five stages: (1) preprocessing, (2) image 
enhancement and/or box-rim filtering, (3) segmentation of microcalcification candidates, (4) FP reduction using rule-
based classifiers and a convolution neural network (CNN), and (5) clustering of microcalcifications. The block diagram 
of our CAD system is shown in Fig. 1. 

 

 
 

Fig. 1. The block diagram of our CAD system for detection of microcalcification clusters on FFDMs. 
 
FFDMs are generally preprocessed with proprietary methods by the manufacturer of the FFDM system before 

being displayed to readers in clinical practice.  The image preprocessing method used depends on the manufacturer of 
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the FFDM system.  To develop a CAD system which is less dependent on the FFDM manufacturer's proprietary 
preprocessing methods, we use the raw FFDM as input to our CAD system. Clinical mammograms are usually viewed in 
a negative mode of the raw images. In order to process an image with the same format as the clinical mammograms, we 
first applied an inverted logarithmic transformation14 to the raw images in the preprocessing stage. Then the breast 
boundary is automatically detected and any area external to the breast region is trimmed.  

 

 
 

Fig. 2.   The schematic diagram for the Laplacian multiscale enhancement method. 

We have designed a multiscale enhancement method for the detection of masses on FFDMs16. In this method, 
the Laplacian pyramid is used to decompose the raw image into multiscale components. A nonlinear weighting function 
is then employed to enhance the high-pass components and an enhanced image is reconstructed. The nonlinear weighting 
function used in our study is different from the one used by others17 in that it explicitly utilized the low-pass band 
information to aid the enhancement of high-pass components. A Gaussian pyramid interpolation is then used to 
reconstruct the image from the low-pass components and the enhanced high-pass components. The schematic diagram of 
the multiscale enhancement is shown in Fig. 2. In this study, we investigated the performance of a nonlinear multiscale 
Laplacian pyramid enhancement method in comparison with a box-rim filter at the image enhancement stage for the 
detection of microcalcification clusters. Fig. 3 (a)-(c) show the raw image, Laplacian Pyramid enhanced image, and box-
rim filtered image of a mammogram with a subtle microcalcification cluster, respectively. The ROIs containing the true 
cluster from these images are shown in Fig. 4 (a)-(c), respectively. 

 
In the segmentation stage, potential microcalcification locations are identified with global and local adaptive 

thresholding methods. The microcalcification candidates after the segmentation stage are shown in Fig. 5(a). In the FP 
reduction stage, the microcalcification candidates are classified as either true-positive (TP) or FP using the combination 
of rule-based feature classification and a trained CNN classifier. Two rule-based features used in this study are the area 
and the gray-scale contrast of the microcalcification candidate. The optimal architecture of CNN has been selected in our 
previous study13. Our CNN was previously trained using back-propagation learning rule with least squares error function. 
Even with an optimal CNN architecture, the learning curve can oscillate abruptly between iterations when noisy training 
data are present. In this study, we used a new error function which prohibits the updating of CNN weights when the 
absolute difference between the CNN output and the target value is larger than a threshold. Since CNN at the first few 
iterations may deviate far away from the optimal, training samples which produce large error may very well be good data. 
Thus, the new error function was not applied until after a chosen number of iterations of the training. Finally, clustered 
microcalcifications are identified by a clustering technique12. The TP microcalcifications after this stage are shown in Fig. 
5(b). As seen from Fig. 5(b), most of the FP microcalcifications are removed by our rule-based classifiers and CNN.  
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(a) (b) (c) 

 
Fig. 3.  A full-field digital mammogram with a subtle microcalcification cluster. (a) Raw image, (b) Laplacian pyramid enhanced 

image, (c) Box-rim filtered image of (b).   
 

   
(a) (b) (c) 

                           
Fig. 4.  The microcalcification cluster in a region-of-interest (ROI) of 1 cm2 (100 x 100 pixels) on (a) Raw image, (b) Laplacian 

pyramid enhanced image, (c) Box-rim filtered image of (b). 
 
 

3. RESULTS 
 

The data set was separated into two independent data sets. One data set was used to train and validate the CNN 
in our CAD system. The other data set was used as a testing data set to evaluate the detection performance. The testing 
data set contained 49 cases with 104 images. There are 110 biopsy proven microcalcification clusters in the testing data 
set. The detection performance of the CAD system was assessed by free response receiver operating characteristic 
(FROC) analysis. FROC curves were presented on a per-cluster and a per-case basis. For cluster-based FROC analysis, 
the microcalcification cluster on each mammogram was considered an independent true cluster; the sensitivity was thus 
calculated relative to 110 clusters.  For case-based FROC analysis, the same cluster imaged on the two-view 
mammograms was considered to be one true cluster and the detection of either or both clusters on the two views was 
considered to be a TP detection.  To demonstrate the effects of the Laplacian pyramid enhancement on microcalcification, 
we disabled FP reduction with CNN for the comparison of the FROC curves with and without enhancement shown in 
Fig. 6. As can be seen from the FROC curves, for this data set, Laplacian pyramid multiscale enhancement using our 
currently chosen parameters did not improve the performance of the microcalcification detection system in comparison 
with our box-rim filter previously optimized for digitized screen-film mammograms. However, it was observed that the 
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new error metric not only accelerated the CNN training but also improved the classification performance. Our 
experimental results showed that the performance of the trained CNN was improved from an Az value of 0.94 to 0.97 on 
average for the validation set. As a consequence, the number of FP marks/image was reduced as seen from the cluster-
based FROC curve in Fig. 7. Under this condition of no Laplacian pyramid enhancement, our CAD system achieved a 
cluster-based sensitivity of 70%, 80%, and 90% at 2.16, 3.22, and 5.95 FP marks/image, respectively. When CNN was 
applied, a cluster-based sensitivity of 70%, 80%, and 88% could be achieved at 0.23, 0.39, and 0.71 FP marks/image, 
respectively. Fig. 7 also shows the case-based FROC curve for our CAD system. 

 

  
(a) (b) 

                     
Fig. 5.  (a) Microcalcification candidates after the segmentation stage, (b) Detected microcalcification cluster after the 

clustering stage.  
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Fig. 6. Cluster-based FROC curves. The FROC curve with dots is the performance of our CAD system without multiscale 

enhancement. The FROC curve with triangles shows the detection performance on the images with multiscale enhancement. 
FP reduction with CNN was disabled for both curves. 
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Fig. 7.  Overall performance of our CAD system for microcalcification cluster detection. The FROC curve with dots is 

case-based and the FROC curve with triangles is cluster-based. No multiscale enhancement was used in 
processing the images for both curves. 

 
 

4. DISCUSSION AND CONCLUSIONS 
 

In this work, we developed a CAD system for microcalcification clusters which uses the raw FFDMs as the 
input. The CAD system therefore can easily be adapted to images acquired by FFDM systems from different 
manufacturers. Our previous CAD system that was developed on digitized screen-film mammograms was adapted to 
FFDMs. For this data set, we observed that Laplacian pyramid multiscale enhancement did not improve the performance 
of the microcalcification detection system in comparison with our box-rim filter previously optimized for digitized 
screen-film mammograms. However, since we have not explored a very wide parameter space for optimization of the 
enhancement in this study, further work will be needed to examine the effect of image enhancement on the overall 
detection accuracy. With the new error metric, the training of CNN could be accelerated and the classification 
performance in validation was improved from an Az value of 0.94 to 0.97. The CNN in combination with rule-based 
classifiers can significantly reduce FPs with a small tradeoff in sensitivity. It was found that our CAD system can 
achieve a cluster-based sensitivity of 70%, 80%, and 88% at 0.23, 0.39, and 0.71 FP marks/image, respectively. For 
case-based performance evaluation, a sensitivity of 80%, 90%, and 98% can be achieved at 0.17, 0.27, and 0.51 FP 
marks/image, respectively. Further study is underway to improve the CAD system using a larger data set. In addition, we 
will incorporate the use of joint two-view information18 for FP reduction in our CAD system for FFDMs. 
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ABSTRACT 
 
We have developed a computer-aided detection (CAD) system for breast masses on mammograms. In this 

study, our purpose was to improve the performance of our mass detection system by using a new dual system approach 
which combines a CAD system optimized with ”average” masses with another CAD system optimized with subtle 
masses. The latter system is trained to provide high sensitivity in detecting subtle masses.  For an unknown 
mammogram, the two systems are used in parallel to detect suspicious objects.  A feed-forward backpropagation 
neural network trained to merge the scores of the two linear discriminant analysis (LDA) classifiers from the two 
systems makes the final decision in differentiation of true masses from normal tissue. A data set of 86 patients 
containing 172 mammograms with biopsy-proven masses was partitioned into a training set and an independent test set.  
This data set is referred to as the average data set. A second data set of 214 prior mammograms was used for training 
the second CAD system for detection of subtle masses. When the single CAD system trained on the average data set 
was applied to the test set, the Az for false positive (FP) classification was 0.81 and the FP rates were 2.1, 1.5 and 1.3 
FPs/image at the case-based sensitivities of 95%, 90% and 85%, respectively. With the dual CAD system, the Az was 
0.85 and the FP rates were improved to 1.7, 1.2 and 0.8 FPs/image at the same case-based sensitivities.  Our results 
indicate that the dual CAD system can improve the performance of mass detection on mammograms. 
 
Keywords:  computer-aided detection (CAD), mass detection, dual CAD system 
 
 
 

1. INTRODUCTION 
 
Breast cancer is one of the leading causes of death among American women between 40 to 55 years of age1.  

It has been reported that early diagnosis and treatment can improve significantly the chance of survival for patients with 
breast cancer2-4.  Although mammography is the best available screening tool for detection of breast cancers, studies 
indicate that a substantial fraction of breast cancers that are visible upon retrospective analyses of the images are not 
detected initially5-7.  Computer-aided detection (CAD) is considered to be one of the promising approaches that may 
improve the sensitivity of detecting early breast cancer in screening mammography. It has been shown that CAD can 
increase the cancer detection rate by radiologists both in the laboratory and in clinical practice8-13.   

 
We have been developing CAD systems for detection and characterization of mammographic masses and 

microcalcifications. Detection of masses on mammograms is more challenging than detection of microcalcifications 
because the normal fibroglandular tissue in the breast causes false positives (FPs) by mimicking masses and causes false 
negatives due to overlapping with the lesions.  Therefore, mass detection systems generally have lower sensitivity and 
higher FP rate than microcalcification detection systems.  In this study, we are investigating the effectiveness of a dual 
system approach for improving the performance of mass detection on mammograms. 
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2. MATERIALS AND METHODS 
 
2.1 Materials 
 

The data set we used in this study contained 86 cases.  Each case included the current mammograms that were 
obtained before biopsy and the prior mammograms obtained from previous exams.  The prior mammograms were used 
for training the second system because masses on prior mammograms are generally more subtle than those on current 
mammograms.  The subtle mass set does not have to be obtained from the same cases as the average mass set.  The 
current set contained 172 mammograms and the prior set contained 214 mammograms.  All data were collected with 
Institutional Review Board (IRB) approval.  The mammograms in this data set were digitized by a Lumiscan laser 
scanner with a pixel size of mm µµ 100100 ×  and 12 bits per pixel.  All of the current cases had two 
mammographic views: the craniocaudal (CC) view and the mediolateral oblique (MLO) view or the lateral view.  
There were 86 biopsy-proven masses in this data set.  The true locations of the masses were identified by an 
experienced MQSA radiologist. 

 
2.2 Methods 
 
   In order to improve the performance of our CAD system for detection of subtle masses, we developed a new 
dual system approach which combines a system trained with ”average” masses with another system trained with subtle 
masses. When the trained dual system is applied to an unknown mammogram, the two CAD systems are used in parallel 
to detect suspicious objects on a single mammogram.  No prior mammogram is needed.  The additional FPs from the 
use of two systems are reduced by feature classification in an information fusion stage.  Figure 1 shows the block 
diagram for the dual system. 
 

 
 

Figure 1.  The block diagram of the dual CAD system for mass detection on mammograms. 
 
 

Our single CAD system consists of five processing steps: 1) digitization, 2) pre-screening of mass candidates, 
3) identification of suspicious objects, 4) extraction of feature parameters, and 5) classification between the normal and 
the abnormal regions by using rule-based and LDA classifiers.  The block diagram for the single CAD system is 
shown in Figure 2.  Figure 3 shows an example demonstrating the processing steps with our computer-aided mass 

Current mammogram with 
non-subtle masses 

Prior mammogram with 
subtle masses 

Single CAD system 1 trained 
with non-subtle masses 

Single CAD system 2 
trained with subtle masses 

Information fusion with 
neural network 

Dual CAD system trained 
with all types of masses 
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detection system.  For the pre-screening stage, we have developed a two-stage gradient field analysis method which 
uses not only the shape information of masses on mammograms but also incorporates the gray level information of the 
local object segmented by a region growing technique in the second stage to refine the gradient field analysis14,15.  The 
gradient field analysis was used to determine locations of high convergence of radial gradient in the image.  A region 
of interest (ROI) of 256256×  pixels is then identified with its center placed at each location of high gradient 
convergence.  The object in each ROI is segmented by a region growing method16 in which the location of high 
gradient convergence is used as the starting point.  Figures 3(b) and 3(c) show the initial detection locations and the 
grown objects, respectively.  After region growing, all connected pixels constituting the object are labeled.  Finally, 
the gradient convergence at the center location of the ROI is recalculated within the segmented object.  The objects 
whose new gradient convergence is lower than 80% of the original value are rejected.  After prescreening, the 
suspicious objects are identified by using a clustering-based region growing method.  For each suspicious object, 
eleven morphological features are extracted.  Rule-based and LDA classifiers are trained to remove the detected 
normal structures that are substantially different from breast masses.  Global and local multiresolution texture 
analysis17,18 are performed in each ROI by using the spatial gray level dependence matrices at different pixel spacings 
and angular directions.  In order to obtain the best feature subset and reduce the dimensionality of the feature space to 
design a robust classifier, feature selection with stepwise linear discriminant analysis was applied.  Finally, LDA 
classification is used to identify potential breast masses.  Figure 3(d) shows the final detected objects, and Figure 3(e) 
shows the locations of these objects superimposed on the mammogram. 

 

 
Figure 2.  The block diagram of a single CAD system for mass detection on mammograms. 
 
 
The two single CAD systems were independently trained with the “average” mass set and the subtle mass set, 

respectively.  To merge the information from the two CAD systems, the two LDA discriminant scores from the two 
CAD systems were used to define a new feature space.  A feed-forward backpropagation neural network with 3 hidden 
nodes was then trained using the LDA feature scores of the training sets as input to differentiate true masses from 
normal tissue.  After the dual CAD system was trained, its performance was evaluated on the independent test set and 
compared with that of the single CAD system. 
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(a) Original image (b) Prescreened image 

   
(c) Identified suspicious objects (d) Detection result (e) Image with detected objects 

Figure 3.  An example demonstrating the processing steps with our single CAD system for mass detection.  

 
 

3. RESULTS 
 
We randomly separated the cases in our data set into two independent equal sized data sets, each with 43 cases.  

The training and testing were performed using the cross validation method.  The detection performance of the CAD 
system was assessed by free response receiver operating characteristic (FROC) analysis.  FROC curves were presented 
on a per-mammogram and a per-case basis.  For mammogram-based FROC analysis, the mass on each mammogram 
was considered an independent true object; the sensitivity was thus calculated relative to 86 masses. For case-based 
FROC analysis, the same mass imaged on the two-view mammograms was considered to be one true object and the 
detection of either or both masses on the two views was considered to be a true-positive (TP); the sensitivity was thus 
calculated relative to 43 masses.  The average test FROC curve was obtained from averaging the FP rates at the same 
sensitivity along the two corresponding test FROC curves from the 2-fold cross validation.  When the single CAD 
system trained on the average data set was applied to the test set, the Az for FP classification was 0.81 and the 
FPs/image were 2.1, 1.5 and 1.3 at the case-based sensitivities of 95%, 90% and 85%, respectively.  With the dual 
CAD system, the Az was 0.85 and the FP rates were improved to 1.7, 1.2 and 0.8 FPs/image at the same case-based 
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sensitivities.  Figure 4 and 5 shows the comparison of the test performance of the single and dual CAD systems by 
using image-based and case-based average FROC curves, respectively. 
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Figure 4. Image-based average FROC curves obtained from averaging the corresponding FROC 
curves of the two test subsets. Single: detection by the single CAD system. Dual: 
detection by the dual CAD system. 
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Figure 5. Case-based average FROC curves obtained from averaging the corresponding FROC 
curves of the two test subsets. Single: detection by the single CAD system. Dual: 
detection by the dual CAD system. 
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4. DISCUSSION AND CONCLUSIONS 
 
We previously developed a CAD system for detection of masses on mammograms.  However, we found that 

it is difficult to train a single system to provide optimal detection for all lesions over the entire spectrum of subtlety.  In 
this study, we developed a dual system which combines a system trained with subtle lesions on prior mammograms and 
a system trained with masses detected on current mammograms.  It was found that the dual CAD system could achieve 
a higher accuracy than the single CAD system.  Further study is underway to optimize the fusion scheme in our dual 
system.   
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