
DYNAMICS OF A LOOP-FREE PATH-FINDING ALGORITHM

Shree Murthy and J.J. Garcia-Luna-Aceves

Computer Engineering Department, 225, Applied Sciences Building
University of California, Santa Cruz, CA 95064

U.S.A

Abstract The dynamics of a loop-free path-finding algorithm (LPA)
based on predecessor information and a single-hop internodal synchro-
nization mechanism is investigated. LPA is compared with a loop-
free algorithm based on diffusing computations, DUAL, and an ideal
link-state (ILS) algorithm based on topology broadcast. Comparisons
include the dynamic response of the algorithms to a single and mul-
tiple link-cost changes as well as single link and router failures and
recoveries. The results show that LPA requires a significantly smaller
number of messages than ILS and DUAL to update routing tables when
multiple changes in link costs occur. LPA’s performance is always sig-
nificantly better than DUAL’s and significantly better than ILS’s after
node failures and resource additions (in some instances, ILS requires
almost four times as many messages). After a link failure, LPA requires
approximately the same time to converge as ILS and at most twice as
many messages.

I. INTRODUCTION

The shortest-path algorithms used in computer networks today, can
be classified as distance-vector or link-state algorithms. Many of these
distance-vector routing protocols are based on the distributed Bellman-
Ford algorithm (DBF) for shortest-path computation [2]. In order to
overcome the counting-to-infinity problem and bouncing effect of DBF,
several shortest-path algorithms [1], [9], [10], [12] have been proposed.
These algorithms, known as path-finding algorithms utilize information
regarding the distance and the second-to-last hop (predecessor) of the
shortest path to each destination. Although these algorithms provide a
marked improvement in performance over DBF, they do not eliminate
the possibility of temporary loops. The loop-free algorithms reported
to date rely on mechanisms that require routers to either synchronize
along multiple hops [5], [3], [11], or exchange path information that
can include all the routers in the path from source to destination [7].
We have presented and verified elsewhere [8] the first path-finding
algorithm that is loop-free at every instant, which we call the loop-
free path-finding algorithm (LPA). This paper provides further insight
into LPA by analyzing its dynamic behavior. We compare LPA with
DUAL [5] and an ideal link-state algorithm (ILS).

Like previous path-finding algorithms,LPA eliminates the counting-
to-infinity problem of DBF using the predecessor information. Since
each router reports to its neighbors the predecessor to each destination,
any router can traverse the path specified by a predecessor from any
destination back to a neighbor router to determine if using that neighbor
as its successor would create a path that contains a loop (i.e., involves
the router itself). To block a potential temporary loop, a router sends
a query to all its neighboring routers reporting an infinite distance to
a destination before it changes its routing table; the router is free to
choose a new successor only when it receives all the replies from its
neighbors in response to its synchronization queries. To reduce the
communication overhead incurred with the interneighbor coordination

This work was supported in part by the Office of Naval Research under Contract No. N-
00014-92-J-1807 and by the Advanced Research Projects Agency (ARPA) under contract
F19628-93-C-0175

mechanism, routers use a feasibility condition to limit the number of
times queries will be exchanged among neighbors. In contrast to many
prior loop-free routing algorithms [5], [3], [11], queries propagate only
one hop in LPA. Furthermore, updates and routing-table entries in LPA
require a single node identifier as path information rather than a variable
number of node identifiers as in previous algorithms [7]. The results
show that LPA performs better for single and multiple changes. LPA’s
performance is always significantly better than DUAL’s.

Section II gives a brief description of LPA with an example. Sec-
tions III and IV describe the design of the simulator and the instrumen-
tation we do to analyze the routing algorithm respectively. In Section V,
we discuss the dynamic behavior of LPA and compare its performance
with that of DUAL and ILS, an ideal link-state algorithm.

II. LPA DESCRIPTION

LPA is built on two basic mechanisms: using predecessor informa-
tion to eliminate counting-to-infinity problem and blocking temporary
routing loops using an inter-neighbor synchronizationmechanism sim-
ilar to the one proposed in [6].

Each router maintains a distance table, a routing table and a link-
cost table. The distance table at each router

�
maintains the distance

and the predecessor information to each destination � through each of
its neighboring nodes. The routing table contains information about
the shortest-path to destination � , predecessor and successor to � along
the shortest path. A tag entry for destination � (�������) specifies whether
the entry corresponds to a simple path, a loop or a destination that has
not been marked (correct, error and null respectively). The link-cost
table lists the cost of each link.

Using the predecessor information, each router can infer if the path
corresponding to a distance-table or a routing-table entry includes the
router itself. This feature eliminates the counting-to-infinity problem
of DBF. Furthermore, temporary loops can be detected by each router
within a finite time. This depends on the speed with which correct pre-
decessor information reaches the router and not on its distance (number
of hops). When a router determines that a loop may be formed if
it changes its current successor to a given destination, it blocks such
a loop by reporting an infinite distance for that destination to all its
neighbors by sending a query and waits till it receives reply from its
neighbors about the path (distance and predecessor) information before
changing its current successor. In order to reduce the overhead involved
in sending a query every time a node wants to change its successor, the
following feasibility condition is introduced.

Feasibility Condition (FC): If at time � router
�

needs to update its
current successor, it can choose as its new successor
��	� ��� any router����� � � ��� such that

�
is not present in the implicit path to � reported by

neighbor � , � �	���� ������� � � � ������� � � � � ���!�#"
� �%$ � �	�&'� ������� � & � ���)(* �� � � ���,+ and � �	-� � ���/.10�� �	 � ��� . If no such neighbor exists and � �	 � ���2.3 , router

�
must keep its current successor. If � � � � � ���4� 3 then
 �	 � ���2� �658797 .

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
Dynamics of a Loop-Free Path-Finding Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

11

3 2

10

4
J I (6,6)

L B (7)

D (5)

K (2) A (4)

M C
2

2 2

2

Fig. 1. Example: LPA’s Operation

Before sending a query, a router compares the distances reported by
its neighbors against its feasible distance. A feasible distance (FD) is
defined as the smallest distance achieved by the router’s own distance
since the last query sent by the router. A router sends a query, thus
blocking a potential loop when none of its neighbors reports a distance
smaller than the router’s own feasible distance. This feature accounts
for the low overhead incurred in LPA to accomplish loop-free paths at
every instant. LPA uses a tagging mechanism to ensure that it updates
only those routing table entries which are affected by the input event.

The updating of the routing table for a given destination depends
on whether the router is active or passive for that destination. A router
is passive if it has a feasible successor. An active router cannot send
an update regarding the destination; this is because an update during
active state would have to report an infinite distance to ensure that
the inter-neighbor synchronization mechanism used in LPA provides
loop-freedom at every instant. LPA is verified to be correct in [8].

Figure 1 illustrates LPA’s operation. In this network, links and nodes
have the same processing time or propagation delays; the operation of
the algorithm is discussed for the case when a link goes down. The
number adjacent to the link indicates the cost of the link. The arrowhead
from node * to node : indicates that node : is the successor of node *
towards destination � (i.e.,
 &	 �#:). The label in parenthesis assigned
to node * indicates the current distance (� &) and the feasible distance
from * to � (0�� &) respectively.

In Figure 1, the current path from node
�

to � is through node � .
Assume that link (

�<; �) fails. Node
�

uses FC to decide whether it has
a feasible successor or not. Applying FC, node

�
determines that node� is a feasible successor, because it reported a distance �>=	 =4 and that

distance plus the cost of the link (
�<; �) (i.e., � =	 � 7 �=) equals 6, which

is the minimum distance that node
�

can achieve through any of its
remaining neighbors (nodes � , ? and @). If link (

��; �) did not exist,
i.e., if node � were not node

�
’s neighbor, node

�
would have to send

a query to all its remaining neighbors, because none of them satisfies
FC. Node @ has reported a distance �>A	 � 2 .B0��>�	 � 6; however
�>A	 � 7 �A =12 is larger than the minimum distance node

�
can achieve,

which is 9 through node ? . On the other hand, node ? does not satisfy
FC because it has reported a distance �>C	 � 7 DE0�F �	 � 6.

III. SIMULATION DESIGN

We have developed simulations using an actor-based, discrete-event
simulation language called Drama [13], together with a network sim-
ulation library. Link failures and recoveries are handled by sending a
link-status message to the routers at the end points of the appropriate
link. In the link models used in the simulation, each link responds to
a packet by encapsulating the packet in another message and sending

the message to the link itself. The link propagation time is an input
parameter, although all runs were made with unit propagation time. If
a link fails, packets in transit are dropped.

For routing algorithm simulations in our study, a router receives a
packet and responds by running a routing algorithm, then queueing any
outgoing updates, and finally by waiting for some processing time. If
any incoming packets arrive before the processing time expires, the
routing algorithm is run again and any newly generated packets are
queued. Once the processing time for all events has expired, redundant
updates are removed (algorithm dependent) and the message queues
are sent over the links. In the runs actually made, processing time
was set to zero. This assumption was made as the procedures used
for each event are very simple. The link propagation time was set to
unit time. Drama’s internal mechanisms (FCFS) ensure that all updates
due to arrive at the current simulation time were processed before any
new updates were generated. The advantage of this approach is that
simulation puts multiple updates in the same packet. Therefore, the
number of packets becomes a more critical measure of performance
than the number of bits actually transmitted. The number of packets
in the simulation is therefore a lower bound on the number that would
actually be sent because of the possibility of packet fragmentation. In
the simulation runs under study, the packet lengths are short so that, on
an average, the fragmentation is not significant.

Three distributed shortest-path routing algorithms, Loop-free
path-finding algorithm (LPA) [8], the Diffusing Update Algorithm
(DUAL) [5] and an Ideal Link-State Algorithm (ILS) which uses Dijk-
stra’s shortest-path algorithm at each node, were studied. In all cases,
the algorithms produced a routing table giving a successor for each
destination. The successor is either a neighboring node or null. A null
successor entry indicates that a node does not have a path which sat-
isfies FC to a given destination. We ensure that all redundant updates
were removed in the algorithms simulated.

IV. INSTRUMENTATION

The simulation has been instrumented in two ways. A set of counters
that can be reset at various points are maintained. These counters
determine statistics such as the total number of times all the nodes in
the simulation responds to a packet and the total number of messages
sent. When the event queue empties indicating that the algorithm has
converged, the counter values are noted. Some counters are associated
with individual nodes and links in the simulation whereas others are
associated with all nodes and links.

The simulation also gathers information after each event has been
processed. In particular, a copy of the routing table is analyzed at
each step of the simulation thereby allowing the characterization of the
routes each algorithm has produced while the algorithm is still running.
Each copy of the routing table was generated just before a node’s script
returned. For each algorithm, the routing table of each router is also
analyzed at each step of the simulation for characterizing the routes
produced while the algorithm was running.

To obtain the average figures, each link (router) in the network is
made to fail, and the number of steps and messages needed for each
algorithm to converge is counted. Then the same link (router) is made
to recover and the process is repeated. The average is then taken
over all link (router) failures and recoveries. The routing algorithm
was allowed to converge after each such change. In all cases, routers
were assumed to perform computations in zero time and links were
assumed to provide one time unit of delay. For the failure and recovery
runs, the costs were set to unity. Both the mean and the standard

deviation were computed for each counter; the four counters used are,
the number of updates and changes in link status processed by routers
(events), the number of packets transmitted over the network (packets),
time taken for the algorithm to converge (duration) and the number of
operations performed by the algorithm (operations). Several quantities
were measured as a function of time and an ensemble average over
link-cost changes was measured as a function of the time since the
change in cost. These include the probability that there is a message
in transit, the average number of packets and the average number of
messages given that at least one message is in transit.

For the routing algorithms under consideration, there is only one
shortest path between a source and a destination pair and we do not
consider null paths from a router to itself. That is, a network with� routers when it is fully connected will have �HG 1 paths. During
each run, data was collected for a large number of topology changes to
determine statistical distributions. In addition, multiple runs were run
to determine the statistical errors.

V. SIMULATION RESULTS

The simulations were run on several network topologies such as Los-
Nettos, Nsfnet and ARPANET. We choose these topologies to compare
the performance of routing algorithms for well-known cases, given that
we cannot sample a large enough number of networks to make statisti-
cally justifiable statements about how an algorithm scales with network
parameters. In this paper, we focus on the results for ARPANET topol-
ogy only.

For each network, we generated test cases consisting of all single
failures and recoveries for both routers and links in which the routing
algorithms were allowed to converge after each such change. We have
also simulated the algorithms for random link cost changes; links were
chosen at random, with link costs chosen from the interval (0,1] and
with a Poisson distributed interarrival time. For link cost changes, five
independent runs were made and the averages and standard deviations
of all quantities measured were determined. Interarrival time between
the link-cost changes was varied to simulate multiple link-cost changes.

In all cases, nodes were assumed to perform computation in zero
time, and links were assumed to provide one time unit of delay. The
link model allows link delay and link cost to be set independently. Each
unit of time therefore represents a step in which all currently available
packets are processed. Although the choice of input parameters causes
the simulation to proceed synchronously, the node model treats each
incoming packet asynchronously. Each input event is processed inde-
pendently of other events received during the same simulation step.

A. Total Response to a Single Change

The performance of the routing algorithms for a single resource
failure is presented in [8]. The results indicate that LPA outperforms
DUAL for a single resource failure. The average performance of
LPA and DUAL is better than ILS after a resource addition and LPA’s
performance is comparable to ILS after a resource failure.

The response of the algorithms for a single link-cost change is given
in Table I. The table gives the average value and the standard deviation
along with the statistical error for each link-cost change. The statistical
errors were determined based on repeated trails. For a single link-cost
change, LPA is faster and needs fewer messages and operations than
both DUAL and ILS in all topologies. We can conclude from these
results that LPA has a better average performance than ILS and DUAL

after any single link-cost or topology change.

B. Dynamic Response to a Single Change

To study the dynamic behavior of the routing algorithms, we ran
an exhaustive series of test cases for all the node and the link failures
and recoveries and recorded the message related statistics. A statisti-
cal characterization of the performance of the routing algorithms was
obtained by treating every node change as a separate case and by com-
puting a distribution as a function of time. In this section, we present
the results of the dynamic behavior of the routing algorithms for the
ARPANET topology. In the instrumentation, we do not consider paths
from a node to itself, because they do not require a network. In our
simulations, we have taken care to handle these cases.

Figures 2–9 show the transient response of the routing algorithms
(probability of packets in transit and the average number of messages
that are exchanged) after a link failure, link recovery, node failure and
node recovery respectively. These are shown as a function of time.

The results indicate that for a link failure, ILS performs better than
DUAL and LPA in terms of the number of messages exchanged. LPA’s
average performance is much better than ILS for resource addition at
any time after the change. The performance of LPA is comparable to
ILS after a node failure. In all cases, LPA outperforms DUAL. The
probability of packets being in transit for LPA after a resource recovery
is less than ILS and DUAL. The average packet length for LPA after
a resource change is much smaller than DUAL. This is because of
the single hop interneighbor coordination mechanism and the tagging
mechanism used in LPA.

C. Response to Multiple Link-Cost Changes

The steady-state behavior of the algorithms is more interesting with
multiple link-cost changes than the transient response after each topol-
ogy change. Figures 10–13 shows the average number of update mes-
sages when such messages are in transit, the average lengths of mes-
sages, the average number of messages in transit and the probability
that the messages are in transit as a function of the interarrival times
between link-cost changes for LPA, DUAL and ILS. This again is for
the ARPANET topology. From [14], it has been observed that the be-
havior of DUAL and ILS for multiple link-cost changes is similar for
different network topologies; our conjecture is that the same is true for
LPA.

For very long interarrival times, the number of messages during busy
periods is independent of the interarrival time because the probability of
two topology changes occurring simultaneously is small. In this case,
the performance approaches that of single link-cost change. When
the interarrival time approaches the network diameter, this situation
changes and the number of messages during the busy period increases
because of multiple topology changes occurring simultaneously.

The average number of messages exchanged when messages are in
transit is slightly less for LPA compared to DUAL and ILS. This again
is because of the single-hop internodal synchronization mechanism and
updating of the distance-table entries, which has been explained earlier.
All curves are of roughly the same shape. For ILS, the average message
length is close to 1. DUAL and LPA have longer messages as a message
can contain multiple updates; this occurs when messages from the
routers at both ends of a link that changes cost arrive at some router at the
same time. With the increase in the interarrival time between changes,
the average number of messages drops down as it now approaches

0.0

0.2

0.4

0.6

0.8

1.0

 5 10 15 20 25

P
R

O
B

A
B

IL
IT

Y

I

TIME AFTER LINK FAILURE

LPA
DUAL

ILS

Fig. 2. Probability of packets in transit for Link
Failure

0.0

0.2

0.4

0.6

0.8

1.0

 2 4 6 8 10 12 14

P
R

O
B

A
B

IL
IT

Y

I

TIME AFTER LINK RECOVERY

LPA
DUAL

ILS

Fig. 3. Probability of packets in transit for Link
Recovery

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

 5 10 15 20 25

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 P

A
C

K
E

T
S

TIME AFTER LINK FAILURE

LPA
DUAL

ILS

Fig. 4. Average number of packets for Link Fail-
ure

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

 2 4 6 8 10 12 14

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 P

A
C

K
E

T
S

TIME AFTER LINK RECOVERY

LPA
DUAL

ILS

Fig. 5. Average number of packets for Link Re-
covery

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35 40 45 50

P
R

O
B

A
B

IL
IT

Y

I

TIME AFTER NODE FAILURE

LPA
DUAL

ILS

Fig. 6. Probability of packets in transit for Node
Failure

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20

P
R

O
B

A
B

IL
IT

Y

I

TIME AFTER NODE RECOVERY

LPA
DUAL

ILS

Fig. 7. Probability of packets in transit for Node
Recovery

0.0

10.0

20.0

30.0

40.0

50.0

60.0

 0 5 10 15 20 25 30 35 40 45 50

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 P

A
C

K
E

T
S

TIME AFTER NODE FAILURE

LPA
DUAL

ILS

Fig. 8. Average number of packets for Node
Failure

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0 5 10 15 20

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 P

A
C

K
E

T
S

TIME AFTER NODE RECOVERY

LPA
DUAL

ILS

Fig. 9. Average number of packets for Node
Recovery

 0.0

 0.1

 1.0

 10.0

100.0

1000.0

 1 10 100 1000 10000A
V

E
 N

U
M

 O
F

 M
S

G
S

 W
H

E
N

 M
S

G
S

 A
R

E
 I
N

 T
R

A
N

S
IT

INTERARRIVAL TIME

LPA
DUAL

ILS

Fig. 10. Average Number of Messages when
messages are in Transit

 0.10

 1.00

10.00

100.00

 1 10 100 1000 10000

A
V

E
R

A
G

E
 M

E
S

S
A

G
E

 L
E

N
G

T
H

J

INTERARRIVAL TIME

LPA
DUAL

ILS

Fig. 11. Average Message Length

 0

 0

 1

 10

 100

 1 10 100 1000 10000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 M

E
S

S
A

G
E

S

K

INTERARRIVAL TIME

LPA
DUAL

ILS

Fig. 12. Average Number of Messages in Transit

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1 10 100 1000 10000P
R

O
B

A
B

IL
IT

Y
 T

H
A

T
 T

H
E

 M
E

S
S

A
G

E
S

 A
R

E
 I
N

 T
R

A
N

S
IT

INTERARRIVAL TIME

LPA
DUAL

ILS

Fig. 13. Probability that Update Messages are in
Transit

TABLE I
ROUTING ALGORITHM RESPONSE TO A CHANGE IN LINK COST

Parameter LPA DUAL ILS
mean sdev mean sdev mean sdev

Los-Nettos Cases

Event Count 21.4 L 0.47 35.6 L 2.8 34.0 L 0.24 45.0 L 0.54 18.5 L 0.05 18.5 L 0.04
Packet Count 12.2 L 0.15 7.5 L 0.41 15.45 L 0.14 18.6 L 0.25 17.5 L 0.05 17.5 L 0.04

Duration 3.95 L 0.06 1.76 L 0.07 4.9 L 0.06 2.17 L 0.07 4.06 L 0.01 0.46 L 0.03
Operation Count 45.7 L 0.23 23.1 L 1.1.7 44.0 L 0.24 52.9 L 0.5 473.9 L 3.08 475.5 L 3.09

NSFNET Cases

Event Count 34.65 L 0.83 72.86 L 2.7 50.97 L 1.2 68.7 L 2.5 28.5 L 0.09 28.5 L 0.09
Packet Count 14.97 L 0.15 14.78 L 0.47 21.81 L 0.54 27.1 L 0.82 27.5 L 0.1 27.5 L 0.09

Duration 4.624 L 0.05 2.45 L 0.05 5.516 L 0.17 2.57 L 0.15 4.7 L 0.02 0.46 L 0.01
Operation Count 55.323 L 0.42 42.64 L 1.21 63.97 L 1.2 78.8 L 2.35 1012.88 L 3.9 1014.5 L 3.76

ARPANET Cases

Event Count 247.5 L 16.09 679.7 L 24.6 350.09 L 15.08 501.4 L 22.7 84.1 L 0.23 84.6 L 0.21
Packet Count 55.8 L 1.86 66.8 L 3.0 81.8 L 2.99 102.9 L 4.9 83.1 L 0.23 83.6 L 0.21

Duration 7.042 L 0.22 4.9 L 0.09 10.84 L 0.45 4.75 L 0.55 7.74 L 0.028 0.74 L 0.022
Operation Count 269.7 L 8.05 359.2 L 12.2 396.1 L 15.1 534.6 L 22.6 13613.1 L 51.0 13691.3 L 47.4

towards a single link-cost change. The average number of messages
that are in transit and its probability are significantly smaller for LPA
compared to DUAL and ILS. However, DUAL and ILS roughly follow
the same curve. The results clearly indicate that LPA incurs smaller
overhead traffic than either DUAL and ILS when multiple link-cost
changes occur.

VI. CONCLUSION

We have presented a complete analysis of the dynamic behavior
of a loop-free path-finding algorithm (LPA) that uses distance vectors
with the distance and the predecessor to each destination, and a single
hop internodal synchronization mechanism for achieving loop freedom.
The dynamic behavior of this algorithm is compared with that of DUAL
and ILS.

The statistical techniques used in our analysis provide a way of char-
acterizing the performance of various algorithms, and can be used as a
basis for a tradeoff analysis during network design. The time behavior
of loop-free distance vector algorithms shows that parameters such as
packet length can change as updates propagate, thereby suggesting the
possibility of heuristics that can exploit local conditions. Our analysis
indicates that overall, LPA has better performance among the three
algorithms simulated. LPA’s performance is always significantly bet-
ter than that of DUAL. LPA requires a significantly smaller number
of messages than ILS and DUAL to update routing table for multiple
link-cost changes.

REFERENCES

[1] C. Cheng, R. Reley, S. P. R Kumar and J. J. Garcia-Luna-Aceves, “A
Loop-Free Extended Bellman-Ford Routing Protocol without Bouncing
Effect”, ACM Computer Communications Review, Vol.19, No.4, 1989,
pp.224–236.

[2] L.R. Ford and D.R. Fulkerson, Flow in Networks, Princeton University
Press, Princeton, New Jersey, 1962.

[3] J.M. Jaffe and F.M. Moss, “A Responsive Routing Algorithm for Computer
Networks”, IEEE Trans. Comm., Vol.30, July 1982, pp.1758–1762.

[4] J. J. Garcia-Luna-Aceves, “A Fail-Safe Routing Algorithm for Multihop
Packet Radio Networks”, Proc. of IEEE INFOCOM, Miami, Florida, 8–10
April, 1986, pp.434–443.

[5] J. J. Garcia-Luna-Aceves, “Loop-free Routing using Diffusing Computa-
tions”, IEEE/ACM Transactions on Networking, Vol. 1, No. 1, Feb, 1993,
pp.130–141.

[6] J. J. Garcia-Luna-Aceves, “Distributed Routing with Labeled Distances”,
Proc. of IEEE INFOCOM, Conference on Computer Commun. Florence,
Italy, 4–8 May 1992, pp.633–643.

[7] J. J. Garcia-Luna-Aceves, “LIBRA: A Distributed Routing Algorithm for
Large Internets”, Proc. of IEEE Globecom, Orlando, Florida, 6–9 Dec
1992, pp.1465–1471.

[8] J.J. Garcia-Luna-Aceves and S. Murthy, “A Loop-Free Path-Finding Al-
gorithm: Specification, Verification and Complexity”, Proc. of IEEE
INFOCOM, Boston, 4–6 April 1995.

[9] J. Hagouel, “Issues in Routing for Large and Dynamic Networks," IBM
Research Report RC 9942 (No. 44055) Communications, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, April 1983.

[10] P.A. Humblet, “Another Adaptive Shortest-Path Algorithm”, IEEE Trans.
Comm., Vol.39, No.6, June 1991, pp.995–1003.

[11] P.M. Merlin and A. Segall, “A Failsafe Distributed Routing Algorithm”,
IEEE Trans. Comm., Vol.27, Sept. 1979, pp.1280–1288.

[12] B. Rajagopalan and M. Faiman, “A Responsive Distributed Shortest-Path
Routing Algorithm within Autonomous Systems,” Internetworking: Re-
search and Experience, Vol.2, No.1, March 1991, pp. 51-69.

[13] W. T. Zaumen, “Simulations in Drama”, Network Information System
Center, SRI International, Menlo Park, California, January 1991.

[14] W. T. Zaumen and J. J. Garcia-Luna-Aceves, “Dynamics of Link-state
and Loop-free Distance-vector Routing Algorithms”, Internetworking:
Research and Experience, Vol. 3, 1992, pp.161–188.

