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ABSTRACT
Unit test cases are focused and efficient. System tests are effective
at exercising complex usage patterns.Differential unit tests(DUT)
are a hybrid of unit and system tests. They are generated by carving
the system components, while executing a system test case, that in-
fluence the behavior of the target unit, and then re-assembling those
components so that the unit can be exercised as it was by the sys-
tem test. We conjecture that DUTs retain some of the advantages
of unit tests, can be automatically and inexpensively generated, and
have the potential for revealing faults related to intricate system ex-
ecutions. In this paper we present a framework for automatically
carving and replaying DUTs that accounts for a wide-variety of
strategies, we implement an instance of the framework with sev-
eral techniques to mitigate test cost and enhance flexibility, and we
empirically assess the efficacy of carving and replaying DUTs.

1. INTRODUCTION

Software engineers develop unit test cases to validate individ-
ual program units (e.g., methods, classes, packages) before they
are integrated into the whole system. By focusing on an isolated
unit, unit tests are not constrained by other parts of the system in
exercising the target unit. This smaller scope for testing usually
results in significantly more efficient test execution and fault isola-
tion relative to whole system testing and debugging [1, 19]. Unit
test cases are also used as a component of several popular develop-
ment methods, such as extreme programming (XP) [2], test driven
development (TDD) practices [3], continuous testing [37], and ef-
ficient test prioritization and selection techniques [33].

Developing effective suites of unit test cases presents a number
of challenges. Specifications of unit behavior are usually informal
and are often incomplete or ambiguous, leading to the development
of overly general or incorrect unit tests. Furthermore, such specifi-
cations may evolve independently of implementations requiring ad-
ditional maintenance of unit tests even if implementations remain
unchanged. Testers may find it difficult to imagine sets of unit input
values that exercise the full-range of unit behavior and thereby fail
to exercise the different ways in which the unit will be used as a part
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of a system. An alternative approach to unit test development, that
does not rely on specifications, is based on the analysis of a unit’s
implementation. Testers developing unit tests in this way may fo-
cus, for example, on achieving a coverage-adequacy criteria of the
target unit’s code. Such tests, however, are inherently susceptible
to errors of omission with respect to specified unit behavior and
may thereby miss certain faults. Finally, unit testing requires the
development of test harnesses or the setup of a testing framework
(e.g., junit [18]) to make the units executable in isolation.

System tests are usually developed based on documents that are
commonly available for most software systems that describe the
system’s functionality from the user’s perspective, for example, re-
quirement documents and user’s manuals. This makes system tests
appropriate for determining the readiness of a system for release,
or to grant or refuse acceptance by customers. Additional benefits
accrue from testing system-level behaviors directly. First, system
tests can be developed without an intimate knowledge of the sys-
tem internals, which reduces the level of expertise required by test
developers and which makes tests less-sensitive to implementation-
level changes that are behavior preserving. Second, system tests
may expose faults that unit tests do not, for example, those that
span multiple units or that involve very complex usage of units.
Finally, since they involve executing the entire system no test har-
nesses need be constructed.

While system tests are an essential component of all practical
software validation methods, they do have several disadvantages.
They can be expensive to execute; for large systems days or weeks,
and considerable human effort may be needed for running a thor-
ough suite of system tests [25]. In addition, even very thorough
system testing may fail to exercise the full-range of behavior im-
plemented by system’s units; thus, system testing cannot be viewed
as an effective replacement for unit testing. Finally, fault isolation
and repair during system testing can be significantly more expen-
sive than during unit testing.

The preceding characterization of unit and system tests, although
not comprehensive, illustrates that system and unit tests have com-
plementary strengths and that they offer a rich set of tradeoffs. In
this paper, we present a general framework for carving and replay-
ing of what we calldifferential unit tests(DUT) which aim at ex-
ploiting those tradeoffs. We termed themdifferentialbecause their
primary function is detecting differences between multiple versions
of a unit’s implementation. DUTs are meant to be focused and effi-
cient, like traditional unit tests, yet they are automatically generated
along with a custom test-harness, making them inexpensive to de-
velop and easy to evolve. In addition, since they indirectly capture
the notion of correctness encoded in the system tests from which
they are carved, they have the potential for revealing faults related
to complex patterns of unit usage.
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In our approach, DUTs are created from system tests by captur-
ing components of the exercised system that influence the behavior
of the targeted unit, and that reflect the results of executing the unit;
we term thiscarving. Those components are automatically assem-
bled into a test harness that establishes the pre-state of the unit that
was encountered during system test execution. From that state, the
unit is replayedand the resulting state is queried to determine if
there are differences with the recorded unit post-state.

Ideally DUTs will (a) retain the fault detection effectiveness of
system tests on the target unit, (b) only report small numbers of dif-
ferences that are not indicative of differing system test results, (c)
be executed faster than system tests, and (d) be applicable across
multiple system versions. We empirically investigate DUT carving
and replay techniques with respect to these criteria through a con-
trolled experiment within the context of regression testing where
we compare the performance of system tests and carved unit tests.
The results indicate that carved test cases can be as effective as sys-
tem test cases in terms of fault detection, but much more efficient.

The contributions of this paper are: (i) presenting of a frame-
work for automatically carving and replaying DUTs that accounts
for a wide-variety of implementation strategies with different trade-
offs; (ii ) implementing a new state-based strategy for carving and
replay at a method level that offers a range of costs, flexibility, and
scalability; and (iii ) identifying evaluation criteria and empirically
assessing the efficiency and effectiveness of carving and replay of
DUTs on multiple versions of a Java application. We believe these
contributions lay a solid and general foundation for further study
of carving and replay of DUTs and we outline several directions
for future work in Section 6. In the next Section, we present our
framework for carving and replay testing. Section 3 details the im-
plementation of one of those instantiations. Section 4 describes our
study and results. Section 5 discusses related work.

2. A FRAMEWORK FOR TEST CARVING
AND REPLAY

Java programs can have millions of allocated heap instances [14]
and hundreds of thousands of live instances at any time. Conse-
quently, carving theraw state of real programs is impractical. We
believe that cost-effective carving and replay (CR) based testing
will require the application of multiple strategies thatselectinfor-
mation in raw program states and use that information to trade a
measure of effectiveness to achieve practical cost. Strategies might
include, for example, carving a single representative of each equiv-
alence class of program states or pruning information from a carved
state that a method under test is guaranteed to not be dependent on.
The space of possible strategies is vast and we believe that a general
framework for CR testing will aid in exploring cost-effectiveness
trade-offs possible in the space of CR testing techniques.

Regardless of how one develops, or generates, a unit test, there
are four essential steps: (1) identify a program state from which to
initiate testing, (2) establish that program state, (3) execute the unit
from that state, and (4) judge the resulting state as to its correct-
ness. In the rest of this Section, we define a general framework that
allows different strategies to be applied in each of these steps.

2.1 Program States and Program Executions
For the purposes of explaining our framework, we consider a

Java program to be a kind of state machine. At any point during the
execution of a program theprogram state, S, can be defined, con-
ceptually, as all of the values in memory. As needed, we will define
notation for accessing specific portions of a state, for example, the
parameters in the current active frame of the call stack.

Carve ctxm

Replay ctxm on m�

m evolves: m + ! = m�

Given stx { input/s, expected output/s }

Execute stx S0 � Spre Spost ��m outputinput

Spre m�load Spost�

Same?Spost Behavior of  m " m�

! has affected behavior of m

yes

no

ctxm {Spre , Spost }
capture

Figure 1: Carving and replay process.

A program executioncan be formalized either as a sequence of
program states or as a sequence of program actions that cause state
changes. A sequence of program states is written asσ = s0, s1, . . .
wheresi ∈ S ands0 is the initial program state as defined by Java.
A statesi+1 is reached fromsi by executing a singleaction (e.g.,
bytecode). A sequence of program actions is written asσ̄. We
denote the final state of an action sequences(σ̄).

2.2 Basic Carving and Replaying
Figure 1 illustrates the CR process. Given a system test case

stx, carving a unit test casectxm for target unitm during the ex-
ecution ofstx consists of capturingspre, the program state im-
mediately before the first instruction of an activation of method
m, and spost, the program state immediately after the final in-
struction of the activation ofm has executed. The captured pair
of states(spre, spost), defines adifferential unit test casefor a
method,ctxm . States in this pair can be defined by capturing the
appropriate states inσ, or through the cumulative effects of a se-
quence of program actions, by capturings(σ̄) at the appropriate
points in σ̄. A CR testing approach is said to bestate-basedif
it records pairs(spre, spost) and action-basedif it records pairs
(σ̄pre, spost) wherespre = s(σ̄pre).

In practice, it is common for a method,m, to undergo some mod-
ification, e.g., tom′, over the program lifetime. To efficiently vali-
date the effects of a modification, wereplayctxm onm′. Replaying
a differential unit test for a methodm′ requires the ability to either
load statespre into memory or executēσpre depending on how the
state was carved. From this state, execution ofm′ is initiated and
it continues until it reaches the point corresponding to the carved
spost. At that point, the current execution state,s′post, is compared
to spost. If the resulting states are the same, we can attest that the
change did not affect the behavior of the target unit. However, if
the change altered the behavior ofm, then further processing will
be required to determine whether the alteration matches the devel-
oper’s expectations.

There are multiple techniques for diagnosing the root cause of
detected differences. For example, a difference could trigger the
execution of system teststx to determine whether a difference man-
ifests at higher levels of abstractions, the results ofctxm could be
compared with the results of manually developed unit tests form,
or intermediate states within the execution ofm andm′ (e.g., after
every statement) could be compared to identify the earliest point at
which states differ. We discuss support for some of these diagnos-
tics in Section 2.4 and leave the others for future work.

Several fundamental challenges must be addressed in order to
make CR cost-effective. First, the proposed basic carving proce-



dure is at best inefficient and likely impractical. Inefficient because
a method may only depend on a small portion of the program state,
thus storing the complete state is wasted effort. Furthermore, two
distinct complete program states may be identical from the point of
view of a given method, thus carving complete states would yield
redundant unit tests. Impractical because storing the complete state
of a program may be prohibitively expensive in terms of time and
space. Second, changes tom may renderctxm unexecutable in
m′. Reducing the cost of CR testing is important, but we must
produce DUTs that are robust to changes so that they can be exe-
cuted across a series of system modifications in order recover the
overhead of carving. Finally, the use of complete post-states to de-
tect behavioral differences is not only inefficient but may also be
too sensitive to behavior differences caused by reasons other than
faults (e.g., fault fixes, improvements, internal refactoring) leading
to the generation of brittle tests. The following sections address
these challenges.

2.3 Improving CR with Projections
We focus CR testing on a single unit by defining projections on

carved pre-states that preserve information related to the unit under
test and provide significant reduction in pre-state size.

2.3.1 State-based Projections
A state projection functionπ : S → S preservesselected pro-

gram state components. For example, a state projection function
may preserve only the values of reference fields, thereby elimi-
nating all scalar fields, which would maintain theheap shapeof
a program state. Many useful state projections are based on the
notion of heap reachability. A referencer′ is reachablein one
dereference fromr if the value of some field ofr holds r′; let
reach(r) = {r′ | ∃f∈Fvfield(r, f) = r′} wherevfield is the
dereference function. References reachable through any chain of
dereferences up to lengthk from r are defined by using the iter-
ated composition of this binary relation,

⋃
1≤i≤k reachi(r); as a

notational convenience we will refer to this asreachk(r). The
positive-transitive closure of the relation,reach+(r), defines the
set of all reachable references fromr in one or more dereferences.

State-based CR testing approaches should use projections that
retain at most theinterface reachableprojection which is defined
to preserve the set of heap objects reachable from a calling con-
text, {r | ∃p∈Paramsreach+(p)}. Robustness to change under
this projection is identical to that of the complete program pre-state
since all data that the method could possibly reference is captured.
It is possible to trade robustness for reduction in carving cost by
defining projections that eliminate more state information. Section
3 presents two projections that exercise this trade-off.

2.3.2 Action-based Projections and Transformations
Projections on sequences of program actions,π̄ : σ̄ → σ̄. can

be used to distill the portion of a program run that affects the pre-
state of a unit method. Unfortunately, a purely projection-based
approach to state-capture will not work for all Java programs. For
example, a program that calls native methods does not, in general,
have access to the native methods instructions. To accommodate
this, we can allow fortransformationof actions during carving, i.e.,
replace one sequence of instructions with another. Transformation
could be used, for example, to replace a call to a native method
with an instruction sequence that implements the side-effects of the
native method. More generally, one could design an instance ofπ̄
that would replace any portion of a trace with asummarizingaction
sequence.

Test Case
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!

Spre

Test Cases
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!
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Reduced  ctxm
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Figure 2: Sample applications of projections functions.

2.3.3 Applying Projections
Figure 2 illustrates two potential applications of the projections:

test case reduction and test cases filtering.
Reduction aims at thinning a single carved test case by retain-

ing only the projected pre-state (in Figure 2 the projection ofspre

carved fromctxm leads to a smallerspre). Reducing a DUT’s pre-
state results in reduced space requirements and, more importantly,
in quicker replay since loading time is a function of the pre-state
size. As we shall see, depending on the type of projection, these
gains may be achieved at the expense of reduced fault detection
power (e.g., a projection may discard an object that was necessary
to expose the fault). Furthermore, test executability may be sac-
rificed as well. State-based projections may become unexecutable
if the data structures used by the target unit changes, for example,
shifting from an array to a heap-based structure, even if behavior is
preserved. Action-based projections may become unexecutable if
the behavior of a unit method changes so that a different number or
sequence of methods is needed in the modified program to produce
the desired pre-state. Still, reduction can be a valuable mechanism
to improve the efficiency of CR by keeping just the portions of the
pre-state that are most likely to be relevant to the targeted method.

Filtering aims at removing redundant DUTs from the suite. Con-
sider a method that is invoked during the program initialization and
is independent of the program parameters. Such method would be
exercised by all the system tests in the same way and result in mul-
tiple identical DUTs for that particular methods. A simple filter
would remove such duplicates tests, keeping just the unique DUTs.
Now consider a simple accessor method with no parameters that
just returns the value of a scalar field. If this method is invoked
by the tests from different pre-states, then multiple DUTs will be
carved, and a simple lossless filter will not discard any DUT even
though they exercise similar behavior. In this case, applying a pro-
jection that preserves the pre-state components directly reachable
from thiswould result in many DUTs that are redundant (in Figure
2 π(spre) for ctxm and forctzm are identical so one of them can
be removed). Clearly, in some cases, this kind of lossy filtering
may result in a lower fault detection capability since we may dis-
card a DUT that is indeed different and hence potentially valuable.
Note that, contrary to test case reduction, filtering only uses pro-
jections to judge test equivalence, consequently, test executability
is preserved since the DUTs that are kept are complete. In practice,
however, reduction and filtering are likely to be applied in tandem
such that reduced tests are then filtered, or filtered tests are then re-
duced (without necessarily using the same projection for reduction
and filtering).



2.4 Adjusting Sensitivity through Differenc-
ing Functions

The basic CR testing approach described earlier compares a carved
complete post-state to a post-state produced during replay to detect
behavioral differences in a unit. The use of complete post-states is
both inefficient and unnecessary for the same reasons as outlined
above for pre-states. While we could use comparison of post-state
projections to address these issues, we believe that there is a more
flexible solution.

Method unit test are typically structured so that, after a sequence
of method calls that establish a desired pre-state the method under
test is executed. When it returns additional method calls and com-
parisons are executed to implement apseudo-oracle. For example,
unit tests for a red-black tree might execute a series of insert and
delete calls and then query the tree-height and compare it to an ex-
pected result to judge partial correctness. We allow a similar kind
of pseudo-oracle in CR testing by definingdifferencing functions
on post-states that preserve selected information about the results
of executing the unit under test. These differencing functions can
take the form of post-state projections or can be more aggressive,
capturing simple properties of post-states, such as tree height, and
consequently may greatly reduce the size of post-states while pre-
serving information that is important for detecting behavioral dif-
ferences.

We define differencing functions that map states to a selected
differencing domain, dif : S → D. Differencing in CR testing
is achieved by evaluatingdif(spost) = dif(spost′). State projec-
tion functions are simply differencing functions whereD = S.
In addition to the reachability projections defined in the previous
sub-section, projections on unit method return values, calledreturn
differencing, and on fields of the unit instance,this , called in-
stance differencing, are useful since they correspond to techniques
used widely in hand-built unit tests.

A central issue in differential testing is the degree to which dif-
ferencing functions are able to detect changes that correspond to
faults while masking implementation changes. We refer to this as
thesensitivityof a differencing function. Clearly, comparing com-
plete post-states will be highly-sensitive, detecting both faults and
implementation changes. A projection function that only records
the return value of the method under test will be insensitive to im-
plementation changes while preserving some fault-sensitivity. Note
also that these differencing functions provide different incomplete
views on program state. Their incompleteness reduces cost and
provides a measure of implementation change insensitivity, but it is
problematic since it may reduce their fault detection effectiveness.

We address this by allowing for multiple differencing functions
to be applied in CR testing which has the potential to increase fault-
sensitivity, without necessarily increasing implementation change-
sensitivity. For example, using a pair of return and instance differ-
encing functions allows one to detect faults in both instance field
updates and method results, but will not expose differences related
to deeper structural changes in the heap. Fault isolation efficiency
could also be enhanced by the availability of multiple differencing
functions, since each could focus on a specific property or set of
program state components that which will help developers restrict
their attention on a potentially small portion of program state that
may reflect the fault.

There is another differencing dimension that can improve fault
isolation. It consists of generalizing the definition of DUTs to cap-
ture a sequence of post-states,(spre, σpost), that capture interme-
diate points during the execution of the method under test. Figure 3
illustrates a scenario in which a generalized DUT begins execution
of m atspre. Conceptually, during replay a sequence of post-states

spre

}
}

activation of m

calls out of unit

spost3spost1 spost4 spost5spost2

1 2 3 4

5

Figure 3: Differencing sequences of post-states.

is differenced with corresponding states at intermediate states of
the method under test. For example, at point 1, the test compares
the current state to the capturedspost1, similarly at points 2 and
3 the pre and post-states of the call out of the unit are compared.
Using a sequence of post-states requires that a correspondence be
defined between locations inm andm′. Correspondences could be
defined using a variety of approaches, for example, one could use
the calls out ofm andm′ to define points for post-state compari-
son (as is illustrated in Figure 3) or common points in the text ofm
andm′ could be detected via textual differencing. Fault isolation is
enhanced using multiple post-states, since if the first detected dif-
ference is at locationi then that difference was introduced in the
region of execution between locationi − 1 andi. Of course, stor-
ing multiple post-states may be expensive so we advocate the use
of σpost to narrow the scope of code that must be considered for
fault isolation once a behavioral difference is attributed to a fault.

3. INSTANTIATING THE FRAMEWORK
In this section we describe the architecture and some implemen-

tation details of a state-based instantiation of the framework. (Sec-
tion 5 discusses existing carving and replay implementations which
are action-based).

3.1 System Architecture
Figure 4 shows the architecture of the CR tools, with the shaded

rectangles being the primary components. The carving activity
starts with theCarver class which takes four inputs: the program
name, the target methodm within the program, the system test case
stx inputs, and options to bound the carving process.

Carver utilizes a custom class loaderCustomLoader(that uti-
lizes BCEL [13]) to incorporate into the program: a singletonCon-
textFactoryclass configured to store pre and post states, and invo-
cations of theContextFactoryat the entry and exit(s) ofm. Then,
every execution ofm will cause two invocations ofContextFac-
tory: one to storespre and one to storespost. ContextFactoryuti-
lizes theContextBoundingclass to assist with the determination of
what part of the state should be stored when test case reduction is
utilized. By default,ContextBoundingperforms the most conserva-
tive projection: an interface reachability projection (as described in
Section 2.3). More restrictive projections can be performed through
theBoundingAnalysisclass; we have implemented two such projec-
tions and describe them in the next section. Finally, the open source
packageXStream, described in more detail in the next section, per-
forms state serialization and temporary storage. Finally, the data is
compressed with the off-the shelf compression utility bzip.

TheReplaycomponent shares many of the classes withCarver.
As in Carver, Replayinstruments the class of the target unit, in this
casem′, and utilizes theContextFactory, but only to storespost.
TheContextLoaderclass obtains and loadsspre, usingXStreamto
unmarshall the stored program state, and then invokes the target
unit for execution.
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Figure 4: CR Tool Architecture.

Two set of scripts, represented with double-side rectangles in
Figure 4, are utilized to provide the filtering and differencing mech-
anisms. Once a test suite of DUTs is generated, test case filtering
can be performed to remove redundant test cases based on the same
set of projections available throughBoundingAnalysis. Dif scripts
compare twospost according to a specified differencing function
to determine whether the changes fromm to m′ generate a behav-
ioral difference. Currently, differencing functions on return values,
on instance fields, on full program state (the default) are fully au-
tomated. To facilitate experimentation with differentDif functions
our tools currently store the fullspost, but we plan to implement
options to store onlydif(spost) which has the potential to signifi-
cantly reduce the cost of carving, replay and differencing.

3.2 Interesting Implementation Aspects
In this section we briefly describe the most interesting aspects of

the implementation.

Limitations of the java.io.Serializable interface. Our approach
requires the ability to save and restore object data representing the
program state. However, the Javajava.io.Serializable in-
terface limits the type of objects that can be serialized. For exam-
ple, Java designates file handler objects as transient (non-serializable)
because it reasonably assumes that a handler’s value is unlikely to
be persistent, and restoring it could enable illegal accesses. The
same limitations apply to other objects, such as database connec-
tions and network streams. In addition, the Java serialization in-
terface may impose additional constraints on serialization. For ex-
ample, it may not serialize classes, methods, or fields declared as
private or final in order to avoid potential security threats.

Fortunately, we are not the first to face these challenges. We
found multiple serialization libraries that offer more advanced and
flexible serialization capabilities with various degrees of customiza-
tion. We ended up choosing the XStream library [41] because it
comes bundled with many converters for non-serializable types and
a default converter that uses reflection to automatically capture all
object fields, it serializes to XML which is more compact and easier
to read than native Java serialization, and it has built-in mechanisms
to traverse and manage the storage of the heap which was essential
in implementing the following projections.

Interface k-bounded reachable projection.Theinterface k-bounded
reachableprojection defines the set of preserved references to in-
clude only those reachable via reference chains of lengthk, i.e.,
{r | ∃p∈Paramsreachk(p)}. Using small values ofk can greatly
reduce the size of the recorded pre-state and for many methods it
will have no impact on unit-test robustness. For example, a value of
1 would suffice for a method whose only dereferences are accesses
to fields ofthis . In the implementation, when traversing the pro-
gram using Xstream to store the program state, we keep track of
the length of dereference chains to halt traversal whenk is reached.

If the unit accesses data along a reference chain of length greater
than k, then ak-bounded projection will retain insufficient data
about the pre-state to allow replay. Our implementation dynami-
cally detects this situation and issues aSentinelAccessException
to distinguish replay failure from anapplicationexception. This is
achieved by extending Xstream with a custom converter that auto-
matically transforms objects that lie at a depth ofk + 1 to contain
an additional boolean field that marks it as asentinelinstance. The
unit under test is then instrumented to insert a test of this boolean
field and raise the exception if true.
May-reference reachable projection. The may-reference reach-
able projection uses a static analysis that calculates a characteri-
zation of the heap instances that may be referenced by a method
activation either directly or through method calls. This charac-
terization is expressed as a set of regular expression of the form:
pf1 . . . fn(F+)? This captures an access path that is rooted at a
parameterp and consists ofn dereferences by the named fields
fi. If the analysis calculates that the method may reference an
object through a dereference chain of length greater thann, the
optional final term is included to capture objects that are reach-
able from the end of the chain through dereference of fields in the
setF . Let reachF (r) = {r′ | ∃f∈F vfield(r, f) = r′} capture
reachability restricted to a set of fieldsF ; reachf denotes reacha-
bility for the singleton setf . For a regular expression of the form
pf1 . . . fm, wherem ≤ n, we construct the set:reachf1(p) ∪
. . . ∪ reachfm(. . . (reachf1(p))), since we want to capture all
references touched along the path. If the regular expression ends
with the termF+ then we union an additional term of the form
reach+

F (reachfm(. . . (reachf1(p)))). This projection can signif-
icantly reduce the size of carved pre-states while retaining arbitrar-
ily large heap structures that are relevant to the method under test.



We implemented ak-bounded access path based may-reference
analysis that used the flow-insensitive context-sensitive equivalence-
class based read-write analysis implemented in Indus [30]. This
analysis partitions parameter and variable names into equivalence
classes. The two distinct features of the analysis are: 1) for each
equivalence class, an abstract heap structure based on the names
involved in read/write access is maintained, and 2) distinct equiv-
alence classes are maintained for each method scope except in the
case of static fields and variable names occurring in methods in-
volved in recursive call chains. We generate regular expressions
that capture the set of all possible referenced access paths up to a
given fixed length,k, with a default ofk = 2. When traversing the
program using Xstream, we simultaneously keep track of all regular
expressions and mark only those objects that lie on a defined access
path for storage in XML. This analysis is also capable of detecting
when a method is side-effect free and in such cases the storage of
post-states is skipped since method return values completely define
the effect of such method.

4. EXPERIMENT
The goal of the experiment is to assess execution efficiency, fault

detection effectiveness, and robustness of the DUTs. We will per-
form such assessment through the comparison of system tests and
their corresponding carved unit test cases in the context of regres-
sion testing. Within this context, we are interested in the following
research questions:

RQ1: Can carving techniques save regression test execution costs?
We would like to compare the cost of reusing carved unit test
cases versus the costs of utilizing regression test selection
techniques that work on system test cases.

RQ2: What is the fault detection effectiveness of the carved test
cases? This is important because saving testing costs while
reducing fault detection is rarely an enticing trade-off.

RQ3: How robust are the carved tests in the presence of software
evolution? We would like to assess the reusability of the
carved unit test cases under a real evolving system, and ex-
amine how different types of change can affect the carved
tests sensitivity.

4.1 Testing Techniques
Let P be a program, letP ′ be a modified version ofP , and letT

be a test suite developed initially forP . Regression testing seeks to
testP ′. To facilitate regression testing, test engineers may re-use
T to the extent possible. In this study we considered four types of
test regression techniques, two that work with system tests (S) and
two that worked with carved tests (C):

S-retest-All.WhenP is modified, creatingP ′, we simply reuse
all non-obsolete test cases inT to testP ′; this is known as the
retest-all technique [23] and it has been said to represent current
industrial practices [25].

S-selection.The retest all technique can be expensive: rerun-
ning all test cases may require an unacceptable amount of time or
human effort.Regression test selectiontechniques [5, 10, 24, 34]
use information aboutP , P ′, andT to select a subset ofT , T ′,
with which to testP ′. We utilize themodified entitytechnique
[10], which selects test cases that exercise methods, inP , that (1)
have been deleted or changed in producingP ′, or (2) use variables
or structures that have been deleted or changed in producingP ′.

C-selection-k.Similar in concept toS-selection, this technique
executes all DUTs, carved with a k-bounded reachable projection,
that exercise methods that were changed inP ′. Within this tech-
nique we explore depth bounding levels of 1, 2, 5, and∞ (unlim-
ited depth which corresponds to the interface reachable projection.)

C-selection-mayref.Similar toC-selection-kexcept that it carves
DUTs utilizing a may-reference reachable projection.

4.2 Measures
Regression test selection techniques achieve savings by reducing

the number of test cases that need to be executed onP ′, thereby
reducing the effort required to retestP ′. We conjecture that CR
techniques achieve additional savings by focusing on units ofP ′.
To evaluate these effects, we measure thetime to executeand the
time to check the outputsof the test cases in the original test suite,
the selected test suite, and the carved selected test suites. For a
carved test suite we also measure thetime and space to carvethe
original DUT test suite.

One potential cost of regression test selection is the cost of miss-
ing faults that would have been exposed by the system tests prior
to test selection. Similarly, DUTs may miss faults due to the use
of projections aimed at improving carving efficiency. We will mea-
sure fault detection effectiveness by computing thepercentage of
faults found by each test suite. We will also qualify our findings
by analyzing instances where the outcomes of a carved test case is
different from its corresponding system test case.

To evaluate the robustness of the carved test cases in the pres-
ence of program changes, we are interested in considering three
potential outcomes of replaying actxm on unitm′: 1) fault is de-
tected, ctxm causesm′ to reveal a behavioral differences due to
a fault; 2)false difference is detected, ctxm causesm′ to reveal a
behavioral change fromm to m′ that is not a fault (not captured
by stx); and test is unexecutable, ctxm is ill-formed with respect
to m′. Tests may be ill-formed for a variety of reasons, e.g., object
protocol changes, internal structure of object changes, invariants
change, and we refer to the degree to which a test set becomes
ill-formed under a change itssensitivity to change. We assess ro-
bustness by computing the percentage of carved tests and program
units falling into each one of the outcomes. Since the robustness of
a test case depends on the change, we qualify robustness by ana-
lyzing the relationship between the type of change and the lifespan
and sensitivity of the DUT.

4.3 Artifact
The artifact we will use to perform this experiment is Siena [9].

Siena is an event notification middleware implemented in Java.
This artifact is available for download in the Subject Infrastruc-
ture Repository (SIR) [15, 32]. SIR provides Siena’s source code,
a system level test suite with 567 test cases, multiple versions cor-
responding to product releases, and a set of seeded faults in each
version (the authors were not involved in this latest activity).

For this experiment we consider Siena’s core components (not
on application included in the package that is built with those com-
ponents). We utilize the five versions of Siena that have seeded
faults that did not generate compilation errors (faults that gener-
ated compilation errors cannot be tested) and that were exposed by
at least one system test case (faults that were not found by system
tests would not affect our assessment). For brevity, we summa-
rize the most relevant information to our experiment in Table 1 and
point the reader to SIR [32] to obtain more details about the process
employed to prepare the Siena artifact for experimentation. Table
1 provides the number of methods, methods changed between ver-
sions and covered by the system test suite, system tests covering
the changed methods, and faults included in each version.



Version Methods Changed-covered Tests executing Faults
methods changed methods

v0 109 - - -
v1 100 2 494 3
v5 111 2 494 1
v6 111 2 8 1
v7 107 10 550 2

Table 1: Siena’s components attributes.

4.4 Experimental Setup and Design
The overall experimental process consisted of the following steps.

First, we prepared the test suites generated byS-retest-all, S-selection,
C-selection-k*, andC-selection-mayreffor their automatic execu-
tion. The preparation of the system level test suites was trivial be-
cause they were already available in the repository. The preparation
of the carved selection suites, required for us to run the CR tool to
carve all the initial suite of DUTs from the system tests when exe-
cuted inv0.

Second, we run each test suite on the fault-free versions of Siena
to generate an oracle for each version. In the case of the system
test suite, the oracle consisted in the set of outputs generated by the
program. For the carved tests, the oracle consisted of the method
return value and the relevantspost (we explore several alternative
projections to define the relevant state).

Third, we run each test suite on each faulty instance of each ver-
sion (some versions contained multiple faults) and recorded their
execution time. We dealt with each fault instance individually to
control for potential masking effects among faults that might neg-
atively affect the fault detection performance of the system tests.
Note that, due to their more concentrated focus, unit tests would
not be as susceptible to such fault interactions.

Fourth, to assess fault detection effectiveness, for each test suite,
we compared the outcome of each test case between the fault-free
version (oracle) and the faulty instances of each version. To com-
pare the system test outcomes between correct and fault versions,
we used pre-defined differencing functions that are part of our im-
plementation which ignore “non-deterministic” output data (e.g,
dates, times, random numbers). For the unit tests, we performed
a similar differencing, but applied to the target method return val-
ues andspost. When the outcome of a test case differed between
the fault-free and the faulty version, a fault is found.

Last, we compared the measures across the test suites gener-
ated byS-retest-all, S-selection, C-selection-k*, andC-selection-
mayref. We then repeated the same steps to collect data for the
same techniques when utilizing test case filtering and compression.
The results emerging from this comparison are presented in the next
section. All these activities were performed on an Opteron 250 pro-
cessor, with 4GB of RAM, running Linux-Fedora, and Java 1.5.

4.5 Results
In this section we provide the results addressing each research

question regarding carving and replaying efficiency, fault detection
effectiveness, and robustness and sensitivity of the DUTs suites.

RQ1: Efficiency. We first focus on the efficiency of the carving
process. Although our infrastructure automates carving, this pro-
cess does consume time and storage so it is important to assess its
efficiency as it might impact its adoption and scalability. Table 2
summarizes the time (in minutes) and the size (in MB) that took
to carve and store the complete initial suite of DUTs utilizing the
different techniques. Each row contains a variation of the carving
(plain, with compression, with DUTs filtering, or hybrid), and each
column contains a test case reduction technique.

Carving Metric Reduction
C-select-k C-select

1 2 5 ∞ mayref
Plain Minutes 118 118 117 119 194

MB 820 14K 26K 26K 15K
Compressed Minutes 315 513 717 725 619

MB 9 13 15 15 14
Lossless Minutes 258 299 335 382 378
Filtering MB 61 1.1K 2.8K 2.9K 1.7K
Lossless Minutes 270 332 399 447 428
Compressed MB 3 4 14 11 11

Table 2: Carving times and sizes to generate initial DUT suite.

For Siena, constraining the carving depth does not seem to af-
fect the carving time (the variation we observed is small enough
to be attributable to noise) but it does impact the storage require-
ments for keeping(spre, spost). The similar replay times are at-
tributable to the fact that the carving tool first traverses the whole
heap, and it then truncates the content to the desired depth leverag-
ing the XStream facility. Also note that for depths greater than two
the differences in storage space are minimal due to the rather “shal-
low” nature of the subject (dereference chains with length greater
than 2 are rare in Siena). The may-reference projection requires an
additional 61% of analysis time, but provides a space reduction of
43% relative to∞. As we shall see, this space reduction is valuable
in that it translates into more efficient replay.

In the second row of Table 2 we see that simply compressing
the state data increased the carving time linearly as a function the
carved state size (and it will add uncompression time as well for
the DUTs selected for replaying), but it consistently provided a
three-orders of magnitude reduction in the space required by the
DUTs, offering a very interesting tradeoff. Filtering the test suite
by removing carved DUTs with the the same pre-state (we call this
lossless filtering in Table 2) also provided savings of one order of
magnitude in the required storage but with a reduced impact on
carving time. The last row presents a hybrid approach that applies
filtering and then compresses the data. This last carving technique
is faster than the one performing just compression and still provides
a similar degree of storage savings.

It is very important to note that the carving numbers reported in
Table 2 correspond to the initial carving of thecomplete DUT suite
– DUTs carved for each of the over 100 methods in Siena from each
of the over 550 system tests that may execute each method – and
can be performed automatically without the tester’s participation.
During the evolution of the system, DUTs will be replayed repeat-
edly amortizing the initial carving costs, and only a subset of the
DUTs will need to be recarved. Recarving will be necessary when
is determined that changes in the program may affect a DUT’s rele-
vant pre-state. We believe that existing impact analysis techniques
[26] could be used, for example, to determine what DUTs must be
recarved when the a unit is changed, and we plan to integrate those
into our infrastructure in the future.

We now proceed to analyze the replay efficiency. Replay effi-
ciency is particularly important since it is likely that a carved DUT
will be repeatedly replayed as the target unit evolves. Figure 5 sum-
marizes the replay execution times for some of the techniques we
consider. Due to space constraints we only present results for the
test suites generated by three plain carving techniques (we ignore
C-selection-k1because although it is the fastest it cannot replay
many DUTs, and we ignoreC-selection-∞ because its results are
almost identical toC-selection-k5). We also present plots for two
techniques with filtering applied, and one with filtering and uncom-
pression. Each observation corresponds to the replay time of each
selected test suite under each version and an overall average (the
lines joining observations are just meant to assist in the interpreta-



tion). The test suite resulting from theS-retest-alltechnique con-
sistently averages 135 minutes per version. The test suites result-
ing fromS-selectfor each version averages 91 minutes per version,
with savings overS-retest-allranging from from a minimum of 4
minutes inv6 maximum of 132 minutes inv7. (Factors that affect
the efficiency of this technique are not within the scope of this pa-
per but can be found at [17]). On average,S-selecttakes 67% of
the time required byS-retest-all.

The test suites selected by theC-selection-k*techniques show
very similar tendencies. On average, theC-selection-k*techniques
replay execution time was 19 minutes, and they took less than a
minute to replay v6 and up to 82 minutes forC-selection-k5to re-
play v2. On average, these suites takes 13% of the time required
by S-retest-all, and 19% of the time required byS-select. The
test suites selected byC-selection-mayreftakes 16% of the time
required byS-retest-all, 19% of the time required byS-selection-
mayref, and 76% of the time required byC-selection-k5. Applying
filtering to the carved suites generated byC-selection-k5reduced
test execution time by more than a third (e.g., from 84 to 19 DUTs
in v2). Last, and as expected, we observe that handling compressed
files adds considerable replaying time.

We also measured thediffing time required by all techniques. For
the system test suites the diffing times were consistently less than
a minute, for theC-selection-k*suites it averaged 12 minutes, and
for theC-selection-mayrefaveraged 6 minutes. When filtering was
employed, diffing time for theC-selection-k*techniques was re-
duced by an average of 54%. Overall, although the diffing activity
is important to the performance of the carved suites, implementing
simple incremental differencing functions could dramatically im-
prove their diffing performance. For example, we currently com-
pare all the program post-state, but we could instead first compare
the return values to see if it reveals any differences, and if it does
not, then compare the rest of the post-state. This simple technique
would suffice to reducev5 diffing time by 96%.

RQ2: Fault detection effectiveness. The test suites directly gen-
erated byS-selection, C-selection-k*, andC-selection-mayrefde-
tected as many faults as theS-retest-alltechnique. As expected,
the application of our lossless filter to reduce the number of DUTs
did not result in any loss in fault detection power. This indicates
that aDUT test suite may be as effective as a system test suite
at detecting faults, even when using aggressive projections. It is
worth noting, however, that when computing fault detection effec-
tiveness over a whole test DUT suite we do not account for the fact
that, for some system tests, their corresponding carved DUTs may
have lost or gained fault detection effectiveness. We conjecture that
this is a likely situation with our subject because many of the faults
are detected by multiple system tests. To address this situation we
perform an effectiveness analysis at the individual test case level.

For each carving technique we compute: 1) PP, the percentage
of passing selected system tests (selected utilizingS-Selection) that
have all corresponding carved unit test cases passing, and 2) FF:
the percentage of failing system tests that have at least one corre-
sponding failing carved unit test case. Table 3 presents the PP and
FF values for all the techniques under all version instances.

When using the test suite resulting fromC-selection-k1we find
that most DUTs going through the changed methods cannot be fully
executed, which leads in most cases to a very small number of sys-
tem test cases for which all the DUTs passed as well.v7 is the
exception to this PP tendency, where carving with a depth of one
was as good as the maximum depth because the changed method
only operated on the class’s scalar fields. Note that even when us-
ing this restrictive reduction, the FF values are on average 97%. In
the cases where FF is not 100% such as inv6, we observed that
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Figure 5: Execution times.

replaying the test suite carved utilizingC-selection-k1did not de-
tect all the behavioral differences exhibited by the selected system
test cases (1 out of the 8 system tests exposed a behavioral dif-
ference that was not exposed by any of its corresponding DUTs).
This reduction in FF was due to the depth-1 projection which did
not capture enough pre-state to detect a behavioral difference. The
other carved suites, however, did detect this fault.

In v5, and independently of the carved test suite used, 3 out of
300 failing system tests did not have any corresponding DUT on the
changed methods failing (99%). We observed the same situation in
v7 : f2 where 18 out of 203 DUTs (9%) did not expose behav-
ioral differences even though the corresponding system tests failed.
When we analyzed the reasons for this reduction in FF we discov-
ered that in both cases the tool did not carve inv0 the pre-state for
one of the changed methods. The tool did not carve any pre-state
for those methods because the system test case did not reach them.
Changes in the code structure (e.g., addition of a method call, han-
dling of an exception), however, made the system test cases reach
those changed methods (and expose a fault) in later versions. In
both circumstances, improved DUTs that would have resulted in
100% FF could have been generated by re-carving the test cases in
later versions (carve fromvi to replay invi+1). More generally,
these observations point out again for the need to establish mecha-
nisms to detect changes in the code that should trigger re-carving.

V 7 : f1 also presents an interesting but opposite finding. In this
instance only 24% of the passing system tests had all their associ-
ated DUT’s passing. These differences may be caused by faults (a
fault that did not propagate to the output so the system test did not
detect it) or just by the code changes (changes in the units generated
changes in the post-states)1. We explore this issue further next.

1Since we only considered Siena versions with faults exposed by
system tests, we are not exploring possible situations in which
faults are exposed just by DUTs.



C-selection-k C-selection
1 5 ∞ mayref

PP FF PP FF PP FF PP FF
v1:f1 1 100 100 100 100 100 100 100
v1:f2 1 100 100 100 100 100 100 100
v1:f3 1 100 100 100 100 100 100 100
v5 1 99 100 99 100 99 100 99
v6 1 88 100 100 100 100 100 100
v7:f1 24 100 24 100 24 100 24 100
v7:f2 100 91 100 91 100 91 100 91

Table 3: Fault Detection Effectiveness.

RQ3: Robustness and sensitivity.We previously examined how
DUTs obtained throughC-selection-k1are quite fragile in terms
of their executability, and how certain code changes may make a
method reach a new part of the heap that was not originally carved.
A complementary way to evaluate the robustness and sensitivity of
DUTs is to compare their performance in the presence of meth-
ods that changed, and in the presence of methods that changed and
are indeed faulty. We performed such detailed comparison on the
filtered suites forC-selection-∞ andC-selection-mayref, and now
briefly discuss three distinct instances of the scenarios we found.

In both faulty instances ofv7, the version with the most meth-
ods changed (10), none of the behavioral differences were found by
methods other than the faulty ones. This is clearly an ideal situa-
tion. V 1 : f1 represents perhaps a more common case were none
of the DUTs going through non-faulty changed methods failed, but
only 78% of the DUTs traversing faulty methods actually failed.
Yet a different perspective is offered byv5. Only two methods
changed in this version, and one them is invoked exclusively by the
other. The fault is located in the callee. The caller method is exer-
cised by 6354 DUTs out of which 736 detect behavioral differences
(12%). The (faulty) callee method is exercised by 26173 DUTs out
of which 928 detect behavioral differences (less than 4%). This
last scenario, in which carving still generates more behavioral dif-
ferences for the faulty method than for change one, is interesting
because it shows that even for correct changes the number of af-
fected DUTs may be large.

It is worth noting that the differencing functions offer an op-
portunity to control this problem. For example, a more relaxed
differencing mechanism focused on just return values would have
detected all the faults inv5 andv6, while reducing the number of
false differences significantly since both faults manifest themselves
in the return value. Such a differencing function, however, leads to
a reduced fault detection in the case ofv1. Mechanisms to select
and appropriately combine these differencing functions will be im-
portant for the robustness and sensitivity of DUTs.

5. RELATED WORK
Our work was inspired by Weide’s notion of modular testing as

a means to evaluate the modular reasoning property of a piece of
software [38]. Although Weide’s focus was not on testing but on
the evaluation of the fragility of modular reasoning, he raised some
important questions regarding the potential applicability of what he
called a “modular regression technique” that led to our work.

Within the context of regression testing, our approach is also
similar to Binkley’s semantic guided regression testing in that it
aims to reduce testing costs by running a subset of the program [5,
6]. Binkley’s technique proposes the utilization of static slicing to
identify potential semantic differences between two versions of a
program. He also presents an algorithm to identify the system tests
that must be run on the slices resulting from the differences be-
tween the program versions. The fundamental distinction between
this and our approach is that we do not run system level tests, but

rather smaller and more focused unit tests. Another important dis-
tinction is that the testing target are not the semantic differences
between versions, but rather methods in the program.

The preliminary results from our original test carving prototype
[16], later expanded by Reddy [22], evidenced the potential of
carved tests to improve the efficiency and the focus of a large sys-
tem test suite, identified challenges to scale-up the approach, and
defined some scenarios under which the carved test cases would
and would not perform well. We have built on that work by pre-
senting a generic framework for differential carving, extending the
type of analysis we performed to make the approach more scalable,
and by developing a full set of tools that can enable us to experi-
ment with different techniques on various programs.

We are aware of two other research efforts related to the notion
of test carving. First, Orso et al. introduced the notion of selective
record and replay mechanisms [27], which was later prototyped
[28] and used to replay units in isolation. Second, the test factor-
ing approach introduced by Saff et al. takes a similar approach to
Orso’s with the creation of what they called mock objects that serve
to create the scaffolding to support the execution of the test unit
[36]. The same group introduced a tool set for fully-featured Java
execution environments that can handle many of the subtle interac-
tions present in this programming language (e.g., callbacks, arrays,
native methods) [35]. In terms of our framework, both of these
approaches would be considered action-based CR approaches. We
have presented, what is to the best of our knowledge, the first state-
based approach to CR testing.

Saff et al. describe their approach in detail allowing us to provide
a more in depth comparison with our approach. While carving a
method test case, their infra-structure records the sequence of calls
that can influence the method and then they record the sequence
of calls made by the method and the return values and unit state
side-effects of those calls. In our framework, this would amount
to calculatingσ̄ such thats(σ̄) = spre for the method of inter-
est and then calculating summarizing tracesσ̄calli that reflect the
return value and side effects for each call out of the method and
carvingsprei , the relevant pre-state for each call. During replay
the same sequence of calls with the same parameters is expected -
any deviation results in a report of a difference during replay. In
our framework, we would identify the points at which the,n, calls
out of the method occur as post-state locations to define a DUT of
the form(σ̄, (spre1 , . . . , spren)).

Both of these action-based approaches, capture the interactions
between the target unit and its context and then build the scaffold-
ing to replay just those interactions. Hence, they do not incur in
costs associated with capturing and storing the system state for each
targeted unit. On the other hand, this approach may generate tests
that are sensitive to changes that do not effect meaning, e.g., chang-
ing the order of independent method calls. Saff et al. have identi-
fied this issue and propose to analyze the lifespan of the factored
test cases across sequences of method modifications [35]. This is
a critical factor in judging the cost-effectiveness of CR testing and
we have studied this issue in Section 4.5.

These two related efforts have shown their feasibility in terms
of being able to replay tests and the latter approach has provided
initial evidence that it can save time and resources under several
scenarios. Neither approach, however, has been evaluated in terms
of its fault detection effectiveness which ultimately determines the
value of the carved tests, or in the context of regression testing.

Our work also relates to efforts aimed at developing unit test
cases. Several frameworks grouped under the umbrella of Xunit
have been developed to support software engineers in the devel-
opment of unit tests. Junit, for example, is a popular framework



for the Java programming language that lets programmers attach
testing code to their classes to validate their behavior [18].

There are also multiple approaches that automate, to different de-
grees, the generation of unit tests. For example, commercial tools
such as Jtest develops unit test cases by analyzing method signa-
tures and selecting test cases that increase some coverage criteria
[21]. Some of these tools aim to assess software robustness (e.g.,
whether an exception is thrown [12]). Others utilize some type of
specification such as pre and post conditions or operational abstrac-
tions, to guide the test case generation and actually check whether
the test outcome meets the expectation results [7, 11, 29, 40]. In-
terestingly enough, Parasoft new version of JTest enhances the unit
test case generated with “Sniffer”, a tool that monitors running ap-
plications to pick interesting values to exercise the target unit [21],
which can be perceived as a primitive type of carving projection.

Although carving also aims to generate unit test cases, the ap-
proach we propose is different from previous unit test case genera-
tion mechanisms since it consists of the projection of a system test
case onto the targeted software unit. As such, we expect for carved
unit tests to retain some of the interesting interactions exposed by
systems tests that are harder to design into regular unit test cases
that do not consider the system context.

As stated, the post-state differencing functions that regulate the
detection of differences between encodings of unit behavior be-
longs to a larger body of testing work on differential-based ora-
cles. For example, the work of Weyuker [39] on the development
of pseudo-oracles, Jaramillo et al. [20] on using comparisons to
check for optimization induced errors in compilers, or the compar-
ison of program spectra [31] are instances of utilizing differencing-
type oracles at the system or subsystem level. When focusing at
the unit level of object oriented programs, as we are doing, Binder
suggests the term “concrete state” oracles, which aim to compare
the value of all the unit’s attributes against what is expected [4].
Briand et al. refer to this type of oracle as a “precise” oracle be-
cause it was the most accurate one employed in their studies [8].
Overall, the notion of testing being fundamentally differential has
long been understood [39], since thepseudo-oraclesagainst which
systems are judged correct are themselves subject to error. Thus,
the question we aimed to answer is not whether our CR method
judges a system correct or incorrect, but rather whether it is capa-
ble of cost-effectively detecting differences between encodings of
system behavior that developers can easily mine to judge whether
the difference reflects an error.

6. CONCLUSION
We have presented a general framework for automatically carv-

ing and replaying DUTs. The framework incorporates sophisti-
cated projection and differencing strategies that can be instantiated
in various ways to accommodate distinct trade-offs. We have im-
plemented a state-based instance of the framework that mitigates
testing costs through two types of reachability-based projections,
and that can adjust the DUTs sensitivity through two differencing
functions. Our evaluation of this implementation has revealed that
DUTs can be automatically generated from system tests, reduce
average test suite execution time to a tenth of our best system se-
lection technique2, and still retain most of the fault detection power
of system tests.

The experiences gained while instantiating and assessing the frame-
work suggest several directions for future work. First, we will
perform further studies not only to confirm our findings on other

2See the Filtered-C-selection-k5 and Filtered-C-selection-mayref
results in Figure 5

subjects under similar settings, but also to compare DUTs with tra-
ditional unit tests developed by software engineers. We conjecture
that software engineers develop rather shallow unit tests and that
we can effectively complement those with DUTs that expose the
target units to more complex execution settings.

Second, we will extend our implementation with additional fea-
tures to reduce the cost of CR testing while preserving test effec-
tiveness. We will store the results of applying differencing func-
tions to post-states rather than storing post-states themselves. We
will provide mechanisms for testers to define differencing functions
besides the ones provided by the framework. We expect that expe-
rience applying these techniques to a broad collection of examples
will expose additional opportunities for cost-reduction. For exam-
ple, when collecting the data for Siena we realized that applying
some “lossy” projections to filter DUTs may yield more interesting
tradeoffs between scalability and fault detection effectiveness.

Third, we believe that it is possible to combine multiple DUTs to
create acompoundDUT for a larger program unit such as a class.
This can be achieved by clustering multiple DUTs based on the
identity of the receiver object. For a sequence of method calls,
ci, . . . , cj , on an object in a system test, the set of DUTs for those
calls is replaced by a single DUT that captures(sprei, (sposti, . . . , spostj)).
This tests would start atsprei and the sequence of calls are replayed
for each method as(spostk, spostk+1). This effectively transfers
the effects of methods on the receiver object throughout the se-
quence achieving a kind of interaction testing between calls. We
plan to implement this approach and assess it relative to other class-
oriented testing techniques.

Last, we will develop a supporting infrastructure to increase the
use of DUTs in practice. We will leverage some of the static anal-
ysis techniques already at our disposal to determine, for example,
when changes in a method may suggest a re-carving operation tar-
geted at that specific method. We would also like to extend the
analysis performed after a DUTs detects a behavioral difference on
a unit that is later deemed correct. In this situation, we would like to
know what other DUTs might be obsolete and require re-carving.
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