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ABSTRACT of a system. An alternative approach to unit test development, that
éaloes not rely on specifications, is based on the analysis of a unit's
Implementation. Testers developing unit tests in this way may fo-

cus, for example, on achieving a coverage-adequacy criteria of the

Unit test cases are focused and efficient. System tests are effectiv
at exercising complex usage patterB#ferential unit test{DUT)
are a hybrid of unit and system tests. They are generated by carving

the system components, while executing a system test case, that intarget unit's code. Such tests, however, are inherently susceptible

fluence the behavior of the target unit, and then re-assembling thosel© €rrors of omission W'.th respect _to specm_ed ur)|t behav_lor and
components so that the unit can be exercised as it was by the SyS_rnay thereby miss certain faults. Finally, unit testlng_requwes the
tem test. We conjecture that DUTSs retain some of the advantagesde"e'c_’pment of test harnesses_, or the setup (.)f a test_lng framework
of unit tests, can be automatically and inexpensively generated, and(e'g" junit [18]) to make the units executable in isolation.
have the potential for revealing faults related to intricate system ex-  SYStem tests are usually developed based on documents that are
ecutions. In this paper we present a framework for automatically commonly available for most software systems that describe the
carving and replaying DUTs that accounts for a wide-variety of system's functionality from the 1’Jsers perspective, for example, re-
strategies, we implement an instance of the framework with sev- quweme_nt documents gn_d users mar_luals. This makes system tests
eral techniques to mitigate test cost and enhance flexibility, and we appropriate for determining the readiness of a syste_r_n for releas_e,
empirically assess the efficacy of carving and replaying DUTS. or to grant or refgse acceptance by cust_omer_s. Addlthnal benefits
accrue from testing system-level behaviors directly. First, system

tests can be developed without an intimate knowledge of the sys-
1. INTRODUCTION tem internals, which reduces the level of expertise required by test
developers and which makes tests less-sensitive to implementation-
Software engineers develop unit test cases to validate individ- level changes that are behavior preserving. Second, system tests
ual program units (e.g., methods, classes, packages) before theynay expose faults that unit tests do not, for example, those that
are integrated into the whole system. By focusing on an isolated span multiple units or that involve very complex usage of units.
unit, unit tests are not constrained by other parts of the system in Finally, since they involve executing the entire system no test har-
exercising the target unit. This smaller scope for testing usually nesses need be constructed.
results in significantly more efficient test execution and faultisola- ~ While system tests are an essential component of all practical
tion relative to whole system testing and debugging [1, 19]. Unit software validation methods, they do have several disadvantages.
test cases are also used as a component of several popular develog-hey can be expensive to execute; for large systems days or weeks,
ment methods, such as extreme programming (XP) [2], test driven and considerable human effort may be needed for running a thor-
development (TDD) practices [3], continuous testing [37], and ef- ough suite of system tests [25]. In addition, even very thorough
ficient test prioritization and selection techniques [33]. system testing may fail to exercise the full-range of behavior im-
Developing effective suites of unit test cases presents a numberplemented by system’s units; thus, system testing cannot be viewed
of challenges. Specifications of unit behavior are usually informal as an effective replacement for unit testing. Finally, fault isolation
and are often incomplete or ambiguous, leading to the developmentand repair during system testing can be significantly more expen-
of overly general or incorrect unit tests. Furthermore, such specifi- sive than during unit testing.
cations may evolve independently of implementations requiring ad-  The preceding characterization of unit and system tests, although
ditional maintenance of unit tests even if implementations remain not comprehensive, illustrates that system and unit tests have com-
unchanged. Testers may find it difficult to imagine sets of unitinput plementary strengths and that they offer a rich set of tradeoffs. In
values that exercise the full-range of unit behavior and thereby fail this paper, we present a general framework for carving and replay-
to exercise the different ways in which the unit will be used as a part ing of what we calldifferential unit test{DUT) which aim at ex-
ploiting those tradeoffs. We termed thalfferential because their
primary function is detecting differences between multiple versions
of a unit’s implementation. DUTs are meant to be focused and effi-
cient, like traditional unit tests, yet they are automatically generated
Permission to make digital or hard copies of all or part of this work for along with a custom test-harness, making them inexpensive to de-
personal or classroom use is granted without fee provided that copies areyelop and easy to evolve. In addition, since they indirectly capture
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In our approach, DUTSs are created from system tests by captur- Given st { input/s, expected output/s }
ing components of the exercised system that influence the behavior Erecuto st input—> ]
of the targeted unit, and that reflect the results of executing the unit; Carve ¢t " .
we term thiscarving Those components are automatically assem- s
bled into a test harness that establishes the pre-state of the unit that ﬂ
was encountered during system test execution. From that state, the m evolves: m + 4 = m’
unit is replayedand the resulting state is queried to determine if ‘

there are differences with the recorded unit post-state. 1! load Spost

Ideally DUTs will (a) retain the fault detection effectiveness of |
system tests on the target unit, (b) only report small numbers of dif- ¢ o on Behavior of m = m’
ferences that are not indicative of differing system test results, (c) [

be executed faster than system tests, and (d) be applicable across

multiple system versions. We empirically investigate DUT carving

and replay techniques with respect to these criteria through a con-

trolled experiment within the context of regression testing where Figure 1: Carving and replay process.

we compare the performance of system tests and carved unit tests.

The results indicate that carved test cases can be as effective as sys-

tem test cases in terms of fault detection, but much more efficient. A program executiortan be formalized either as a sequence of
The contributions of this paper aret) presenting of a frame-  program states or as a sequence of program actions that cause state

work for automatically carving and replaying DUTSs that accounts changes. A sequence of program states is written-asso, s1, . . .

for a wide-variety of implementation strategies with differenttrade- \wheres; € S ands, is the initial program state as defined by Java.

offs; (i) implementing a new state-based strategy for carving and A states;; is reached frons; by executing a singlection (e.g.,

replay at a method level that offers a range of costs, flexibility, and pytecode). A sequence of program actions is writter&aswe

scalability; and ifi) identifying evaluation criteria and empirically  denote the final state of an action sequen@s.

assessing the efficiency and effectiveness of carving and replay of

DUTs on multiple versions of a Java application. We believe these 2 2 Basic Carving and Replaying

contributions lay a solid and general foundation for further study Figure 1 illustrates the CR process. Given a system test case

of carving and _replay Qf DUTs and we outling several directions st,, carving a unit test case.,, . for targét unitm during the ex-

for future work in Section 6. In the next Section, we present our ecution of st consists of capturing,.., the program state im-

framework_ for carving and replay te.S“F‘g- SeCt'OT‘ 3 details t_he Im- mediately before the first instruction of an activation of method
plementation of one of those instantiations. Section 4 describes our . . ) .
m, and spost, the program state immediately after the final in-

study and results. Section 5 discusses related work. struction of the activation ofn has executed. The captured pair
of states(spre, Spost), defines adifferential unit test casdor a
2. A FRAMEWORK FOR TEST CARVING method,ct,,,. States in this pair can be defined by capturing the
appropriate states if, or through the cumulative effects of a se-
AND REPLAY quence of program actions, by capturin@) at the appropriate

Java programs can have millions of allocated heap instances [14]points in5. A CR testing approach is said to lséate-basedf
and hundreds of thousands of live instances at any time. Conse-it records pairS(s,re, spos:) andaction-basedf it records pairs

quently, carving theaw state of real programs is impractical. We (5, s,,.;) Wheres, . = s(Gpre).

believe that cost-effective carving and replay (CR) based testing | practice, it is common for a methon, to undergo some mod-
will require the application of multiple strategies trsiectinfor- ification, e.g., tan’, over the program lifetime. To efficiently vali-
mation in raw program states and use that information to trade a gate the effects of a modification, weplayct,,, onm’. Replaying
measure of effectiveness to achieve practical cost. Strategies mighty differential unit test for a methaa’ requires the ability to either
inClUde, for example, CarVing a Single representative of each eqUiV- load stat@pra into memory or executépre depending on how the
alence class of program states or pruning information from a carved state was carved. From this state, executiombis initiated and
state that a method under test is guaranteed to not be dependent o continues until it reaches the point corresponding to the carved
The space of possible strategies is vast and we believe that a generagpost_ At that point, the current execution sta#é, .., is compared
framework for CR testing will aid in exploring cost-effectiveness 1 s,,,.,. If the resulting states are the same, we can attest that the
trade-offs possible in the space of CR testing techniques. change did not affect the behavior of the target unit. However, if

Regardless of how one develops, or generates, a unit test, therghe change altered the behavioraf then further processing will
are four essential steps: (1) identify a program state from which to pe required to determine whether the alteration matches the devel-
initiate testing, (2) establish that program state, (3) execute the unit gper’s expectations.
from that state, and (4) judge the resulting state as to its correct-  There are multiple techniques for diagnosing the root cause of
ness. In the rest Of thIS Section, we deﬁne a general frameWOI'k thatdetected diﬂerencesl For examp|e’ a diﬁerence C0u|d trigger the
allows different strategies to be applied in each of these steps.  execution of system test,, to determine whether a difference man-

. ifests at higher levels of abstractions, the resultstef, could be

2.1 Program States and Program Executions compared with the results of manually developed unit tests/for

For the purposes of explaining our framework, we consider a or intermediate states within the executiomefandm’ (e.g., after
Java program to be a kind of state machine. At any point during the every statement) could be compared to identify the earliest point at
execution of a program thgrogram stateS, can be defined, con-  which states differ. We discuss support for some of these diagnos-
ceptually, as all of the values in memory. As needed, we will define tics in Section 2.4 and leave the others for future work.
notation for accessing specific portions of a state, for example, the Several fundamental challenges must be addressed in order to
parameters in the current active frame of the call stack. make CR cost-effective. First, the proposed basic carving proce-

A has affected behavior of m



dure is at best inefficient and likely impractical. Inefficient because

a method may only depend on a small portion of the program state, Test Case

thus storing the complete state is wasted effort. Furthermore, tWo Requction Ctan | Sere Spe| ——— Reduced ct,,
distinct complete program states may be identical from the point of
view of a given method, thus carving complete states would yield

redundant unit tests. Impractical because storing the complete state )
of a program may be prohibitively expensive in terms of time and ctyn | Soe L Spro)
space. Second, changesrtomay renderct,,, unexecutable in S

Tm

m’. Reducing the cost of CR testing is important, but we must ' gycme # = — gf;f S
produce DUTSs that are robust to changes so that they can be exe- . s :;:'] o
cuted across a series of system modifications in order recover the Clan | Spre pre.

overhead of carving. Finally, the use of complete post-states to de-

tect behavioral differences is not only inefficient but may also be

too sensitive to behavior differences caused by reasons other than  Figure 2: Sample applications of projections functions.
faults (e.qg., fault fixes, improvements, internal refactoring) leading

to the generation of brittle tests. The following sections address

these challenges.

2.3 Improving CR with Projections 2.3.3 Applying Projections

We focus CR testing on a single unit by defining projections on  Figure 2 illustrates two potential applications of the projections:
carved pre-states that preserve information related to the unit undertest case reduction and test cases filtering.

test and provide significant reduction in pre-state size. Reduction aims at thinning a single carved test case by retain-
ing only the projected pre-state (in Figure 2 the projectionpf
2.3.1 State-based Projections carved fromct,., leads to a smalles,..). Reducing a DUT’s pre-

state results in reduced space requirements and, more importantly,
in quicker replay since loading time is a function of the pre-state

A state projection functiomr : S — S preservesselected pro-

gram state components. For example, a state projection function i e b
may preserve only the values of reference fields, thereby elimi- Siz€- As we shall see, depending on the type of projection, these

nating all scalar fields, which would maintain theap shapef gains may be achievgd at the expense of reduced fault detection
a program state. Many useful state projections are based on theP?OWer (€.9., & projection may discard an object that was necessary

notion of heap reachability. A refereneé is reachablein one to expose the fault). Furthermore, test executability may be sac-
dereference fronr if the value of some field of holds ' let rificed as well. State-based projections may become unexecutable

reach(r) = {r' | 3pervpicalr, f) = '} Wherev e is the if the data structures used by the target unit changes, for example,
dereference function. References reachable through any chain ofSifting from an array to a heap-based structure, even if behavior is

dereferences up to lengthfrom r are defined by using the iter- preserved. Action-based projections may become unexecutable if
ated composition of this binary relatio), ., , reach’(r); as a the behavior of a unit method changes so that a different number or
1<i<k '

tational . il refer to thi Bk Th sequence of methods is needed in the modified program to produce
notational convenience we will reter fo this fsac (r). The the desired pre-state. Still, reduction can be a valuable mechanism
positive-transitive closure of the relationeach™ (r), defines the

. to improve the efficiency of CR by keeping just the portions of the
set of all reachable references franm one or more dereferences. b y y ping ) P

; o re-state that are most likely to be relevant to the targeted method.
State-based CR testing approaches should use projections thaP y 9

tain at t thénterf hableroiecti hich is defined Filtering aims at removing redundant DUTs from the suite. Con-
retain at most thenteriace reachabi@rojéction which IS define sider a method that is invoked during the program initialization and
to preserve the set of heap objects reachable from a calling con-

is independent of the program parameters. Such method would be
text, {r | Ipeparamsreach™ (p)}. Robustness to change under P prog P

. L opefar . exercised by all the system tests in the same way and result in mul-
this projection is identical to that of the complete program pre-state

. | data that th thod Id iblv ref . tured tiple identical DUTSs for that particular methods. A simple filter
since afl gata that the method could possIbly TEIerence IS captured., 14 remove such duplicates tests, keeping just the unique DUTSs.
It is possible to trade robustness for reduction in carving cost by

defini act that eliminat tate inf tion. Secii Now consider a simple accessor method with no parameters that
efining projections that eiminate more state information. section just returns the value of a scalar field. If this method is invoked
3 presents two projections that exercise this trade-off.

by the tests from different pre-states, then multiple DUTs will be
. .. . carved, and a simple lossless filter will not discard any DUT even
2.3.2 Action-based Projections and Transformations though they exercise similar behavior. In this case, applying a pro-
Projections on sequences of program actigns,c — &. can jection that preserves the pre-state components directly reachable
be used to distill the portion of a program run that affects the pre- from thiswould result in many DUTSs that are redundant (in Figure
state of a unit method. Unfortunately, a purely projection-based 2 7 (spr.) for ctz» and forct.., are identical so one of them can
approach to state-capture will not work for all Java programs. For be removed). Clearly, in some cases, this kind of lossy filtering
example, a program that calls native methods does not, in general,may result in a lower fault detection capability since we may dis-
have access to the native methods instructions. To accommodatecard a DUT that is indeed different and hence potentially valuable.
this, we can allow fotransformatiorof actions during carving, i.e., Note that, contrary to test case reduction, filtering only uses pro-
replace one sequence of instructions with another. Transformationjections to judge test equivalence, consequently, test executability
could be used, for example, to replace a call to a native method is preserved since the DUTs that are kept are complete. In practice,
with an instruction sequence that implements the side-effects of the however, reduction and filtering are likely to be applied in tandem
native method. More generally, one could design an instan@e of such that reduced tests are then filtered, or filtered tests are then re-
that would replace any portion of a trace wite@mmarizingaction duced (without necessarily using the same projection for reduction
sequence. and filtering).



2.4 Adjusting Sensitivity through Differenc-

S S S S

|ng Fu nCtlons pre posti post2 Spost3 Spost4 post5
. . . . 5
The basic CR testing approach described earlier compares a carved. - __ l N
complgte post-state to a post-_state produced during replay to dete_ct 1 5 3 4 [ activation of m
behavioral differences in a unit. The use of complete post-states is M v M
both inefficient and unnecessary for the same reasons as outlined calls out of unit
above for pre-states. While we could use comparison of post-state }

projections to address these issues, we believe that there is a more
flexible solution.

Method unit test are typically structured so that, after a sequence
of method calls that establish a desired pre-state the method under

test is executed. When it returns additional method calls and com- is differenced with corresponding states at intermediate states of
parisons are executed to implemerpiseudo-oracleFor example, the method under test. For example, at point 1, the test compares

unit tests for a red-black tree might execute a series of insert andthe current state to the captureg, similarly at points 2 and
~ . . a1 stls
delete calls and then query the tree-height and compare it to an ex 3 the pre and post-states of the call out of the unit are compared.

resul j rtial correctness. We allow a similar kin . .
pected result to judge partial correctness. Ve allow a simila d Using a sequence of post-states requires that a correspondence be

of pseudo-oracle in CR testing by definidgferencing functions ) - ; ,
on post-states that preserve selected information about the resultsdeflned between locations in andyn'. Correspondences could be

of executing the unit under test. These differencing functions can ?hefmeﬁ usn:g f?nvarlzty /OI agpfrpache_s,tfofr examEI(i, :)ne could_iJse
take the form of post-state projections or can be more aggressive, € calls out olm andm 1o define points for post-staté comparl
capturing simple properties of post-states, such as tree height, and" (a,s is lustrated in Flgu_re 3)or common points in th_e teﬁ.wf .
consequently may greatly reduce the size of post-states while plre_andm could be detected via textual differencing. Fault isolation is

serving information that is important for detecting behavioral dif- enhance_d using nqu'FlpIe post-states, since i the first detegted dif-
ferences. ference is at location then that difference was introduced in the

We define differencing functions that map states to a selected region of execution between location- 1 ands. O course, stor-

differencing domaindif : S — D. Differencing in CR testing Ic:]fg mumgeng?rsg\;\fttﬁfigaé tc))? sggsr:ﬁ;enfgs\;vﬁeag\éﬂgﬁzr? de chj,fe
is achieved by evaluatingif(spos:) = dif(sys). State projec- fauTtpiosS(t)Iation once a beha\F/)ioraI difference is attributed to a fault
tion functions are simply differencing functions whefe = S. )

In addition to the reachability projections defined in the previous

sub-section, projections on unit method return values, cadlienin 3. INSTANTIATING THE FRAMEWORK

Figure 3: Differencing sequences of post-states.

differencing and on fields of the unit instancyis , calledin- In this section we describe the architecture and some implemen-
stance differencingare useful since they correspond to techniques tation details of a state-based instantiation of the framework. (Sec-
used widely in hand-built unit tests. tion 5 discusses existing carving and replay implementations which

A central issue in differential testing is the degree to which dif- are action-based).
ferencing functions are able to detect changes that correspond to .
faults while masking implementation changes. We refer to this as 3.1~ System Architecture
the sensitivityof a differencing function. Clearly, comparing com- Figure 4 shows the architecture of the CR tools, with the shaded
plete post-states will be highly-sensitive, detecting both faults and rectangles being the primary components. The carving activity
implementation changes. A projection function that only records starts with theCarver class which takes four inputs: the program
the return value of the method under test will be insensitive to im- name, the target methed within the program, the system test case
plementation changes while preserving some fault-sensitivity. Note st inputs, and options to bound the carving process.
also that these differencing functions provide different incomplete  Carver utilizes a custom class load@ustomLoadelthat uti-
views on program state. Their incompleteness reduces cost andizes BCEL [13]) to incorporate into the program: a single@mm-
provides a measure of implementation change insensitivity, but it is textFactoryclass configured to store pre and post states, and invo-
problematic since it may reduce their fault detection effectiveness. cations of theContextFactonat the entry and exit(s) of.. Then,

We address this by allowing for multiple differencing functions every execution ofr will cause two invocations o€ontextFac-
to be applied in CR testing which has the potential to increase fault- tory: one to stores,,. and one to storg,,.;. ContextFactoryuti-
sensitivity, without necessarily increasing implementation change- lizes theContextBoundinglass to assist with the determination of
sensitivity. For example, using a pair of return and instance differ- what part of the state should be stored when test case reduction is
encing functions allows one to detect faults in both instance field utilized. By defaultContextBoundingerforms the most conserva-
updates and method results, but will not expose differences relatedtive projection: an interface reachability projection (as described in
to deeper structural changes in the heap. Fault isolation efficiency Section 2.3). More restrictive projections can be performed through
could also be enhanced by the availability of multiple differencing theBoundingAnalysislass; we have implemented two such projec-
functions, since each could focus on a specific property or set of tions and describe them in the next section. Finally, the open source
program state components that which will help developers restrict packageXStreamdescribed in more detail in the next section, per-
their attention on a potentially small portion of program state that forms state serialization and temporary storage. Finally, the data is
may reflect the fault. compressed with the off-the shelf compression utility bzip.

There is another differencing dimension that can improve fault  The Replaycomponent shares many of the classes @iver.
isolation. It consists of generalizing the definition of DUTs to cap-  As in Carver, Replayinstruments the class of the target unit, in this
ture a sequence of post-states,.., oy0s¢), that capture interme-  casem/, and utilizes theContextFactory but only to Stores,s:.
diate points during the execution of the method under test. Figure 3 The ContextLoadeclass obtains and loads,.., usingXStreanto
illustrates a scenario in which a generalized DUT begins execution unmarshall the stored program state, and then invokes the target
of m ats,r.. Conceptually, during replay a sequence of post-states ynit for execution.
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Two set of scripts, represented with double-side rectangles in Interface k-bounded reachable projection.Theinterface k-bounded
Figure 4, are utilized to provide the filtering and differencing mech- reachableprojection defines the set of preserved references to in-
anisms. Once a test suite of DUTSs is generated, test case filteringclude only those reachable via reference chains of lekgtie.,
can be performed to remove redundant test cases based on the same" | Jpe paramsreach® (p)}. Using small values of can greatly
set of projections available througoundingAnalysisDif scripts reduce the size of the recorded pre-state and for many methods it
compare twas,,s; according to a specified differencing function  will have no impact on unit-test robustness. For example, a value of
to determine whether the changes fremto m’ generate a behav- 1 would suffice for a method whose only dereferences are accesses
ioral difference. Currently, differencing functions on return values, to fields ofthis . In the implementation, when traversing the pro-
on instance fields, on full program state (the default) are fully au- gram using Xstream to store the program state, we keep track of

tomated. To facilitate experimentation with differddif functions the length of dereference chains to halt traversal whisrreached.

our tools currently store the full,.s:, but we plan to implement If the unit accesses data along a reference chain of length greater
options to store onlylif(spy0s:) Which has the potential to signifi-  than &, then ak-bounded projection will retain insufficient data
cantly reduce the cost of carving, replay and differencing. about the pre-state to allow replay. Our implementation dynami-

cally detects this situation and issueSentinelAccessException
to distinguish replay failure from aapplicationexception. This is
: : achieved by extending Xstream with a custom converter that auto-
3.2 .Inter_estlng _Implemgntatlon ASDECFS matically transforms objects that lie at a depthkof- 1 to contain
In this section we briefly describe the most interesting aspects of an additional boolean field that marks it asentinelinstance. The
the implementation. unit under test is then instrumented to insert a test of this boolean
Limitations of the java.io.Serializable interface. Our approach field and raise the exception 'f. tru_e.
May-reference reachable projection. The may-reference reach-

requires the ability to save and restore object data representing the S . ; .
. - o ; able projection uses a static analysis that calculates a characteri-
program state. However, the Jga®a.io.Serializable in-

terface limits the type of objects that can be serialized. For exam- zattion of the heap instances that may be referenced by a method

. i - . o tivation either directly or through method calls. This charac-
ple, Java designates file handler objects as transient (non-serializable ization is expressed as a set of reqular exoression of the form:
because it reasonably assumes that a handler’s value is unlikely to p 9 p '

+\2 H i
be persistent, and restoring it could enable illegal accesses. Thepf1 - [n(F)? This captures an access path that is rooted at a

same limitations apply to other objects, such as database Connec_parametelp and consists oh dereferences by the named fields

tions and network streams. In addition, the Java serialization in- fi. 1f the analysis calculates that the method may reference an

: . : IV object through a dereference chain of length greater thathe
terface may impose additional constraints on serialization. For ex- ~ .. ) s )
. . . optional final term is included to capture objects that are reach-
ample, it may not serialize classes, methods, or fields declared as i ) ;
. 7 ) . . able from the end of the chain through dereference of fields in the
private or final in order to avoid potential security threats.

/ /

Fortunately, we are not the first to face these challenges. We f:;gatﬁiriggziigé t_o irselt c?fffi;;g;ld(T}Lf)d;ngtiscsggéﬁ-
found multiple serialization libraries that offer more advanced and bility for th}é singleton seff. For a regularecebipj;ession of the form
flexible serialization capabilities with various degrees of customiza- 7 o, Wherem < .we construct the setreach;, (p) U
tion. We ended up choosing the XStream library [41] because it PJv-.- "“h m= Z . tetac f1 tp I
comes bundled with many converters for non-serializable types and%éfefegicéz t’g'aghéérglcgcn gf 1&2 )gétim?f tr\:\(la er;vgaunlaroefsr%:sti%r?en ds
a default converter that uses reflection to automatically capture all :

. . . L S " with the term £ then we union an additional term of the form
object fields, it serializes to XML which is more compact and easier reacht(reachy, (... (reachy, (p)))). This projection can signif-
to read than native Java serialization, and it has built-in mechanisms. F fm e £1\P))))- proj 9

. ~icantly reduce the size of carved pre-states while retaining arbitrar-
to traverse and manage the storage of the heap which was essenti
o . ) 2 Ily large heap structures that are relevant to the method under test.
in implementing the following projections.



We implemented &-bounded access path based may-reference C-selection-k.Similar in concept td-selectionthis technique
analysis that used the flow-insensitive context-sensitive equivalenceexecutes all DUTSs, carved with a k-bounded reachable projection,
class based read-write analysis implemented in Indus [30]. This that exercise methods that were changedin Within this tech-
analysis partitions parameter and variable names into equivalencenique we explore depth bounding levels of 1, 2, 5, aaqunlim-
classes. The two distinct features of the analysis are: 1) for eachited depth which corresponds to the interface reachable projection.)
e e oo . - election-mayrefSimiar oC-selecionescepra caries

T ! - DUTs utilizing a may-reference reachable projection.
alence classes are maintained for each method scope except in the
case of static fields and variable names occurring in methods in-4.2 Measures
volved in recursive call chains. We generate regular expressions Regression test selection techniques achieve savings by reducing
that capture the set of all possible referenced access paths up to ghe number of test cases that need to be executelt’ pthereby
given fixed lengthk, with a default ofk = 2. When traversing the reducing the effort required to reteBY. We conjecture that CR
program using Xstream, we simultaneously keep track of all regular techniques achieve additional savings by focusing on unit8’of
expressions and mark only those objects that lie on a defined acces3o evaluate these effects, we measuretiime to executand the
path for storage in XML. This analysis is also capable of detecting time to check the outputs the test cases in the original test suite,
when a method is side-effect free and in such cases the storage ofhe selected test suite, and the carved selected test suites. For a
post-states is skipped since method return values completely definecarved test suite we also measure tihge and space to carvie

the effect of such method. original DUT test suite.
One potential cost of regression test selection is the cost of miss-
4. EXPERIMENT ing faults that would have been exposed by the system tests prior

to test selection. Similarly, DUTs may miss faults due to the use
The goal of the experiment is to assess execution efficiency, fault of projections aimed at improving carving efficiency. We will mea-
detection eﬁeCtiVeneSS, and robustness of the DUTs. We will per- sure fault detection effectiveness by Computing Mentage of
form such assessment through the comparison of system tests angqults found by each test suite. We will also qualify our findings
their corresponding carved unit test cases in the context of regres-py analyzing instances where the outcomes of a carved test case is
sion testing. Within this context, we are interested in the following  different from its corresponding system test case.

research questions: To evaluate the robustness of the carved test cases in the pres-

. . . . nce of program changes, we are interested in considering three
RQ1: Can carving technigues save regression test execution costs?‘e prog ges, 9

. . : potential outcomes of replayingc,,, on unitm’: 1) fault is de-
We would like to compare the.C.O.St of reusing carved unit te;t tected ct,,, causesn’ to reveal a behavioral differences due to
cases versus the costs of utilizing regression test selection '

techniques that work on system test cases a fault_; 2)false difference is detectec_#mm causesn’ to reveal a
) behavioral change frorm to m’ that is not a fault (not captured
RQ2: What is the fault detection effectiveness of the carved test by st.); andtest is unexecutablet.,, is ill-formed with respect
cases? This is important because saving testing costs whileto m’. Tests may be ill-formed for a variety of reasons, e.g., object
reducing fault detection is rarely an enticing trade-off. protocol changes, internal structure of object changes, invariants
) change, and we refer to the degree to which a test set becomes
RQ3: How _robust are the car_ved tests in the presence_c_)f software j||-formed under a change itsensitivity to changeWe assess ro-
evolution? We would like to assess the reusability of the pystness by computing the percentage of carved tests and program
carved unit test cases under a real evolving system, and ex-yits falling into each one of the outcomes. Since the robustness of
amine how different types of change can affect the carved 4 test case depends on the change, we qualify robustness by ana-

tests sensitivity. lyzing the relationship between the type of change and the lifespan
41 Testing Techniaues and sensitivity of the DUT.
. | Igqu .
g g 4.3 Artifact

Let P be a program, leP’ be a modified version aP, and letTl"
be a test suite developed initially fét. Regression testing seeks to
test P’. To facilitate regression testing, test engineers may re-use
T to the extent possible. In this study we considered four types of
test regression techniques, two that work with system tests (S) and
two that worked with carved tests (C):

The artifact we will use to perform this experiment is Siena [9].
Siena is an event notification middleware implemented in Java.
This artifact is available for download in the Subject Infrastruc-
ture Repository (SIR) [15, 32]. SIR provides Siena’s source code,
a system level test suite with 567 test cases, multiple versions cor-
responding to product releases, and a set of seeded faults in each
. N N ) version (the authors were not involved in this latest activity).
S-retest-All.when P is modified, creating”, we simply reuse For this experiment we consider Siena’s core components (not
all non-obsolete test cases to testP’; this is known as the 4 gppjication included in the package that is built with those com-
retest-all technique [23] and it has been said to represent current y,nents). We utilize the five versions of Siena that have seeded
industrial practices [25]. faults that did not generate compilation errors (faults that gener-

. ated compilation errors cannot be tested) and that were exposed by
S-selectionThe retest alltechnique can be expensive: rerun- at least one system test case (faults that were not found by system
ning all test cases may require an unacceptable amount of time ortests would not affect our assessment). For brevity, we summa-
human effort. Regression test selectidgechniques [5, 10, 24, 34]  rize the most relevant information to our experiment in Table 1 and

use information abour’, P, andT' to select a subset df, ", point the reader to SIR [32] to obtain more details about the process
with which to testP’. We utilize themodified entitytechnique employed to prepare the Siena artifact for experimentation. Table
[10], which selects test cases that exercise methods, that (1) 1 provides the number of methods, methods changed between ver-

have been deleted or changed in produditigor (2) use variables  sjons and covered by the system test suite, system tests covering
or structures that have been deleted or changed in prodiing the changed methods, and faults included in each version.



Version | Methods | Changed-covered Tests executing | Faults Carving Metric Reduction
methods changed methods C-select-k C-select
vO 109 - - - 1 2 5 00 mayref
vl 100 2 494 3 Plain Minutes | 118 | 118 | 117 | 119 194
v5 111 2 494 1 MB 820 | 14K | 26K | 26K 15K
v6 111 2 8 1 Compressed Minutes | 315 | 513 | 717 | 725 619
v7 107 10 550 2 MB 9 13 15 15 14
Lossless Minutes | 258 | 299 | 335 | 382 378
Table 1: Siena’s components attributes. Filtering MB 61 | 1.1K | 2.8K | 29K | 1.7K
Lossless Minutes | 270 | 332 | 399 | 447 428
Compressed MB 3 4 14 11 11

4.4 Experimental Setup and Design

The overall experimental process consisted of the following steps. Table 2: Carving times and sizes to generate initial DUT suite.
First, we prepared the test suites generate8-bgtest-all S-selection For Siena, constraining the carving depth does not seem to af-
C-selection-ky andC-selection-mayrefor their automatic execu-  fect the carving time (the variation we observed is small enough
tion. The preparation of the system level test suites was trivial be- to be attributable to noise) but it does impact the storage require-
cause they were already available in the repository. The preparationments for keepindspre, Spost). The similar replay times are at-
of the carved selection suites, required for us to run the CR tool to tributable to the fact that the carving tool first traverses the whole
carve all the initial suite of DUTs from the system tests when exe- heap, and it then truncates the content to the desired depth leverag-
cuted inv0. ing the XStream facility. Also note that for depths greater than two

Second, we run each test suite on the fault-free versions of Sienathe differences in storage space are minimal due to the rather “shal-
to generate an oracle for each version. In the case of the systemow” nature of the subject (dereference chains with length greater
test suite, the oracle consisted in the set of outputs generated by thehan 2 are rare in Siena). The may-reference projection requires an
program. For the carved tests, the oracle consisted of the methodadditional 61% of analysis time, but provides a space reduction of
return value and the relevasf,;: (we explore several alternative  43% relative taxo. As we shall see, this space reduction is valuable
projections to define the relevant state). in that it translates into more efficient replay.

Third, we run each test suite on each faulty instance of each ver- |n the second row of Table 2 we see that simply compressing
sion (some versions contained multiple faults) and recorded their the state data increased the carving time linearly as a function the
execution time. We dealt with each fault instance individually to carved state size (and it will add uncompression time as well for
control for potential masking effects among faults that might neg- the DUTSs selected for replaying), but it consistently provided a
atively affect the fault detection performance of the system tests. three-orders of magnitude reduction in the space required by the
Note that, due to their more concentrated focus, unit tests would DUTSs, offering a very interesting tradeoff. Filtering the test suite
not be as susceptible to such fault interactions. by removing carved DUTs with the the same pre-state (we call this

Fourth, to assess fault detection effectiveness, for each test suitejoss|ess filtering in Table 2) also provided savings of one order of
we compared the outcome of each test case between the fault-fregnagnitude in the required storage but with a reduced impact on
version (oracle) and the faulty instances of each version. To com- carving time. The last row presents a hybrid approach that applies
pare the system test outcomes between correct and fault versionsgiltering and then compresses the data. This last carving technique
we used pre-defined differencing functions that are part of our im- is faster than the one performing just compression and still provides
plementation which ignore “non-deterministic” output data (e.g, a similar degree of storage savings.
dates, times, random numbers). For the unit tests, we performed |t is very important to note that the carving numbers reported in
a similar differencing, but applied to the target method return val- Table 2 correspond to the initial carving of tbemplete DUT suite
ues andsy.st. When the outcome of a test case differed between — DUTSs carved for each of the over 100 methods in Siena from each

the fault-free and the faulty version, a fault is found. . of the over 550 system tests that may execute each method — and
Last, we compared the measures across the test suites genefcan be performed automatically without the tester's participation.
ated byS-retest-all S-selectionC-selection-ki and C-selection- During the evolution of the system, DUTs will be replayed repeat-

mayref We then repeated the same steps to collect data for the edly amortizing the initial carving costs, and only a subset of the
same techniques when utilizing test case filtering and compression.DUTSs will need to be recarved. Recarving will be necessary when
The results emerging from this comparison are presented in the nextis determined that changes in the program may affect a DUT's rele-
section. All these activities were performed on an Opteron 250 pro- vant pre-state. We believe that existing impact analysis techniques

cessor, with 4GB of RAM, running Linux-Fedora, and Java 1.5.  [26] could be used, for example, to determine what DUTs must be
recarved when the a unit is changed, and we plan to integrate those
4.5 Results into our infrastructure in the future.

In this section we provide the results addressing each research e now proceed to analyze the replay efficiency. Replay effi-

question regarding carving and replaying efficiency, fault detection CI€NCY is particularly important since it is likely that a carved DUT
effectiveness, and robustness and sensitivity of the DUTs suites. Wil be repeatedly replayed as the target unit evolves. Figure 5 sum-
marizes the replay execution times for some of the techniques we

RQ1: Efficiency. We first focus on the efficiency of the carving consider. Due to space constraints we only present results for the
process. Although our infrastructure automates carving, this pro- test suites generated by three plain carving techniques (we ignore
cess does consume time and storage so it is important to assess it€-selection-klbecause although it is the fastest it cannot replay
efficiency as it might impact its adoption and scalability. Table 2 many DUTSs, and we ignor€-selectionso because its results are
summarizes the time (in minutes) and the size (in MB) that took almost identical taC-selection-kh We also present plots for two

to carve and store the complete initial suite of DUTSs utilizing the techniques with filtering applied, and one with filtering and uncom-
different techniques. Each row contains a variation of the carving pression. Each observation corresponds to the replay time of each
(plain, with compression, with DUTSs filtering, or hybrid), and each selected test suite under each version and an overall average (the
column contains a test case reduction technique. lines joining observations are just meant to assist in the interpreta-
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tion). The test suite resulting from tt&retest-alltechnique con-
sistently averages 135 minutes per version. The test suites result-
ing from S-selecfor each version averages 91 minutes per version,
with savings ovelS-retest-alranging from from a minimum of 4
minutes inv6 maximum of 132 minutes in7. (Factors that affect
the efficiency of this technique are not within the scope of this pa-
per but can be found at [17]). On averageselectakes 67% of
the time required by-retest-all

The test suites selected by tReselection-k*techniques show . R
very similar tendencies. On average, @selection-k*techniques
replay execution time was 19 minutes, and they took less than a
minute to replay v6 and up to 82 minutes forselection-k3o re-
play v2. On average, these suites takes 13% of the time required
by S-retest-all and 19% of the time required b$-select The
test suites selected by-selection-mayretakes 16% of the time
required byS-retest-all 19% of the time required bg-selection-
mayref and 76% of the time required I§y-selection-k5Applying
filtering to the carved suites generated ®selection-kFeduced
test execution time by more than a third (e.g., from 84 to 19 DUTs
inv2). Last, and as expected, we observe that handling compressed
files adds considerable replaying time.
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We also measured th#ffing time required by all techniques. For vi V5 V6 v7 Average
the system test suites the diffing times were consistently less than Versions
a minute, for theC-selection-k*suites it averaged 12 minutes, and e Coseloctk
for the C-selection-mayrefiveraged 6 minutes. When filtering was C'Select' . . -F'-Itse egtz:s .
employed, diffing time for theC-selection-k*techniques was re- ~selectmayre ierec--serect
- .. ---m--- Filtered-C-select-mayref -- @ - Filtered-Uncomp-C-select-k5
duced by an average of 54%. Overall, although the diffing activity
—— S-retest-all —&— S-Select

is important to the performance of the carved suites, implementing

simple incremental differencing functions could dramatically im- Figure 5: Execution times.

prove their diffing performance. For example, we currently com- . ) . . .

pare all the program post-state, but we could instead first comparefePlaying the test suite carved utilizit@selection-k1did not de-

the return values to see if it reveals any differences, and if it does tect all the behavioral differences exhibited by the selected_syster_n

not, then compare the rest of the post-state. This simple techniquet®St cases (1 out of the 8 system tests exposed a behavioral dif-

would suffice to reduceb diffing time by 96%. fer_ence tha_t was not exposed by any of its corrgsp(_)ndlng _DUT_s).
This reduction in FF was due to the depth-1 projection which did

RQ2: Fault detection effectivenessThe test suites directly gen- ot canture enough pre-state to detect a behavioral difference. The

erated byS-selectionC-selection-k* and C-sglection-mayreﬁe- other carved suites, however, did detect this fault.
tected as many faults as tigeretest-alitechnique. As expected, In v5, and independently of the carved test suite used, 3 out of

the application of our lossless filter to reduce the number of DUTs 300 failing system tests did not have any corresponding DUT on the

did not result in any loss in fault detecti_on power. This indicate_s changed methods failing (99%). We observed the same situation in
that aDUT test suite may be as effective as a system test suite o7 : f2 where 18 out of 203 DUTs (9%) did not expose behav-

at detecting faults, even when using aggressive projections. It is o4 gifferences even though the corresponding system tests failed.

worth noting, however, that when computing fault detection effec- \ynen we analyzed the reasons for this reduction in FF we discov-
tiveness over a whole test DUT suite we do not account for the fact oo that in both cases the tool did not carvetrthe pre-state for
that, for some system tests, their corresponding carved DUTs May gne of the changed methods. The tool did not carve any pre-state
have lost or gained fault detection effectiveness. We conjecture that¢ - those methods because the system test case did not reach them.
this is a likely situation with our subject because many of the faults Changes in the code structure (e.g., addition of a method call, han-
are detected by multiple system tests. To address this situation Wedling of an exception), however, made the system test cases reach
perform an effectiveness analysis at the individual test case level. 1o changed methods (and expose a fault) in later versions. In
For each carving technique we compute: 1) PP, the percentagey o circumstances, improved DUTS that would have resulted in
of passing selected system tests (selected utiligkgplectionthat 100% FF could have been generated by re-carving the test cases in
have all correspondl_n_g carved unit test cases passing, and 2) FFj5¢er versions (carve from, to replay inv;.1). More generally,
the percentage of failing system tests that have at least one CorTey,aq ohservations point out again for the need to establish mecha-
sponding failing carved unit test case. Table 3 presents the PP and,igmg to detect changes in the code that should trigger re-carving.
FF values for all the techniques under all version instances. V7 : f1 also presents an interesting but opposite finding. In this
When using the test suite resulting frafaselection-kwve find instance only 24% of the passing system tests had all their associ-
that most DUTSs going through the changed methods cannot be fully 4te4 pyT's passing. These differences may be caused by faults (a
executed, which leads in most cases to a very small number of sys-, it that did not propagate to the output so the system test did not
tem test cases for which all the DUTs passed as weflis the detect it) or just by the code changes (changes in the units generated
exception to this PP tendency, where carving with a depth of one changes in the post-statksyVe explore this issue further next.
was as good as the maximum depth because the changed method
only operated on the class’s scalar fields. Note that even when US-1gince we only considered Siena versions with faults exposed by
ing this restrictive reduction, the FF values are on average 97%. 'nsystem tests, we are not exploring possible situations in which
the cases where FF is not 100% such asfinwe observed that faults are exposed just by DUTSs.




C-selection-k C-selection
1 5 0 mayref

PP| FF | PP| FF | PP | FF | PP | FF
v1:fl 1 100 | 100 | 100 | 100 | 100 | 100 | 100
v1:f2 1 100 | 100 | 100 | 100 | 100 | 100 | 100
v1:f3 1 100 | 100 | 100 | 100 | 100 | 100 | 100
v5 1 99 | 100 | 99 | 100 | 99 | 100 | 99
v6 1 88 | 100 | 100 | 100 | 100 | 100 | 100
v7fl | 24 | 100 | 24 | 100 | 24 | 100 | 24 | 100
v7if2 | 100 | 91 | 100| 91 | 100| 91 | 100 | 91

Table 3: Fault Detection Effectiveness.

RQ3: Robustness and sensitivityWe previously examined how
DUTSs obtained througit-selection-klare quite fragile in terms

rather smaller and more focused unit tests. Another important dis-
tinction is that the testing target are not the semantic differences
between versions, but rather methods in the program.

The preliminary results from our original test carving prototype
[16], later expanded by Reddy [22], evidenced the potential of
carved tests to improve the efficiency and the focus of a large sys-
tem test suite, identified challenges to scale-up the approach, and
defined some scenarios under which the carved test cases would
and would not perform well. We have built on that work by pre-
senting a generic framework for differential carving, extending the
type of analysis we performed to make the approach more scalable,
and by developing a full set of tools that can enable us to experi-
ment with different techniques on various programs.

of their executability, and how certain code changes may make a \We are aware of two other research efforts related to the notion

method reach a new part of the heap that was not originally carved.

of test carving. First, Orso et al. introduced the notion of selective

A complementary way to evaluate the robustness and sensitivity of record and replay mechanisms [27], which was later prototyped

DUTs is to compare their performance in the presence of meth-

[28] and used to replay units in isolation. Second, the test factor-

ods that changed, and in the presence of methods that changed anithg approach introduced by Saff et al. takes a similar approach to
are indeed faulty. We performed such detailed comparison on the Orso’s with the creation of what they called mock objects that serve

filtered suites forC-selectionso and C-selection-mayrefand now
briefly discuss three distinct instances of the scenarios we found.
In both faulty instances of7, the version with the most meth-

to create the scaffolding to support the execution of the test unit
[36]. The same group introduced a tool set for fully-featured Java
execution environments that can handle many of the subtle interac-

ods changed (10), none of the behavioral differences were found bytions present in this programming language (e.g., callbacks, arrays,
methods other than the faulty ones. This is clearly an ideal situa- native methods) [35]. In terms of our framework, both of these
tion. V1 : f1 represents perhaps a more common case were noneapproaches would be considered action-based CR approaches. We

of the DUTSs going through non-faulty changed methods failed, but
only 78% of the DUTSs traversing faulty methods actually failed.
Yet a different perspective is offered hys. Only two methods

have presented, what is to the best of our knowledge, the first state-
based approach to CR testing.
Saff et al. describe their approach in detail allowing us to provide

changed in this version, and one them is invoked exclusively by the a more in depth comparison with our approach. While carving a

other. The fault is located in the callee. The caller method is exer-
cised by 6354 DUTSs out of which 736 detect behavioral differences
(12%). The (faulty) callee method is exercised by 26173 DUTSs out
of which 928 detect behavioral differences (less than 4%). This
last scenario, in which carving still generates more behavioral dif-

method test case, their infra-structure records the sequence of calls
that can influence the method and then they record the sequence
of calls made by the method and the return values and unit state
side-effects of those calls. In our framework, this would amount
to calculatingg such thats(c) = spr. for the method of inter-

ferences for the faulty method than for change one, is interesting est and then calculating summarizing trades;, that reflect the
because it shows that even for correct changes the number of af-return value and side effects for each call out of the method and

fected DUTs may be large.
It is worth noting that the differencing functions offer an op-
portunity to control this problem. For example, a more relaxed

carving spre;, the relevant pre-state for each call. During replay
the same sequence of calls with the same parameters is expected -
any deviation results in a report of a difference during replay. In

differencing mechanism focused on just return values would have our framework, we would identify the points at which the,calls

detected all the faults in5 andv6, while reducing the number of

false differences significantly since both faults manifest themselves the form(a, (sprey, - -

in the return value. Such a differencing function, however, leads to
a reduced fault detection in the casevdf Mechanisms to select
and appropriately combine these differencing functions will be im-
portant for the robustness and sensitivity of DUTSs.

5. RELATED WORK

Our work was inspired by Weide’s notion of modular testing as

a means to evaluate the modular reasoning property of a piece of

software [38]. Although Weide’s focus was not on testing but on

the evaluation of the fragility of modular reasoning, he raised some

important questions regarding the potential applicability of what he

called a “modular regression technique” that led to our work.
Within the context of regression testing, our approach is also

similar to Binkley's semantic guided regression testing in that it

aims to reduce testing costs by running a subset of the program [5,

6]. Binkley’s technique proposes the utilization of static slicing to

identify potential semantic differences between two versions of a
program. He also presents an algorithm to identify the system tests
that must be run on the slices resulting from the differences be-
tween the program versions. The fundamental distinction between
this and our approach is that we do not run system level tests, but

out of the method occur as post-state locations to define a DUT of
i) Sp’ren))-

Both of these action-based approaches, capture the interactions
between the target unit and its context and then build the scaffold-
ing to replay just those interactions. Hence, they do not incur in
costs associated with capturing and storing the system state for each
targeted unit. On the other hand, this approach may generate tests
that are sensitive to changes that do not effect meaning, e.g., chang-
ing the order of independent method calls. Saff et al. have identi-
fied this issue and propose to analyze the lifespan of the factored
test cases across sequences of method modifications [35]. This is
a critical factor in judging the cost-effectiveness of CR testing and
we have studied this issue in Section 4.5.

These two related efforts have shown their feasibility in terms
of being able to replay tests and the latter approach has provided
initial evidence that it can save time and resources under several
scenarios. Neither approach, however, has been evaluated in terms
of its fault detection effectiveness which ultimately determines the
value of the carved tests, or in the context of regression testing.

Our work also relates to efforts aimed at developing unit test
cases. Several frameworks grouped under the umbrella of Xunit
have been developed to support software engineers in the devel-
opment of unit tests. Junit, for example, is a popular framework



for the Java programming language that lets programmers attachsubjects under similar settings, but also to compare DUTs with tra-
testing code to their classes to validate their behavior [18]. ditional unit tests developed by software engineers. We conjecture
There are also multiple approaches that automate, to different de-that software engineers develop rather shallow unit tests and that
grees, the generation of unit tests. For example, commercial toolswe can effectively complement those with DUTs that expose the
such as Jtest develops unit test cases by analyzing method signatarget units to more complex execution settings.
tures and selecting test cases that increase some coverage criteria Second, we will extend our implementation with additional fea-
[21]. Some of these tools aim to assess software robustness (e.g.tures to reduce the cost of CR testing while preserving test effec-
whether an exception is thrown [12]). Others utilize some type of tiveness. We will store the results of applying differencing func-
specification such as pre and post conditions or operational abstractions to post-states rather than storing post-states themselves. We
tions, to guide the test case generation and actually check whethewill provide mechanisms for testers to define differencing functions
the test outcome meets the expectation results [7, 11, 29, 40]. In-besides the ones provided by the framework. We expect that expe-
terestingly enough, Parasoft new version of JTest enhances the unitience applying these techniques to a broad collection of examples
test case generated with “Sniffer”, a tool that monitors running ap- will expose additional opportunities for cost-reduction. For exam-
plications to pick interesting values to exercise the target unit [21], ple, when collecting the data for Siena we realized that applying
which can be perceived as a primitive type of carving projection.  some “lossy” projections to filter DUTs may yield more interesting
Although carving also aims to generate unit test cases, the ap-tradeoffs between scalability and fault detection effectiveness.
proach we propose is different from previous unit test case genera- Third, we believe that it is possible to combine multiple DUTs to
tion mechanisms since it consists of the projection of a system testcreate a&compoundDUT for a larger program unit such as a class.
case onto the targeted software unit. As such, we expect for carvedThis can be achieved by clustering multiple DUTs based on the
unit tests to retain some of the interesting interactions exposed byidentity of the receiver object. For a sequence of method calls,
systems tests that are harder to design into regular unit test cases;, ..., c;, On an object in a system test, the set of DUTSs for those
that do not consider the system context. calls is replaced by a single DUT that captuf€s-c:, (Sposti, - - - s Spostj))-
As stated, the post-state differencing functions that regulate the This tests would start at,...; and the sequence of calls are replayed
detection of differences between encodings of unit behavior be- for each method aéspostk, Spostk+1). This effectively transfers
longs to a larger body of testing work on differential-based ora- the effects of methods on the receiver object throughout the se-
cles. For example, the work of Weyuker [39] on the development quence achieving a kind of interaction testing between calls. We
of pseudo-oracles, Jaramillo et al. [20] on using comparisons to plan to implement this approach and assess it relative to other class-
check for optimization induced errors in compilers, or the compar- oriented testing techniques.
ison of program spectra [31] are instances of utilizing differencing-  Last, we will develop a supporting infrastructure to increase the
type oracles at the system or subsystem level. When focusing atuse of DUTSs in practice. We will leverage some of the static anal-
the unit level of object oriented programs, as we are doing, Binder ysis techniques already at our disposal to determine, for example,
suggests the term “concrete state” oracles, which aim to comparewhen changes in a method may suggest a re-carving operation tar-
the value of all the unit’s attributes against what is expected [4]. geted at that specific method. We would also like to extend the
Briand et al. refer to this type of oracle as a “precise” oracle be- analysis performed after a DUTs detects a behavioral difference on
cause it was the most accurate one employed in their studies [8].a unit that is later deemed correct. In this situation, we would like to
Overall, the notion of testing being fundamentally differential has know what other DUTs might be obsolete and require re-carving.
long been understood [39], since thgeudo-oracleagainst which
systems are judged correct are themselves subject to error. Th”SAcknowIedgments
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