
Controlling Factors in Evaluating Path-sensitive Error Detection Techniques

Matthew B. Dwyer, Suzette Person, Sebastian Elbaum

Department of Computer Science and Engineering
University of Nebraska - Lincoln

Lincoln, Nebraska
{dwyer,sperson,elbaum}@cse.unl.edu

Abstract
Recent advances in static program analysis have made it possible
to detect errors in applications that have been thoroughly tested and
are in wide-spread use. The ability to find errors that have eluded
traditional validation methods is due to the development and com-
bination of sophisticated algorithmic techniques that are embedded
in the implementations of analysis tools. Evaluating new analysis
techniques is typically performed by running an analysis tool on
a collection of subject programs, perhaps enabling and disabling a
given technique in different runs. While seemingly sensible, this
approach runs the risk of attributing improvements in the cost-
effectiveness of the analysis to the technique under consideration,
when those improvements may actually be due to details of analysis
tool implementations that are uncontrolled during evaluation.

In this paper, we focus on the specific class of path-sensitive er-
ror detection techniques and identify several factors that can sig-
nificantly influence the cost of analysis. We show, through careful
empirical studies, that the influence of these factors is sufficiently
large that, if left uncontrolled, they may lead researchers to im-
properly attribute improvements in analysis cost and effectiveness.
We make several recommendations as to how the influence of these
factors can be mitigated when evaluating techniques.

1. INTRODUCTION
Static program analyses calculate information about the executable

behavior of a program without running the program. Traditionally,
static analyses have been formulated to provide guarantees about
program behavior to support, for example, semantics-preserving
code transformations to improve performance. Such analyses must
necessarily account for all possible program behaviors. In practice,
this requirement forces analysis developers to formulate relatively
imprecise analyses to achieve scalability to real programs.

It is also possible to formulate static analyses explicitly to de-
tect errors and issue diagnostic information to users. The intuition
behind such approaches is that a static analysis can be engineered
to more efficiently cover a broader space of program behavior than
can be achieved through testing and, consequently, such analyses
have the potential to detect hard to find errors. Because they need
not account for all possible behaviors, analysis developers have ex-
ploited this relaxed requirement to customize very precise path-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

sensitive analysis frameworks, for example model-checking tools
like Bogor [23], Java Path Finder (JPF) [27], Murφ [3], and Spin
[17], to make them cost effective for error detection.

Several recent efforts along these lines involve adaptations of the
CMC [20] model checker to make it more effective for finding er-
rors in certain kinds of applications. In [19], the authors adapt CMC
for error detection in protocol implementations and have used it to
find four errors in the Linux TCP/IP implementation. More re-
cently they have developed FiSC [28], a version of CMC that has
been adapted for and used to reason about file system implemen-
tations; several significant errors in three widely-used file system
implementations have been detected using FiSC. These adaptations
have been carefully tuned to use specific heuristics for selectively
storing only part of a program’s data state during analysis and for
prioritizing the order in which statements are analyzed.

Results such as these provide an important proof of concept that
cost-effective and precise path-sensitive analyses for error detec-
tion can be built. They demonstrate that there exists a combina-
tion of specific techniques that can provide cost-effective analysis
for a specific class of programs. They do not, however, provide
information about the relative cost-effectiveness of the individual
analysis techniques that they are comprised of nor about the range
of programs over which they are effective. For example, two very
different heuristics for prioritizing exploration of transitions are de-
scribed in [19], preferring exploration of new behaviors relative to
protocol states and preferring infrequent state changes, but infor-
mation about the breadth or relative effectiveness of the heuristics
is not provided. To be fair, this was not the goal of the authors, but
it is important to gain this kind of information so that techniques
such as these can be selected and combined for maximum benefit
in path-sensitive error detection tools.

Obtaining such results requires careful empirical evaluation of
techniques used to achieve cost-effective analysis across a range of
programs. This kind of evaluation can be difficult to perform es-
pecially when there is a lack of knowledge about the factors that
can influence the performance of an analysis tool. In this paper,
we take a first step towards enabling controlled empirical studies of
path-sensitive static analyses by presenting data on two factors that
can significantly influence the performance of path-sensitive error
detection analyses, to the extent that, if uncontrolled their influ-
ence may obscure differences in performance that are attributable
to analysis techniques.

The first factor is related to the implementation of path-sensitive
analysis algorithms. Most analysis algorithms allow the execution
of a program to be under-specified in some way. When analyzing a
multi-threaded Java program, for example, the analysis may reach
a point where bytecodes in two different threads are enabled for
execution. In a JVM, the thread scheduling algorithm will choose

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Controlling Factors in Evaluating Path-sensitive Error Detection
Techniques

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Nebraska - Lincoln,Department of Computer Science and
Engineering,Lincoln,NE,68588

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

one of those bytecodes to execute first, but path-sensitive analysis
techniques generally abstract from thread scheduling algorithm de-
tails and simply require that each of the schedulings is analyzed.
Path-sensitive analysis tools, such as Bogor, Murφ, SPIN, and JPF,
implement a specific default search order for exploring simultane-
ously enabled execution steps; in fact, these four tools each imple-
ment different default orders. Given that these tools were built to
exhaustively analyze all possible program paths the specific default
order used was not a concern to their developers. When targeting
or customizing such tools to detect errors, however, we show that
variation in search order can give rise to very large variations in
path-sensitive analysis cost and fault detection effectiveness across
a range of programs. In Section 3, we support this conclusion with
a retrospective study that looks back at previously published results
and relates them to results from empirical studies we performed.

The second factor is related to the subject programs used to eval-
uate the cost-effectiveness of path-sensitive analysis techniques.
The literature contains many papers that introduce analysis tech-
niques and illustrate the performance of those techniques on a few
small selected examples, for example, dining philosophers and bounded
buffer examples [1, 21, 6]. Recent efforts to establish benchmarks
to support the evaluation of testing and analysis techniques for
multi-threaded Java programs are focused on making a broader col-
lection of examples available to the community [11, 10]. One thing
lacking from the literature and emerging benchmarks is a mean-
ingful characterization of the programs and the faults they contain,
and the criteria for their inclusion in the benchmark. Such char-
acterization and criteria would help researchers determine whether
the benchmarks are appropriate to assess their particular techniques
and, if they are appropriate, it would help them put their findings
into perspective leading to claims that are substantiated in the col-
lected data set. More specifically, for evaluating path-sensitive er-
ror detection tools we are interested in understanding whether pro-
grams contain hard to find errors. To address this, we characterize
programs in terms of path error density - the percentage of program
paths that contain an error. Surprisingly, many of the examples cur-
rently used in evaluations have very high path error densities which
makes them poor subjects for evaluating the merits of path-sensitive
analysis techniques. Furthermore, we show that path error density
is a key factor in exposing path-sensitive analysis cost tradeoffs.
In Section 4, we describe a case controlled study that supports this
conclusion.

To enable quantitative exploration of these issues, we set our
work in the context of path-sensitive analysis of multi-threaded
Java programs for detecting safety property violations. We use the
JPF Java model checker as the basis for our evaluation of the influ-
ence of the factors described above.

We believe that our findings provide important information that
can guide the evaluation of path-sensitive analysis techniques. The
contributions of the paper lie in: (i) the identification of default
search order as a factor that can impact the performance of path-
sensitive error detection techniques; (ii) the identification of path
error density as a program factor that can impact the performance
of path-sensitive error detection techniques; (iii) the results of em-
pirical studies that indicate the frequency and magnitude of per-
formance variation with these factors (Sections 3 and 4); and (iv)
recommendations for how to control for the effects of these factors
in experimental studies (Section 5).

2. BACKGROUND
This Section gives an overview of the class of path-sensitive

analyses realized by multi-threaded Java model checkers, explains
the sources of search order variation in such analyses, and charac-

1 seen := {s0}
2 push(stack, s0)
3 DFS(s0)

DFS(s)
4 workSet := enabled(s)
5 for each α ∈ workSet do
6 s′ := α(s)
7 if error(s′) then
8 counterexample := stack
9 exit

10 if s′ 6∈ seen then
11 seen := seen ∪ {s′}
12 push(stack, s′)
13 DFS(s′)
14 pop(stack)
end DFS()

Figure 1: Depth-first search for first error state
terizes the availability of subject multi-threaded Java programs for
experiments with path-sensitive error detection tools.

2.1 Path-Sensitive State-Space Search
Many path-sensitive analysis techniques treat programs as guarded-

transition systems and analyze program behavior via depth-first
traversal of transition sequences rooted at the initial state 1. A
guarded transition system consists of a set of variables, which for
our purposes are coalesced into a single composite state variable s,
and a set of guarded transitions which atomically test, with predi-
cate φ, the current state and update the state by executing a transi-
tion, α, i.e., if φ(s) then s = α(s)
The initial values of program variables are used to define an initial
state, s0. Figure 1 presents the DFS analysis algorithm. On line 4,
enabled(s) returns the set of transitions, α, whose guard, φ, is true
in the given state. Lines 7-9 test if an error state has been reached,
and if so, records the current DFS stack, which encodes the path
under analysis, as a counterexample and exits. Even though this
analysis does not generate all program paths, it is path-sensitive
since it reasons about paths and prefixes of paths independently; a
DFS can be thought of as analyzing all acyclic program paths.

Line 5 of this algorithm imposes no order on iterating through the
set of enabled transitions in a state. This is an issue if non-singleton
sets are produced at line 4 which is actually very common in ana-
lyzing realistic programs. This may seem odd since program exe-
cution is usually thought of as deterministic for a given execution
environment, i.e., sequence of inputs and scheduling decisions. In
practice, path-sensitive analyses must perform significant abstrac-
tion to gain tractability and to produce results that generalize across
multiple specific execution environments.

For example, the past decade has seen a significant amount of
work on predicate abstraction [13] which replaces reasoning about
specific variable values with sets of values encoded symbolically.
These abstractions encode approximations using non-determinism.
For example, if a variable is abstracted by predicates x < 0, x ==
0, x > 0 then the result of executing a statement x = x - 2 in
a state in which x > 0 could result in any of the three predicates
being true and is therefore modeled with an enabled transition for
each resultant predicate.

In reasoning about a multi-threaded Java program, a path-sensitive
analysis must reflect the possible scheduler decisions that could be

1We note that all of the search order issues we discuss for DFS are
also relevant for other forms of search, such as breadth-first and
variants of breadth-first.

(0,0)

ba c

(3,2)

(2,2)

(3,1) (1,2)(4,0)

(2,0)

(2,1)

Selective State Storage (a<c<b)Full State Space

(0,)

ba c

(2,)

(3,) (1,)(4,)

(2,)

Figure 2: Search Order Example
executed by a JVM. The JVM specification provides only a weak
specification of scheduler behavior, i.e., higher priority threads should
be scheduled first. It says nothing about the order in which threads
at a given priority level should be executed; in fact, it does not
even require that threads be executed fairly. All JVMs implement
a scheduling policy and that policy calculates a thread ordering.
To provide a degree of JVM independence, path-sensitive analy-
ses for multi-threaded Java programs use non-determinism to over-
approximate the set of all legal JVM scheduler decisions. Transi-
tions in multiple threads will typically be enabled in a given state
and returned on line 4 in the algorithm above. Non-determinism
has other uses in tools such as JPF as well; for example, to generate
a range of input values [14] or to encode complex specifications
[2].

These sources of non-determinism combine to produce a large
space of possible paths through the transition system. When per-
forming an exhaustive traversal of the transition system states, the
order in which transitions are executed at line 4 is of no conse-
quence; the algorithm is guaranteed to visit all reachable system
states regardless of order. Clearly, when an error exists order may
matter and intuitively the presence of non-determinism is the key
factor in determining the number of paths to be traversed; a deter-
ministic system has a single path. Figure 2 illustrates a sample state
space where search order on transitions from the initial state (0, 0)
can vary the cost of finding an error state, measured in the number
of states explored, from 2 (under the order b < a < c) to 7 (under
the order a < c < b).

2.2 Heuristic Search of Program State-Space
Recent years have seen a growing interest in the incorporation

of heuristics into path-sensitive analyses. Heuristics are typically
designed to calculate a search order that will reach an error state
quickly, e.g., [14], or to reach a particular kind of goal state, e.g.,
one with a short counter-example [8, 26]. We note also that heuris-
tics can choose to completely drop transitions from consideration
[19], which clearly changes the search order.

Heuristics can function in several ways. In traditional heuris-
tic search, one applies a cost function to map each enabled transi-
tion, α, to a value and then implements line 5 of Figure 1 to iterate
over the transitions in cost-order. Cost functions usually calculate
a score based on the current state in the exploration or based on the
path explored up to the state, for example, Groce and Visser’s [14]
“demonic” scheduling heuristic scores thread transitions based on
the frequency of thread execution along the path.

It is important to observe that using this type of heuristic does
not completely eliminate the issue of transition order. If two tran-
sitions evaluate to the same cost value, a common situation when
using discrete cost functions [14], then the order in which those
transitions execute is left to the stability of the transition sorting
algorithm used to implement line 5. A stable sort will honor the
underlying order implemented in the model checker, whereas an

unstable sort may modify it. Thus, two different heuristic path-
sensitive analysis implementations that use the same cost function
may actually explore the paths in the system in a different order.

Another heuristic approach is to be selective in storing the pro-
gram state. This is realized by modifying line 10 of Figure 1 so that
the membership test is not performed on the complete state, s, but
rather on a projection of the state π(s), and projected seen values,
{π(s′) | ∃s′ ∈ seen}. For example, Musuvathi and Engler [19]
drop a variable from the state if it has been assigned a large num-
ber of distinct values on the path explored. This has the effect of
forcing backtracking in the DFS earlier than would happen without
this modification. In doing this, the search order may change since
the continuation of the current path in the original DFS is either
eliminated from the search or deferred until later in the search.

Figure 2 illustrates a selective state storage strategy where the
second state component is dropped. Under the order a < c < b one
can see that the traversal of the state space is curtailed prematurely,
potentially reducing the analysis cost, but in this case it forces the
error state along the path beginning with transition c to be missed
due to matching on the partial state (2,) - the net result is it still
requires exploration of 7 states to find an error.

Heuristics are viewed by many as a promising mechanism for
mitigating the combinatorial explosion in the cost of path-sensitive
state-space analyses. They have the effect of focusing the search on
a portion of the state space. Unlike property-preserving state-space
reductions, heuristics are oriented towards error detection and the
only valid means of evaluating them is through broad experimenta-
tion across a variety of programs and properties. Consequently, we
believe that evaluation of heuristic state-space search techniques is
especially vulnerable to a lack of control on experimental factors.

2.3 Java State-Space Analysis Tools
In our studies, we evaluated the performance of path-sensitive

analysis tools for multi-threaded Java over a range of subject pro-
grams. The primary tool we considered was JPF; Bandera, using
Bogor as its model checking engine, will be considered in our repli-
cated studies. We chose these tools since they are the most mature
and sophisticated path-sensitive multi-threaded Java analysis tools
that we are aware of, both can be applied to a range of Java pro-
grams, both provide flexible implementations that make it easy to
modify the transition order, and, finally, we are familiar with both
tools and are in close contact with their developers so that we can
ensure any modifications we make to them are correct.

JPF is built as a virtual machine that stores the set of states vis-
ited along a path and uses that state set to force backtracking along
other paths as in the general DFS algorithm above. JPF processes
JVM bytecode programs directly and as a result it relies on a Java
compiler to translate source programs. JPF has a flexible architec-
ture that makes heavy use of Java interfaces and abstract classes to
consolidate common functionality in the model checker and enable
different algorithms and data structures to be used.

The Search interface defines the generic API used by the main
analysis module. Multiple search modules are included with JPF
including: DFSearch - depth-first search, implementations of all
of the heuristics described in [14], and RandomSearch - a state-
less search that explores a single path in the program. The Scheduler
abstract class is the base class used to define the strategy for calcu-
lating the order in which enabled threads are analyzed; this corre-
sponds to line 5 in Figure 1. JPF includes two Scheduler sub-
types: DefaultScheduler - which implements a fixed strategy
for selecting the next thread based on the order in which Thread
(or Runnable) objects are allocated along the path being ana-
lyzed, and RandomOrderScheduler - which randomizes the

order of thread selection based a pseudo-random sequence deter-
mined by the current time or a user-specified seed value.

An additional degree of non-determinism can be specified in JPF
programs, for example, a call to Verify.random(3) returns
one of {0, 1, 2, 3}; in a complete stateful search all such values
are guaranteed to be returned. The order in which these values are
produced is up to the implementation of this method; the current
implementation produces them in their value order. Calls such as
this create multiple enabled transitions internal to a single thread.

Version 3.1.2 of JPF does not allow for randomization of the or-
der in which such internal transitions are explored; a forthcoming
version of JPF will have this feature. Given this, the results we
report for analyses using JPF with RandomOrderScheduler
should be interpreted as exploring a subset of all possible random
orders. The Java programs we consider in our studies have very
limited internal non-determinism, so while we believe that addi-
tional variation in search order may be possible when running JPF
on those example we regard it as a minor effect. Even if that were
not the case, the results we report on the variation in performance
of JPF due to search order can be regarded as a lower-bound.

The only modifications we made to JPF were to to allow for time-
bounded analysis, a command-line parameter specified the maxi-
mum number of seconds an analysis may execute, and the report-
ing of statistics on partial searches that are terminated either when
the time bound is reached or memory is exhausted. Neither change
affects the path-sensitive analysis implementation.

As a final note, Version 3.1.2 of JPF has not, to the best of our
knowledge, been used in any published study of error detection
techniques. Previous papers reporting JPF results, such as [21, 14],
used older versions that were missing important advances in miti-
gating the cost of path-sensitive analysis. For example, canonical
heap symmetry reductions, which represent all execution states of
a Java program that differ only in the physical addresses of ob-
jects or in the unreclaimed garbage using a single representative
state, e.g., [24] are implemented. In addition sophisticated partial
order reductions that are customized for multi-threaded Java pro-
grams [7], have also been adapted to JPF and implemented. The
cost-effectiveness of these reductions is sufficient to regard the use
of these features as the default configuration of JPF. All of our runs
use these features. As a consequence, even on the same Java pro-
gram the performance measures we report may differ significantly
from those reported in previous studies.

2.4 Default Transition Search Order
Default transition order is an implementation detail that is typ-

ically realized in a way that is convenient given the internal path
and state representations maintained by an analysis tool. It is no
surprise then that the default transition order varies between tools.
In fact, each of Spin, Murφ, JPF and Bogor use a different default
order to select which enabled thread will be analyzed next. Spin
selects the next thread based on the order in which active proc-
types, i.e., Spin’s notion of thread, appear in the source file and then
in the order in which dynamically started threads are created. Murφ
orders threads in the reverse order of their appearance in the source
file. JPF and Bogor are very similar; JPF uses the strategy described
above for the DefaultScheduler, whereas Bogor uses the or-
der in which the thread start() method is invoked. Despite the
close similarity in implementations, certain program structures can
give rise to dramatically different default orders. For the following
code:

Thread[] threads[3];
for (int i=0; i<3; i++) threads[i] = new Thread();
for (int i=0; i<3; i++) threads[3-i].start;

JPF and Bogor will explore the threads in opposite orders.

2.5 Common Multi-threaded Java Subjects
The past decade has seen significant advances in the develop-

ment of path-sensitive program analyses. There have, however,
been relatively few broad evaluations of the cost-effectiveness of
those techniques across a range of systems; a notable exception is
Corbett’s study of deadlock detection in 30 different multi-tasking
Ada programs [1].

For analyzing multi-threaded Java programs, researchers have
had two basic choices: (1) adapt existing examples from the con-
currency literature, or (2) target real multi-threaded Java programs.
Most have chosen option (1), since it can be difficult to obtain
faulty versions of real multi-threaded Java programs, even from
open source projects, and because using a small set of well-understood
examples would seem to provide a means for comparing perfor-
mance across tools and techniques.

We obtained the suites of programs compiled by the Bandera [6]
and JPF projects. These programs cover nearly all of the multi-
threaded Java programs that are used in evaluating path-sensitive
Java analyses in the literature; some papers have also used Java
standard library implementations as analysis subjects. We selected
programs that exhibit some type of concurrency error. These exam-
ples can be divided into two kinds: concurrency error kernels and
realistic program structures. Concurrency error kernels are very
simple programs that distill the essence of a particular concurrency
error. Examples include adapted versions from the concurrency
literature, such as dining philosophers, as well as programs that
exhibit Java-specific errors; we had a student independently imple-
ment kernels for the Java concurrent bug patterns (CBP) described
in [12]. These kernels typically include the control and data struc-
tures required to exhibit the error and nothing else. Real programs
are small to medium size programs that perform a computation over
rich data structures. They tend to be much larger than the concur-
rency kernels, have a higher degree of multi-threading, often accept
input data that parameterizes the computation, and include signifi-
cant control and data structures that are unrelated to the error.

We were also granted access to a collection of multi-threaded
Java programs being developed at IBM to support testing and anal-
ysis research [11]. This set of programs overlaps with the Bandera
and JPF programs to some extent, but it also includes a number
of programs that were developed to encode common Java concur-
rency bug patterns; we refer to those programs as the IBM bench-
marks . Many of the IBM benchmarks were written following stan-
dard forms for parameterization, e.g., the degree of multi-threading
in an example was indicated by a string little, average, or
lot, for error reporting, e.g., error messages were printed to a log
file, and for perturbing the schedules so as to make errors more
difficult to detect by testing, e.g., by inserting random sleep()
calls. We transformed these examples to further parameterize them,
e.g., programs accept an integer that indicates the degree of multi-
threading, to indicate errors through assertion violations, and to re-
move sleep() calls; this last step is easily automated. The resul-
tant versions of the IBM benchmark programs we considered are
behaviorally equivalent to the original versions.

Table 1 lists each subject program and describes it source, kind
(i.e., kernel, realistic, benchmark), parameters, the errors it con-
tains - including CBP designations where appropriate, application
class counts, non-comment source lines of code as calculated by Ja-
vaNCSS [18], and path error density measures which are discussed
in Section 4. We note that the analysis of these programs considers
all of the library code used by the applications which can signifi-
cantly increase analyzed program size.

Subject Source Reference Kind Parameters Error Classes SLOC Density

Account IBM [10] benchmark none Deadlock, Race 3 66 11.4-66.3%
Airline IBM [10] benchmark #ticketsIssued, cushion Race 2 31 65.7-83.6%
AlarmClock Bandera [6] real none NullPtrExcpn 6 125 23.2%
AllocateVector IBM [10] benchmark blockSize, vectorSize, #runs No Lock 3 85 3.8-75.0%
BoundedBuffer Bandera [21, 6] real bufferSize,#producers Deadlock 5 65 0-99.6%

#consumers,modCount
Clean CBP [12] kernel #firstTasks, #secondTasks, Deadlock 4 51 0.9-100%

#iterations
Daisy other [22] real none Assert 21 744 0.07%
Deadlock Bandera kernel none Deadlock 4 24 63.8-75.4%
DEOS JPF [14] real none Assert 24 838 0-41.5%
DiningPhil Bandera [14] kernel #forks/philosophers Deadlock 3 25 100%
Elevator other [9] real none ArrayIdxOOBExcpn 12 934 0%
LinkedList IBM [10] benchmark #builders, maxSize Atomicity 5 117 100%
LoseNotify CBP [12] kernel #waitThreads, Deadlock 4 41 100%

#notifyThreads, #iterations
NestedMonitor Bandera kernel none Deadlock 6 53 100%
Piper IBM [10] benchmark #seats/passengeRequests, Lose Notify 2 71 7.3-33.6%

#passengers, queueCapacity
ProducerConsumer Bandera kernel #producers,#consumers Race 8 87 14.6-33.8%

#itemsProduced
Reorder CBP [12] kernel #setThreads, #checkThreads Atomicity 4 44 0-0.02%
ReplicatedWorker Bandera [21, 6] real #workers, #items, min, Deadlock 14 304 26.1-70.3%

max, epsilon
RaxExtended JPF [21, 14, 6] real gc, wc Race (Assert) 11 127 76.1-79.4%
RW Bandera [21, 6] real #readers, #writers, bound Race (Assert) 6 103 43.3-49.5%
SleepingBarber Bandera [6] kernel none Deadlock 4 66 100%
TwoStage CBP [12] kernel #twoStageThreads, Two-stage 5 52 1.2-1.9%

#readThreads (Assert)

Table 1: Subject Program Descriptions
3. DOES ORDER REALLY MATTER?

It seems obvious that search order can matter, but the real ques-
tions are: (a) Can search order cause performance to vary enough
to affect the conclusions of carefully performed evaluations? and
(b) Does order matter across a range of programs? (as opposed to
toy examples like the one shown in the previous section). In this
section, we provide anecdotal evidence regarding question (a) and
then followup with a broader study to assess question (b).

3.1 An Anecdote
Even if every path-sensitive analysis of every program were sus-

ceptible to the influence of varying order, we would not be con-
cerned if that influence was small. Path-sensitive analyses can be
quite expensive and the community expects that techniques of prac-
tical importance will yield improvements of practical significance;
we need not be too concerned with small scale effects.

To assess question (a), we considered the results of an existing
carefully performed study that compared four path-sensitive anal-
ysis tools on a number of versions of models of the GNU imple-
mentation of the UUCP i-Protocol [5]. We downloaded the i3 and
i4 Murφ models from the author’s web-site and configured them
to be 2fn models as described in their study. The purpose of their
study was to understand the performance improvements that could
be achieved by applying five different abstractions to the model.
The authors were able to order the abstractions based on analy-
sis performance in finding errors in versions of the system; they
also considered performance in showing the absence of errors in
versions that were free of errors. They determined that i4 was
uniformly faster than i3.

We modified the implementation of Murφ version 2.70L to ran-
domly choose the order in which enabled transitions are explored
during the search of system paths for violations of safety properties;
the random order was seeded by system time when the analysis was
initiated. We executed Murφ on the models using the default search

order of the tool and 20 different randomized orders. Since we ran
on a much faster platform, the execution times are not compara-
ble to the results published in [5], so we compared the default runs
we performed to the randomized runs using the state count mea-
sure used in original the study. We found that the default run for
i4 explored 218 states and that there was an order of search for
i3 that only explored 87 states. Similarly, the default order for i3
explored 397 states and there was an order for i4 that explored
703 states. The point is that the variation in performance due to
search order for Murφ on these problems is sufficiently large so
that, in some cases, the conclusions about the cost-effectiveness of
abstractions i3 and i4 that were originally drawn by considering
default orderings would be inverted.

Based on this limited experience, we conjecture that variations
in search order may invalidate the results of otherwise carefully
performed evaluations of path-sensitive error detection techniques.

3.2 A Retrospective Study
To evaluate this conjecture more broadly, and thereby address

questions (a) and (b), we divide this study into two parts. First, we
quantify the variation in performance we observed when running
JPF to find an error using randomly chosen search orders on a set
of selected subjects. In the second part of our study, we relate the
variation we observed on subjects utilized in previous studies back
to the results reported in the those studies.

3.2.1 Dependent Variable
In this study, we measure the dependent variable in terms of the

the number of new program states explored during the analysis.
This measure is commonly used in model checker evaluations. It
is also system independent, making it possible to compare analysis
performance across platforms which for our study is crucial since
we do not have access to the execution platforms used in previously
reported studies.

3.2.2 Independent Variable
Our study manipulated one independent variable: the search or-

der. Given the differences we encountered in default search order
across existing path-sensitive analysis tools, we believe it would
be difficult to characterize the space of all implementable orders
that an analysis tool developer might choose. Consequently, we
chose to randomize the search order. For each subject, we executed
JPF configured with depth-first search, using the DFSearch com-
ponent, and we selected either the DefaultScheduler or the
RandomOrderScheduler as described in Section 2.3.

3.2.3 Study Design and Setup
For both parts of this study we used the following subjects from

Table 1: AlarmClock, DEOS, DEOSAbstracted, DiningPhil, Repli-
catedWorker, RaxExtended, RW, and SleepingBarber. Each of these
programs appeared in one or more of [21, 14, 6].

In the first part of our study, we also included all non-kernel sub-
jects from Table 1 in order to assess the variation in analysis cost on
the more realistic subjects. Since these examples were not the sub-
ject of previous studies we do not include them in the retrospective
part of our analysis.

Given the large number of subject programs to choose from, we
also considered a set of secondary factors when selecting our sub-
ject population. These factors include the size of the program (in
terms of lines of code and thread counts), the type of concurrency
fault, and coverage of the main, non-trivial codes bases that we are
aware of and have access to. In all cases, our goal was to choose a
variety of programs to increase the diversity of our subject popula-
tion.

In the second part of this study, we relate the variation in ob-
served performance of JPF back to the results reported in the three
selected studies by calculating the ratio of the analysis cost for the
technique considered in the study to the default analysis cost cited
in the study. For example, [6] reports data on the performance of an
analysis when program slicing is applied to a program. Specifically,
the performance of an analysis with slicing as a pre-processing
step (slice) is compared to the default call-graph-based reachability
pruning pre-processing step. In this case, we would calculate the
ratio of analysis cost using the slice technique to the cost of using
the default technique. For our study, we calculated the ratios for all
of the techniques and subject programs used in the three previous
studies.2 We then selected the largest ratio for each subject program
and applied it to scale the default performance of JPF that we ob-
served in the first part of the study; we term this the scaled default
performance. Finally, we compared the scaled default performance
to the variations in performance we observed over the range of or-
ders considered in our study. Orders that result in lower analysis
cost than the scaled default performance indicate that using a dif-
ferent default search order in the original study could have possibly
led the authors to draw a different conclusion about the benefit of
the technique they studied. In such cases, we say that the variation
in performance due to search order is of practical significance.

To perform this study and the follow-on study discussed in Sec-
tion 4, we compiled all subjects using Java v1.4.2 07 and then
model checked each subject using JPF v3.1.2 with partial order re-
ductions enabled. The study was performed on a cluster of dual-
Opteron 250’s running at 2.4 GHz with 4 GByte of memory and
running Fedora Core 3 Linux. Each subject was model checked
one time using JPF’s DFSearcher and then model checked 500
times using JPF’s RandomOrderSearcher using system time
2All such ratios are less than or equal to one in the studies we con-
sidered since the techniques all represent improvements over the
default.

as the seed. JPF’s execution time was limited to one hour of wall
time for all runs and all subjects; this limit exceeds most of the
time-bounds used in previous studies (except for [6]). Statistics
for each run of JPF were gathered from the output sent to standard
output and standard error by JPF. For the two examples (Account
and RW) containing multiple errors , we used JPF’s ability to dis-
tinguish between certain types of property violations and enabled
JPF to look for each type of property violation on separate model
checks of that subject.

3.2.4 Results and Analysis
We start by providing a comparative summary of the perfor-

mance of search orders in terms of new states visited for the 16
subjects we considered in this study. This summary is presented
in Table 2 which includes the values for the default search order,
and the min, max, average and 95% confidence interval for the ran-
dom order search based on the 500 observations collected for each
subject. We also include information for both the default and ran-
dom runs indicating if the error is found. OM indicates the default
search order ran out of memory, TO indicates the run timed-out,
and Num. Random represents the number of random runs (out of
500) that found the error. Note that where a default search did not
find the error, the number of states listed can be considered a lower
bound on the number of states that would be traversed if the search
had been allowed to run to completion. The final two columns in
Table 2 show the technique and analysis cost ratio calculated based
on the results in the previously published studies for those subjects.
Note that the names used in this table, and in subsequent text, are
the program name from Table 1 with a ’.’ separated list of parame-
ter values for the program following a ’-’.

When observing the reported number of new states traversed by
the different search orders, we first note the great variability across
subjects; the number of new states reported ranges from the tens to
the millions. This is probably not surprising given that our subjects
vary significantly in the number of lines of code, number of threads
and the general complexity of their control and data structures. We
can also see that the default search order visits more states than the
average random search in 10 of the 16 subjects. Interestingly, none
of the default runs reported new states within the 95% confidence
interval computed based on the 500 random runs.

Variability in results between the default search order and the
random order for a given subject is also of interest. For example,
the default search order for AllocateVector-2.100.1 explores over
20 million states without finding the error while all of the random
runs find the error in an average of 133,908 states (in fact, all of the
500 random order searches find the error in under .5 million states
and in as few as 43 states). On the other hand, the default search
order for RW-2.2.100NoDeadLckCk finds the error in 3.1 million
states versus an average of 13.6 million states for the random runs,
of which only 214 of 500 find the error. Perhaps, even more impor-
tant than the number of states traversed is whether a search actually
succeeds in locating the error when resources are bounded. Inter-
estingly we note that in the six subject where the default search
order does not find the error, at least 8% of the corresponding ran-
dom searches for each program finds the error, and in half of these
programs, over 80% of the random searches find the error.

Clearly, researchers utilizing programs reporting a smaller num-
ber of new states such as AlarmClock are less likely to be able
to discriminate or expose the potential of their error detection tech-
nique. However, targeting programs with a larger state space is also
challenging because of the variability we observe with the analy-
sis of such programs. For example, for RW-2.2.100NoDeadLckCk,
the 95% confidence interval around the mean covers a range of over

Subject New States Found
Default Average 95% CI Minimum Maximum Num. Retrospective

Random Random Random Random Default Random Technique Ratio
Account-NoExcepCk 34484 1097737 ±168942 92 8393836 OM 86
Account-NoDeadLckCk 1034 695726 ±128737 257 8041901

√
495

Airline-20.2 6942672 298274 ±101032 148 4842487 TO 469
AlarmClock 290 264 ±8 83 438

√
500 slice[6] 0.78

AllocateVector-2.100.1 20352435 133908 ±11448 43 484132 TO 500
BoundedBuffer-2.4.4.1 802542 27272 ±2167 147 132771

√
500

Daisy-4.3 101816 70356 ±2750 35256 99774
√

500
DEOS 260039 506816 ±22712 103065 1213707

√
500 A*[14] 0.32

DEOSAbstracted 54 783 ±67 7 2877
√

500 choose-free[21] 0.65
DiningPhil-8 1652 38 ±1 17 131

√
500 most-blocked[14] 0.034

LinkedList-4.100 60964 7972 ±55 5866 9448
√

500
Piper-2.16.8 6377527 3739112 ±95781 402 4905845 TO 43
ReplicatedWorker-5.2.0 6231840 4670826 ±186362 485 6485120 TO 85 choose-free[21] 1
RaxExtended-4.3 3470398 195492 ±33106 46 3108548 OM 497 interleave[14] 0.41
RW-2.2.100NoDeadLckCk 3147356 13619036 ±1036042 49 24225772

√
214 choose-free[21] 0.0026

SleepingBarber 36 34 ±1 28 39
√

500 slice[6] 0.87

Table 2: Comparative summary of random versus default search strategies.
one million new states.

These observations attest to the degree of variability observed
when program paths are traversed in different orders, and they also
emphasize the importance of properly qualifying findings when
evaluating a path-sensitive error detection technique relative to the
single default order implemented in an analysis tool, since, as men-
tioned Section 2, default order varies across tool implementations.

Table 2 provides details on the technique selected for the retro-
spective study and the cost ratio for that technique relative to the de-
fault. Figure 3 shows histograms for six of eight subject programs
relating the scaled default analysis performance to the per-
formance of 500 randomized analysis runs. Two subjects are not
shown: DEOS, discussed below, and DEOSAbstracted since it is
very similar to the plot for SleepingBarber. The x-axis ranges from
the minimum to the maximum number of new states across all anal-
yses and is partitioned into regions. The y-axis shows the percent-
age of the 500 random runs whose performance lies in each of the
regions. The dashed line is the scaled default performance
for the selected technique.

For one subject, DEOS, the techniques previously reported im-
proved analysis enough relative to the default that they overwhelmed
any variation in cost due to randomization observed in our study.
For three of the subjects, DiningPhil-8, RaxExtended, and Repli-
catedWorker, more than 86% of the 500 random order searches are
classified as having practically significant variation from the scaled
default value. For the remaining four subjects, the percentage of
practically significant orders varies from 7% to 40%.

We believe that these finding tell a strong cautionary tale. Even
for carefully planned and conducted studies of path-sensitive error
detection techniques, failing to account for the influence of default
search order exposes researchers to the possibility that the reported
benefits of techniques are attributable to default search order rather
than the technique itself.

4. WHAT PROGRAM FACTORS INFLUENCE
ANALYSIS COST?

In this Section, we address the question: What characteristics
of programs cause significant increase in the cost of path-sensitive
error detection techniques?.

4.1 Two Candidate Factors
The model checking community, in general, believes that there is

a strong correlation between the number of threads in a concurrent
program and the number of reachable program states. Holzmann,
the author of the SPIN model checker, notes that: “In the worst

case, the global reachability graph has the size of the Cartesian
product of all component systems. ... Although, in practice, the size
of the global reachability graph never approaches the worst case
size, the reachable portion of the Cartesian product can also easily
become prohibitively expensive to construct exhaustively.” [17];
a “component system” in SPIN is analogous to a thread in Java.
While careful studies of the cost of model checking and related
path-sensitive analyses are rare, the few that exist, such as Corbett’s
[1], suggest that in practice, analysis cost grows exponentially with
the number of threads.

Our second factor attempts to capture the intuitive notion of hard
to find bug that is often used to characterize the sweet spot for
path-sensitive error detection techniques, e.g., [20, 28]. Testing re-
searchers have studied a number of measures for characterizing the
ease with which a fault in a program can be revealed. For example,
Hamlet and Voas [15] defined the notion of program testability as
“... the probability that if P contains fault(s), P will fail under test.”
In programs with high testability, faults are likely to be revealed as
failures, while programs with low testability are unlikely to expose
their faults. Unfortunately, the existing body of work on sensitivity
analysis and testability has not explicitly considered concurrent or
multi-threaded programs. In such programs there is an additional
input that can lead to faults being exposed or hidden - the thread
schedule. Rather than extend existing testability notions to account
for scheduling decisions, we fix the program inputs to isolate thread
scheduler decisions as the only varying input to the program under
analysis. By sampling the possible program paths and checking for
errors, we generate an estimate of the percentage of schedules that
exhibit failures thus, producing a surrogate-measure that we call
path error density.

Given this context, we conjecture that the number of threads used
during program execution and the path error density of a program
are important factors in determining the cost of path-sensitive error
detection techniques.

4.2 A Case Controlled Study
To evaluate this conjecture, we performed a case controlled study.

In this type of study, a researcher identifies groups of subjects with
different characteristics that are of interest, and then analyzes the
relationship between their characteristics and one or more depen-
dent variables. In our study, we focus on the potential effect of the
number of threads and path error density on the dependent vari-
ables: number of new states, error depth, and whether or not an
error is found.

4.2.1 Characterization Variables

Alarm-4

50 100 150 200 250 300 350 400 450

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

DiningPhil-12_8

10 20 30 40 50 60 70 80 90 100

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

Rax Extended (envlast)-4_3

0 5E5 1E6 1.5E6 2E6 2.5E6 3E6 3.5E6

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

ReplicatedWork-5_2_0

0 1E6 2E6 3E6 4E6 5E6 6E6 7E6

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

RWs-2_2_100_NoDeadLckCk

5000 55000 1.11E5 2.25E7 2.5E7

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

Sleeping Barber-1

28 29 30 31 32 33 34 35 36 37 38 39

New States

0%

20%

40%

60%

80%

100%

P
er

ce
nt

 o
f o

bs

Figure 3: Scaled Default vs. Random Search Order

The characterization variables in our study are (1) the total num-
ber of threads created during the execution of the subject, and (2)
the path error density. The first is simply a count of the main
thread plus any child threads created during execution. The sec-
ond measures the difficulty of finding a schedule that exhibits the
error. We calculate path error density using JPF configured with the
RandomSearcher and RandomOrderScheduler. This has
the effect of simulating a single run of the subject program making
a randomized sequence of scheduler decisions. We ran between
1000 and 10000 such runs for each subject and report the percent-
age of runs on which an error is found as the path error density.
Subjects with path error densities below 10% after 1000 runs had
an additional 9000 runs performed. Note that some of the kernel
subjects contain infinite loops; for those we ran the simulation for
a bounded number of steps where the bound was four times the
shallowest error depth encountered for that subject.

4.2.2 Study Design and Setup
To conduct this study, we generated a population of subject pro-

grams that vary in the characterization variables. We began with
the set of programs in Table 1 with their default parameter values
as our convenience sample. We then assessed the number of exam-
ples with differing thread count and path error density values. Our
goal was to produce three categories of values for each character-
ization variable with each category containing a sufficient number
of subjects.

Many of of the subject programs accept parameters to manipu-
late the thread count, but manipulating path error density was more
problematic. We considered randomly generating parameterized
versions of the examples and then calculating path error density as
described above. This was ineffective in generating versions with
diverse density measures. Subsequently, we spent time studying
the subject programs in detail to understand the nature of the fault
and its relationship to program parameters. This helped us choose
parameter values to generate diverse density measures.

We explored several different categorizations of the measures.
Based on “rules of thumb” in the model checking community we

chose thread count categories of {< 5, [5, 9],≥ 10}. The initial
categories for density were quite broad, but we found that narrow-
ing the definitions of low and high density to the extremal 10%
regions gave us good explanatory power. We settled on density cat-
egories of {< 10, [10, 90], > 90} (in %). The process of subject
parameterization and density measurement was repeated until we
ended up with approximately 5 subjects in each category; given
the non-uniform nature of the density categories there were more
subjects in the middle.

We used the same execution platform and environment configu-
ration as was used in the study described in the previous section.

4.2.3 Results and Analysis
We organize the results into three parts. First, we focus on the

effect of path error density, the most novel of the factors of our
conjecture, on the dependent variables. Then, we analyze the in-
teractions between the number of threads and the error density as
measured by their impact on the dependent variables. Last, we
briefly explore a regression model that can be helpful in predicting
the dependent variables based on the path error density value.

Figure 4 shows the frequency distribution of new states and er-
rors found with varying path error density over the more than 65
thousand randomized analysis samples; the size of the circle at a
point indicates the number of subjects with that pair of values. The
left plot shows a strong tendency towards small numbers of new
states for high-density subjects - note the large circle in the lower
right corner and the lack of any in the upper right portions of the
plot. This suggests that analysis quickly finds errors for programs
with high path error density. Even though a general pattern is hard
to discern, it is clear that once density drops below 80% the cost
measure can grow quite large. The right plot shows that for high-
density programs it is generally the case that the error can be found
- note the large circle in the upper right corner of the plot. Because
the nature of a path-sensitive error detection tool like JPF is to con-
tinue the analysis until the first error is found, and we know that
our population contains only programs with errors, failure to detect
a fault can only be due to exhaustion of time or space. Thus, the
pair of plots together can be interpreted as showing that low-density

0 20 40 60 80 100

Density

0

5E6

1E7

1.5E7

2E7

2.5E7

N
ew

 S
ta

te
s

 <= 46
 (46,92]
 (92,137]
 (137,183]
 > 183

0 20 40 60 80 100

Density

0

1

E
rr

or
 F

ou
nd

 <= 900
 (900,1800]
 (1800,2700]
 (2700,3600]
 > 3600

Figure 4: Measure Variation with Density. (Circle’s size is proportional to observations’ frequency.)
programs yield expensive analyses and some of those analyses ex-
haust resource bounds thereby leading to failures in fault detection.

The variation in density by itself does not fully explain the vari-
ations observed in the dependent variables. Following our previ-
ous conjecture, we investigated whether observations that consider
jointly the number of threads and error density can better explain
the variation in the number of new states, error depth, and errors
found. Figure 5 depicts two graphs for the pair of dependent vari-
ables, where the x-axis describes the three categories of thread
count and the the lines represents the three categories of error den-
sity. The left graph shows that the programs with the high density
tend to cover a relatively small number of new states independently
of the number of program’s threads. At lower densities, the picture
is less clear. Closer inspection of the data revealed that analysis of
a single program (RW) in the medium category has an enormous
number of new states and raises the average dramatically. This is
also confirmed by the large variation in the number of states cov-
ered by programs with a medium number of threads as evidence by
the large variation observed around the means. The middle graph
on error depth shows a more consistent tendency. Only programs
with low error density seem to provide larger error depths. Interest-
ingly, on average, programs with a larger number of threads did not
end up with more error depth. The right graph presents a similar
story. Programs with a higher error density tend to have easy to
find faults, independent of the number of threads, while programs
with lower error densities have harder to find faults. However, the
number of threads does seem to affect whether the error is found or
not, and it does compound with error density.

Based on the findings from Figure 5, we decided to further ex-
plore whether the number of threads and the error density could
be good predictors of each of the dependent variables. Since the
observations corresponding to the middle category of threads and
error density appeared to change in response to variables other than
the ones we are interested in, we decided to focus our model on the
observations corresponding to the low and high groups. We then
created three multiple regression models, one for each dependent
variable, utilizing the standard support for regression analysis with
backward stepwise refinement provided by most modern statistical
packages (threats to the validity of the application of these models
on this data set and our attempt to address those issues are discussed
in the next section). The regression models, summarized in Table
3, show that a program’s error density has a significant inverse ef-
fect on the number of new states traversed and the error depth (low
density programs tend to lead to a large number of new states and
deeper errors), and a direct significant effect on whether or not the

Total observations: 8500
Degrees of freedom: 2, 8497
Factors New Error

States Depth Found
Thread Group 0.49 -0.47
Error Density Group -0.27 -0.42 0.41

Table 3: Multiple regression models. Values in cells represent
the model coefficient when the effect was significant (p < 0.05).
error is found (programs that have high error density reveal their
errors more easily). The results for the number of threads confirms
what we expected, the number of threads has a significant effect on
error depth and the ease with which the error is found. However,
the number of threads did not significantly impact the number of
new states explored during analysis.

Part of the point of our study is that the research community does
not currently have an adequate understanding of the size and struc-
ture of concurrent program state spaces and the effect that has on
analysis cost. Consequently, caution must be exercised in general-
izing from this model to broader populations of programs.

5. RESULTS IN CONTEXT AND RECOM-
MENDATIONS

5.1 Threats to Validity
Empirical studies are subject to threats to validity; these threats

must be considered in order to determine the soundness and signifi-
cance of the results. We detail the threats on our study and the steps
we took to mitigate their impact on our findings.

Internal Validity. We placed an upper-bound on the execution
time and memory that could be used by JPF during any analysis
run. The bounds we chose were large, one hour and 4 GBytes re-
spectively, and consistent with settings used in other studies. Chang-
ing those bounds may impact the findings on error detection, for in-
stance, unlimited space and time would allow all errors to be found.
During the course of our studies several defects were discovered
and reported to the JPF team; fixes were provided and all studies
were repeated on the updated version of JPF. We know of no defects
remaining in JPF that would affect the results of our study.

External Validity. Our studies consider version 3.1.2 of JPF
only; different versions of JPF and different path-sensitive anal-
ysis frameworks may yield different results. To address this, we
are replicating the studies in this paper using the Bandera/Bogor
model checking framework. Preliminary findings from our repli-

[3,4] [5,9] [10,33]

Number of Threads

0

1E6

2E6

3E6

4E6

N
ew

 S
ta

te
s

[3,4] [5,9] [10,33]

Number of Threads

0

50000

1E5

1.5E5

2E5

E
rr

or
 D

ep
th

[3,4] [5,9] [10,33]

Number of Threads

0

1

E
rr

or
 F

ou
nd

 Low density [0,10)
 Medium density [10,90)
 High density [90,100]

Figure 5: Interaction between error density and the number of threads.
cated studies confirm the results of the JPF study, however, we
defer judgment until we have finalized those studies. The sub-
jects chosen for this study were selected from a variety of sources.
While the main goal of selecting subjects was to create a diverse
set of multi-threaded Java programs containing safety property vi-
olations, we had two additional criteria: (1) selecting subjects that
had been used in at least one previously published study in sup-
port of the studies in Section 3, and (2) selecting subjects that are
either in widespread use, or are proposed as benchmarks, for eval-
uating path-sensitive analysis techniques in support of the studies
in Section 4. Although we do not know if these programs are truly
representative of multi-threaded Java programs in general, we be-
lieve our selection of programs from this initial population provides
meaningful information with regard to our studies.

Construct Validity. The measures we considered in our studies
are not the only possible measures of the variation on search or-
der and the influence of program factors on analysis cost. System-
independent measures such as the number of seen (visited) states,
the number of end states, the number of transitions, etc. could also
have been used; however, the number of new states and the error
depth are widely used in evaluating state-oriented analysis tech-
niques. System-dependent measures such as memory usage and
CPU time were not considered to be valid measures because they
could skew the results for a given subject even within an isolated
environment due to factors such as execution time spent on garbage
collection. Furthermore, execution time for path-sensitive analyses
is strongly dependent on the number of new states; an early version
of our studies that used execution time bore this out, but did not
allow for retrospective comparisons.

Conclusion Validity. One of the major lessons we learned through
our studies is that the values of the dependent variables are not only
large, but also extremely variable. As a result, the 500 runs of JPF
on each subject may have not been enough to appropriately charac-
terize the error density of some programs. Our choice on the num-
ber of runs was incremental, increasing the number of runs until the
observed standard variation seem to stabilized, and it was also lim-
ited by data collection costs. This is one of the reasons we adopted
primarily an exploratory rather than a formal analysis, where we try
to characterize relationships rather than claim any type of causality
between the independent and dependent variables. Along similar
lines, we apply similar caveats to the resulting regression models
that, although checked through a residual analysis, did not fully
meet all the traditional data distribution requirements.

5.2 Exposing and Controlling Search Order
Researchers wishing to evaluate the benefits of techniques that

reduce the cost of path-sensitive error detection analyses should
control for search order. We believe that it is not cost-effective for
researchers to perform studies of the scale reported in this paper;
our studies took multiple person-months and CPU-weeks to setup
and conduct. We propose instead that developers of path-sensitive

analysis tools provide the ability to configure the default search or-
der. Tool frameworks such as JPF and Bogor make this relatively
easy, but for other tools, such as SPIN, this would require signif-
icant effort. With this ability, cross-tool studies would be able to
ensure that tools use the same default order and intra-tool studies of
new techniques will be able to evaluate the extent to which a tech-
nique’s benefit is independent of default order. Even without the
ability to control default search order, tool developers should, at a
minimum, clearly describe the default search order implemented in
their tool so that researchers using the tool will be able to properly
qualify research findings based on the use of the tool.

5.3 Building Better Benchmarks
Our studies clearly demonstrate that programs with high path

error density are poor subjects for evaluating error detection tech-
niques. Fortunately, the community is beginning to move away
from using concurrency kernels, which almost uniformly have high
density, in evaluations.

Researchers have proposed a number of criteria for construct-
ing benchmarks of programs for evaluating multi-threaded program
validation tools. For example, simple criteria such as program size
or the presence of language constructs (e.g., wait and notify) are
sensible ways to build diversity in a benchmark. More insightful
selection criteria involve varying thread counts and the types of er-
rors in the benchmark (e.g., the IBM benchmark). The results of
our study suggest that additional factors can significantly effect the
difficulty of finding an error in a program. Path error density is
one such factor, but the variation in Figure 5 suggests that there are
others.

The community needs good benchmarks and to build good bench-
marks we need to understand the variations in programs to which
different validation techniques are sensitive in terms of cost and ef-
fectiveness. Clearly, more work is needed to achieve this, but we
plan to continue the work on benchmark development [16, 11] by
sharing all of the subjects in this study through the Subject Infras-
tructure Repository [4].

5.4 Future Directions
We believe that the studies reported in this paper provide a wealth

of data that can be leveraged for future work. For example, we plan
to explore the influence of path error density on other techniques for
validating and testing multi-threaded programs to understand their
sensitivity to that factor. We also believe path error density is just
one measure that can be used to characterize an analysis problem.
It has value because it is efficient to calculate, i.e., a small number
of randomized simulations can indicate a program’s path error den-
sity, and it appears to be useful in predicting when path-sensitive
techniques will have an advantage over simpler techniques, such as
randomized testing [25] for a given program. There may well be
other factors that share these advantages.

In conducting our studies, we performed a very large number of

randomized depth-first search runs using JPF. Data from these runs
suggest that a cost-effective strategy for finding errors in systems
with low path error density is to run multiple parallel randomized
analyses, and then terminate all analysis runs when one of them
finds an error. Randomized analysis runs are completely indepen-
dent which enables very large numbers of them to be executed in
parallel. We are performing follow-up studies on parallel random-
ized path-sensitive error detection using JPF and Bandera/Bogor on
large systems and plan to report on our findings in the near future.

Acknowledgments
This work was supported in part by the National Science Founda-
tion through awards 0429149 and 0444167 and through CAREER
award 0347518 and by the Army Research Office through DURIP
award W911NF-04-1-0104. We would like to thank Radu Iosif,
Willem Visser, Peter Melhitz, Robby, and Matt Hoosier for dis-
cussions about search order in Spin, JPF and Bogor. We thank
Todd Wallentine, John Hatcliff, and Venkatesh Prasad Ranganath
for general discussions about transition order in Bogor. Finally, we
thank Shmuel Ur and Yaniv Eytani for granting access and support-
ing our use of their benchmarks.

6. REFERENCES
[1] J. C. Corbett. Evaluating Deadlock Detection Methods for

Concurrent Software. IEEE Transactions on Software
Engineering, 22(3), Mar. 1996.

[2] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby.
Expressing checkable properties of dynamic systems: The
Bandera Specification Language. International Journal on
Software Tools for Technology Transfer, 2002.

[3] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In IEEE International
Conference on Computer Design, October 1992.

[4] H. Do, S. G. Elbaum, and G. Rothermel. Subject
infrastructure repository. http://esquared.unl.edu/sir.

[5] Y. Dong, X. Du, G. J. Holzmenn, and S. A. Smolka. Fighting
livelock in the gnu i-protocol: a case study in explicit-state
model checking. Int’l. Journal on Software Tools for Tech.
Transfer, 4(4):505–528, 2003.

[6] M. B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, Robby,
and T. Wallentine. Evaluating the effectiveness of program
slicing for model reduction of concurrent object-oriented
programs. In Proc. of the Twelfth Int’l. Conf. Tools and
Algorithms for the Construction and Analysis of Systems,
2006. LNCS 3920.

[7] M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby.
Exploiting object escape and locking information in partial
order reductions for concurrent object-oriented programs.
Formal Methods in System Designs, 25(2–3):199–240,
September–November 2004.

[8] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Partial-order
reduction and trail improvement in directed model checking.
International Journal on Software Tools for Technology
Transfer, 6(4), 2004.

[9] http://home.att.net/ ddavies/NewSmulator.html.
[10] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a

framework and benchmark for testing tools for
multi-threaded programs. Concurrency and Computation:
Practice and Experience, to appear.

[11] Y. Eytani and S. Ur. Compiling a benchmark of documented
multi-threaded bugs. In Proc. of the Workshop on Parallel
and Distributed Systems: Testing and Debugging, 2004.

[12] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how
to test them. In Proc. of the 17th Int’l. Symp. on Parallel and
Distributed Processing, 2003.

[13] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In Proc. 9th International Conference on
Computer Aided Verification, June 1997.

[14] A. Groce and W. Visser. Heuristics for model checking java
programs. Int’l. Journal on Software Tools for Tech.
Transfer, 6(4):260–276, 2004.

[15] D. Hamlet and J. Voas. Faults on its sleeve: amplifying
software reliability testing. In Proc. of the 1993 ACM
SIGSOFT international symposium on Software testing and
analysis, pages 89–98, 1993.

[16] K. Havelund, S. D. Stoller, and S. Ur. Benchmark and
framework for encouraging research on multi-threaded
testing. In Proc. of the Workshop on Parallel and Distributed
Systems: Testing and Debugging, 2003.

[17] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–294, May
1997.

[18] http://www.kclee.de/clemens/java/javancss.
[19] M. Musuvathi and D. R. Engler. Model Checking Large

Network Protocol Implementations. In Proc. of the First
Symp. on Networked Systems Design and Implementation,
Mar. 2004.

[20] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A Pragmatic Approach to Model Checking Real
Code. In Proc. of the Fifth Symp. on Operating Systems
Design and Implementation, Dec. 2002.

[21] C. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible
abstract counter-examples. Int’l. Journal on Software Tools
for Tech. Transfer, 5(1):34–48, 2003.

[22] http://research.microsoft.com/ qadeer/cav-issta.htm.
[23] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible

and highly-modular model checking framework. In
Proceedings of the 9th European Software Engineering
Conference held jointly with the 11th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
2003.

[24] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif.
Space-reduction strategies for model checking dynamic
systems. In Proceedings of the 2003 Workshop on Software
Model Checking, July 2003.

[25] S. D. Stoller. Testing concurrent java programs using
randomized scheduling. In Proc. Workshop on Runtime
Verification, 2002.

[26] J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and
S. Leue. Heuristic-guided counterexample search in flavers.
In Proc. of the 12th ACM SIGSOFT Twelfth Int’l. Symp. on
Foundations of Software Engineering, pages 201–210, 2004.

[27] W. Visser, K. Havelund, G. Brat, and S. Park. Model
Checking Programs. In Proceedings of the 15th IEEE
Conference on Automated Software Engineering, Sept. 2000.

[28] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using
Model Checking to Find Serious File System Errors. In Proc.
of the Seventh Symp. on Operating Systems Design and
Implementation, Dec. 2004.

