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Abstract

We propose a framework for constructing secure sys-
tems at the architectural level. This framework is com-
posed of an implementation-oriented formalization of a
system’s architecture, which we call the formal implemen-
tation model, along with a method for the construction of a
system based on elementary analysis, implementation, and
synthesis steps. Using this framework, security vulnerabil-
ities can be avoided by constraining the architecture of a
system to those architectures that can be rigorously argued
to implement all corresponding functional and security re-
quirements, and no other. Furthermore, the framework
enables the verification and validation of system correct-
ness by enforcing traceability of final system components to
their corresponding design, architecture, and requirement
work products.

1. Introduction

High assurance and critical computing systems require
compelling evidence that the final developed system satis-
fies a defined set of critical properties as well as a defined
set of functional requirements. Both nonfunctional require-
ments, also called system constraints, and functional re-
quirements contribute to system correctness; a system is
correct if it correctly, completely, and uniquely implements
every functional requirement while at the same time it cor-
rectly, completely, and uniquely implements every non-
functional requirement [5].

Nonfunctional requirements are referred to as depend-
ability properties [1]. Dependability properties of a high
assurance and critical computing system such as security
and safety are emergent properties of the system [17].

The Stanford Encyclopedia of Philosophy offers a good
introduction to the concepts of emergence and emergent
properties [25]. “Emergent properties are systemic features
of complex systems which could not be predicted (prac-
tically speaking; or for any finite knower; or for even an
ideal knower) from the standpoint of a pre-emergent stage,

despite a thorough knowledge of the features of, and laws
governing, their parts” [25]. Emergence is intrinsically re-
lated to the notion of levels of abstraction: an emergent
property “emerges” at a higher level of abstraction but it
cannot be observed at any of the previous lower levels of
abstraction [6].

Complex systems are built as a set of interacting com-
ponents. A system model describes and/or specifies those
interacting components and their relationships at different
levels of abstraction. In order to anticipate and verify the
emergent properties of a system by using a system model,
it is necessary to position ourselves at a higher level of ab-
straction from that of the components being analyzed in
the system model. Hinton exemplified how undesired or
unexpected emergent properties can arise at higher levels
of abstraction (i.e., at the system level) by showing how
an insecure system can be composed of two Generalized
Non-Interference (GNI) secure components [9], and Leve-
son showed how unexpected emergent behaviors resulted
in accidents in safety-critical systems [18].

Current state of the practice approaches to systems and
software requirements, architecture, and implementation
do not facilitate the analysis of emergent security proper-
ties. This is due to the fact that most current approaches do
not enforce the creation and maintenance of essential trace-
ability links which establish the relationship between sys-
tem components and their, design, architecture, and func-
tional and nonfunctional requirement counterparts. For ex-
ample, most current approaches are focused on a divide and
conquer strategy, which is necessary for complex systems
development, but they do not facilitate the analysis of emer-
gent security properties that appear at higher levels of ab-
straction after system components are built, integrated, and
deployed.

To solve this persistent problem, we argue that hybrid
approaches to system specification and development are
necessary. We propose a framework for the incremental
development of secure systems that is formal but, at the
same time, allows the level of formalization to evolve along
with system analysis, design, and implementation. In ad-
dition, this framework enforces a strong connection, by the
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use of formal traceability relations between all work prod-
ucts and at all levels of abstraction. By using the proposed
framework, security vulnerabilities can be avoided by con-
straining the architecture of a system to those architectures
that can be shown to completely and uniquely implement
all corresponding functional and nonfunctional security re-
quirements, including environmental constraints.

The proposed framework is composed of:

I. A Formal and Implementation-Oriented Archi-
tectural Model of a System: In this framework the
architecture of a system is represented using a for-
mal implementation model that takes into account
all deliverables resulting from system analysis, de-
velopment, and deployment processes.

II. A Method for Systems Development: A method
for the incremental development of systems that
comply with a set of implementation constraints over
a formal implementation model (implementation-
oriented architectural model). In a formal imple-
mentation model the level of formalization may in-
crementally evolve along with the analysis, design,
and implementation processes.

The remainder of this paper is organized as follows:
Section 2 justifies our hybrid (formal and informal) ap-
proach to systems development. Section 3 briefly describes
the formal foundation of this framework, which is based on
previous work by the authors which focused on the dis-
covery of hidden dependencies in order to anticipate safety
hazards in safety-critical systems [4, 5]. Sections 4 and
5 describe the framework for the development of secure
system architectures. To demonstrate how this proposed
framework would help build more secure systems, in Sec-
tion 6 we show how two security vulnerabilities could have
been avoided by using the proposed framework. Our con-
clusions along with some open questions are presented in
Section 7. Lastly, Section 8 briefly reviews related work.

2. Merging Formal and Informal System De-
velopment Approaches

A set of well-known engineering and design method-
ologies is used today for the analysis of high assurance
and critical computing systems and their separation into
constructible or realizable components. Furthermore, there
exists a set of methods for the creation and later synthe-
sis of those developed components. For example, require-
ments engineering methods are used to elicit system re-
quirements and to further divide those requirements into
derived (i.e., child) requirements [11], and architectural
analysis and specification methods are used to develop and
specify the architecture of a system including hardware and
software [2]. In addition, build utilities, compilers, linkers,

and assemblers are used to construct the software of a sys-
tem based on the source code, and hardware component
assembly and connection techniques are used to assemble
system’s hardware.

However, methods for the formal analysis and verifi-
cation of security properties of a final assembled or in-
production system are scarce and not commonly used in
industry. While it has been demonstrated that formal ap-
proaches for developing secure systems can help to foresee
major flaws in the design of a system, most formalizations
are disconnected with the initial informal requirements and
typically also disconnected with the final implemented sys-
tem as well. In other words, except for formal develop-
ment systems like Kestrel’s Specware®1 approach [12, 13],
the Galois Haskell-based approach [7, 14], and the Praxis
High Integrity Systems SPARK Ada approach [8,19] there
is rarely formal connection between the formal models and
the final system implementation. Furthermore, there have
been several cases where formalizations of security proto-
cols have been found semantically flawed, mainly due to
the fact that assumptions made during the formalization
process did not hold true in the final implemented system
or that the system was underspecified in its formal repre-
sentation (i.e., missing assumptions) [9].

Purely formal approaches have been shown to be very
useful for developing dependable systems, but they also
carry burdens such as lack of trained personnel and large
learning curves that have precluded widespread adoption.
There is also, for most formal methodologies, a lack of a
strongly structured (or formal) connection with both ends
of the system development process: informal requirement
descriptions and final (in-production) system implementa-
tions.

On the other hand, standard programming methods as
currently used by industry, including object-oriented pro-
gramming languages, have also failed to create secure sys-
tems mainly due to their inability to enable the verification
of systemic (emergent) properties or nonfunctional require-
ments and their disconnection with system requirements
and other formal and informal system descriptions or spec-
ifications.

We do not argue in this paper for or against either for-
mal or informal system and software development meth-
ods, we recognize the value of both. However, we point
out that when used separately and without strongly struc-
tured connections between them these methods have failed
to achieve the promised goals. New dependable system de-
velopment methods that combine formal and informal ap-
proaches are necessary.

The proposed framework reuses some aspects of Leve-
son’s Intent Specifications and SpecTRM methodologies,
which have proved successful for the specification of safe

1Specware® is a registered trademark of the Kestrel Institute.



air traffic control and airborne systems [15,16] (see the Re-
lated Work section). It also extends our previous work,
which is briefly described in the next section.

3. Formal Implementation Models

A formalization of traceability relationships based on
set theory and predicate calculus was initially introduced
in Conte de Leon [3]. An extended analysis of this formal-
ization for the specific case of the partial implementation
relationship and an improved description of the formal sys-
tem appears in Conte de Leon and Alves-Foss [5].

In our work, we divide system components, architec-
tural and design artifacts, and requirements into what we
call work product sections, which we define as uniquely
identifiable, addressable, and meaningful sections of work
products [22]. We abbreviate work product sections as wps
and wps(s) for singular and plural, respectively. We call
S the set of all wps(s) of a system. We call implements
the partial order established by the partial implementation
traceability relation between wps(s) in S. Further, we de-
note the top and bottom of our abstract formal model as >
and ⊥, respectively.

The formal system Γ described by Conte de Leon and
Alves-Foss is based on set theory and a binary predicate
calculus. In Γ, each traceability link between any two
wps(s) is formalized as an axiom or theorem. In the same
article, we analyzed and formalized the structural proper-
ties of the partial implementation traceability relationship
between wps(s). We formalized the partial implementation
traceability relationship as a strict partial order (irreflex-
ive, asymmetric, and transitive). This strict partial order
between wps(s) along with a new technique named con-
ceptual completeness were applied in order to discover hid-
den dependencies between wps(s) that led to safety hazards
which developed into catastrophic accidents. A prototype
expert system (SyModEx) was constructed to verify and
enforce these properties, among others, as inference rules
of Γ.

In this paper, we extend the Γ formal system introduced
in Conte de Leon and Alves-Foss [5] with a different ob-
jective: we create new inference rules that constrain the
evolution of a formal implementation model of a system in
order to avoid security vulnerabilities. These rules enforce
the method for secure systems development explained in
Section 5 of this paper. However, these rules do not specify
the processes, methodologies, or languages used to create
these architectures, they only constrain the architecture of
a system to a set of “safe” architectural states.

Figure 1. Complete and Unique Implementa-
tion of Work Product Sections.

4. Framework Definitions: Partial, Complete,
and Total Implementation of Work Prod-
uct Sections

In this paper, we augment the formal model Γ with three
traceability relationship types and three inference rules.
The three new relationship types are: completelyImple-
ments, uniqelyImplements, and totallyImplements. We de-
fine and describe these newly introduced concepts below.

Definition 1. Complete implementation between work
product sections: A wps b (implementor) completely im-
plements a wps t (implementee) if and only if every chain
〈C, implements〉 in Γ, whose minimum element is ⊥ and
whose maximum element is t contains b.

This definition can also be stated as: a wps b (imple-
mentor) completely implements a wps t (implementee) if
and only if every intermediate wps that is partially imple-
mented by b also partially implements t. Also, this is equiv-
alent to say that every directed path from ⊥ to t contains b.
Figure 1 illustrates this definition with a diagram.

Informally, a wps b uniquely implements another wps
t if and only if b does not directly or indirectly partially
implement a third wps. In other words there are no par-
tial implementation traceability links going out of b that do
not go through t. In this, case we could also say that t is
uniquely implemented by b.



Definition 2. Unique implementation between work prod-
uct sections: An implementor wps b uniquely imple-
ments an implementee wps t if and only if every chain
〈C, implements〉 in Γ, whose maximum element is > and
whose minimum element is b contains t.

Definition 3. Total Implementation between two work
product sections: A wps b (implementor) totally imple-
ments a wps t (implementee) if and only if b completely
and uniquely implements t.

If b totally implements t then there is a lattice-like alge-
braic structure embedded in Γ, with respect to the imple-
ments traceability relation, such that b is the ⊥ and t is the
>. In this structure, given any pair (x, y) of wps(s), the
set of lower bounds and the set of upper bounds of (x, y)
are nonempty. Using this algebraic structure we can mathe-
matically verify that a given formal implementation model,
and therefore the architecture of a given system, complies
with the set of rules defined in Section 5. As we will see in
the next section, however, the formal model is not a proper
lattice it is only lattice-like.

5. System Development Method

Our proposed system development method is composed
of six steps:

1. basic system definition.
2. successive refinement through analysis.
3. atomic implementation of work product sections.
4. successive implementation of higher level wps(s)

through synthesis.
5. a hybrid (analysis and synthesis combined) step used

to create two or more lower abstraction level wps(s)
to implement two or more higher abstraction level
wps(s).

6. finalization test.
Steps 2, 3, 4, and 5 do not necessarily need to be per-

formed in sequence but can be interleaved. Step 5 can be
used as a substitute for steps 3 and 4 when more than one
implementor wps and more than one implementee wps are
used. Obviously, there are similarities between our pro-
posed framework and previous methods for system devel-
opment, but there are also several differences. We elaborate
on those similarities and differences at the end of this sec-
tion after describing each of the steps in our method.

1. Basic System Definition: In this step we create
two system wps(s) to match two meta-artifacts, which are
the top (>) and bottom (⊥) of our formal implementation
model. These two wps(s) will represent the main require-
ment of the system and the system implementation itself.
For example, in Figure 3 wps(s) DBMSMainReq and DBM-
SImpl correspond to > and ⊥ respectively. Figure 2, Sub-
figure (1) depicts this step. Our final goals are: i) that the

implemented system (represented by⊥) completely imple-
ments every functional and nonfunctional requirement and
ii) that the system goal (represented by >) is uniquely im-
plemented by every deployed system component. The def-
inition of a > requirement as a first step in developing a
system is similar to Leveson’s Intent Specifications method
where the goals of the system are stated as the very first
step [16, 17].

2. Analysis: In an analysis step we divide a wps into
two or more wps(s) that will reside in a lower level of ab-
straction than the original wps. By construction each of the
newly created wps(s) will partially implement the original
higher abstraction level wps. For example, we can divide a
requirement into two or more newly derived requirements
or a system into two or more subsystems. Figure 2, Subfig-
ure (2) illustrates this step.

An analysis step can be seen, in part, as stepwise refine-
ment, in which case the verification of the higher level wps
(implementee artifact) is the question weather the lower ab-
straction level wps(s) (implementor artifacts) completely
provide all the behavior required or specified by its corre-
sponding higher abstraction level wps. However, we need
more than just complete implementation, we also need to
assure that the lower level wps(s) do not implement any
other unspecified behavior. Therefore, the additional re-
striction we apply to an analysis step is that the newly
created wps(s) are implementation independent and com-
pletely specified. In other words, these newly created com-
ponents collaborate in order to implement the higher level
wps, but they do not implement each other nor collabo-
rate to implement a behavior that is not explicitly stated by
the higher level wps. Notice that we are asking that the
newly created wps(s) be completely specified, not neces-
sarily completely formally specified.

3. Atomic Implementation: In this step the atomic im-
plementation of a work product section (wps) is performed.
This is the basic implementation step; in it, an analyst or
system engineer indicates that a given wps totally imple-
ments a given requirement or higher abstraction level wps.
Figure 2, Subfigure (3) illustrates this step.

By atomic implementation we mean that given an imple-
mentee wps that has been sufficiently analyzed and speci-
fied in such a way that its implementor wps is a simple and
direct implementation of its corresponding higher abstrac-
tion level implementee and no further analysis and sepa-
ration is necessary. In other words, a rigorous argument of
correct and total implementation can be made by a group of
trained engineers without further analysis and separation.

4. Synthesis: In a synthesis step we unify two or more
higher abstraction level wps(s) (atomic or synthesized) into
one lower abstraction level wps. By construction the new
wps partially implements those higher abstraction level
wps(s) synthesized into it.



Figure 2. System Development through Formalized Analysis and Synthesis Implementation Steps.

The restriction on this synthesis step is that the new
lower abstraction level wps does not add any new function-
ality. In other words, the new component partially imple-
ments only those wps(s) used in its composition. Figure 2,
Subfigure (4) illustrates this step.

5. Hybrid Step (Analysis/Synthesis): Since analysis
and synthesis steps can be performed together we add an
additional step called a hybrid step, which corresponds to
the combination of analysis and synthesis steps together.
Figure 2, Subfigure (5) illustrates this step.

The rationale behind this step is twofold. First, it en-
ables the modeling of wps reuse, that is, where one lower
level wps is used to partially implement more than one
higher level wps. Notice that this includes the reuse of
any artifact not only source code. Second, the hybrid step
enforces the following rule, which is a derivation of the
conceptual completeness principle [5]: if wps bi partially
implement wps(s) ti and tj , and there exists wps bj that
partially implements ti, then bj must partially implement
tj as well.

6. Finalization Test: The development of the system
is finalized when the system has been completely imple-
mented and we can prove our goals by analyzing the formal
implementation model of the system. That is the > wps is
being totally implemented by every wps in the model and
that the ⊥ wps totally implements every wps in the formal
implementation model. This with the exception of those
wps(s) that belong to internal lattice-like sub structures cre-
ated by the use of a hybrid step.

This finalization step is verified by testing that given any
two wps(s) x and y in the formal implementation model

(Γ) the set of lower bounds of (x, y) and the set of upper
bounds in Γ are nonempty. As a result, a complete for-
mal implementation model would contain a nonempty set
of chains from ⊥ to > where every wps belongs to at least
one chain. The model is neither complete not valid until
this condition is satisfied.

5.1. Comparison with Current Methods

Clearly, there are similarities between our proposed
implementation-oriented secure architectures framework
and current methods for system development.

Similarity (a): Similar Development Process. This
framework strongly resembles the current state of the prac-
tice development process of requirements analysis, archi-
tectural design, implementation, and integration [11]. This
similarity is in fact one of the advantages of our framework
with respect to purely formal specification approaches.

Similarity (b): Similar Component Implementation
Techniques. This framework does not specify which tech-
niques, specification or programming languages need to be
used for developing system artifacts. It only constrains the
way resulting wps(s) are combined with each other in order
to implement a higher level artifact.

Nevertheless, there are also differences.
Difference (a): Constrained Analysis and Synthesis

Steps. In contrast with current state of the practice devel-
opment methods, in this framework, analysis and synthe-
sis steps are constrained by architectural constraint rules.
For example, if an analysis step is performed and a higher
abstraction level wps is divided into two lower abstraction



level wps(s), then there must be no remaining behavior in
the higher abstraction level wps that has not been moved
into the lower abstraction level. For example, if a module
t that partially implements a requirement r is divided into
two modules bi and bj , then module t must not partially
implement any of the behavior specified by r; only bi and
bj must, and the responsibilities of t will be reduced to the
control of bi and bj .

Difference (b): Traceability Links Are Kept at all
Stages of the Development Process. In this framework,
and in contrast with both current state of the practice devel-
opment methods and purely formal specification methods,
we can and do trace which artifacts are implementing each
other and how components or artifacts collaborate in order
to implement a higher abstraction level artifact such as a re-
quirement. This formal and complete traceability approach
facilitates the verification and validation of system correct-
ness with respect to the system’s informal requirements and
environmental constraints.

Difference (c): Formal Finalization Step. In this
framework there is a clear and formal finalization step
which is oriented toward the objective of proving that the
final implemented system completely and uniquely imple-
ments the stated system goal. This step is a formal test in
the architecture of the system and necessarily needs to be
proved for a given formal implementation model of a sys-
tem.

6. Vulnerability Case Studies

In order to describe how our implementation-oriented
approach to secure architectures could help to build more
secure systems, and to enable discussion about this frame-
work, we introduce two vulnerabilities along with their
associated formal implementation models. We also show
how the application of our set of rules would have helped
to anticipate these vulnerabilities.

6.1. Vulnerability Note VU#180147: Oracle DBMS
Authentication Bypass

The Vulnerability Note VU#180147 was published by
the US-CERT in February 2006 [23]. This vulnerability
affects multiple versions (9i, 8i, 8) and multiple releases
(from 8.0.1 to 9.0.1) of the Oracle® Database Management
Server2 (DBMS).

The Oracle DBMS, specifically the Database Server Ap-
plication (DBServerApp), allows authorized users to re-
motely connect to the database and request the DBServer-
App to execute a PL/SQL3 statement. The process in charge

2Oracle® is a registered trademark of the Oracle Corporation.
3PL/SQL (Procedural Language/Structured Query Language) is a pro-

of receiving PL/SQL queries or statements is called the Lis-
tener (Figure 3). Whenever the Listener receives a PL/SQL
query or statement, it forks a new process (ChildSQLPro-
cess), which is in charge of verifying that the requesting
user has appropriate access rights in order to execute such
a query/statement and also is in charge of executing the
query/statement. However, if the user request contains a
call to an external library, the ChildSQLProcess requests
the Listener to execute the requested external library. In
order to execute the external library the Listener calls an
external library executor process ExtLibraryExec. The vul-
nerability resides in the fact that neither the Listener nor the
ExtLibraryExec processes verify that the user is authorized
to perform such a query/statement; only the child processes
ChildSQLProcess(es) do. Therefore, a malicious process
masquerading as a ChildSQLProcess can request the Lis-
tener to call an external library and completely bypass the
authentication procedure [21, 23].

Figure 3 shows a formal implementation model we have
developed to represent the requirements and components
of a DBMS application. In Figure 3 the DBMSMainReq
and DBMSImpl components are the> and⊥meta-artifacts
of our formal model, respectively. Also, the partial im-
plementation traceability links from the AuthLibs compo-
nent to every ChildSQLProc[1/2/3] component, from ev-
ery ChildSQLProc[1/2/3] component to the Listener, and
from the Listener to the DBServerApp can be derived from
the architectural structure of the source code (i.e., a call
tree). The traceability link from the AuthLibs component
to the AuthPolicy requirement can be argued true by con-
struction of the system; in other words, they can be added
by an atomic implementation step. The traceability links
from Listener to AuthPolicy as well as the traceability link
from DBServerApp to AuthPolicy cannot be argued by con-
struction since non elementary, analysis, implementation,
and synthesis steps have been used for the development of
the lower level components; they need to be proved valid
in the formal implementation model.

Observe the dotted arrow from the AuthLibs component,
which represents the implementation of the authorization
policy, into the ExtLibraryExec component. This dotted
arrow indicates that the ExtLibraryExec component does
not partially implement AuthLibs. In this implementation-
oriented secure architectures framework the absence of this
traceability link represents a security vulnerability. This is
because the Listener component does not completely im-
plement the requirement AuthPolicy (due to the missing
traceability link represented by the dotted arrow). As a re-
sult we cannot infer that DBServerApp totally implements

prietary extension to the SQL language used in Oracle® Database Man-
agement Systems (DBMSs). PL/SQL allows procedural and object-
oriented constructs to be used along with embedded SQL statements or
queries for the access and management of data in an Oracle® DBMS [20].



Figure 3. Partial Formal Implementation Model and Associated Security Vulnerability (Example 1).

the corresponding DBMSMainReq, which is our final goal.
In previous work [5], which focused on the discovery of

hidden implementation dependencies in order to anticipate
safety risks, the missing traceability link from AuthLibs to
ExtLibraryExec, among others, is called a hidden imple-
mentation dependency and was discovered and indicated as
an impDependecy traceability link by our SyModEx tool.

6.2. Vulnerability Note VU#871756: Oracle DBMS
Escalation of Privileges during Initial Au-
thentication

The Vulnerability Note VU#871756 was published by
the US-CERT on 17 January 2006 [24]. This vulnerabil-
ity affects multiple versions (10g, 9i, and 8i) of the Oracle
DBMS [10].

The user authentication protocol to connect to an Ora-

cle DBMS is composed of two steps. In the first step the
client process sends a username to the server process, and
the server validates the username and responds to the client.
In the second step the client sends the username, an obfus-
cated password, and a set of attribute/value pairs to con-
figure the user session. One of these attribute/value pairs
is the “AUTH-ALTER-SESSION” attribute, which is asso-
ciated with an SQL statement. The security vulnerability
VU#871756 resided in the fact that this SQL statement was
executed by the DBMSServerApp without any verification
whatsoever of user rights, allowing for any valid user to
execute an arbitrary SQL statement with system privileges.

Stated in the terms of our architectural implementation
model (Figure 4), the process in charge of executing the
SQL statement (SetUpSessionAttributes), or one or more of
its lower abstraction level implementor wps(s), is (are) not
partially implemented by the authentication libraries Auth-



Figure 4. Partial Formal Implementation Model and Associated Security Vulnerability (Example 2).

Libs. Therefore, the LogIn process does not totally imple-
ment the authentication policy AuthPolicy. Figure 4 shows
a formal implementation model developed to represent this
vulnerability.

We remark that the models shown in Figures 3 and 4
are only simplified interpretations of an architecture corre-
sponding to the Oracle® DBMS at the time of the vulnera-
bilities. We do not imply in any way that these models rep-
resent the actual architecture of the Oracle® DBMS. The
models were developed only for the purpose of exempli-
fying how our framework could help minimize the occur-
rence of security vulnerabilities.

7. Conclusions

We introduced a framework composed of i) a formal im-
plementation model of a system, which is based on set the-
ory and predicate calculus [4, 5] and ii) a method for the
successive refinement of a formal implementation model
of a system through analysis and synthesis steps. These
formalized development steps constrain the formal imple-

mentation model architecture of a system to a lattice-like
algebraic structure. This algebraic structure ensures that
all requirements and constraints that a system component
must implement are in fact considered when developing the
system. Furthermore, this framework enables rigorous ver-
ification and validation of system correctness while at the
same time allows for informal approaches to be used in a
more systematic way.

We believe that our framework is a step toward the ef-
fective use of mathematically-based approaches in state of
the practice software engineering. Its main strength resides
in the fact that it enforces an algebraic structure to a system
architecture, while at the same time, allows the formaliza-
tion level to be adjusted during system development and
to vary depending on the portion of the system in question.
However, we also recognize that the framework is not with-
out problems.

In order to further enable a proactive discussion of
our implementation-oriented approach to secure system ar-
chitectures, we now introduce some topics and questions
which we believe need to be considered and addressed as a



prerequisite for a successful implementation of our frame-
work.

One difficulty we anticipate for the future implemen-
tation of our approach is the transformation step from
old development methods to the framework introduced in
this paper. How do the object-oriented design and pro-
gramming methods interact with our new proposed frame-
work? Is it possible to implement a system created us-
ing our implementation-oriented secure architectures us-
ing object-oriented design and programming techniques?
What changes may our framework need to undergo in or-
der to coexist with the object-oriented methodology?

In a similar way, what changes will current program-
ming languages (structured and object-oriented) need to
undergo in order to accommodate the framework? For ex-
ample, when implementing an artifact we require that all
functionality must reside in the lower abstraction level (im-
plementor) wps and that the higher abstraction level arti-
fact (implementee) must act as manager of the lower level
wps(s). What changes would be needed to programming
languages in order to accommodate these restrictions? As
one of many options we could, for example, require code
modules to be segregated into either control modules or
functionality modules.

This framework has been purposely designed with the
characteristic of allowing the modeling of a main system
goal and the system requirements (including functional and
nonfunctional requirements) from the start. Furthermore, it
has been designed to allow a formal representation of the
partial implementation traceability links between the sys-
tem requirements and all other artifacts. For this reason,
we believe in the adequacy of the framework to model all
security features of a system. This is because, in the end,
all security features must necessarily derive from, or map
to, a security requirement or constraint.

For example, we believe that most current buffer over-
flow vulnerabilities could be seen, at a high level of ab-
straction, as the absence of a partial implementation link
between a wps representing a compiler and a protection
constraint wps stating that variables must not be referenced
outside their memory boundaries. Of course, the same con-
straint could be totally implemented by other wps(s) more
internal to the lattice-like formal implementation model;
for example, by using a safe library that ensures (com-
pletely implements) such constraint or even by ensuring
that every access to a variable partially implements such
constraint.

Although we believe that by using our framework most
security features could be modeled and verified at a work-
able level of abstraction, we also recognize that more work
is needed in order to address the scalability of the process.

8. Related Work

The idea of stating system goals up-front has been bor-
rowed from the work of Leveson and colleagues at the Mas-
sachusetts Institute of Technology. Leveson et al. have de-
veloped a safety and human-centered approach to the de-
sign and specification of safe systems (air traffic control
and airborne systems) [15, 16]. The basic techniques be-
hind Leveson’s approach are twofold: Intent Specifications
and the SpecTRM-RL requirements specification language.
The first step in an Intent Specifications-based specification
is the statement of system goals (intent). Our framework
goes a step further in this approach and states that there is
one system goal that encompasses all other system objec-
tives or subgoals. We call this goal the Main System Re-
quirement and it forms the > (top) meta-artifact of our ar-
chitecture. In a similar way the highest refinement level in
an Intent Specification is the system implementation level,
which we unified into our System Implementation compo-
nent corresponding to our ⊥ (bottom) meta-artifact.

With respect to formal approaches that allow the de-
velopment of software implementations while keeping full
traceability to the formal structures, the Krestel Institute
offers a full-blown development application based on the
use of their Metaslang formal specification language and
the use of categorical operators for the derivation of pro-
gram refinements. Krestel’s formalization approach de-
fines what is called the Specware development process and
commences with an initial formal specification written in
Metaslang. Successive refinements are applied to the spec-
ification until it reaches a final state; all stages of the spec-
ification are executable [12]. However, this approach nec-
essarily requires the use of the Metaslang formal specifi-
cation language and of proprietary component implemen-
tation technologies. In contrast, our framework allows the
use of any specification and programming language as long
as the system architecture is constrained by its formal im-
plementation model as described in this paper.
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