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Rapid, Robust, Optimal Pose Estimation from a Single Affine Image

John E. McInroy, Senior Member, IEEE, R. Scott Erwin and Lawrence M. Robertson

Abstract— Determining the rigid transformation relating a 2d
image to known geometry is a classical problem in computer
vision. To date, the most accurate methods require performing
an unknown number of iterations until a numerical algorithm
converges to the desired tolerance. For the case of affine imaging,
this paper replaces these nonlinear numerical iterations with
solving the standard 3d-3d optimal orientation problem 2n

times, where n is the number of data points. The 2n successive
optimal orientation calculations are speeded through use of Gray
code, and have the dual advantages of speed and predictable
execution time. Angular errors caused by scaling imperfections
are quantified, and a least upper bound estimate of the scaling
is proposed. It is shown that the worst case viewpoints depend
only on the data points chosen, and a new convex linear matrix
inequality optimization is derived for determining the worst
viewpoint. This new analysis tool is useful for evaluating a
particular set of data and suggests methods of designing the
data for high performance.

Index Terms— affine cameras, pose estimation, visual servoing,
template matching, object recognition

I. INTRODUCTION

Determining the rigid transformation relating an image to
known geometry, i.e. pose estimation, is a central problem in
computer graphics, computer vision, robotics, and photogram-
metry. In computer graphics, it is important in tasks which
combine computer generated objects with natural photos. In
computer vision, it is central to object recognition. In robotics,
it is useful for coordinating the motion of the hand and the
eye. In photogrammetry, it is key to detailed inspection from
grainy images.

Iterative, nonlinear numerical optimizations can provide
fully optimal solutions which are therefore of the highest
possible accuracy. There are many examples of such methods.
Since this paper is concerned with rapid techniques, [10] is
a fast iterative technique based on object, rather than image,
iterations. Global convergence is found. Both [3] and [5] use
iteratively re-weighted least squares techniques for tracking
rapidly. These approaches are based on linearization using the
Lie group’s infinitestimal generator, thus they are suitable for
tracking small changes in pose between images. Let SO(3)
denote the three dimensional Special Orthogonal group which
models rotation. Cyclic coordinate descent, which alternately
finds the optimal rotation, R ∈ SO(3), then Euclidean terms
such as the translation, then recalculates R and so forth is used
for camera calibration [12], [8].
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Closed form solutions are available for n = 3 or n = 4
correspondence points. The roots of a fourth or fifth order
polynomial contain the solution ([4] provides one example
algorithm and references for other algorithms). For a small
set of points when n > 4, non-iterative techniques methods
are found in [14], [6], and [1]. The solution in [1] solves
a quadratic problem through an over-parameterization, then
multiple linear singular value decompositions. The number of
variables generated can be high. For instance, the constraint
RT R = I requires 45 variables to represent this three
dimensional element in SO(3).

Despite the availability of many algorithms, there remains
a need for a rapid, optimal, dependable algorithm suitable
for a small number of point correspondences (but more than
n = 4). For instance, [15] recently added high bandwidth
inertial sensing to complement the available pose estimation
because it alone had too low of a bandwidth. For the case
of affine imaging, this paper develops a new method that is
closed form, yet provides optimal estimates even when n > 4.
It does so by solving the standard 3d-3d optimal orientation
problem 2n times, where n is the number of data points.
Since the optimal orientation problem can be very quickly
solved as a 4 x 4 matrix eigenvalue problem, the overall
computational burden is light. However, the method clearly
becomes less attractive for large n, as 2n becomes extremely
large. To help offset this problem, the 2n successive optimal
orientation calculations are speeded through use of Gray code,
thus they have the dual advantages of speed and predictable
execution time. Angular errors caused by scaling imperfections
are quantified, and a least upper bound estimate of the scaling
is proposed. It is shown that the worst case viewpoints depend
only on the data points chosen, and a new convex linear matrix
inequality optimization is derived for determining the worst
viewpoint. This new analysis tool is useful for evaluating
a particular set of data. In addition, it suggests methods of
designing the data for high performance.

II. OPTIMAL ESTIMATION OF POSE FROM 3-D DATA

First, classical techniques [17] for solving the optimal
orientation problem will be briefly reviewed. Quaternion based
methods will be used here–see [10] for a description of sin-
gular value decomposition based methods. A complete proof
of the optimal quaternion algorithm is presented to emphasize
the structure of the solution. This bilinear structure will be
heavily exploited later in this paper.

From an object’s geometry, direction vectors ~zi ∈ R3, i =
1, . . . , n are known in an object’s coordinate frame. Those
same vectors, ~vi ∈ R3, are measured in a sensor coordinate
frame. Theorem 1 provides optimal estimates of the rotation
matrix from the object to the sensor frame, R. First, define
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the hat function (̂·) as the cross product matrix, i.e.

~̂z =




0 −z3 z2

z3 0 −z1

−z2 z1 0




Theorem 1: Given ~zi, ~vi ∈ R3 and wi ∈ R+, i = 1 . . . n,
the minimum of

J =
n∑

i=1

wi||R~zi − α~vi||2 (1)

over R ∈ SO(3), α ∈ R+ is found by first calculating

D =
n∑

i=1

wiK(~vi, ~zi) (2)

where K is the bilinear, symmetric matrix function

K(~v, ~z) =

[
~v~zT + ~z~vT − 2~vT~zI ~̂z~v

(~̂z~v)T 0

]
(3)

The eigenvector, ~ε, of D corresponding to the maximum
eigenvalue is the unit quaternion representation of the optimal
R. The optimal scaling is

α =
∑n

i=1 wi~v
T
i R~zi∑n

i=1 wi||~vi||2 (4)

Proof: Any R ∈ SO(3) can be written as the following
quadratic function of a unit quaternion:

R = 2[(0.5− ~eT~e)I + ~e~eT + ε4~̂e] (5)

where ~εT = [ε1 ε2 ε2 ε4] ∈ R4 is the unit quaternion. The
first three elements of ~ε form the ~e vector, ~eT = [ε1 ε2 ε3].
The optimization problem with objective (1) can be rewritten
in terms of unit quaternions as

min
~ε,α

n∑

i=1

wi||2[(0.5− ~eT~e)I + ~e~eT + ε4~̂e]~zi − α~vi||2 (6)

subject to ~εT~ε = 1. Multiplying out this equation, and
discarding terms that are not a function of either ~ε or α, the
Lagrangian can be formed:

L = −2α

n∑

i=1

wi~v
T
i 2[(0.5− eT e)I + eeT + ε4~̂e]zi

+α2
n∑

i=1

wi||~vi||2 + λ(1− ~εT~ε)

where λ is a Lagrange multiplier. Before calculating the
necessary conditions for an optimum, first consider the simpler
term ~vT R~z = 2[0.5~vT~z−~vT~eT~e~z +~vT~e~eT~z + ε4~v

T ~̂e~z]. Since
~xT ~y = ~yT ~x, ~̂x~y = −~̂y~x and ~̂x

T
= −~̂x for any vectors ~x and

~y, ~vT R~z = 2[0.5~vT~z − ~vT~z~eT~e + ~eT~z~vT~e− ε4~v
T ~̂z~e]. Then

∂~vT R~z

∂~e
= 2[−2~vT~z~e + ~z~vT~e + ~v~zT~e + ε4~̂z~v]

and
∂~vT R~z

∂ε4
= 2[~̂z~v]T~e

These can be combined into a single vector derivative

∂~vT R~z

∂~ε
= 2

[
−2~vT~zI + ~z~vT + ~v~zT ~̂z~v

(~̂z~v)T 0

]
~ε = 2K(~v, ~z)~ε

Note that the matrix function K(~v, ~z) is symmetric and linear
in each of its arguments (bilinear overall).

Applying these formulas to each term of the Lagrangian,
the necessary conditions are found to be

∂L

∂~e
= 0 = −2α

n∑

i=1

wi[−2~vT
i ~zi + ~zi~v

T
i + ~vi~z

T
i ]~e

−2α

n∑

i=1

wi~̂z~vε4 − 2λ~e (7)

and
∂L

∂ε4
= 0 = −2α

n∑

i=1

wi2[~̂z~v]T~e− 2λε4 (8)

or
∂L

∂~e
= 0 = −4α

n∑

i=1

wiK(~vi, ~zi)~ε− 2λ~ε (9)

The matrix D =
∑n

i=1 wiK(~vi, ~zi) is a 3 × 3 symmetric
matrix that can be calculated directly from the given data.
The optimal quaternion is the solution to

−2αD~ε = λ~ε

Thus ~ε is an eigenvector of D. Note that the partial of the
objective is

∂J

∂~ε
= −4αD~ε = 2λ~ε

Thus J = 2λ~εT~ε = 2λ plus terms constant in ~ε. The minimal
value of J is thus given by the minimal eigenvalue λ of−2αD.
Since α scales all the eigenvalues equally, the minimum J is
given by the maximum eigenvalue of D. Hence the optimal
quaternion is that eigenvector of D corresponding to the
maximum eigenvalue. Once ~ε is found, the optimal rotation
matrix can be found from (5).

Note that the optimal R is independent of the scaling. Thus
scaling all sensor measurements, ~vi, by the same amount will
not affect the orientation estimate. Once R is found, it can be
used to calculate the scaling term. The necessary condition for
optimality is

∂L

∂α
=

∂J

∂α
= 0 = −2

n∑

i=1

wi~v
T
i R~zi + 2α

n∑

i=1

wi||~vi||2

Rearranging gives (4).

2

Remarks: Theorem 1 is a classical result [17]. It requires
solution of a 4 x 4 matrix eigenvalue problem. This paper uti-
lizes it because it is a standard technique, but it should be noted
that other faster techniques may be fruitful for integration
with the this paper’s main new contributions. For instance, [9]
suggests an optimal orientation algorithm requiring solution
of only a 3 x 3 eigenvalue problem.

As Theorem 1 shows, the solution is invariant with respect
to scaling. This effect will be of crucial importance when this
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algorithm is extended further to use 2-dimensional (2-d), rather
than 3-dimensional (3-d) data. In addition, this formulation of
the solution highlights a powerful property (bilinearity of K)
that will be exploited for pose estimation from both 3-d and 2-
d data. Proposition 2 will use bilinearity to quantify the effect
of misclassification.

Proposition 2: Suppose vectors ~vj and ~vk are misclassi-
fied, i.e. ~vj is matched incorrectly with ~zk, and ~vk is matched
incorrectly with ~zj . Then D changes by

∆D = K(~vj − ~vk, wk~zk − wj~zj) (10)
Proof: Most terms in the incorrect summation, D′, are the
same as the correct summation, D. Only those involving ~vj

and ~vk differ. Thus from (2), D′ = D − wjK(~vj , ~zj) −
wkK(~vk, ~zk)+wjK(~vk, ~zj)+wkK(~vj , ~zk). Since K is linear
in each of its arguments, ∆D = D′ − D = wjK(~vk −
~vj , ~zj) + wkK(~vj − ~vk, ~zk). Moving the weights inside K,
∆D = K(~vk − ~vj , wj~zj − wk~zk).

2

Remarks: Vectors are most likely to be misclassified if they
are close together, i.e. ~vj − ~vk is small and wk~zk − wj~zj is
small. Prop. 2 shows that these two (typically small) vectors
are multiplied together to change D. Hence ∆D is also small
for most misclassifications. D totally determines the solution,
hence the solution also has small errors when close vectors
are misclassified.

The next proposition shows that, if the data points are
chosen to satisfy a mild symmetry condition, then the non-
linearly coupled estimation of pose (combined position and
orientation) gives way to an analytic, decoupled solution.

Proposition 3: Given ~zi, ~qi ∈ R3, wi ∈ R+, i = 1 . . . n,
α ∈ R+, such that

n∑

i=1

wi~zi = 0 (11)

, the minimum of

J =
n∑

i=1

wi||R~zi + ~p− α~qi||2 (12)

over g = (R, ~p) ∈ SE(3) (R ∈ SO(3), ~p ∈ R3), is found by
first calculating

D =
n∑

i=1

wiK(~qi, ~zi)

where K is the bilinear, symmetric matrix function given in
(3). The eigenvector, ~ε, of D corresponding to the maximum
eigenvalue is the unit quaternion representation of the optimal
R. The optimal ~p is

~p =
α

∑n
i=1 wi~qi −

∑n
i=1 wiR~zi∑n

i=1 wi
(13)

Proof: Multiplying out J yields

J =
n∑

i=1

wi[~zT
i ~zi + 2(~p− α~qi)T Rzi + (~p− α~qi)T (~p− α~qi)]

As in Theorem 1, the objective will be rewritten in terms of
quaternions and a Lagrangian will be formed, L = J + λ(1−

~εT~ε). Using the same basic steps as those of Theorem 1, it
can be shown that

∂J

∂~ε
= 4

n∑

i=1

wiK(~p− α~qi, ~zi)~ε

Thus

∂L

∂~ε
= 0 =

∂J

∂~ε
− 2λ~ε = 4

n∑

i=1

wiK(~p− α~qi, ~zi)~ε− 2λ~ε

This equation can be significantly simplified by use of the
bilinearity of K

0 = [4
n∑

i=1

wiK(~p, ~zi)− 4α

n∑

i=1

wiK(~qi, ~zi)]~ε− 2λ~ε

= 4K(~p,

n∑

i=1

wi~zi)~ε− 4αD~ε− 2λ~ε

= 4K(~p, 0)~ε− 4αD~ε− 2λ~ε = 0

where D is calculated from (2) by replacing ~vi with ~qi. A zero
argument in any linear function returns zero, thus K(·, 0) =
K(0, ·) = 0. Finally,

−4αD~ε = 2λ~ε

Thus the optimal unit quaternion, ~ε, is the eigenvector of D
corresponding to the maximum eigenvalue. The optimal R
can be found directly from ~ε using (5). Once R is found,
the translational vector ~p can be easily calculated:

∂L

∂~p
= 0 =

∂J

∂~p
=

n∑

i=1

wi[2R~zi + 2~p− 2α~qi]

Solving for ~p yields (13).

2

Remarks: Without the symmetry condition (11), direct
estimation of the optimal pose requires a highly coupled, non-
linear numerical optimization. In contrast, the new solution is
very simple and fast to calculate, requiring only an eigenvalue
operation on a 4 × 4 matrix for R and a summation operation
for ~p. The condition

∑n
i=1 wi~zi = 0 is very mild and can

often be realized in practice. One method is by selecting the
points, ~zi, so they satisfy (11). For instance, one solution is to
always choose the ~z’s in symmetrical pairs so both ~z and −~z
are members of ~zi, i = 1 . . . n, and both ~z and −~z have the
same weighting. This can often be accomplished in practical
applications, although occlusions may limit its use at times.

A second, fundamentally separate method for satisfying (11)
is by choosing the weights. Letting Z = [~z1 ~z2 . . . ~zn] and
~wT = [w1 w2 . . . wn], the condition

∑n
i=1 wi~zi = 0 can

also be written as Z ~w = 0. Given Z, ~w must be chosen
in the null space of Z. Generation of the null space is
very straightforward. However, to maintain a convex objective
function, ~w must have all non-negative elements. This can also
often be easily accomplished, see [7] for further details.

Simultaneous selection of both the data points, ~zi, and
the weights, wi, can also performed to increase the space
satisfying (11).



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, NOVEMBER 200X 4

Also note that when calculating the optimal pose, the data
scaling (α) should be known, as it is needed when calculating
~p.

III. OPTIMAL ESTIMATION OF POSE FROM 2-D DATA

Affine imaging systems [16] are a limiting case of perspec-
tive cameras for the situation wherein the depth of the corre-
spondence points is much larger than the size of the object.
All correspondence points are then scaled by approximately
the same value, and the data loss becomes a linear loss of one
dimension (along the sensing axis).

Without loss of generality, assume the standard camera
model with camera axis along the “z” dimension, so that the
missing component of data is the third (or “z”) component.
When one dimension of the data is missing, the pose estima-
tion problem can be phrased as:

Given ~zi ∈ R3, ~di ∈ R2, wi ∈ R+, i = 1 . . . n,
P = [I2 0], find the minimum of

J =
n∑

i=1

wi||P [R~zi + ~p]− α~di||2 (14)

over g = (R, ~p) ∈ SE(3) (R ∈ SO(3), ~p ∈ R3), and
α ∈ R+.

Direct minimization of (14) involves a nonlinear numerical
optimization. This paper will derive a much faster method via
a sequence of analytic solutions.

A. Orientation Estimation: Scaling Known

First, the estimation of orientation alone will be treated. As
will soon be explained, orientation estimation from 2-d data
does not enjoy the invariance to scaling found in Theorem 1,
so the case where scaling is known will be solved, then scaling
will be estimated separately.

Proposition 4: Given ~zi ∈ R3, ~di ∈ R2, and wi ∈ R+,
i = 1 . . . n, P = [I2 0] the minimum of

J2d =
n∑

i=1

wi||PR~zi − ~di||2 (15)

over R ∈ SO(3), is found by first calculating

~vi =




~di

· · ·
±

√
||~zi||2 − ||~di||2


 , i = 1 . . . n (16)

Next, the 2n 3-d orientation problems corresponding to all
possible vi, i = 1 . . . n ± sign choices are solved using
Theorem 1:

min
R∈SO(3)

n∑

i=1

wi||R~zi − ~vi||2

From these 2n solutions, the optimum is that minimizing J2d.
Proof: Let ~vT

i = [~dT
i vzi ]

T where vzi is the missing com-
ponent of ~vi. Since rotation of a vector does not change its
length, ||~zi||2 = ||~vi||2 = ||~di||2 + v2

zi
. Therefore vzi =

±
√
||~zi||2 − ||~di||2. The knowledge of the vector’s length in

one frame has been exploited to find the missing component of

each data vector, up to a sign. That choice of signs minimizing
the objective is the optimal solution.

2

Remarks: The re-calculation of D =
∑n

i=1 wiK(~vi, ~zi)
necessary for each of the 2n solutions of the 3-d optimal
orientation algorithm (Theorem 1) can be expedited in two
ways. First, recall that Gray code is a binary code wherein each
successive element toggles only one sign. Thus, by searching
through the signs in an order specified by Gray code, only one
sign will change between each successive solution. Suppose
D has already been calculated, but for the next step the sign
of vzi is toggled:

~vj+ =
[

~dj

vzj

]
→ ~vj− =

[
~dj

−vzj

]

The new D, D′, is D′ = D + wj [K(~vj− , ~zj) −K(~vj+ , ~zj)].
Bilinearity of K reduces this to D′ = D + wjK(~vj− −
~vj+ , ~zj) = D + wjvzj K(~z, ~zj) where ~zT = [0 0 1]. Inserting
the constant ~z into (3) yields

∆D = D′−D = wj




−2z3j 0 z1j z2j

0 −2z3j z2j −z1j

z1j z2j 0 0
z2j −z1j 0 0


 (17)

where ~zT
j = [z1j z2j z3j ] This implies that each successive

solution can be quickly calculated–simply insert ~zj and wj

into (17), to get the new D = D+∆D. The optimal quaternion
is then the eigenvector of D with maximal eigenvalue.

B. Errors Due to Scaling

Although estimation of orientation from 3d data is invariant
to scaling (Theorem 1), estimation of orientation from 2d
data using Prop. 4 is not invariant to scaling. Thus, before
using Prop. 4, the data should be scaled. However, knowing
the scaling is tantamount to knowing the depth. For instance,
under the perspective transformation common to most optical
systems, image measurements are scaled by the depth. It
is, of course, possible to use another separate depth sensor.
However, this subsection will show that scaling can be easily
estimated from 2d data and target geometry for any orientation.
Independence from a particular orientation is novel, as prior
algorithms have required coarse knowledge of the orientation
to get coarse scaling estimates. Estimating scaling is closely
related to estimating depth. See [1] for a more complex, yet
linear method for recovering the different depths of several
points, when the affine assumption of nearly equal depths does
not hold.

The effects of scaling estimation errors are studied, and are
found to depend upon the geometry of the data vectors, ~zi, as
well as the viewpoint. Convex methods for finding the worst
case viewpoint and estimation error for a given set of data
vectors are developed. A solution to the problem via linear
matrix inequalities is derived which efficiently finds the global
optimum.

Proposition 5: If the true scaling, α, and estimated scaling,
αe, differ by the factor β = αe/α, then the angular error
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between the actual measurement vector, ~vi, and its estimate,
~vei

, is

θ = acos
[
βp2

i +
√

(1− p2
i )(1− β2p2

i )
]

(18)

where

pi =
α||~di||
||~zi|| (19)

is the percentage of the measurement’s norm passing through
the projection onto 2d.
Proof: Let ~vi = [~dT

i vzi ]
T as in Prop. 4. Because rotation

matrices preserve lengths, ||~zi||2 = α2||~vi||2 = α2(||~di||2 +
v2

zi
). Dividing by ||~zi||2 yields

1 = p2
i +

α2v2
zi

||~zi||2 (20)

Also,

~vi =




~di

· · ·
±

√
||~zi||2

α2 − ||~di||2


 (21)

Performing the same calculation using an estimated scaling,
αe, rather than the true scaling, α gives an estimate of the
vector ~vi

~vei =




~di

· · ·
±

√
||~zi||2

α2
e
− ||~di||2


 (22)

Defining the multiplicative scaling error as β = αe/α
and taking dot products between normalized versions of (21)
and (22) gives the cosine of the angle between the true and
estimated measurement. Simplification yields (18).

2

C. Estimation of Scaling Using the LUB

From (20), it is clear that ~pi = α||~di||
||~zi|| ≤ 1. Solving for α

gives

α ≤ 1

||~di||/||~zi||
This equation must be satisfied for all of the data points, i =
1 . . . n. Consequently, one estimate for the scaling is to use
the least upper bound (LUB), i.e. let

αe = min
i=1...n

1

||~di||/||~zi||
=

1

maxi=1...n ||~di||/||~zi||
(23)

The maximum percentage of norm passing through the 2d
sensor is then from (19)

p̄ = α max
i=1...n

||~di||
||~zi|| (24)

From (23) and (24),

β =
αe

α
=

1
p̄

(25)
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Fig. 1. The angular error due to errors in estimating the scaling.

Inserting (25) into (18) yields the angular estimation error
corresponding to the least upper bound estimation of α:

θ = acos


p2

i

p̄
+

√
(1− p2

i )(1−
p2

i

p̄2
)


 (26)

Figure 1 plots θ vs. pmax (p̄) and p (pi). Note that, if p̄ = 1,
then θ = 0 (no estimation error). In this case, at least one
~vi lies in the x-y plane, so the full norm passes through the
compression to 2d. Note also that θ decreases as p̄ increases,
thus designing the data so that the minimum p̄ is large will
reduce errors.

D. Worst Case Maximum p

Since ~zi, i = 1 . . . n are known apriori’, the angles between
them are also. Using this information, it is possible to find
the worst case viewpoint, i.e. that which minimizes, over all
possible viewpoints, p̄. Let ~a be the worst case viewpoint. For
a camera, ~a is physically the unit vector pointing along the
camera’s optical axis–commonly this is made the “z” vector in
the camera coordinate system, which is equivalently the third
row of R. Let ~ni = ~zi/||~zi||, i.e. normalized data vectors. The
following theorem finds the worst case viewpoint.

Theorem 6: The worst case viewpoint, ~a ∈ R3, i.e. the unit
vector such that

min
~aT~a=1

p̄ = p̄min (27)

Can be found by solving the following convex problem subject
to linear matrix inequality constraints:

max
t∈R, ~a∈R3

t

[
~aT~ni t

t ~aT~ni

]
> 0, i = 1, . . . , n (28)

[
I3 ~a
~aT 1

]
> 0

Moreover, the minimum maximum percentage norm is

p̄min = 1− t2 (29)
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The worst case angular estimation errors are given by

acos

[
p2

i

p̄min
+

√
(1− p2

i )(1−
p2

i

p̄2
min

)

]
(30)

Proof: Direct solution of (27) is nonlinear and non-convex,
therefore the optimization is slow and globality of the mini-
mum is not guaranteed. However, a complementary problem
can be equivalently solved in a convex setting. Since data along
the ~a direction is lost in the projection to 2d, bad viewpoints
have a large component of the data along ~a, thus ~aT ni is
large. However, if even one data vector has a large projection
into the space perpendicular to ~a, then that vector will have a
large percentage of its norm sensed, so p̄ will in turn be large.
Consequently, finding the worst viewpoint can be formulated
as:

max
~aT~a=1

min
i=1,...,n

|~aT~ni| (31)

This can be equivalently stated as

max
~a,t

t

subject to
(~aT~ni)2 > t2, i=1, . . . , n (32)

~aT~a = 1

The nonlinear, quadratic constraints can be replaced with
equivalent linear matrix inequalities (LMI’s) by using the
Schur complement. If

X =
[

A B
BT C

]

is a partitioned matrix, then X > 0 (X positive definite) is
equivalent to A > 0 and S = C −BT A−1B > 0, where S is
the Schur complement [2]. Thus ~aT~ni > 0, (~aT~ni)2 − t2 > 0
is equivalent to X > 0, where X is the 2× 2 matrix

[
~aT~ni t

t ~aT~ni

]
(33)

Moreover, the objective increases as the norm of ~a increases,
thus the equality constraint ~aT~a = 1 can be replaced with
the inequality constraint ~aT~a ≤ 1. This nonlinear inequality
can then be written as a linear matrix inequality by using the
Schur complement:

[
I3 ~a
~aT 1

]
> 0

Thus the optimization problem (32) can be expressed as
minimization of a linear objective subject to linear matrix
inequalities as in (28). The variable t is the component of
~n along ~a, where ~n represents the data vector with smallest
projection along ~a. A unit vector perpendicular to ~a, ~a⊥, can
then be found such that ~n = t~a + p̄min~a⊥. Calculating the
norm squared of both sides then yields 1 = t2 + p̄2

min. Re-
arranging yields (29). Finally, (30) is obtained by substituting
(29) into (26).

2

Note that the linear matrix inequality solution adds an
extra condition, ~aT~ni > 0. This condition cannot be satisfied
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Fig. 2. Three orthogonal data vectors and their worst case viewpoint.

unless all of the data vectors are in the same hemisphere.
This condition poses no problem since the magnitude of the
projection of a vector is the same as the magnitude of the
projection of the negated vector. Thus ~ni not in the upper
hemisphere are negated, without changing the worst viewpoint.

E. LMI Solution and Data Design

The global optimum of the convex optimization problem in
Theorem 6 can be quickly found with a number of software
packages. Figures 2 and 3 illustrate some solutions obtained
using the “mincx” function of Matlab’s Robust Control Tool-
box. Figure 2 illustrates Z = I , i.e. three data vectors are
arranged in a mutually orthogonal fashion. The worst case
viewpoint minimizes the maximum projection orthogonal to
itself, thus in this case ~a = [1 1 1]T /

√
3 and p̄min =

0.82. Substitution into (30) quantifies the angular errors. This
application of Theorem 6 illustrates how it can be used to
assess a set of data vectors, Z.

Theorem 6 also immediately suggests methods for designing
the set of data vectors, Z, so they inherently provide accurate
estimates. For instance, since ~a represents the worst case
viewpoint, a data vector added in the space perpendicular to ~a
converts this worst case viewpoint into an ideal viewpoint, thus
eliminating this poor viewpoint. If the worst case viewpoint
for the new, augmented set of data vectors is found, then the
data vectors can again be augmented with a vector in the new
~a⊥, and so on. Thus a good set of n data vectors can be found
inductively by repeating applying Theorem 6 and adding data
points in ~a⊥.

Figure 3 illustrates this process when applied to the data
vectors from Fig. 2. This process raises p̄min from p̄min =
0.82 to p̄min = 0.95. This large value for the worst case p̄
results in very small angular input errors (see Fig. 1 and Eqn.
(26).
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F. Orientation Estimation: Scaling Unknown

Lemma 7 will now show how these results can be brought
together to estimate orientation from 2-d measurements with
unknown scaling.

Lemma 7: Given ~zi ∈ R3, ~di ∈ R2, and wi ∈ R+, i =
1 . . . n, P = [I2 0] the minimizer of

J =
n∑

i=1

wi||PR~zi − α~di||2 (34)

over R ∈ SO(3), α ∈ R+, is approximated by first estimating
α by αe = 1

maxi=1...n ||~di||/||~zi||
. R can then be estimated

by replacing all measurement vectors ~di with scaled versions
~di 7→ αe

~di, i = 1 . . . n, and applying Prop. 4. The worst case
errors can then be found from Theorem 6.
Proof: Lemma 7 extends Prop. 4 to handle differences in
scaling between the data vectors, ~zi, and the measurements,
~di. The LUB estimate of scaling given by (23) will contain
error unless at least one measured vector truly does lie in the
sensor (x-y) plane. Theorem 6 quantifies the worst case effects
of this estimation error.

2

G. Pose Estimation from 2-d Measurements

Prop. 3 derives a decoupled method of calculating the pose
from 3-d measurements. Unfortunately, the effects of scaling
preclude a similar result from 2-d measurements. This section
develops techniques of extending the 2-d orientation methods
developed herein to estimate both orientation and position.

Proposition 8: Given data points ~zi ∈ R3 and correspond-
ing sensed points ~qi ∈ R2, along with weightings wi ∈ R+,
i = 1 . . . n, P = [I2 0], the minimizer of

J =
n∑

i=1

wi||P [R~zi + ~p]− α~qi||2 (35)

over g = (R, ~p) ∈ SE(3) (R ∈ SO(3), ~p ∈ R3), and α ∈ R+

can be estimated by forming the free vectors ~zij = ~zi − ~zj ,
~dij = ~qi − ~qj , i, j = 1 . . . n. R and α can then be estimated
using Lemma 7 by replacing ~zi by ~zij and ~di by ~dij . The first
two components of ~p are estimated by

[
px

py

]
= ~pa = P~p =

α
∑n

i=1 wi~qi −Ra

∑n
i=1 wi~zi∑n

i=1 wi
(36)

where Ra denotes the 2 × 3 matrix consisting of the first two
rows of R. When the measurements arise from an optical sys-
tem with focal length f , and pz denotes the third component
of ~p, and if the imaging is affine (||~zi|| ¿ pz for all points
i = 1 . . . n), then

pz ≈ αf (37)
Proof: Lemma 7 requires free direction vectors ~zi and ~di

as inputs. However, given position vectors ~zi, free direction
vectors can be constructed by subtracting positions to find
~zij = ~zi−~zj . Their corresponding sensed free direction vectors
are ~dij . Weighting of these free vectors can be performed
in accordance with their known error characteristics, or their
geometric or arithmetic means (wij = √

wiwj or wij =
(wi + wj)/2). The data and measurements are then ready
for application of Lemma 7 to estimate R and α. With these
estimates in hand, the first two translational elements can then
be estimated by the unconstrained least squares problem:

LS = min
~pa

n∑

i=1

wi||RA~zi + p2 − α~qi||2

Setting ∂LS
∂~pa

= 0 yields (36). To find the depth, pz , consider
a point at the origin of the data frame. Its representation in
the sensor frame is ~p. Orienting the optical system along the z
axis, the perspective transformation caused by a focusing lens
gives the image plane position, ~q:

~q =
f

pz
~pa

But α~q = ~pa, thus pz = αf . If ||~zi|| ¿ pz for all points i =
1 . . . n (affine imaging), then the perspective transformation
scales all image points by very close to the same factor, thus
one α suffices for the entire set of data, and it is proportional
to depth.

2

IV. SIMULATION RESULTS

Figures 4–5 compare the performance of the new orientation
estimates found using Theorem 4 to estimates obtained from
the standard approach–use of Theorem 1, with the unknown
“z” component of ~vi assumed to be zero. Figure 4 plots the
measured image plane direction vectors, ~vi, (solid). R and α
are then estimated by the techniques of both Theorem 1 (with
~vzi = 0) and Theorem 4. From the data vectors Z, the image
plane direction vectors are then reconstructed: ~vei = R~zi/α.
R and Z are intentionally chosen to produce large enough
errors to be visible. Fig. 4 illustrates that the new method
does produce better reconstructions of the image directions.
Indeed, the angle required to rotate the true R to its estimate
is 33o for the standard approach vs. only 11o using the new
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Fig. 4. Three image plane directions (solid), their reconstruction using the
standard approach (dotted), and their reconstruction using the new method
(dashed).
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Fig. 5. Five image plane directions (solid), their reconstruction using the
standard approach (dotted), and their reconstruction using the new method
(dashed).

techniques developed in Theorem 4. Fig. 5 displays the same
results when n = 5, rather than n = 3, measurements are
taken. In this case, the angle required to rotate the true R
to its estimate is 21o for the standard approach vs. only 1.4o

using the new method. These results are typical comparisons.

Fig. 6 compares three pose estimation techniques. From
four given image points (denoted by +), the pose (R, ~p) and
scaling α are estimated, then used to attempt a reconstruction
of the given image points. This gives a visual indication of the
pose estimation’s accuracy, which will also be complemented
with the actual estimation errors. The actual rotation matrix
is chosen so it has the worst case viewpoint calculated via
Theorem 6. The position vector is ~p = [0.369 0.179 105]T .
Its “z” component is 100km because our current application
involves ground based images of satellites.

For comparison purposes, the pose is first estimated using
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8
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−6

Fig. 6. Four image plane points (+), their reconstruction using the standard
approach (*), their reconstruction using the new method (0), and their
reconstruction using full 3-d sensed data (pentagram).

3-d measurements. This method requires another sensor such
as a depth sensor or a stereo camera, and estimation of pose
from such data sets is a mature science. One technique is to
find free vectors by subtracting the points in the same manner
used by Prop. 8. Theorem 1 can then use these 3-d free vectors
to estimate R and α. Finally, the optimal ~p can be found
using (13). Since this method has access to the full 3-d data,
its reconstructed image points (pentagrams) closely match
the given image points (+). A simple application of these
same ideas using 2-d data is to assume that all measurement
points ~qi have “z” components equalling zero, then apply the
above 3-d algorithm after augmenting each ~qi with a zero
“z” component. This is termed the standard approach, and
reconstructions based on it are depicted by (*) in Fig. 6. The
standard approach performs erratically, usually providing very
poor pose estimates. Reconstructed image points found using
the new technique derived in Lemma 8 are illustrated by (0).
Like the full 3-d algorithms, they closely match the given
image points, but unlike the full 3-d algorithm, the estimates
can be obtained from a single monocular image.

The table below documents the angle required to rotate the
estimated R to the true R, eθ. Letting the translational error be
~ep = ~p−~pestimated, the percentage of normed translation error
for each case is also available, ||~ep||/||~p||. While the algorithm
that has access to the full 3-d measurements performs best, its
accuracy is rivaled by the new algorithm, which uses only
2-d sensor readings. The standard approach has very erratic
behavior. It this case, its estimates are poor, although other
simulations exhibit far better and far worse accuracy.

Full 3-d Standard 2-d New 2-d
||~ep||/||~p|| 8× 10−6 0.44 0.07
eθ 0.270 300 1.40

The new method has been developed, in part, to aid in the
automatic inspection of satellites. From a noisy, diffraction
limited image of a known satellite in an unknown pose, the
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Fig. 7. CAD model of the imaged satellite, with O’s denoting the point
correspondences.

Sequence of Satellite Images.
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Fig. 8. As the satellite sweeps across the sky, several images are captured.

pose will be estimated. The CAD model can then be placed
in the same pose and projected onto two dimensions to create
a synthetic prediction of what the satellite’s image should
look like. Subtraction of the actual image from the synthetic
image produces a signal useful for automatically checking any
satellite anomalies.

Fig. 7 depicts a hypothetical satellite. The far corners of the
solar arrays are chosen as the data points (~zi, i = 1, . . . , 4,
depicted as 0’s), as they produce an easily identifiable signa-
ture. As the satellite moves, several images are captured (Fig.
8). The pose will be estimated and the satellite inspected for
images 1 and 4 (1 is the leftmost).

Because satellites orbit at significant distances from the
Earth, the actual image is degraded appreciably by diffraction
effects (see Fig. 9). Using a binary thresholding technique, it
is enhanced, and the solar array corners in the image (~qi) are
found (Fig. 10).

Despite the effects of diffraction, thresholding, and pixel
round-off, the pose estimate is quite accurate, producing an
angular estimation error of only eθ = 5.3o. A thresholded ver-
sion of the predicted image is subtracted from the thresholded
measured image (Fig. 10) to produce the inspection image
(Fig. 11). Although it suffices for our present purposes, an
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Fig. 9. The first raw, diffracted image.

Satellite Image and its Estimated Vertices (o)
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Fig. 10. The first image with the sensed points, ~qi, denoted by (0).

improved match can certainly be obtained from this subtracted
image by employing, for example, the methods in [5] to fine
tune the estimate.

Automatically determining the point correspondences ~qi can
be difficult. These simulations first find a point inside the
satellite by a very coarse template matching strategy. Then,
a statistical snake [13] grown from that initial point robustly
identifies the perimeter. Finally, vertices along that perimeter
are extracted (see [11] for further details). Figures 12 and 13
illustrate the results on image 4. In this case, eθ = 25o.

V. CONCLUSIONS

For the case of affine imaging, this paper replaces nonlin-
ear numerical iterations or extremely high dimension linear
solutions with solving the standard 3d-3d optimal orientation
problem 2n times, where n is the number of data points. The
2n successive absolute orientation calculations are speeded
through use of Gray code, and have the dual advantages of
speed and predictable execution time. Angular errors caused
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Fig. 11. Combining pose estimates with the CAD model, a predicted image
is calculated and subtracted from the measured image.

Satellite Image and its Estimated Vertices (o)
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Fig. 12. The fourth image, with its points ~qi denoted by (0). The outside
perimeter is identified by statistical snakes.

Matched Image minus Measured−−gray means match is good

0 50 100 150 200 250 300

50

100

150

200

250

300

Fig. 13. Combining pose estimates with the CAD model, a predicted image
is calculated and subtracted from the fourth measured image.

by scaling imperfections are quantified, and a least upper
bound estimate of the scaling is proposed. It is shown that the
worst case viewpoints depend only on the data points chosen,
and a new convex linear matrix inequality optimization is
derived for determining the worst viewpoint. This new analysis
tool is useful for evaluating a particular set of data and suggests
methods of designing the data for high performance. Simu-
lation results for a satellite inspection problem demonstrate
the viability of the technique and its superiority over standard
methods.
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