
1 INTRODUCTION

The modular finite-difference ground-water flow
model (MODFLOW) developed by the U.S. Geo-
logical Survey (USGS) is a widely used and flexible
computer program for simulating three-dimensional
ground-water systems (McDonald & Harbaugh,
1988, Harbaugh & McDonald, 1996). MOC3D is a
solute-transport program that is integrated with
MODFLOW and has the capability to calculate
changes in concentration of a single solute subject to
advection, dispersion, diffusion, fluid sources, de-
cay, and retardation (Konikow et al. 1996, Kipp et
al. 1998). MOC3D solves the solute-transport equa-
tion in three dimensions using the method of char-
acteristics, with forward particle tracking to repre-
sent advection, coupled with either an explicit or
implicit finite-difference method to calculate disper-
sive flux. This approach is optimal for advection-
dominated systems, which are typical of many field
problems involving ground-water contamination, as
it minimizes numerical dispersion. The model as-
sumes that fluid properties are homogeneous and in-
dependent of concentration. The solution techniques,
however, do not guarantee a mass balance and also
require the use of an areally uniform grid.

A Finite-Volume Eulerian-Lagrangian Localized
Adjoint Method (FVELLAM) (Healy & Russell,
1993) was developed as an alternative numerical

solution algorithm for the MOC3D transport model.
ELLAM (Celia et al. 1990) solves a mass-
conservative integral form of the solute-transport
equation. The ELLAM algorithm uses an implicit
time method for dispersion calculations, which al-
lows for large time steps without stability con-
straints. ELLAM uses an Eulerian-Lagrangian ad-
vection approach, tracking mass through time and
then solving a dispersion equation on a fixed-in-
space grid. For advection-dominated problems, this
has the advantage of generating less numerical dis-
persion than standard Eulerian approaches using fi-
nite-difference and finite-element methods. ELLAM
solves integral equations and thus tracks mass asso-
ciated with fluid volumes, so that it conserves mass
locally and globally.

2 GOVERNING EQUATIONS

The ground-water flow, interstitial velocity, and sol-
ute-transport equations used in MOC3D are given by
Konikow et al. (1996). Solution to the flow equation
provides the interstitial velocity field, which couples
the solute-transport equation to the ground-water
flow equation.

The governing equation for this finite-volume ap-
proach is an integral form of the solute-transport
equation, which is a statement of conservation of
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mass over the domain of integration. Integration
against a “test function” (u) provides the formulation
of conservation of mass, including treatment of cell
or subdomain boundary conditions and solute decay.
The test function effectively specifies the domain of
integration for the transport equation by the portion
of the space-time domain where its value is nonzero.

If we multiply the solute-transport equation by
the test function u and integrate over time and space,
we have:

u
∂ εC( )

∂t + u
Rf

∇ ⋅ εCV −εD∇C( )
 

 
  0
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∫Ω∫

− u
Rf

′ C W + uλεC∑ dtdx
 
 
 = 0 (1)

where Ω  is the entire spatial transport subdomain, T
is the end of the simulation time period starting at
time zero, ε is the effective porosity (dimensionless),
C is volumetric concentration (mass of solute per
unit volume of fluid, ML-3), t is time (T), Rf is the
retardation factor, V is the interstitial fluid velocity
(LT-1), D is a second-rank tensor of dispersion coef-
ficients (L2T-1), W is a volumetric fluid sink or
source rate per unit volume of aquifer (T-1), ′ C  is the
volumetric concentration in the sink/source fluid
(ML-3) (if W represents a sink, ′ C  = C), and λ is the
decay rate (T-1).

The Eulerian-Lagrangian aspects of the method
derive from the requirement that the test function
satisfy the adjoint equation,

 ∂u
∂t + V

Rf
⋅∇u − λu = 0. (2)

Thus, for the time step from tn to tn+1,

 u x,t( ) = f x ,t( )e
−λ tn+1 − t( ), (3)

where
∂ f
∂t + V

Rf
⋅ ∇f = 0 , (4)

so that f is constant along characteristics of the re-
tarded interstitial velocity field. With

u = e−λ (tn +1− t) , (5)
(that is, f = 1) we arrive at a statement of global con-
servation of mass for a time step. For a local conser-
vation equation on each finite-difference cell Ω l  in
the transport subdomain, let

ul x,t( ) = fl x ,t( )e−λ tn+1 − t( ), (6)

where fl(x,tn+1) = 1 on Ωl and fl(x,tn+1) = 0 else-
where:
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where ∂ ⋅  signifies the spatial boundary of the argu-
ment; supp⋅ denotes the support of a function (that is,
the part of its domain where a function assumes a
non-zero value); n is the unit outward normal vector
on the specified boundary; Ωl

∗  is the part of the spa-
tial domain holding mass at time tn for destination
cell Ωl at time tn+1 under advection; Γn+1 ≡
∂Ω×(tn,tn+1) is the space-time boundary at time step
n+1; and dx and ds signify differential volume and
area, respectively.

Note that equation 7 appears as space-time inte-
grals of the dispersion equations. ELLAM can be
viewed as a method of characteristics, tracking mass
along streamlines of the flow to accumulate data to
the right-hand side of the system of equations.

3 NUMERICAL METHODS
3.1 ELLAM overview

A numerical solution of the three-dimensional
ground-water flow equation is obtained by the
MODFLOW code using implicit (backward-in-time)
finite-difference methods. After the head distribution
has been calculated for a given time step or steady-
state flow condition, the specific discharge across
every face of each finite-difference cell within the
transport subdomain is calculated using a finite-
difference approximation (see Konikow et al. 1996).
The seepage velocity is calculated at points within a
finite-difference cell based on linearly interpolated
estimates of specific discharge at those points di-
vided by the effective porosity of the cell (see
Konikow et al. 1996).

Advection in flowing ground water is simulated
by mass tracking along the characteristic curves de-
termined by the seepage velocity. Calculation of ad-
vective movement during a flow time step is based
on the specific discharges computed at the end of the
time step.

As in MOC3D, tracking is performed using lin-
ear interpolation of velocity in the direction of the
component of interest and piecewise-constant inter-



polation in the other two directions. The approach is
to solve a system of three ordinary differential equa-
tions to find the characteristic curves [x = x(t), y =
y(t), and z = z(t)] along which fluid is advected. This
is accomplished by introducing a set of moving
points that can be traced within the stationary coor-
dinates of a finite-difference grid. Each point corre-
sponds to one characteristic curve, and values of x, y,
and z are obtained as functions of t for each charac-
teristic (Garder et al. 1964). Each point moves
through the flow field at a rate governed by the flow
velocity acting along its trajectory.

The ELLAM equations suggest that mass is
tracked backwards along characteristics to the pre-
image of each cell or boundary face. It is not possi-
ble, however, to exactly locate all of the mass at the
previous time level by backtracking a finite number
of points. In order to achieve mass balance, this im-
plementation of the ELLAM algorithm tracks the
known mass distribution forward from the old time
level to the new time level.

Numerically, this is accomplished by tracking
mass forward from the old time level, n, along char-
acteristics. Each cell is divided into subcells, where
the number of subcells is determined by parameters
NSC, NSR, NSL, specifying the number of subcells
in the column, row, and layer direction, respectively.
The center of each subcell is the location at time
level n of one of the moving points discussed above,
which is tracked through the time step under advec-
tion. Depending on the exact location of this point in
the destination cell at the new time, all of the mass
in the subcell may or may not also be found in that
destination cell. In order to mitigate the effects of
unwarranted mass lumping, subcell mass is distrib-
uted among cells neighboring the destination cell
using “approximate test functions,” wl. The value of
wl at the subcell center destination point is the frac-
tion of subcell mass to be distributed to cell l.

This yields the formulation of the time step n
term in equation 7,

e−λ∆t Cndx =
Ωl

*∫
e−λ∆t

j,i,k
∑

∆xj ∆yib j,i,k
NSC( ) NSR( ) NSL( )
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where summation runs through all subcells of each
cell in the transport subdomain, b is the cell thick-
ness, and pf is the image of p under forward tracking
to the new time level.

The model assumes a source or sink acts uni-
formly over the entire cell surrounding a source or
sink node. For a cell containing a fluid source, a sin-
gle time step is discretized into a number of sub-time
steps determined by parameter NT, and the com-
posite trapezoidal integration rule is applied in time.
Mass is tracked to varying locations within the

transport subgrid depending on when in the transport
time step the mass enters the system. At each sub-
time step, inflow mass is spatially discretized,
tracked, and accumulated just like mass that began
the time step already in the system, but for the
shorter interval.

Sink concentration is assumed to be the average
nodal concentration for the transport time step, with
the exception of a sink due to evapotranspiration,
where sink concentration is taken to be zero. Inte-
gration rules are midpoint in space and a one point
backward Euler in time.

The quantity mass/porosity in a cell at the new
time level tn+1 is expressed using the trapezoidal rule
for integration, formulated over each cell octant.
Concentrations at octant corners are weighted aver-
ages of neighboring node concentrations, determined
by trilinear interpolation.

Like the algorithms in the previous versions of
MOC3D, the ELLAM method approximates total
solute flux across the transport subdomain boundary
by the advective flux. This approximation is not de-
manded by ELLAM methods in general, but it is a
feature of this particular implementation. This ap-
proximation means that boundary-face concentra-
tions are not coupled to cell-center concentrations
through the numerical derivative. All mass moving
in and out of the transport subdomain can be tracked
using the advective algorithm. Mass tracked across
outflow boundaries provides data for a system of
outflow boundary equations decoupled from the cell
equations. User-input inflow concentrations together
with the outflow solutions then accumulate on the
right-hand side of the system of cell equations.

For an inflow boundary, as for a source, a single
time step is discretized into a number of sub-time
steps determined by parameter NT. The only differ-
ence in the treatment of the inflow boundary from
the treatment of the source is that only the two-
dimensional boundary face is discretized, while for a
source, the entire cell is discretized. For a cell Ωl,
the integration is performed over the intersection of
the support of the space-time test function for that
cell and the transport subdomain boundary; that is,
all mass entering through the boundary and advected
to Ωl during the time step is accumulated to the
right-hand side of local equation l.

The right-hand-side outflow boundary integrals
are constructed from the mass contributions tracked
across the boundary from interior cells, sources, and
inflow boundaries during the transport time step. All
mass associated with a tracked point that reaches the
outflow boundary at any time during the time step is
considered to leave the transport subdomain. Test
functions are evaluated to distribute mass among
neighboring boundary outflow faces.



3.2 Accuracy criteria

An accuracy criterion incorporated in the model con-
strains the distance that solute mass is advected
during each transport time step. A restriction can be
placed by the model user on the size of the time step
to ensure that the number of grid cells a point moves
in the x-, y-, or z-directions does not exceed some
maximum. This translates into a limitation on the
transport time-step length. If the time step used to
solve the flow equation exceeds the time limit, the
flow time step will be subdivided into an appropriate
number of equal-sized smaller time increments for
solving transport.

For advective transport, a mesh density sufficient
so that at least four grid nodes are represented across
a solute front (or zone of relatively steep concentra-
tion gradient) is needed for good accuracy. Similarly,
for advecting a peak concentration, the area of the
peak should be represented across at least eight
nodes of the grid for good accuracy. In such cases,
testing suggests that a peak concentration value can
be advected with a very small dissipation of the
maximum concentration per time step for a variety
of Courant numbers. With insufficient mesh density,
a peak will dissipate (or decay) rapidly for an initial
period of time during which it spreads out and os-
cillates; thereafter, the numerical decay is very slow
and the oscillations do not worsen. A fine discreti-
zation of tracked mass (large NSC, NSR, NSL) re-
duces the rate of peak decay when modeling with
many transport time steps. Regardless of the solution
accuracy, global mass is conserved.

The accuracy of the dispersion calculation is gov-
erned in part by the accuracy of the central-
difference approximations to the space derivatives,
meaning a finer mesh will result in better accuracy.
The implicit formulation for the solution of the dis-
persion equation is unconditionally stable. This al-
lows for large time steps during the simulation. Be-
cause ELLAM solves the dispersion equation along
characteristics, thus avoiding large values of the sec-
ond time derivative of the solution at passage of a
steep front, error in calculation of the time derivative
may be expected to be small compared to a standard
finite-difference solution to an advection-diffusion
equation. Some dependence of accuracy of the dis-
persion calculation on the size of the time step is re-
tained, however. Note that stability does not imply
accuracy; accuracy of the solution to the dispersion
equation decreases as the time step size increases.
On the other hand, modeling with many time steps in
order to resolve dispersion to the desired accuracy
could result in a loss of peak to numerical dispersion
inherent in the treatment of advection, an effect that
can be reduced by increasing NSC, NSR, and NSL.

One additional difficulty encountered with im-
plicit temporal differencing results from the use of a

symmetric spatial differencing for the cross-product
terms of the dispersion tensor. This creates a poten-
tial for overshoot and undershoot in the calculated
concentration solution, particularly when the veloc-
ity field is oblique to the axes of the grid. A remedy
for excessive overshoot and undershoot is to refine
the finite-difference mesh. This may, however, in-
crease simulation times.

4 MODEL TESTING AND EVALUATION

The ELLAM simulator was tested and evaluated by
running a suite of test cases (see Konikow et al.
1996, Kipp et al. 1998). This suite includes base re-
sults generated by analytical solutions and by other
numerical models. It spans a range of conditions and
problem types so that the user will gain an apprecia-
tion for both the strengths and weaknesses of this
particular code. All test cases involve steady-state
flow conditions.

4.1 One-dimensional flow

The first test case evaluates ELLAM for a relatively
simple system involving one-dimensional solute
transport in a finite-length aquifer having a third-
type source boundary condition. The numerical re-
sults are compared to an analytical solution by
Wexler (1992, p. 17).

The length of the system is 12 cm; other parame-
ters are summarized in Table 1. The solute-transport
equation was solved using ELLAM on a 120-cell
subgrid to assure a constant velocity within the
transport domain and to allow an accurate match to
the boundary conditions of the analytical solution.

Table 1. Parameters used in ELLAM simulation
of solute transport in a one-dimensional, steady-
state flow system.

Parameter Value

Transmissivity (Txx) 0.01 cm2/s
ε 0.1
Longitudinal dispersivity (αL) 0.1 cm
Total simulated time 120 s
Vx 0.1 cm/s
Vy = Vz 0.0 cm/s
Initial concentration (C0) 0.0
Source concentration ( ′ C ) 1.0
Number of rows & layers 1
Number of columns 122
∆x = ∆y 0.1 cm
∆z 1.0 cm
NSC 4
NSR=NSL 2
NT 128



Using the explicit finite-difference solution in
MOC3D, the dispersion coefficient imposed the
limiting stability criteria, and 2401 time increments
were required to solve the transport equation. The
implicit solver of MOC3D, however, required only
241 moves. ELLAM results for 241 transport time
steps, NSC = 4, NSR = NSL = 2, and NT = 128 are
essentially identical to the analytical results. There-
fore, these solutions are not plotted. Instead, results
are plotted for substantially fewer time increments.

A variety of parameter values were evaluated.
Figure 1 shows the analytical solution and two EL-
LAM solutions for a low-dispersion case. For 121
transport time increments, using NSC = 32, NSR =
NSL = 2, and NT = 128, there is a very close match
between the numerical and analytical solutions. To
improve clarity in showing the results for this case,
only every fourth data point is shown, except for
times less than 10 seconds at x = 0.05, where every
point is plotted. The efficiency of the numerical so-
lution can be improved by about a factor of four by
setting NSC = 4; the results are very similar, so are
not plotted, although the concentration is just
slightly low at the first grid cell. The simulation took
261 seconds when NSC = 32, but only 60 seconds
when NSC = 4. (Simulations were executed on a
Data General Unix workstation.) For 12 time incre-
ments, using NSC = 4, NSR = NSL = 2, and NT =
128, concentrations at early times and short dis-
tances are somewhat low, but elsewhere the results
look excellent. Thus, there is an overall good agree-
ment with the analytical results, as well as with the
previously published MOC3D results that used 20
times as many time increments. The simulation us-
ing 12 time increments took only 15 seconds.

Figure 1. Numerical and analytical solutions at three different
locations for solute transport in a one-dimensional, steady flow
field.

In all cases described above, the mass-balance er-
ror was less than 0.001 percent. In contrast, the
mass-balance errors for these problems using the ex-
plicit and implicit versions of the method-of-

characteristics code yielded mass-balance errors of
up to a few percent in some cases.

4.2 Point initial condition in uniform flow

Three-dimensional solute transport of an instantane-
ous point source (Dirac initial condition) in a uni-
form flow field was used as another test problem. An
analytical solution for an instantaneous point source
in a homogeneous infinite aquifer is given by Wex-
ler (1992, p. 42), who presents the POINT3 code for
a related case of a continuous point source. The
POINT3 code was modified to solve for the desired
case of an instantaneous point source.

The test problem was designed to evaluate the
numerical solution for a case in which flow occurs at
45 degrees to the x- and y-axes. This allows us to
evaluate the accuracy and sensitivity of the numeri-
cal solution to the orientation of the flow relative to
the grid. The assumptions and parameters for this
test case are summarized in Table 2 and are de-
scribed in more detail by Konikow et al. (1996).

Table 2. Parameters used in ELLAM simulation of
three-dimensional transport from a point source
with flow at 45 degrees to x- and y-axes.

Parameter Value

Txx = Tyy 10.0 m2/day
ε 0.1
αL 1.0 m
αTH = αTV 0.1 m
Total simulated time 40 days
Vx = Vy 1.0275 m/day
Vz 0.0 m/day
Initial concentration at source 1 × 106

Grid location of source (11,36,4)
Number of rows & columns 72
Number of layers 24
∆x = ∆y 3.33 m
Layer thickness (∆z) 10.0 m
NSC=NSR=NSL 4
NT 2

The results of the test problem for flow at 45 de-
grees to the grid are shown in Figure 2. The analyti-
cal solution for t = 130 days, which provides the ba-
sis for the evaluation, is shown in Figure 2a. The
ELLAM solution used the analytical solution at t =
90 days as the initial conditions, so the elapsed time
for the comparison is 40 days. The results using
three transport time increments, NSC = NSR = NSL
= 4, and NT = 2 are shown in Figure 2b for the hori-
zontal plane of the initial source. ELLAM produces
the symmetry characteristic of the analytical solu-
tion. There is also slight longitudinal spreading (nu-
merical dispersion).



The numerical results in Figure 2b show some
distortion of the shape of the plume relative to the
analytical solution. It is not as pronounced, however,
as the “hourglass” shape yielded by MOC3D for this
problem (see Kipp et al. 1998, Fig. 14). There is a
narrowing of the plume calculated with the numeri-
cal model, which is characteristic of a grid-
orientation effect and is caused primarily by the off-
diagonal (cross-product) terms of the dispersion ten-
sor. When flow is oriented parallel to the grid, or
when longitudinal and transverse dispersivities are
equal, the cross-product terms of the dispersion ten-
sor are zero. Because flow is at 45 degrees to the
grid in this test problem, the cross-product disper-
sive flux terms are of maximum size and negative
concentrations are most likely to occur. The calcu-
lated concentration field is less accurate in this case
largely because the standard differencing scheme for
the cross-product dispersive flux terms can cause
overshoot and undershoot of concentrations. If the
base (or background) is zero concentration, then un-
dershoot will cause negative concentrations. The
magnitude of this overshoot and undershoot effect is
reduced by using a finer grid.

Figure 2. Concentration contours for (a) analytical and (b) EL-
LAM solutions for transport of a point initial condition in uni-
form flow at 45 degrees to the x-direction at t = 130 days.
Contour values are log of concentration.

Indeed, some small areas of negative concentra-
tions were calculated. The extent of the areas of
negative concentration are indicated by shading all
areas where the relative concentration is less than
-0.05 and less than -10.0. Decreasing the size of the
transport time increment did not substantially reduce
the area over which negative concentrations oc-
curred. The increase in execution time, however,
was significant, so the very small improvement does
not appear to justify the extra computational costs.

This test case involving a Dirac initial condition
with flow at a 45 degree angle to the grid represents
a stringent test for any solute-transport model, and
the ELLAM results for this case are qualitatively
good. Of all the test cases for which ELLAM was
evaluated, however, the results were least accurate
for this particular set of test conditions.

4.3 Constant source in nonuniform flow

Burnett & Frind (1987) used a numerical model to
simulate a hypothetical problem having a constant
source of solute over a finite area at the surface of an
aquifer having homogeneous properties, but nonuni-
form boundary conditions, which result in nonuni-
form flow. Because an analytical solution is not
available for such a complex system, we use their re-
sults for this test case as a benchmark for compari-
son with the results of applying the ELLAM algo-
rithm in MOC3D, as was also done by Konikow et
al. (1996) and Kipp et al. (1998). Burnett & Frind
(1987) used an alternating-direction Galerkin finite-
element technique to solve the flow and solute-
transport equations in both two and three dimen-
sions. A detailed description of the problem geome-
try and of the parameters for the numerical simula-
tion are presented by Konikow et al. (1996, p. 55-
60).

Cases of both two- and three-dimensional trans-
port were examined for this problem, but only the
latter case will be presented here. The grids used in
the ELLAM simulations were designed to match as
closely as possible the finite-element mesh used by
Burnett & Frind (1987). Some differences in discre-
tization, however, could not be avoided because the
finite-element method uses a point-centered grid
whereas ELLAM uses a block-centered grid. The
former allows specifications of values at nodes,
which can be placed directly on boundaries of the
model domain. Nodes in ELLAM are located at the
centers of cells, and block-centered nodes are always
one-half of the grid spacing away from the edge of
the model domain. Among the small differences
arising from the alternative discretization schemes
are that, in the ELLAM grid, (1) the modeled loca-
tion of the 14.25 m long source area is offset by
0.225 m towards the right, and (2) the total length of
the domain is 199.5 m.



The input data values for this analysis are listed in
Table 3. The top flow layer consisted of constant-
head nodes and the solute source.

Table 3. Parameters used for ELLAM simulation
of three-dimensional transport from a continuous
point source in a nonuniform, steady-state, flow
system (described by Burnett & Frind, 1987).

Parameter Value

K 1.0 m/day
ε 0.35
αL 3.0 m
αTH 0.10 m
αTV 0.01 m
Total simulation time 12,000 days
Source concentration ( ′ C ) 1.0
Number of rows 15
Number of columns 141
Number of layers 91
∆x 1.425 m
∆y 1.0 m
∆z 0.2222-0.2333

m
NSC=NSR=NSL 4
NT 32

Results for the three-dimensional case based on
the test case of Burnett & Frind (1987) are presented
in Figure 3, which shows the transport results in a
vertical plane at the middle of the plume. The EL-
LAM plume (Fig. 3b) closely matches that calcu-
lated by the finite-element model (Fig. 3a), although
the former shows slightly further downstream mi-
gration of low concentrations of solute. The ELLAM
solution used seven transport time steps whereas the
finite-element solution used 40 time steps. The EL-
LAM solution provides a closer match to the Burnett
& Frind (1987) solution than do the previous
MOC3D results, which used 381 time steps with the
implicit dispersion calculation (Kipp et al. 1998) and
4,218 with the explicit dispersion calculation
(Konikow et al. 1996).

Figure 3. Results of 3-D nonuniform-flow test case: (a) finite-
element model using 40 time steps (Burnett & Frind, 1987, Fig.
8c), and (b) ELLAM solution using 7 time steps. Contours are
relative concentration (contour interval is 0.2).

4.4 Model availability

The new ELLAM code and a documentation re-
port will be available for downloading over the
Internet from a USGS software repository. The re-
pository is accessible on the World Wide Web from
the USGS Water-Resources Information Web page
at http://water.usgs.gov/software/ or from an alterna-
tive web page for USGS ground-water models at
http://water.usgs.gov/nrp/gwsoftware/.

5 RELATIVE COMPUTATIONAL AND
STORAGE EFFICIENCY

Computer-memory storage requirements for EL-
LAM are greater than those for the explicit or im-
plicit MOC3D dispersive transport algorithm. The
additional arrays required can increase the memory
size requirement by as much as a factor of three.

The computational effort required by the ELLAM
simulator is strongly dependent on the size of the
problem being solved, as determined by the total
number of nodes, the NS and NT values, and the to-
tal number of time increments. Analyses indicate
that the greatest computational effort, as measured
by CPU time, is typically expended in the mass
tracking routines. For a given problem, computa-
tional time may vary significantly as a function of
the characteristics of the particular computer on
which the simulation is performed, and on which
FORTRAN compiler and options were used to gen-
erate the executable code.

6 CONCLUSIONS

The accuracy and precision of the numerical results
of the implicit ELLAM simulator were tested and
evaluated by comparison to analytical and numerical
solutions for the same set of test problems as docu-
mented previously for MOC3D, although the in-
stantaneous point source problem was modified
slightly. These evaluation tests indicate that the so-
lution algorithms in the ELLAM model can success-
fully and accurately simulate three-dimensional
transport and dispersion of a solute in flowing
ground water. The numerical methods used to solve
the governing equations have broad general capabil-
ity and flexibility for application to a wide range of
hydrogeological problems. To avoid non-physical
oscillations and loss of peak concentrations, care
must be taken to use a grid having sufficient mesh
density to adequately resolve sharp fronts.

Relative to the method of characteristics, the pri-
mary advantages of the ELLAM code are that fewer
transport time steps need be used and that mass is
conserved globally, and relative to other standard



numerical methods, it minimizes numerical disper-
sion in advection-dominated systems. Using EL-
LAM with few time steps can provide an accurate
and cost-effective way of discerning salient features
of the solute-transport process under a complex
given set of boundary conditions. Furthermore, the
ELLAM algorithm eliminates the previous restric-
tion in MOC3D that the transport grid had to be uni-
formly spaced.
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