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Abstract 

 
Along with power output of the laser system, laser optical quality or beam quality provides a 
suitable measure of performance.  Power and beam quality are standards for the comparison of 
laser systems with each other and against the mission requirements.  An understanding of the 
meaning of beam quality is necessary to completely define the lasers performance capability.  
The current state of our community includes a multitude of different and not well understood 
beam quality measures:  M2, Strehl Ratio, Brightness, Power-in-the-bucket, ‘times diffraction 
limited’ and mode content determined by a variety of beam radius measures: half widths, second 
moment radius, widths at 1/e or 1/e2 points, width of primary lobe etc.  Another complication is 
that different elements of the community use different measures to evaluate optical quality 
characteristics.   
 
This paper will examine the underlying assumptions behind common measures of beam quality 
and compare the various measures as they relate to beams from lasers employing stable resonant 
optical cavities.  We show how the mode composition of a beam depends upon prior 
determination of beam radius and how the term ‘times diffraction limited’ can mean different 
things depending upon the method used to measure beam radius.  We show the ambiguities that 
arise between certain classes of beams and measures of beam quality and advocate for a laser 
beam quality standard that relates directly to mission requirements.   
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Symbols and abbreviations 
A,  area 
a  spatial limit of knife edge scan 
B,  brightness 
β,  beam quality 
c,C  mode coefficient 
CCD  charge-coupled device.  Common in digital cameras. 
CID  charged induced device.  Common in digital cameras. 
D,  diameter 
d,  measured spot size 
δ  kronecker delta function. 
∆ν  bandwidth 
E  electric field 
e,  natural base, 2.7128… 
f,  focal length 
FW1/e2M full width measured at 1/e2 of maximum 
φ,  azimuthal cylindrical angle 
∆φ,  rms wavefront distortion 
H  Hermite polynomial 
i  summation index 
I,  irradiance (radiometric nomenclature) and/or intensity (physics nomenclature) 
Î   normalized irradiance 
ISO  International Standards Organization 
l,  azimuthal mode index for Laguerre Gaussian functions 
LIDAR laser imaging, detection and ranging 
N  number 
k  knife edge function 
λ,  wavelength 
n,  x index for Hermite Gaussian functions 
NEA  noise equivalent aperture 
NIR  near infrared 
ν   frequency 
m,   measured 
m,  y index for Hermite Gaussian functions 
M,  laser mode quality 
M2  a laser beam quality measure 
MCA  mission compliant area 
MIR  mid-infrared 
MRC  mission requirements curve 
P,  power 
p,  power fraction 
p,  radial mode index for Laguerre Gaussian functions 
Pbi  Ideal power in the bucket 
pbi  ideal power fraction in the bucket 
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Pbm,  measured power in the bucket 
pbm  measured power fraction in the bucket 
PIB  power in the bucket 
π,  3.14159… 
r  radius 
rms  root mean square 
S,  Strehl ratio 
s,  source 
σ  variance 
t,  target 
Θ,  divergence angle of envelope 
θ,  angle 
θI  beam divergence in x or y direction 
θc   beam divergence for a circular profile 
θg   beam divergence of a circular gaussian profile 
θgl   beam divergence measured at the lens of a gaussian profile 
θgi  beam divergence in the x or y direction of a gaussian profile  
θgli   beam divergence measured at the lens in the x or y direction of a gaussian profile 
θm   beam divergence of a TEM00 gaussian mode, same as θg 
θh   beam divergence of a higher order gaussian mode 
TEM,  transverse electro-magnetic 
TEMnm  the nth, mth TEM mode 
u  orthonormal basis function 
W,  measured mode radius 
w,  beam radius 
w0,  beam waist 
Ω  solid angle 
XDL  times the diffraction limit 
x,y  transverse distances 
z,  axial distance 
zR,  Rayleigh range 
 
 
 
 

Background 
The output of a laser is nearly monochromatic and extremely coherent.  Narrow linewidth or 
long coherence length is the primary operational characteristic of a laser and it allows the laser 
output beam to be focused to a tiny spot. For a thorough discussion of formal coherence theory 
and relationships see refs [1] and [2].  The optical quality or beam quality of a laser is a measure 
of the laser’s focusability. More importantly, if the optical quality of the laser is excellent, the 
laser beam is controllable and understandable.  Many solid-state lasers employ a resonant cavity 
that produces a beam profile made up of a series of Hermite- or Lagurre-Gaussian modes.  For 
the case of a stable optical resonator, the laser focusability is compared to the focusability of a 



Ross & Latham, Journal of Directed Energy, 2, Summer 2006 pages, pp. 22-58.   4/38 

© 2006 Directed Energy Professional 
This free electronic copy may be distributed to individuals. 

monochromatic field with the lowest loss Gaussian beam spatial profile as an ideal standard to 
determine its optical quality.   If the electromagnetic field representing the modes of the laser is 
exactly known, the shape and power in the beam could be evaluated anywhere within the focal 
volume of that beam.  However, all of the parameters of the beam are not generally measured.  
Moreover, a solid-state laser generally includes thermally induced self-focusing effects within 
the laser gain material as the laser heats up. Although there are analytic ways to estimate these 
effects, it is important for higher laser powers to make an empirical measure of the solid-state 
laser’s optical quality under operating conditions to evaluate the actual as-built laser 
performance.  The two critical performance parameters of a solid-state laser that must be 
determined as the directed energy community develops solid-state lasers with higher powers are 
laser output power and the laser optical quality.  The purpose of this paper is to explain the 
meaning of optical quality and mode quality in basic conceptual terms, so that it is 
understandable to a broad spectrum of the laser development community and to point out the 
assumptions, strengths and weaknesses of various measures of laser beam quality to enable an 
informed choice of the mission-appropriate measure.   

Measures of Optical Quality 
Optical quality affects a laser beam’s focusability. Measures of optical quality are divided into 
two categories.  The first category is empirical or measurable quantities, such as total laser 
output power or energy, laser linewidth, focal spot size, far field peak irradiance, and encircled 
power or energy in the focal spot, which is sometimes called the power in the bucket.  Also 
included in this category are parameters, which are directly calculated using these measured 
values, such as beam divergence, coherence length, coherence width or area, and brightness.  
These parameters quantify the lasers performance empirically without comparison to a standard.  
A second category involves relative parameters, which compare the focusability of an actual 
laser beam to the focusability of an ideal standard laser beam, such as M2, beam quality, mode 
quality, and Strehl ratio2. 
Beam Divergence 

Diffraction is the name given to the angular spreading or divergence of light. A measure of the 
diffractive spread of a laser beam is the ratio of the average wavelength to the half size of the 
laser beam.  Various expressions for the beam divergence angles3  are listed in Table 1. 
Experimentally, the focused spot diameter or spot width can be measured for a given laser.  An 
empirical beam divergence is defined to be the ratio of the spot diameter or spot width to the 
distance between the focal plane and lens. 
 

Table 1 Beam divergence angles 

Expression Description 
Beam Divergence: 
θI=2λ/DI 
 
 
θc = 2.44λ/D 
 
 
θg = Dl/f = 2λ/(πw0) 
 

Divergence angle in the I-th direction, I = x or y, for the fundamental mode 
(TEM00 mode) due to a plane wavefront incident upon a rectangular aperture of 
dimension Dx × Dy. About 81 % of the total energy is contained in a rectangular 
spot defined by these divergence angles. 
Divergence angle for TEM00 mode due to a plane wavefront incident upon a 
circular aperture of diameter D.  About 84.5 % of the total energy is contained in a 
circular spot defined by this divergence angle. 
Divergence angle for TEM00 mode in the far-field of a circular Gaussian beam of 
waist radius w0.  About 86.5 % of the total energy is contained in a spot defined 
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θgl = 2w0/f  = 4λ/(πDl) 
 
θgi = Dli/f = 2λ/(πw0i) 
 
θgli = 2w0/f = 2λ/(πDli) 
 
θm = ds/f 
 
for θg  (see above) 
 

θh  =  M θg  

by this divergence angle.  θg is measured at the beam waist. 
Divergence angle for TEM00 mode of a circular Gaussian beam. θgl is measured at 
the focusing lens. 
Divergence angle in the I-th direction, i = x or y, for TEM00 mode in the far-field 
of a rectangular Gaussian beam. θgi is measured at the beam waist. 
Divergence angle in the I-th direction, i = x or y, for TEM00 mode of a rectangular 
Gaussian beam. θgli is measured at the focusing lens. 
Divergence angle for any laser beam.  ds is the measured spot size and f is the 
focal length of the focusing lens. 
Divergence of the TEM00 Gaussian mode that is the fundamental  
mode for the higher order mode of interest.  
Divergence of the higher order Gaussian mode. 

                                                                    

Strehl Ratio 

Strehl Ratio4, is most commonly used in the astronomy community.  Astronomers often image 
point objects located in the extreme far field.  Strehl is a ratio between the peak irradiance of a 
measured signal and the calculated peak irradiance of an aberration free signal.  In the laser 
community, Strehl customarily means the ratio between the peak irradiance of a laser beam and 
the peak irradiance of a zero order Gaussian or other ideal beam with the same power and beam 
radius as in equation (1). 
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The Strehl Ratio is commonly used in the analysis and modelling of optical system performance. 
In the presence of optical aberrations, mirror distortions, gain medium imperfections, and, or 
beam jitter, the far field peak irradiance is degraded.  If these optical distortions are small, the 
ratio of the actual or aberrated far field peak irradiance, Im, to the ideal or unaberrated peak 
irradiance, I0, is the Strehl Ratio, S, given in Table 2.  The Strehl Ratio has the advantage that it 
is simple and can be useful in troubleshooting laser optical performance problems or during laser 
design when a particular distortion will potentially be introduced by the system.  An empirical 
form of the Strehl ratio is given by measuring the actual far field peak irradiance and calculating 
the ideal peak irradiance from the laser output power. 
Brightness 

There are many definitions5,6 of brightness within the laser and optics community. In general, the 
brightness (B) for a coherent laser source of output area, As=Asource, and total power, P, is given 
by B = P/ (As Ω) where Ω is the solid angle subtended by the area in the far field or observation 
plane a distance z = f (f=1 focal length) from the laser source as in  equation (2).  The solid angle 
is given by Ω = Ωtarget =Atarget/z2= λ2/As.  
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There is no ambiguity in Asource.  It is defined in terms of the hard aperture.  This is not the case 
with Atarget which can be defined in terms of second moment, first lobe or other beam radius 
measure.  With suitable care, Brightness can be a consistent measure.  If ones mission is to 
efficiently put power in a solid angle, such as for LIDAR, tracking or communications missions, 
then Brightness is the mission appropriate measure.  It is also customary to make Brightness a 
relative measure by removing power, in which case it is called etendue.  One advantage to 
Brightness and etendue is that they are unaffected by the optics of a system.  In the absence of 
aberrations, absorption and turbulence, Brightness is a conserved property of an optical system.  
Various expressions for brightness are given in Table 2, and a discussion of this topic is 
presented in ref. [3].  

Beam Quality, M2, or Mode Quality 

The primary measurable quantity that determines laser focusability performance is the encircled 
energy or power in a small region around the focal spot. Beams propagating from hard apertures 
have a well-defined central lobe which determines their focal spot. Soft apertured beams, such as 
Gaussian modes, do not have a well-defined focal spot, so measures such as second moment or 
1/e2 must be used.  If the power or energy measured in the small area around the focal spot is Ps 
and the total laser output power or energy is P, the fraction of power or energy delivered by the 
laser to the focal spot is p = Ps / P.  The fractional power, p, or energy in the far field focal spot 
is a readily measurable and meaningful quantity.  If the laser is operating in a single lowest loss 
mode, the fractional power can be near the maximum obtainable for some ideal standard 
waveform.  For a uniformly illuminated circular aperture, p ≈ 0.84.  For a rectangular beam 
geometry, p ≈ 0.81.  For the lowest order Gaussian beam,  p ≈ 0.86 by the 1/e2 criteria.  The 
beam quality, β is defined to be the square root of the ratio of the fractional power in the far field 
spot for an ideal standard beam to the fractional power in the actual laser beam, that is β =  

(pideal/pact)
1/2.  β = 1 if the actual beam has the same far field power as the ideal standard.  The 

physical mechanism that determines the mode structure of the laser beam and the focused beam 
spread is diffraction.  For β = 1, the laser is said to be diffraction-limited.  The Strehl Ratio beam 

quality, βs, is given by βs = (1/S)1/2. The bare cavity modes of a stable resonant cavity are 
Gaussian beams.  For a single higher order Gaussian mode, the beam waist is M times the beam 
waist of the lowest loss Gaussian beam, the TEM00 mode.  The far field peak irradiance and the 

power within a small area around the focal spot is reduced by a factor of M2 , that is the 

Gaussian beam quality, βg ,is related to M2  by  βg = (M2)1/2 = M.  M2 or βg provides a 
meaningful measure of the optical quality when the beam structure consists of some combination 
of the Gaussian modes7,8.   The product of beam waist times far field divergence is known as the 
beam parameter product and is another measure of optical quality which can be related9 to M2 
and is most commonly used to measure the beam quality of semiconductor lasers.  If there are 
several sources of aberration or beam degradation, the total beam quality is equal to a product of 
all individual contributions, so that β = Π βi.    
 
The various measures of determining beam radius will be discussed later, but it is important to 
mention here that most measures of beam quality are highly dependent upon the method chosen 
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to determine beam radius and that there can be considerable variation in measured beam quality 
depending upon beam radius definition.   
  

Table 2 A short list of measures of optical quality 

Optical Quality Parameter Expression 
M and M2 Factors: 
      M = θh/θg  
      M2 = θhx/θgx θhy/θgy 
 
Gaussian Beam Quality    
Beam Parameter Product 

 
  M = (2p+l+1)1/2 for circular TEMpl mode 
  Mx = (2m+1)1/2 in the x direction for rectangular TEMmn mode 
  My = (2n+1)1/2 in the y direction for rectangular TEMmn mode 
  βg  ≈   M 
W0  Ω 
 

Brightness 
Total Brightness 
Spectral Brightness 

  B = P/(AsΩ) = P/λ2 

  Bt = P/Ω = PAs/λ2 

  Bν = P/(Ω∆ν) and Bλ = P/(As Ω ∆λ) 
Strehl Ratio 
S. R. Beam Quality 

  S  =  Im/I0  ~  1-(2π∆φ/λ)2 ~ Exp[-(2π∆φ/λ)2] 
  βs = 1/ S1/2  ~ 1+(π∆φ/λ)2 ~ Exp[+(π∆φ/λ)2] 

Encircled Power Ratio in a 
Circle of Radius rc 

  β =   (pideal/pactual)1/2 

Total Beam Quality   βt  =   Πi βI 
 Reduced Brightness    Ββ  =  (1/β2) ( P As / λ2 )   =   f2 Ir 

  

Power in the bucket (PIB) 

Power in the bucket is simply the sum of the total power within a particular area.  Usually the 
area is circular.  There are two basic means for determining the size of the circle.  The first is 
simply to use the actual size appropriate to a mission target.  If this is not known or may be 
variable, then one may use a size based on the diffraction properties of the laser output aperture.   
The radius of the bucket is called rb.  A discussion of how rb might be chosen for a particular 
definition of beam quality is given in a later section.  The normalized power in the bucket can be 
calculated as the fraction of output power that ends up inside the target circle,  
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Note that the normalized power in the bucket for some “ideal” beam is given by equation (3) 
with actual replaced by ideal.  If the ideal beam is chosen to have the same total power as the 
actual beam, the ratio comparing the power inside the target circle to an ideal beam is given by  
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The ratios are useful for comparing the efficiency of different systems but may lead to 
disagreements over the basis of comparison.  Promoters of stable resonators will likely want a 
PIB based on an ideal low order Gaussian beam which raises all the ambiguities in determining 
the characteristic radius of an appropriate comparison beam.  Those working with unstable 
resonators will likely want a comparison with a flat-top.  The actual power is, of course, what 
ends up accomplishing the mission and represents the bottom line.  In the comparisons that 
follow, we use equation (4) with a target circle equal to three times the second moment radius. 
Comparison of beam quality measures 

Figure 1, Figure 2 and Figure 3 show comparisons of M2, Strehl, Brightness and PIBR for 
various laser beams to illustrate first, that these measures of beam quality are distinct and ought 
not to be conflated in our thinking and second, to provide some insight to the  researcher to 
decide which measure is appropriate for a given application.  For the stable resonator modes in  
Figure 1 and Figure 2, the measures of beam quality were calculated using the z=0 plane and the 
z=3000m plane for near and far field.  No atmospheric distortions were included.  The beam 
itself was chosen to have a z=0 (near field) second moment radius of 3 cm.    M2 was calculated 
from the mode coefficients using equation (26).  M2 is always greater or equal to 1 and will be 
shown with numbers on the right hand scale.  Strehl, Brightness and PIBR were scaled to make 
their maximum value 1 and are shown with numbers on the left hand scale.  Strehl was 
calculated from the peak irradiances of near and far field beams.  The Brightness used is a 
relative brightness, sometimes called etendue, based on the physical aperture size in the near 
field and the second moment beam radius in the far field.  This was so the brightness would have 
a maximum value of 1 and would fit on the same graph as the other measures.  Relative Power-
in-the-Bucket (PIBR) was calculated using the total power inside a circle with radius equal to 
three times the second moment waist of the zero order Gaussian beams using equation (4).  This 
was done to provide a fair comparison since the zero order Gaussian beams in the rest of the 
study were assumed to come from a hard aperture with radius three times their second moment 
waist.   
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Figure 1, Comparison of beam quality measures for a beam composed of TEM00 and TEM11 modes 

 

 
Figure 2, Comparison of beam quality measures for a beam composed of 

TEM00 and TEM01+TEM10 (donut) mode 

Figure 1 and Figure 2 show M2, Strehl ratio, relative brightness and PIB as a function of percent 
of higher order modes.  The left hand side of these figures are for pure zero order Gaussian 
modes, TEM00, and the right hand sides are for pure 1st order, TEM11, and pure TEM10 +TEM01, 
‘donut’ modes as shown in Figure 11. Figure 1 shows that as the percentage of the beam that is 
first order mode increases from 0 to 100%, M2 increases from 1 to 3, Strehl drops from 1 to 0, 
relative Brightness decreases to ~13% while relative PIB decreases to about 55%.  Figure 2  
shows that as the percentage of the beam that is ‘donut’ mode increases from 0 to 100%, M2 
increases from 1 to 2, Strehl drops from 1 to 0, relative Brightness decreases to ~25% while PIB 
decreases to ~88%.  Comparing two systems for suitability to a defense mission, is a donut mode 
50%, 0%, 25% or 88% as good a beam as a zero order Gaussian?  Is a TEM11 beam 33%, 0%, 
13% or 55% as good a beam as a TEM00 Gaussian?  The differing measures of beam quality 
clearly do not measure the same thing.   
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Figure 3, Comparison of beam quality measures for a square annulus flat top beam for various apertures 

Figure 3 shows a comparison of various beam quality measures vs. the outcoupling size. It is 
important to emphasize that M2 is based on the second moment measure of beam radius.  
Theoretically, second moment requires an infinite plane – all information is significant and 
information away from the centroid is quadratically more and more significant.  M2 here is 
calculated from Fourier propagation on a 1024x1024 numerical array with spacing of 0.2mm – a 
total field approximately 20cm across.  The far field second moment radius calculated is a 
function of this numerical field, similar to the way a measured M2 measurement will be a 
function of the detector size and noise equivalent aperture as will be discussed in the section on 
experimental foundations of M2.  Differing systems will measure varying M2 values for the same 
beam.  We thus, do not intend to convey that the M2 of a square annulus flat top is 28.  
Theoretically, M2 is infinite for all beams from hard apertures.  We do intend to convey that M2 
can be measured to be 28 in conditions which match those of our Fourier propagation code.  In 
Figure 3, M2 increases from ~5 to ~28 as the fractional aperture increases from 0.05 to 0.95.  
Strehl (compared with a square flat top beam) decreased from 1 to 0.0, relative brightness 
decreased from 0.25 to zero and PIB decreased from 88% to 15%.  In comparing a square flat top 
with a square annulus flat top with a fractional aperture of 0.4, is the apertured beam 70%, 75%, 
60% or 97% as good a beam as the square flat top?  

The Foundations of M2 
The term M2 has developed out of the theory of Gaussian modes.  Gaussian modes are the bare 
cavity solutions for stable resonant cavities.  Within this section, the Laguerre- Gaussian modes 
which are appropriate for radial and azimuthal coordinates will be discussed.   The Cartesian 
coordinate modes, the Hermite-Gaussian modes, are given below.  The higher order radial 
Gaussian modes grow in size as a function of the radial mode index.  The radial size, rn, of the 
nth mode10 is approximated by: 
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nnn wMwrwnr =≡×≈ ,0  

(5) 

where w0 is the radius of the lowest order, 0th order, Gaussian, the TEM00 mode.  The Laguerre-
Gaussian modes and Hermite-Gaussian modes are given in reference [11].  We have chosen to 
label the scaling factor for the mode M for reasons that will be clear in the next section.  Some 
times the radial mode size is labeled wn.  The lowest order Gaussian mode beam radius has a 
quadratic profile as a function of axial distance along the center of the beam.   
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where w0 is the 0th order Gaussian beam waist radius,θ0 is the 0th order Gaussian beam 
divergence angle and zR is the Rayleigh range. The higher order modes follow a similar quadratic 
profile with the beam radius scaled everywhere in z by the scaling factor M.   The M2 value or 
the mode quality is determined by measuring the quadratic envelope of a particular actual laser 
beam and finding the fit parameters for a quadratic curve.   The quadratic envelope can readily 
be calculated for the envelope W(z).  The expression for the quadratic that follows the Gaussian 
beam envelope is 
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where the 2nd moment Gaussian beam radius for the 0th order Gaussian is w(z), Θ is the 
divergence of the envelope, and the beam radius for the actual beam, W(z), is taken to be the 
scaling parameter, M, times the 0th order Gaussian as given in equation (5).  The result of the for 
the envelope quadratic function is 

2
0 0 0 0

0

  ,   MM W M
W

π λΘ Θ θ
λ π

= = =  

(8) 

Note that we have chosen to label the radius for the 0th order beam with lower case symbols; 1) 
beam radius is w(z) and 2) beam divergence is θ.   The quadratic envelope parameters for the 
actual measured beam are labeled with upper case symbols; 1) beam radius is W(z) and 2) beam 
divergence is Θ.  Determining the M2 value depends on what particular measurement scheme is 
used and what choices are made for values within the fitting process.  Usually, the actual beam is 
a mixture of a few or many Gaussian modes.  There are analytic expressions for the scaling 
factor for single higher order modes.  However, there is not a unique Gaussian mode series 
solution for a given electric field profile or envelope.  In the absense of any laser fluctuations or 
noise, three measurements of the beam radius, Wi, and beam positions, zi, at three locations are 
sufficient to determine the quadratic envelope of the beam if there is no noise or beam 
fluctuation of any kind.  In practice14, many measurements must be taken.   If the beam consists 
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of a single higher order Gaussian mode, the value for M can be calculated by measuring the 2nd 
moment beam radius and multiplying by the mode coefficients as in equation (26).   

 
Figure 4, Determining the Parameters for the Gaussian Envelope 

For a multimode Gaussian beam, the beam also has a quadratic shape.  M2 is based upon the 
comparison of the multimode beam to an ideal TEM00 beam.  However, as the number of modes 
increases, the proper beam radius of that ideal TEM00 beam becomes increasingly hard to 
determine and creates inherent uncertainty in the measure of M2 as will be discussed below.  The 
irradiance for the one dimensional Hermite-Gaussian modes, TEMn modes, are shown in Figure 
5. 
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Figure 5 One Dimensional Hermite-Gaussian Mode Irradiances 

The formula for these modes is given in equation (21).   Note that the modes increase in 
transverse size as the mode index increases as in equation (5).  After normalizing to the laser 
power, P, the irradiance of the lowest order Gaussian mode is given by 
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where the beam radius as a function of the longitudinal coordinate, z, and the beam divergence 
angle are given by equation (6).    Since the higher order Gaussian modes increase in transverse 
size with increasing index, the irradiance envelope for a higher order mode or multimode beam 
can be approximated by the lowest loss Gaussian that is larger in radius.  By normalizing to the 
same laser power, the larger size mode envelope is given by 
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where the beam radius and beam divergence angle are given in equations (7) and (8).  Once 
again, the expression can readily be converted to x and y coordinates by using r2=x2+y2.  For 
non-symmetric cases, the envelope irradiance can be written as a product of an irradiance in x 
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and an irradiance in y that are scaled by Mx and My.  In that case, the mode quality value, M2, is a 
product as follows 

2
x yM M M=  

(11) 

The mode quality or M2 value is directly related to the quadratic envelope of the beam as 
discussed in the previous section.  Another measure of optical quality is the power in the bucket 
as given in equation (3).   Here, we take the bucket radius to be the 1/e2 point in the lowest loss 
Gaussian far field irradiance pattern.   At this bucket radius, the power in the bucket in the lowest 
loss Gaussian mode is given by12 ,18 
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That is, eighty-six percent of the total laser power is delivered into the bucket for the lowest loss 
mode.   For the larger radius mode envelope, the power in the bucket is given by 
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Note that equation (13) reduces to equation (12) for M2=1.   When M2>1, the normalized power 
in the bucket is less than eighty-six percent.   Finally, the beam quality is usually taken to be the 
square root of the ratio of the ideal standard beam power in the bucket to the actual beam power 
in the bucket for the same bucket radius.  Thus, the beam quality of the envelope beam can be 
given by 
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The transverse envelope function has been used to determine a “beam quality” based on a 
comparison to the power in the bucket of the lowest loss Gaussian beam as an ideal standard.   
This gives a definition of beam quality for a multimode Gaussian beam.  Asymmetric beams can 
readily be analyzed in a similar way. 
 
There is an important conceptual subtlety involved in the use of equation (13).  As one departs 
from single mode content, it becomes less and less clear what the proper radius of the lowest 
order embedded Gaussian is.  As one progresses to flat top shapes, there are many different, 
reasonable criteria on which to make this comparison and none of them are totally convincing 
because a flat top has a hard aperture while Gaussian modes are all of infinite extent.  By suitable 
comparison, a flat top can look terrible or very good in comparison to a TEM00 Gaussian.  If we 
judge each beam against itself, rather than by a tenuous comparison to an ideal, then we find that 
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a TEM00 Gaussian is not vastly superior to other beam shapes.  For example, A TEM00 Gaussian 
has 86% of its energy inside a 1/e2 bucket while flat top beams have approximately 77% of their 
energy inside this radius, yet flat-tops have an infinite M2.  The general rule for the use of M2 
and equation (13) is that they only apply to beams which can be fully and uniquely characterized 
by a few Gaussian modes.  Reference13, for example, reports that M2 is a unique and meaningful 
measure for stable resonator beams with non-annular round beams up to M2<3.2 . In the 
following sections, we discuss some of the experimental and conceptual problems associated 
with the use of M2. 

M2-What your beam analyzer’s manual didn’t tell you 
M2 is probably the most popular measure of laser beam quality.  It is also one of the most 
experimentally misused and inconsistently applied measures.  Many scientists have their own pet 
methods for measuring M2:  some use a knife edge; some take one measurement at focus and one 
in the far field; some measure the transmission through a single mode optical fiber; some relate it 
to Strehl ratio or other beam quality measures.  Many researchers rely on commercial “black-
box” devices and accept the manufacturers’ assurances that the device actually measures M2.  
One cannot rigorously examine the methods these various commercial devices use because they 
are hidden behind the word “proprietary”.  One must trust the manufacturer’s sales literature.  A 
proper M2 measurement is difficult to take.  Fortunately, there is an international standard14 
which specifies how the measurement is to be taken.  A proper M2 measurement takes: the 2nd 
moment beam radius measured in at least 10 places in the far field and through the focus, then fit 
to an ideal Gaussian equation in terms of Rayleigh Range, focus location and M2.  Further, the 
experimenter must be able to understand the sources of uncertainty in the measurement to be 
able to correctly assign error values, something sadly lacking from most commercial “black box” 
beam analyzers.   

Trade Offs 
The heart of a beam quality measurement system is the camera.  Silicon based charge coupled 
devide (CCD) or charge induced device (CID) cameras are the most common, typically have 
pixel sizes < 10µm, detect adequately in the visible and near infrared and are relatively 
inexpensive.  For the mid-infrared, there are screened cameras (with pixel bleed) or pyroelectric 
CCD cameras with large pixels (100µm x 100µm).  These cameras can necessitate the use of 
very long travel stages due to low resolution. A long-travel stage allows a loose focus, a smaller 
variation in irradiance as the detector is moved through the beam, less variation in signal to noise 
ratio and less stringent requirements on the pixel size of the camera.  These benefits come at a 
price.  Short travel precision stages (<10cm) are relatively inexpensive.  As the travel distance 
increases beyond 10 cm, the price increases significantly.  These short travel stages give focused 
spot sizes appropriate for silicon based CCD cameras for the visible and NIR but are often 
inadequate in the MIR where screened cameras are subject to pixel bleed and pyroelectric CCD 
cameras that have very large pixels.   
A further implication of stage length is the size of the image in the CCD camera and the number 
of pixels across the beam.  If, for example, we fill the CCD aperture in the far field, we may have 
3002 pixels across the beam.  With a short travel stage, we may have to focus down to only 102 
pixels across the beam with a corresponding decrease in signal to noise ratio.  The reliability of 
an M2 measurement is in the near focus and far field measurements.  Poor signal to noise near 
focus is a source of error in the final measured value of the beam radius. Figure 6 shows a 
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sample beam measured in the far field and near focus.  The accuracy of the beam radius 
measurement is far lower near focus than in the far field simply due to several orders of 
magnitude fewer pixels across the beam.  Note the change of transverse scale in Figure 6 
showing the significant portion of each beam. 
 

  
Figure 6, Near and far field beam measurements 

 

Pseudo-average M2 
The measurement of M2 is plagued by a number of theoretical-experimental disconnects.  
Theoretically, M2 is an instantaneous concept.  A given wavefront at a given instant can be 
assigned an M2 value.  Experimentally, M2 is a time-averaged measurement.  10 measurements 
with intervening stage movements filter changes, and software aperture changes takes time.  The 
ISO standard specifies that a laser must be warmed up for at least 1 hour prior to measurement.  
The hope is that the laser will become stable enough so that measurements taken on different 
parts of the wave train will yield an average value approximately equal to the instantaneous M2 
over the entire wave train.  If the laser fluctuates in power or mode content during the course of 
the measurement, the results are less valid.  If the laser remains constant during measurement but 
fluctuates afterwards, the results were valid, but not useful.  M2 is thus inappropriate for single-
shot lasers, those with short run times or with even slow fluctuations in power or mode content.  
It is also inappropriate if the measurement is taken under different operating conditions than the 
system will be used in. 

Second Moment Beam Radius 
There are many ways to define or measure the width of a laser beam.  M2 is defined in terms of 
the second-moment of the irradiance.  The second moment is calculated by weighting the 
measured irradiance by the square of the distance from the centroid of the beam.   
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The use of the second moment to measure beam radius creates another theoretical-experimental 
disconnect.  Theoretically, the second moment is very sound and can be applied to a wide variety 
of beam shapes.  Experimentally, it is problematic because small amounts of noise away from 
the beam are weighted more heavily than the actual signal you are measuring.  There are a 
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number of steps that must be taken as a consequence of the choice of second moment definition 
of beam radius.  The first is due to the fact that CCD cameras only return positive signals.  An 
artificial zero must be chosen such that the second moment of the noise is zero.  The second is 
that no extraneous information should be taken into ones measurement.  Extra information only 
contributes to error.  Determination of what constitutes “extra information” will be discussed in 
the section on noise equivalent aperture. 
 
Another implication of the second-moment heavily weighting data from the wings of a beam is 
that annular beams such as those from unstable resonators are measured to have inordinately 
large beam radii and suffer in comparison with other lasers.  Many high power laser systems use 
unstable resonators.  Defining beam quality specifications in terms of M2 for a high power 
unstable resonator may give the laser designer an impossible task that will not significantly 
enhance the ability of the system to accomplish its intended mission.   For example, take the case 
of a beam with M2 of 1.0, entirely 0th order.  Compare this with the beam of M2=2 composed of 
95% TEM00 mode and 5% TEM20+TEM20 mode and a beam of M2=2 composed of 75% TEM00 
mode and 25% TEM11, as shown in Figure 7.  The beam in the center has some higher order 
noise that will result in 5% of the energy diffracting away from the intended target.  The beam on 
the right also has an M2 of 2, the same as the beam in the center, but it has severe impact on the 
shape of the focal spot and may result in a loss of up to 25% of the energy of the laser.  This 
discrepancy is a result of the fact that M2 is fundamentally linked with the second moment 
measure of beam radius. 

 
Figure 7, M2=1 beam (left) M2=2 beams (center, right) in the far field 

 

Noise Equivalent Aperture 
With a beam analysis package of sufficient flexibility, one can experimentally verify that the 
measured second moment radius is a strong function of the software aperture put around the data 
returned by the CCD camera.  This is due to the fact that no matter how carefully one sets the 
artificial zero, the second moment of the noise will fluctuate slightly around zero.  The non-zero 
second moment of the noise will significantly alter the results of the measurement.  In the results 
shown in Figure 8, the measured second moment beam radius for the same beam from a 
standard, commercial Nd:YAG laser varies from 0.45 mm to 0.15 mm depending on what 
software aperture is chosen, plotted as a fraction of the full-width at 1/e2 maximum beam radius. 
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Figure 8, Measurement of 2nd moment beam radius as a function of software aperture 

 
The discrete nature of the signals returned from digital cameras has some long-reaching effects 
on the measurement of beam quality.  If we take a hypothetical case, shown in Figure 9 of the 
column averages for an 8 bit camera, the signal returned will fall between 0 and 255.  Further 
assuming that the appropriate artificial “zero” is at a pixel value of 50, this gives a maximum 
contrast of 205:1.  A pixel value of 51 is barely significant.  A pixel value of 50 is effectively 
“zero”.  Any information taken beyond the point at which the signal is less than 1/205th of the 
peak is extraneous and can only contain noise.  This defines a “noise equivalent aperture”, 
derived in equation (16) assuming a TEM00 gaussian, is equal to ~2.3 beam radii in our example, 
which must be electronically placed around the CCD image to exclude parts which can only 
contain noise.  This raises its own problem in that one must know the beam radius and the mode 
content in order to calculate the noise equivalent aperture in order to measure the beam radius 
prior to determining M2 which gives only clues as to the mode content.  In practice, this means 
that the beam radius must be first measured by a non-second moment method to correctly set the 
noise equivalent aperture prior to measuring the second moment beam radius.  Unfortunately, the 
flat portion of the curve in Figure 8 and the correct noise equivalent aperture do not coincide.  If 
they did, then small errors in pre-determining the beam radius wouldn’t matter.  The correct 
noise equivalent aperture is on a sloped portion of the curve and thus errors in the pre-
determination of the beam radius result in errors in the measured second moment beam radius.  
Note that NEA, thus defined, is the largest NEA appropriate.  A careful characterization of the 
dark-current noise of the CCD camera will show an rms fluctuation which will likely be greater 
than the 1 pixel value used here.  This will reduce the contrast accordingly.  Contrast = (peak 
signal-artificial zero)/ Max[rms noise fluctuation of camera,1] .  Note that frame averaging can 
be used, but does not have quite the effect that might be desired and is discussed in Appendix A: 
Derivation of error terms in M2 measurement. 
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Figure 9 Image contrast for a hypothetical CCD camera 

Figure 9, 

 

( )

( )
radii beam 3.2

205ln

ln

1
2

22

=

=

=

=−
wNEA

contrastwNEA
contraste w

NEA

     

(16) 
Equation (16) is strictly correct only for a TEM00 beam.  As higher order modes enter, the NEA 
must be re-evaluated based on the new mode content.  This places the experimenter once again 
in the quandary of needing to know what he is attempting to measure in order to measure it 
properly.  The measurement of M2 is thus limited to small perturbations on the basic TEM00 
profile.  The higher M2 is measured to be, the less meaningful it becomes. 

Irradiance dependent beam radius 
One further implication of the available contrast in a CCD image is that the noise equivalent 
aperture is a function of the peak signal.  If the peak of the image returns a pixel value of 200, 
the noise equivalent aperture will be different than if the peak of the image was at 250 due to the 
change in contrast of the image.  Further, a low contrast image will have a lower signal to noise 
ratio and measure the beam radius with greater error than a high contrast image.  This has 
relevance to ones filter set.  Neutral density filters are commonly used to attenuate the beam to 
protect the CCD camera.  The ideal case would be a continuous range of attenuation to keep the 
peak signal near the saturation point of the CCD camera for all measurements to maximize the 
image contrast and keep the noise equivalent aperture constant.  Typically, one has a discrete set 
of filter values.  The discontinuities in neutral density attenuation provide another source of 
uncertainty in the final measured value. 

Curve fitting 
Once the series of beam radius measurements has been taken, the data must be fit to a quadratic 
equation in terms of M2, the beam waist (w0) and the focal position (z0).  Note that there are two 
forms of this equation, shown as equations (17) and (18).  The difference is in how w0, the beam 
waist, is interpreted.  If w0 is interpreted as the beam radius of a pure Gaussian TEM00 mode 
embedded in the beam, then equation (17) is used.  If w0 is interpreted as the smallest measured 
beam radius, then equation (18) is used.  Since the measurement of M2 deals with measured, not 
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theoretical, beam radii, equation (18) is the most common in curve fitting15, while equation (17) 
is the most common in scientific literaturea. 
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The ISO standard does not specify a numerical method but does recommend weighting the data 
points inversely by the variance of each measurement.  This presumes that multiple 
measurements of the beam radius are taken at each position which further slows down the 
measurement process.  Multi-dimensional curve fitting is not an easy numerical task and 
available numerical methods are not universally robust and cannot work in an entirely automated 
fashion without review by a knowledgeable human.  It is fairly common for laser technicians to 
adjust their laser or optic train until their beam profiler gives a decent result.  In other words, 
they adjust the laser to overcome the problems in curve fitting and detection in their beam 
analyzer -- opposite from the ideal case of adjusting the beam analyzer to measure the laser as it 
is. Decisions must be made on how to weight data points, in what order to fit for the parameters, 
what initial guess to use and which numerical method to employ.  A Levenberg-Marquardt16 
method works well with the following procedure:  1) Initial guesses of the smallest measured 
beam radius and its location for w0 and z0 and M2 calculated using the divergence angle between 
the smallest and largest measured spot sizes. 2) an unweighted fit on all three parameters, 
keeping the result for z0 and using the results for w0 and M2 as initial guesses for the next step.  
3) a fit on w0 and M2 heavily weighted towards  points near focus, keeping the result for w0 and 
using the result for M2 as an initial guess for the next step.  4) an unweighted fit on M2.  While 
this method may not be the one “best” method, it is vastly superior to any algorithm hidden from 
the experimenter by the word “proprietary”.  A known method can be analyzed and improved.  A 
black-box method will forever produce results whose validity is known only to the anonymous 
developer. 
 
Lastly, the method used should provide a means to assign error bars based on signal to noise 
ratio of the CCD camera, variance in noise equivalent aperture, variance in beam radius 
measurements and discontinuities in the filter sets.  M2 is commonly quoted to 2 or 3 significant 
figures since that is what appears on the displays of commercial black box devices.  In fact M2 is 
typically accurate to slightly better than 1 significant figure. 

Summary of noise contributions to measurement of M2 
Noise on each pixel of a CCD camera contributes to uncertainty in measured beam radius caused 
which, in turn causes uncertainty in measured M2.  The primary sources of noise are:   

                                                 
a Equation (17) is equivalent to equation (7) and equation (18) is equivalent to equation (6) using the definitions of 
equation (8) 
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• Discretization error:  CCD camera takes discrete measurements of a continuous quantity.  
Measured as 1/resolution of the camera.  An 8-bit camera, for example, has a 
discretization error of 1/256. 

• CCD noise:  Gaussian dark noise present on all pixels.  Measured as the variance of 
readings around an arbitrary zero.  The more pixels one has across the beam, the less of 
an effect this causes.  The variance decreases with the number of measurements. 

• Filter error:  discrete neutral density filters cause deviation from saturation of the camera 
and alter the noise equivalent aperture.  Measured as the minimum percent change in 
filters.  If, for example, the filter set is spaced in tenths of neutral density (ND =.1,.2,.3,.4 
etc.), then this source of error is ~10%.  For continuous means of attenuation, this 
contribution is zero. 

• NEA estimation error:  NEA (noise equivalent aperture) must be estimated by using a 
non-second moment method to measure beam radius.  To the extent that the alternate 
method differs from second moment, the NEA was originally set incorrectly.  Due to dark 
current noise which creates irradiance dependent beam radius measurements, iteration to 
eliminate this source of error is not possible.  Measured as a theoretical variance between 
alternate method and second moment on a noisy beam. 

• Laser fluctuation:  Measured as a variance.  Since one can only perceive the beam via a 
CCD camera, this is measured the same way as CCD noise, except with the laser on. 

 
Total variance in each beam radius measurement from the above sources is: 
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NEA=noise equivalent aperture 
contrast=maximum contrast available on a particular camera.  See Figure 9. 
∆filter=% difference between filters. 
dark=dark current noise averaged over the entire beam. 
dark-pixel=dark current noise per pixel. 
w=beam radius. 
The derivation of equation (19) is presented in Appendix A. 
 
The uncertainty in measuring beam radii causes an uncertainty in the M2 result.  The variance in 
M2 is equal to the average variance in the data: 
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These sources of error are far more significant than commonly reported, largely due to the 
widespread prevalence of commercial, black box devices that include no estimation of error.  As 
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an example, the author reported the M2 of a tunable mid-infrared laser source17 as “less than 2”.  
This was based on the above error analysis and a statistical sample of M2 measurements.  Based 
on the authors observation and analysis, M2 measurements more reliable than 1 decimal place are 
exceedingly rare.  More common is ± 0.3 for measurements between 1.5 and 3.  Those who 
quote M2=1.651, for example, were either exceedingly careful on an extraordinarily stable laser 
or did no error analysis at all.  A more honest number might be “M2 less than 1.8”. 

Summary and recommendations for the use of M2 
M2 is a difficult measurement to take properly and is subject to several theoretical/experimental 
disconnects.  The accuracy of a measurement is vulnerable to signal to noise ratio in the CCD 
camera, fluctuations in contrast ratio, the continuity of the filter set used and implications of 
design decisions regarding camera resolution and focusing geometry.  M2 measurements from 
automated “black box” instruments are unreliable under any non-ideal conditions.  M2 is 
inappropriate for single shot, multi-mode or annular beams and is most appropriate for 
laboratory, single mode lasers with low power fluctuation and long term stability..  As a rough 
rule of thumb gained by experience, M2 values above 2 are strongly suspect and M2 values above 
5 have lost most of their meaning.  M2 is best used below ~1.5 where the beam has only one or 
two modes in more or less predictable ratios.  We recommend that a measure of beam 
performance directly related to the mission objectives be selected rather than automatically 
choosing M2.  If M2 be chosen, then we recommend that identical measurement apparatus and 
procedures be used to ensure true comparability.  We also recommend that “black box” devices 
not be used without appropriate error estimation. 

M2 – Underlying assumptions 
The previous section outlined the experimental difficulties in measuring M2.  This section will 
examine the underlying assumptions M2 is based upon to enable a researcher  to make a wiser 
decision regarding the use of M2 for a particular application.  Some measures of beam quality, 
such as brightness or power-in-the-bucket (depending upon the way the ‘bucket’ size is chosen), 
are absolute measurements, others, such as Strehl ratio and M2 are comparisons.  In the case of 
M2, there is an implied comparison of a beam with an embedded beam composed entirely of zero 
order Hermite- Gaussian profile.  Hermite-Gaussian functions are important because they are 
self-consistent solutions of the paraxial Helmholtz equation and represent shapes which will 
propagate indefinitely.  The mathematical form of the magnitude of normalized Hermite-
Gaussian functions is18: 
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Where Hn(x) are standard Hermite polynomials19  and w2(z)=w0
2(1+z2/zr
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The orthonormal relation allows the representation of any arbitrary field profile E(x) in terms of 
a series expansion in terms of these functions following the standard practices of linear algebra: 
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Where the field coeffiicents cn can be determined by the vector projection of un on E(x): 
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in one dimension.  In two dimensions, the cnm will be the product of an integral in x and another 
in y.  Because the modes are orthonormal, they can be used as a basis set for the expansions of 
equation (23).   The set of modes un only for complete, orthogonal basis functions with respect to 
modes based upon the same mode radius, w.  There is no unique set of mode coefficients that 
will describe an arbitrary beam shape without prior determination of beam radius.20 

The ‘best’ modal decomposition 
Equation (24) shows that in order to determine the mode content of a given arbitrary field, one 
must first determine the characteristic beam radius, w.  Restricting our discussion to the near 
field at the plane z=0, that means we must first determine w0, commonly called the beam waist.  
The ability to represent an arbitrary shape mathematically with Hermite-Gaussian modes is 
unaffected by our choice.  There are many reasonable bases on which to determine the 
characteristic beam radius, w0.  Each choice of w0 will have a unique set of modes associated 
with it.  All choices of w0 will lead to a series representation of the field.  All will propagate 
mathematically to the far field.  No physically measurable properties of the beam will be affected 
by our choice of w0.  We must therefore regard the modal composition of a given beam as not 
entirely a property of the beam but also of our mathematics.  It is the case that w0 is the 2nd 
moment radius of the TEM00 order Hermite-Gaussian mode of a given expansion.  This will be 
true no matter what definition of beam radius for the entire beam we use.  The 2nd moment of the 
lowest mode in an expansion will not be the second moment of the entire beam except in the case 
of a pure, TEM00 mode, so a Hermite-Gaussian expansion only weakly suggests, but does not 
demand, that we use a 2nd moment definition of beam radius for the entire beam.  It remains, 
therefore, to make a good determination of w0 based on the physics of the situation.  As an 
illustrative case, we will examine the Hermite-Gaussian representation of a beam typical to high 
energy lasers.  Figure 10 shows a square annulus flat top field shape, such as one might obtain 
from an ideal unstable resonator.  In this case the field magnitude was arbitrarily set to 1, the 
beam has a width of 5 cm and the inner “hole” has a width of 2 cm. 



Ross & Latham, Journal of Directed Energy, 2, Summer 2006 pages, pp. 22-58.   24/38 

© 2006 Directed Energy Professional 
This free electronic copy may be distributed to individuals. 

 
Figure 10 Square Annulus Flat Top 

 
TEM00 Hermite-Gaussian mode    TEM11 Hermite-Gaussian mode 

 
TEM01 + TEM10 Hermite-Gaussian  TEM02 + TEM20 Hermite-Gaussian mode 
  mode (donut mode) 

Figure 11, Hermite-Gaussian modes 

 

Figure 11 shows several Hermite Gaussian modes which might be used as a basis to represent the 
beam of Figure 10.  The particular modes: TEM00, TEM11, TEM02+TEM20 and TEM10+TEM01 
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were chosen for this figure as they happen to be the modes with the highest field coefficients by 
several orders of magnitude for most choices of characteristic beam radius, w0. 

 
Figure 12, Field coefficients of a square annulus flat top for several Hermite-Gaussian modes as a function of 

choice of characteristic beam radius, w0 

Figure 12 shows the field coefficients for the modes of Figure 11 as part of a Hermite-Gaussian 
modal decomposition of the square annulus flat top beam of Figure 10 as a function of 
characteristic beam radius.  For reference, the vertical lines in each of the four graphs of Figure 
12 show the second moment beam radius, which is the choice that M2 is based upon.  These 
coefficients were calculated for the z=0 plane, but, as a test, the square annulus flat top was 
Fourier propagated to a distance z=3000 m and the same modal decomposition was performed.  
Within the limits of numerical precision, the shape of the curves in Figure 12 were the same at 
z=0 and z=3000 m.  The point of this is to realize that modal composition is not entirely a 
property of the beam, but a product of the researcher’s mathematics and choice of characteristic 
beam radius.  Nothing physically measurable about the beam, moments, energy, fluence, 
propagation vectors, focal planes etc. changes when one chooses a characteristic radius, w0 and 
its accompanying modal decomposition.  There are four possibilities for determining the proper 
characteristic beam radius w0 from the results shown:    first, the peak of the curve of C00 vs. w0; 
second, the peak of the curve of the coefficient containing the most energy, in this case C02 vs. 
w0 (C2

02+C2
20 has a higher peak value than C2

00); third, the physical size of the aperture in the 
near field and last, we could choose the second-moment or some other measure of beam radius in 
the near field.  For comparison, Figure 13 shows the mode composition of a TEM00 (at a 
particular radius) Gaussian beam as a function of choice of characteristic radius.  As a numerical 
exercise, this is approaching the absurd since we already ‘know’ the mode content of this beam.  
Experimentally, however, one never ‘knows’ the mode content in advance and must determine it 
from the data.  In this case, we digitized a zero order Gaussian beam with 2nd moment radius of 
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3.33cm from a hard rectangular aperture 20 cm wide.  Depending upon choice of characteristic 
beam radius, one can have a significant contribution from the TEM20 and the TEM22 mode as 
well.  The feature that truly forces us to choose the ‘correct’ radius is the fact that the C00 curve 
reaches ~1.0 at a certain radius at which all other modes drop to zero which corresponds to the 
second moment radius, indicated by the vertical lines.  This is a luxury we do not have with the 
previous example of Figure 10 and there is nothing that will tell us the ‘correct’ characteristic 
radius, w0, of a square annulus flat top. 
 

 
Figure 13, Field coefficients of a TEM00 Gaussian beam for several Hermite-Gaussian modes as a function of 

choice of characteristic beam radius, w0 

 

M2 and ‘times diffraction limited’ 
Begin with equation (23) and apply the formula for second moment waist, and use the identity21,  
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(25) 

Thus, M2 has an easy formula in terms of Hermite-Gaussian mode composition22: 
 

∑ += )12(22 ncM n  

(26) 

The last line of equation (25) also forms the general relationship for the various “times 
diffraction limited” measures.  A measured beam area in the far field, Wx

2, is compared with an 
idealized or hypothesized beam area w0

2 which is predicted from a measurement of beam area in 
the near field.  The ratio between the two is the “times diffraction limit” of that beam.  This is 
illustrated in the first line of equation (27): 
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Where W is the measured beam radius in the far field, wnear is the measured beam radius in the 
near field and w0 is the ideal waist in the far field.  z represents the focal length of the optics and 
λ the wavelength.  The second line of equation (27) comes from reference [12] and can be used 
for illustrative purposes as an approximation to more formal means of mathematically 
propagating an aperture or radius to a focal plane.  Each ‘times diffraction limited’ measure is 
thus tied to one beam radius measurement in the near field and another in the far field.  If the 
measure of beam radius is chosen to be the second moment in both near and far field, then the 
‘times diffraction limit’ is equal to M2.  Otherwise, it is not.  It is easy to imagine that the choice 
of measuring technique can give rise to a number of ‘times diffraction limited’ numbers that 
could describe a given beam.   

Table 3:  ‘Times diffraction limited’ numbers for square annulus flat-top beam of Figure 10 vs. various 
methods of measuring beam radius in near and far field (3km). 

 W far field↓  C00 maxa Largest 
mode 
maximumb 

Physical 
aperture 

2nd moment 
radius 

Wnear field→  3.58cm 2.01cm 2.5cm 4.47cm 
C00 maxa 2.84cm 1 0.32 0.49 1.56 
Largest 
mode 
maximumb 

5.05cm 3.16 1 1.54 5.0 

2nd moment 
radius 

5.37cm 3.57 1.12 1.75 5.55 

Radius of 
central lobec 

3.03cm 1.14 0.36 0.56 1.79 

 
Table 3 shows the wide variety of “times diffraction limited” numbers we can come up with 
depending upon the method chosen to measure beam radius.  We can argue that the square 
annulus flat top beam of Figure 10 is anywhere from 0.32 to 5.55 ‘times diffraction limited’.  
How can anything be better than the diffraction limit?  Choose a suitable basis of comparison 
and one certainly can have a “better than diffraction limited” beam!  Table 4 shows a similar 
analysis for a zero order Gaussian beam with a near field second moment radius of 2cm.  
Through suitable choice of method, we can show that a zero order Gaussian beam is from 1 to 
47.6 ‘times diffraction limited’.  The point of these examples is not to argue that a zero order 

                                                 
a See Figure 12. 
b In the case of the square annulus flat top of Figure 10, this is the (2,0)+(0,2) mode. See Figure 12. 
c Measured by examination of the far field pattern after fourier propagation to the far field. 
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beam is better or worse than a square annulus flat top or that any of the particular methods of 
determining beam radius ought to be adopted, but to emphasize that ‘times diffraction limited’ is 
an absolutely meaningless number unless the methods of determining beam radius are defined 
along with it and that ‘times diffraction limit’ numbers generated by differing methods of beam 
radius are not comparable.  Differing standards for measuring beam radius are not uncommon 
and some are unconscious.  In some cases, various measures of beam radius are identical for 
certain kinds of beams.  There is no difference between Half-Width-Half-Maximum and Half-
Width-1/e2-Maximum for a flat top beam in the aperture plane, but these measures give greatly 
different results in the target plane.   
All hard edged beams, such as our example square annulus flat top, have diffraction ripples 
extending to infinity in the focal plane.  Since there is no such thing as an infinite detector, all 
second moment measurements on any hard edged beam are actually limited by the noise 
equivalent aperture of the system, thus converting the measure of M2 to a closely related ‘times 
diffraction limited’ number.  It is also common to measure far field beam radius by width of the 
principle lobe.  This is a perfectly reasonable measure of beam radius, but converts the 
measurement from M2 to one of the other ’times diffraction limited’ numbers.  Various beam 
radius standards are listed in Table 3 and Table 4 and are associated with M2, Strehl, brightness 
and ‘times diffraction limited’.  Often, these measures conflict and are not equivalent. 

Table 4 ‘Times diffraction limited’ numbers for a zero order gaussian beam vs. various methods of 
measuring beam radius in near and far field (3km). 

 W (far 
field)↓  

C00 max or 2nd 
moment radius 

Physical 
aperturea 

Wnear→  2cm 6cm 
C00 max or 
2nd moment 
radius 

5.08cm 1 9 

NEAb 11.68cm 5.3 47.6 
 

Summary, Conclusion and Recommendations 
We have shown the experimental issues related to measuring M2 along with the theoretical 
underpinnings of M2.  We showed that the term “times diffraction limited” is meaningless 
without reference to a particular method of determining beam radius in both near and far field.  
We showed that the theoretical issues which are clear for nearly zero order gaussian modes 
become very confused when dealing with beams typical of high power unstable resonators.  We 
therefore conclude that M2 is an appropriate measure for nearly zero order CW gaussian stable 
resonator beams but is not an appropriate measure for pulsed, single shot or unstable resonator 
beams, nor can stable resonator beams be compared on any kind of equal footing with unstable 
resonator beams in terms of a ‘times diffraction limited’ number.  We urge that the term ‘times 
the diffraction limit’ be discarded in any context in which laser systems are compared against 
one another.  
                                                 
a We follow the 99% criteria [Siegman, Lasers, chapter 17.1] which corresponds to a physical aperture three times the 2nd 
moment radius 
b Noise Equivalent Aperture.  See Equation (16) and Figure 9.  This is chosen in lieu of the first lobe diameter used in the 
previous example. 
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We also showed that the various common measures of beam quality do not measure the same 
aspects of the beam and that they should not become conjoined in our thought or communication. 
M2, strehl, ‘times diffraction limit’, brightness and power in the bucket do not measure the same 
thing except under very idealized conditions.   

A mission consistent measure of optical beam quality 
It is clear that the high power laser community needs a measure of laser quality that is consistent 
with our mission.  An ideal metric would satisfy at least the following criteria: 
 

• Single shot measurement 
• Taken at either near or far field but not both 
• Not be heavily dependent upon noise and detector fluctuation 
• Not easily subject to obfuscation or argument 
• Compare stable and unstable resonators on equal footing 
• Easily made uniform for comparison between different systems 
• Relate directly to the mission requirements 

 
M2 meets none of the above criteria.  Strehl meets several of the criteria as does brightness.  The 
last criterion, of relating to the mission requirements, depends on the mission.  If ones mission is 
to have a very high peak irradiance without concern for anything else, then Strehl is appropriate.  
If ones mission is to illuminate a solid angle (as in LIDAR and communications), then brightness 
is appropriate.  In the high power laser directed energy community, our mission is most often to 
deliver power to a target.  That is, there is a circle of some radius and we wish to get as much 
power in that circle as possible for a given laser source.  Aside from the matter of the definition 
of the size of the target circle, that is the definition of the beam quality measure known as 
“power in the bucket” (PIB).  Even recognizing the strong correlation between power delivery 
applications and PIB, there is still the problem of the proper basis of comparison.  PIB is 
typically not quoted as a single number, but shown as a curve.Figure 14 shows some sample PIB 
curves for the beams shown in Figure 15.  The encircled power (arbitrary units) is shown as a 
function of the far field radius.  In this case, all three curves were generated from beams 
proceeding from a 3cm diameter aperture without focusing or directing optics to a distance of 
3km from the aperture.  The middle, thick curve represents the far field PIB of an M2=1.2 beam 
composed of 0 and 1st order Hermite gaussian modes truncated at the π/2 w point in the near 
field.  The lower curve is for a donut mode from the same aperture and having the same energy 
content as the low order Gaussian.  The upper curve is for a flat top beam from the same size 
aperture as the low order beam, but with 30% of its peak intensity so it has 50% more energy 
content.  Both stable resonator beams had w00=1cm in the near field.  A 2-dimensional 
representation of this is found in Figure 11.  This basis of comparison was chosen arbitrarily.  A 
flat top beam with the same peak intensity as a zero order Gaussian truncated at the π/2 w points 
has 5 times its energy content and would be inconvenient to show on the same chart.  This does 
emphasize that a TEM00 mode is very inefficient at energy extraction from most gain media.  If a 
flat top beam results in a loss of 10% diffraction efficiency compared to a TEM00 to the far field 
but delivers 5 times more power, it is hard to argue that a TEM00 is the ‘ideal’ beam shape. 
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Figure 14 – PIB curves Figure 15 – Flat top and Gaussian beam 

comparison 
 
The standard PIB graph is an ideal place to construct a ‘Mission Requirements Curve’ (MRC).  
First, we notice that lines of constant average power run horizontal and lines of constant radius 
run vertical.  If the physical effect our mission was dependent upon were a function of average 
power only, we might stop there.  Typically, physical effects are functions of intensity or field on 
target. Figure 16 shows the PIB curves of Figure 14 with lines of constant intensity or field 
drawn in.  On a PIB curve, these lines are quadratic in shape.  For a given mission, the minimum 
radius is decided by an analysis of jitter and atmospheric aberration.  The maximum radius is 
decided by the target size less jitter.  The physics of the laser-target interaction determines the 
minimum intensity or field and a Mission Requirements Curve (MRC) are generated, as in 
Figure 17.  Note at this point, how all arguments and speculations about proper basis of 
comparison have been done away with.  We compare each beam, not with a reference ideal, but 
with the mission requirements based on the physics of the application.  Any disputes will be over 
the mission requirements, not the beam quality standard. 

Figure 16 PIB curve with intensity iso lines 
shown 

 
Figure 17 PIB curve sample MRC shown 

 
One unsatisfactory element is left in the comparison of a PIB curve to a MRC curve.  That is, we 
would like the performance of the system to be reducible to a single number so that one can 
definitely state that laser system A is better than system B and by how much.  One way to do this 
is to take the area of overlap between a laser’s PIB curve and the MRC to generate a ‘Mission 
compliant area’ (MCA).  This is notionally shown in Figure 18.  The two shaded regions show 
the MCA’s for the flat top beam and the Gaussian beam.  In the case chosen, assuming a 2kW 
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Gaussian beam, the flat top beam (infinite M2) has an MCA of ~50 W m while the M2=1.2 beam 
has an MCA of 12.75 W m.  In the case chosen, we can conclude that the flat top beam is 
approximately four times a better beam than a low order Gaussian for the mission envisioned 
based on its overall greater window of operation and the power by which it meets or exceeds 
mission requirements.  The donut mode beam, in spite of a relatively good beam quality of 2.0, 
has no mission compliant area for this example. 
 
It will be observed that the net effect of basing a laser beam standard on a previously determined 
mission requirements curve will displace the center of argument from the standard, to the 
mission.  Whereas we now argue about both the meaning and propriety of a laser beam quality 
measure and the mission requirements, a mission-related standard will ensure that our 
deliberations concern the mission requirements.  The purpose of a laser beam quality standard is 
to ensure that the laser system will accomplish the mission if the standard is met.  Our confusion, 
deliberations and debates need to center on what the mission requirements are.  Once that is over, 
the standard will tell us if a given system will meet those requirements. 
 

 
Figure 18  Mission compliant areas for two sample beams 

 
 
We realize that each service and mission may have different standards and criteria for 
constructing a mission requirements curve and believe that these differences are appropriate.  It 
may become valuable for each service to determine a small number of standard test missions for 
general use prior to determination of exact requirements or for generic evaluation of new 
technologies.  We have only recommended a general approach to constructing a mission 
requirements curve.  The actual approach, determined for each mission, will include information 
from the laser itself, beam director, atmospheric propagation and target interaction.   
 

Appendix A: Derivation of error terms in M2 measurement 
Equation (19) represents a fractional or percent variance on each beam radius measurement.  
This section shows the derivation of its terms except for the laser fluctuation and filter error 
which must be measured directly. 
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Discretization and CCD noise: 
Take the second moment of irradiance + some discretization error equal to 1/resolution of the 
camera.  (1/256 for an 8-bit camera).  In analyzing the error, we remember that the error occurs 
on each pixel independently and that therefore the variances add in quadrature, which means 
they can be integrated as if the error were a constant under the integral. 
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The limits of integration are from the centroid of the beam out to the noise equivalent aperture 
(NEA). 
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Likewise, the contribution to beam measurement variance due to dark current noise is: 
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The number of pixels involved in a given measurement, Npixel= Apixel/πNEA2.  The ratio of w to 
NEA is ln(contrast).  The error term in equation (28) is normalized with respect to the beam 
radius and the radial variable.  

NEA estimation error 
Uncertainty in the estimation of the noise equivalent aperture contributes to the overall error in 
the measurement in several ways in equation (19).  The error in NEA estimation due to filter 
error, ∆NEA, is calculated as follows, beginning with equation (16): 
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The variance in NEA estimation due to the use of a non-second moment method depends, of 
course, upon the alternate method chosen. The author uses the full width at the 1/e2 points 
(FW1/e2 M).  The FW1/e2 M is that point on a Gaussian where: 
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Effect of frame averaging on dark current noise 
It may be hoped that averaging over several shots would reduce the effect of dark current noise, but such is not the 
case.  We begin by noting that when two Gaussian noise distributions are added together, the resultant distribution is 
the convolution of the originals.  The convolution of Gaussians of width σ increases as the square root of the number 
of shots n .  To distinguish between averaged distributions and single shot distributions, the subscript 1 will be 
used to indicate a single shot quantity. 
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Thus, the σdark-pixel increases as the n , σdark-pixel= n σdark-pixel,1 . This, in turn, affects the contrast, which varies as 

n/1 , contrast=contrast1/ n .  The contrast dictates the Noise Equivalent aperture which will expand as the 
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The error in the 2nd moment waist caused by dark current noise is thus 
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Whether it is advisable to average over many shots will depend upon the noise characteristics of the laser being 
measured.  Fortunately, the fourth root of number of shots is a slowly increasing function and the benefit of 
increasing the number of shots is likely to outweigh the increased error to dark current noise at least up to a point. 
 

Sample Calculation of error in M2 
A assumes the followinga:  

• 8-bit CCD camera with the pixel area of 12µmx10µm=120µm2. 
• contrast =1:200. 
• dark current noise of 10% rms, (σ2=.01). 
• laser noise of 10% rms (σ2=.01). 
• filter increment of 10%. 

                                                 
a These are actual values from the Fiber Pumped Optical Parametric Oscillator of reference [17]. 
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• Assume a beam radius of 20µm at focus, for an NEA of 46µm.   
• In the far field, assume a 1mm beam radius for an NEA of 2.3mm. 

Putting these values into equation (19) yields a variance of (28%)2 at focus and (27%)2 in the far 
field.  The average variance will be approximately (27%)2.  This means that if the beam analyzer 
returns a result of 1.5, we have a standard deviation of ± 0.4, so the result should be quoted as 
1.5± 0.4.  Alternately, M2 < 1.9 would be appropriate.  In publishing the results on the system 
these figures came from, we reported an M2 of “less than 2”. 

Appendix B: Alternate M2 method: knife edge 
Due to the prevalence of alternate methods of M2 measurement, some are included in a brief 
appendix of the ISO standard. This section will rigorously examine the use of one of these 
alternate methods.  The ISO standard states that “at least for several cases there exists a 
correlation” between the use of a knife edge measurement and the use of a CCD camera.  The 
knife edge refers to the practice of scanning a surface such as a razor blade across the beam, the 
result being the 1-D integral of the signal one would see from a 2-D CCD camera.  The ISO 
standard recommends scanning the knife until 16% of the energy reaches your detector, then to 
the 84% point and measuring the distance between them.  A factor is then multiplied by this 
distance to calculate the “second moment” beam radius.  Perhaps this method makes some sense 
when taking measurements by eye and hand, but when constructing an automated system it 
raises some serious issues.  First, every measurement taken by an automated system takes time as 
does every stage motion.  It may take a dozen measurements and a root finding algorithm to 
locate the 16% point and the 84% point.  Why throw away all the extra data?  The second issue 
is that “the at least for several cases” actually means “very nearly single mode beams”. 

A true second moment knife edge method 
There is no need to attempt to approximate the second moment beam radius using only two data 
points.  Judicious use of the calculus method of integration by parts allows the derivation of a 
convenient formula that will use all the knife edge data taken: 
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Comparison of the ISO 16-84 method with second moment knife edge 
method 
During the following discussion we will refer to the ISO recommended method of using the 16% 
and 84% points as the ISO 16-84 method.  The method using the discrete version of equation 
(30) will be referred to as the second moment knife edge method.  We examined a test case using 
a modeled beam of known mode composition and then a simulated knife edge measurement 
which will be processed with both the ISO 16-84 and the second moment knife edge methods to 
determine if they really are equivalent.   

 
Figure 19 Comparison of ISO 16-84 vs. second-moment knife edge 

For the test case, we used a beam composed of 0th, 1st, and 4th order modes.  The M2 can be 
easily calculated23 for comparison by ( )∑ += 1222 ncM n , where the cn

2 are the energy fractions 
of each mode.  Figure 19 plots the M2 as measured by the ISO 16-84 method and by the second 
moment knife edge vs. the calculated M2 for the test case mentioned.  The second moment 
method used the numerical curve fitting methods outlined in the curve fitting section above.  It 
can be seen that the second moment knife edge gives the known M2 while the ISO 16-84 method 
fails to do so, though it does asymptotically approach the proper slope. 
 
Within numerical precision ISO 16-84 method consistently under-measures M2 and thus fools 
the researcher into thinking he has a better beam than he actually does.  If the method is not 
specified in a beam quality standard, then the advantage in contract selection will go to the 
system that uses the alternate method that erroneously reports the lowest M2 value. 

Appendix C:  M2 and Strehl 
The various measures of beam quality all converge for a pure zero order Gaussian beam.  This 
fact has lead some to conclude that the different measures of beam quality are equivalent.  One 
common version of this is to equate M2 and Strehl-2.  The Strehl ratio is the ratio of the peak 
value of a beam vs. the theoretical peak value in the absence of any distortions.  It is commonly 
used in imaging, where the cause of deviation from zeroeth order Gaussian is due to atmospheric 
distortion or lens aberration.  In laser propagation, it may also be due to the mode content of the 
laser, so that the theoretical peak value is that of a pure 0th order Gaussian beam.  For very nearly 
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perfect beams, Strehl-2 is often approximately equal to M2.  It is important to know the 
limitations of this approximation.  Both Strehl and M2 are easy to calculate for a hypothetical 
beam of known mode composition.  Figure 20 shows a comparison of M2 and Strehl-2 for a 
hypothetical beam composed of 0th order and 1st order modes.  The horizontal axis is the energy 
fraction of the 1st order component of the beam.  In this case, M2 and Strehl-2 are approximately 
equal for up to 5% 1st order beam, out to an M2 of ~1.1.  Figure 21 shows a comparison of M2 
and Strehl-2 for a hypothetical beam composed of 0th, 1st, and 7th order modes.  In this case, the 
1st and 7th order modes are given equal energy content and the horizontal axis is the energy 
fraction of higher order modes in the beam.  In this case, Strehl-2 sharply diverges from M2 
immediately and the two are only equivalent for M2=Strehl-2=1.00.  In this particular case, if 
Strehl were measured and M2 reported, then the beam quality would be reported as better than it 
actually is and the laser would not, in fact, perform as well as might be expected.  If the phrase 
“times diffraction limited” were used, then the underlying method might remain obscured. 
 

 
Figure 20 Comparison of M2 and Strehl-2 for a 0th and 1st order beam 

 
Figure 21 Comparison of M2 and Strehl-2 for a 0th, 1st and 7th order beam 
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Whether M2 is or is not approximately equal to Strehl-2 is entirely dependent upon the mode 
content of the beam.  In practice, we can never know the exact mode content. Each of the 
different measures of beam quality gives a unique view on the effect of the unknown mode 
content of a given beam.  It is the authors’ opinion and M2 and Strehl-2 should never be assumed 
equivalent to one another. 
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