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Abstract

In this paper we explicitly construct the entropy solutions for the Lighthill-Whitham-

Richards (LWR) traffic flow model with a flow-density relationship q(ρ) which is piece-

wise quadratic, continuous, concave, but not differentiable at the junction points where

two quadratic polynomials meet, and with piecewise linear initial condition and piecewise

constant boundary conditions. As observed traffic flow data can be well fitted with such

continuous piecewise quadratic functions, the explicitly constructed solutions provide a fast

and accurate solution tool which may be used for predicting traffic or as a diagnosing tool to

test the performance of numerical schemes. We implement these explicit entropy solutions

for three representative traffic flow cases and also compare them with numerical solutions

obtained by a high order weighted essentially non-oscillatory (WENO) scheme.
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1 Introduction

One of the earliest studies of traffic flow theory began when Greenshields (1934) measured

the traffic flow and speed on a highway and identified a linear relationship between speed and

density. To describe the dynamic characteristics of traffic on a homogeneous and unidirec-

tional highway, Lighthill and Whitham (1955) and Richards (1956) independently proposed

a macroscopic model of traffic flow, which is now known as the LWR model in the litera-

ture of traffic flow theory. Since then, a substantial amount of work has been conducted to

improve the modeling approach of traffic flows, which can be broadly classified as hydro-

dynamic models (Daganzo, 1994; Kerner and Konhauser, 1994; Newell, 1993; Payne, 1979;

Zhang, 1998; Wong and Wong, 2002a), gas kinetic models (Helbing, 1996; Hoogendoorn

and Bovy, 2000; Nelson and Sopasakis, 1998; Prigogine and Herman, 1971; Pavieri-Fontana,

1975), and cellular automation models (Biham et al., 1992; Cuesta et al., 1993; Krauss et

al., 1997; Nagatani, 1993; Nagel and Schreckenberg, 1992). Although advances have been

made in many directions, the LWR model is still widely used for the modeling of traffic flow,

because of its simplicity and good explanatory power to understand the qualitative behavior

of road traffic. The results that are obtained from the LWR model are generally adequate

for many applications such as traffic management and control problems.

The LWR model is formulated as a scalar hyperbolic conservation law and is often solved

by finite difference methods (Daganzo, 1995; LeVeque, 1992; Lebacque, 1996; Michalopoulos

et al., 1984). The main difficulty in designing efficient and high order finite difference methods

for the LWR model or in general for hyperbolic conservation laws is the inherent presence

of discontinuities (shocks) in the solution (Lebacque, 1996). Moreover, discontinuous weak

solutions are not unique for hyperbolic conservation laws and entropy conditions must be

satisfied to obtain physically valid solution that is consistent with human behavior (such

as the driver’s ride impulse) (Ansorge, 1990; Velan and Florian, 2002). For some specific

forms of the equilibrium flow-density relationship, the LWR model can be solved analytically

(Haberman, 1977; Whitham, 1974). Recently, the analytical solution for a specific class of
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LWR model was derived, which assumed that the flow-density relationship is governed by

a quadratic function throughout the density regime (Wong and Wong, 2002b). However,

from many observations, this assumption is too strong for general applications. Therefore,

it is natural to extend the method to the case with a more general flow-density relationship.

In the traffic flow literature, it is not uncommon to divide the range of the density into a

number of regimes, within each of which a flow-density curve is fitted with the observed

data (Dick, 1966; Edie, 1961; May and Keller, 1968; Underwood, 1961). In this paper,

we assume that the flow-density relationship is concave and is represented by a piecewise

quadratic function, with any two adjacent pieces joining continuously at a critical density ρc

but with a discontinuous first derivative at ρc. Thus the considered flow-density relationship

is only Lipschitz continuous but not everywhere differentiable. For such type of flow-density

relationships, the entropy solution still exists and is unique for general bounded variation

initial conditions (Dafermos, 1972). We obtain in Section 2 explicit formulas for the entropy

solutions with such flow-density relationship and with piecewise linear initial condition and

piecewise constant boundary conditions. In Section 3 we summarize the solution procedure,

concentrating on the discussion of finding the earliest time when the waves (characteristic

lines or shocks) from the previous initial condition intersect with one another and hence

the construction of the entropy solution must be restarted based on a new piecewise linear

initial data. In Section 4 we provide numerical examples in traffic flows to demonstrate

the explicit solutions obtained in Section 2. We also compare these explicit solutions with

numerical solutions obtained by using the high order weighted essentially non-oscillatory

(WENO) schemes (Jiang and Shu, 1996; Zhang et al., 2003). Concluding remarks are given

in Section 5.
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2 Explicit construction of the entropy solutions

The governing equation for the LWR model is the following scalar hyperbolic conservation

law

ρt + q(ρ)x = 0 (1)

with suitable initial and boundary conditions. Here ρ ∈ (0, ρmax) is the density, ρmax is the

maximum (jam) density, and q(ρ) is the traffic flow on a homogeneous highway, which is

assumed to be a function of the density ρ only in the LWR model. More specifically, the

flow q, the density ρ and the equilibrium speed u are related by

q(ρ) = u(ρ) ρ. (2)

In this paper, the flow q(ρ) is considered to be continuous, piecewise quadratic, and concave.

Without loss of generality, we will concentrate our discussion on the situation where the flow

q is defined by two different quadratic functions in different regimes

q(ρ) =

{
q1(ρ), 0 ≤ ρ ≤ ρc

q2(ρ), ρc ≤ ρ ≤ ρmax
(3)

where

Flux I: q1(ρ) = d0 + d1 ρ + d2 ρ2; Flux II: q2(ρ) = e0 + e1 ρ + e2 ρ2 (4)

are two different quadratic functions, which are continuous at the junction q1(ρc) = q2(ρc),

concave in each piece q′′1(ρ) < 0 and q′′2(ρ) < 0, and concave also at the junction q′1(ρc) ≥
q′2(ρc). A typical flow in this setup is given in Figure 1. The general situation of the flow q

with more than two pieces of quadratic functions can be considered with the same recipe to

each neighboring pairs of quadratic flow functions.

We now start the construction of explicit solutions to the conservation law (1) with such

flows q(ρ), when the initial condition is piecewise linear. We will first ignore the boundary

conditions, and will leave the discussion of the treatment of piecewise constant boundary

conditions to Sections 2.3 and 2.4. We begin with the generalized Riemann problem

ρ(x, 0) =

{
α1 + β1 x, x < 0
α2 + β2 x, x ≥ 0

. (5)
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Figure 1: A typical flow with two different concave quadratic functions joining continuously
at a critical density ρc with discontinuous and decreasing derivative at ρc.

We also assume that, for the x range we are considering, the initial density αi + βi x is

completely contained in one of the regimes ρ ≤ ρc or ρ ≥ ρc for i = 1 and 2. This does

not lose generality, as we can break a single linear function into two pieces as in (5) when

it crosses the critical density ρc. We also remark that we do not need to consider the case

when both linear functions αi + βi x, for i = 1, 2, are contained in a single regime ρ ≤ ρc or

ρ ≥ ρc, because this is covered by the results in (Wong and Wong, 2002b).

Before solving the generalized Riemann problem, we write down a simple but important

fact that we will heavily use in the sequel. For the scalar conservation law (1) with a quadratic

flux q(ρ) = a + b ρ + c ρ2 and a linear initial condition ρ(x, 0) = α + β x, the solution stays

linear

ρ(x, t) = α(t) + β(t) x (6)
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with

α(t) =
α − bβt

1 + 2cβt
, β(t) =

β

1 + 2cβt
. (7)

This can be easily obtained by the method of characteristics and we can easily check that

(6) with (7) is a smooth solution to the conservation law (1) with the initial condition

ρ(x, 0) = α + β x, until it becomes singular (i.e. until the denominator 1 + 2cβt = 0). This

simple fact is the main reason that enables us to obtain explicit formulas for the entropy

solution. The solution for each linear piece of the initial condition is given by (6)-(7) until

neighboring waves interact with each other.

We now assume that the x-axis is divided into a number of intervals, within each of

them the initial density is given by a linear function ρ(x, 0) = α + β x which is completely

contained in one of the regimes ρ ≤ ρc or ρ ≥ ρc. We consider the solution to the generalized

Riemann problem (1) with the initial condition (5) for each of the inner boundary points

separating two piecewise linear initial conditions. The left and right intervals to the inner

boundary point under consideration are denoted by

e = (xl, xr), e = (xl, xr)

respectively, with clearly xr = xl. The initial condition density values at the relevant interval

boundaries are denoted by

ρl = ρ(x+
l , 0), ρr = ρ(x−

r , 0); ρl = ρ(x+
l , 0), ρr = ρ(x−

r , 0)

see Figure 2. Notice that the exact solution is obtained only to the smallest time when the

waves (characteristic lines or shocks) from the initial condition intersect with one another. At

this time the new piecewise linear initial condition is formed and the procedure is repeated.

We consider the following situations separately.

2.1 Propagation of a shock

If ρr ≤ ρc ≤ ρl and the intervals e and e belong to Flux I and Flux II in (4) respectively,

as shown in Figure 2, then a shock satisfying the Lax entropy condition (Lax, 1973) is
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Figure 2: Propagation of a right-moving shock from a nodal point.

generated from the point xr = xl and will move to the right or left along a curve determined

by the Rankine-Hugoniot jump condition. If the shock moves to the right, an easy way to

determine the location of the shock xl + ∆x after time ∆t is through conservation in the

rectangular region Ω with (xl, 0) and (xl+∆x, ∆t) as the end points of a diagonal (see Figure

2). Notice that, as we consider only the time ∆t smaller than the smallest time when the

waves (characteristic lines or shocks) from the initial condition intersect with one another,

we may safely assume that the left and top boundaries of this rectangle, ∂Ωl and ∂Ωt, belong

to Flux I, and the right and bottom boundaries of this rectangle, ∂Ωr and ∂Ωb, belong to

Flux II.

The flux at the left boundary ∂Ωl, namely the number of vehicles coming from the left
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boundary into the region Ω during time period ∆t is

f̂l =

∫ ∆t

0

q1|x=xr dt =

∫ ∆t

0

[
d0 + d1(α1(t) + β1(t) xr) + d2(α1(t) + β1(t) xr)

2
]

dt (8)

where α1(t) and β1(t) are given by (7) with α and β replaced by α1 and β1 in the initial

condition (5). Likewise, the flux at the right boundary ∂Ωr, namely the number of vehicles

leaving the right boundary from the region Ω is

f̂r =

∫ ∆t

0

q2|x=xl+∆x dt

=

∫ ∆t

0

[
e0 + e1(α2(t) + β2(t)(xl + ∆x)) + e2(α2(t) + β2(t)(xl + ∆x))2

]
dt. (9)

The initial number of vehicles within the region Ω at time t = 0 is

f̂b =

∫ xl+∆x

xl

(α2(0) + β2(0)x) dx (10)

and the final number of vehicles within the region Ω at time t = ∆t is

f̂t =

∫ xr+∆x

xr

(α1(∆t) + β1(∆t)x) dx. (11)

From the flow conservation principle, we deduce that

f̂l − f̂r + f̂b − f̂t = 0. (12)

Using the explicit formulas (6)-(7), we obtain from (12) the explicit equation determining

∆x as

F1(∆t) ∆x2 + F2(∆t) ∆x + F3(∆t) = 0 (13)

where

F1(∆t) = {2∆t(d2 − e2)(ρr − ρl)(ρr − ρl) + (xr − xl)(ρr − ρl) − (xr − xl)(ρr − ρl)} /

{2 [2d2∆t(ρl − ρr) + xl − xr] [2e2∆t(ρl − ρr) + xl − xr]}

F2(∆t) = {−(xl − xr)[∆t(e1 + 2e2ρr)(ρl − ρr) − (ρl − ρr)(xl − xr)] + d1∆t(ρl − ρr)[2e2∆t(ρl − ρr)

+xl − xr] −2d2∆t(ρl − ρr)[∆te1(ρl − ρr) − ρl(xl − xr)]} /

{[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρl − ρr) + xl − xr]}
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F3(∆t) =
{
∆t{(xl − xr){∆t[e2

1 + 4(d0 − e0)e2](ρl − ρr) + 2(d0 − e0 − e1ρl − e2ρ
2
l )(xl − xr)}

+2d2{∆t2[e2
1 + 4(d0 − e0)e2](ρl − ρr)(ρl − ρr) + 2∆t{e2[ρlρ

2
r(xl − xr) + ρ2

rρr(xr − xl)

−ρ2
l (ρl − ρr)(xl − xr)] + (d0 − e0 − e1ρl)(ρl − ρr)(xl − xr)} + ρ2

r(xl − xr)(xl − xr)}

−d2
1∆t(ρl − ρr)[2∆te2(ρl − ρr) + xl − xr] +2d1ρr(xl − xr)(2∆te2(ρl − ρr) + xl − xr)}}

/ {2[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρl − ρr) + xl − xr]}

The shock trajectory can therefore be determined by solving the quadratic equation (13)

∆x =
−F2(∆t) +

√
∆

2F1(∆t)
(14)

where ∆ = F2(∆t)2 − 4F1(∆t)F3(∆t). If the root ∆x determined by (14) is negative, then

the assumption of a right-moving shock is incorrect. In this case, we can determine the

location of the shock xl + ∆x after time ∆t again through conservation in the rectangular

region Ω̃ with (xl, 0) and (xl + ∆x, ∆t) as the end points of a diagonal (see Figure 3). We

may again safely assume that the left and bottom boundaries of this rectangle, ∂Ωl and ∂Ωb,

belong to Flux I, and the right and top boundaries of this rectangle, ∂Ωr and ∂Ωt, belong

to Flux II. The left and right fluxes f̂l and f̂r are changed to

f̂l =

∫ ∆t

0

q1|x=xr+∆x dt

=

∫ ∆t

0

[
d0 + d1(α1(t) + β1(t)(xr + ∆x)) + d2(α1(t) + β1(t)(xr + ∆x))2

]
dt (15)

and

f̂r =

∫ ∆t

0

q2|x=xl
dt =

∫ ∆t

0

[
e0 + e1(α2(t) + β2(t) xl) + e2(α2(t) + β2(t) xl)

2
]

dt (16)

respectively. The bottom and top fluxes are changed to

f̂b =

∫ xr+∆x

xr

(α1(0) + β1(0)x) dx; (17)

and

f̂t =

∫ xl+∆x

xl

(α2(∆t) + β2(∆t)x) dx. (18)
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In this case, the flow conservation principle (12) yields the explicit equation determining ∆x

as

F̃1(∆t) ∆x2 + F̃2(∆t) ∆x + F̃3(∆t) = 0 (19)

where we can easily check that F̃i(∆t) = −Fi(∆t), i = 1, 2, 3. Therefore the shock trajectory

can be determined by solving the quadratic equation (19)

∆x =
−F̃2(∆t) −√

∆

2F̃1(∆t)
=

−F2(∆t) +
√

∆

2F1(∆t)
(20)

where ∆ = F̃2(∆t)2 − 4F̃1(∆t)F̃3(∆t) = F2(∆t)2 − 4F1(∆t)F3(∆t). Notice that the formulas

(14) and (20) are identical so we do not need to decide a priori whether the shock moves to

the left or right.
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Figure 3: Propagation of a left-moving shock from a nodal point.
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2.2 Propagation of a rarefaction wave

If ρr ≥ ρc ≥ ρl and the intervals e and e belong to Flux II and Flux I in (4) respectively,

then a rarefaction wave is generated and three new intervals e1, e2 and e3 are created at

the time t = ∆t, as shown in Figure 4. We again consider only the time ∆t smaller than

the smallest time when the waves (characteristic lines or shocks) from the initial condition

intersect with one another. The coordinates of the four nodes serving as the end points of

the three intervals e1, e2 and e3 at time ∆t can be determined as

x1(∆t) = xr + q′2(ρr)∆t, x2(∆t) = xr + q′2(ρc)∆t,

x3(∆t) = xr + q′1(ρc)∆t, x4(∆t) = xr + q′1(ρl)∆t.

The density at these end points at time ∆t are given by

ρ(x1(∆t), ∆t) = ρr, ρ(x2(∆t), ∆t) = ρc, ρ(x3(∆t), ∆t) = ρc, ρ(x4(∆t), ∆t) = ρl

and the density is linear within each of the new intervals ei, i = 1, 2, 3. In particular, the

density within e2 is a constant ρ = ρc.

2.3 Boundary conditions from the highway entrance

In this subsection we discuss the boundary condition at the left boundary x = 0, which is

the highway entrance.

Looking at the solution (6)-(7), we can see that the general solution with a linear initial

condition is not linear in t for fixed x, unless β = 0, in which case the solution is constant in t.

Therefore, within our piecewise linear (in space) framework, we can only consider piecewise

constant boundary conditions. A typical boundary condition at x = 0 is shown in Figure 5.

We now use the notation in the previous sections. The interface is at xr = xl = 0, and the

left density value ρr at x = 0 is given by the boundary condition. Otherwise, this is identical

to the situation studied in the two previous subsections for an internal generalized Riemann

problem. Again, we would need to consider the situation where ρr and the linear function in

11
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the first interval with end values ρl and ρr belong to different regimes in (4), for otherwise

the solution is the one obtained in (Wong and Wong, 2002b). If ρr ≤ ρc ≤ ρl, a shock is

generated. We consider only the situation that the shock moves to the right. Its location

∆x after time ∆t is given by (13), except that the left flux f̂l given by (8) is simplified to

f̂l = q1(ρr) ∆t

and the top flux f̂t given by (11) is simplified to

f̂t = ρr ∆x.

Therefore, the coefficients in the quadratic equation (13) which determines the shock location

12
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Figure 5: A typical boundary condition at the entrance x = 0.

∆x are simplified to

F1(∆t) = ρr − ρl

F2(∆t) = 2[e1(ρl − ρr)∆t + 2e2ρr(ρl − ρr)∆t + (ρr − ρl)(xl − xr)]

F3(∆t) = −∆t{[e2
1 + 4(d0 − e0)e2](ρl − ρr)∆t + 2(d0 − e0 − e1ρl − e2ρ

2
l )(xl − xr)

+2d1ρr[2e2(ρl − ρr)∆t + xl − xr] + 2d2ρ
2
r[2e2(ρl − ρr)∆t + xl − xr]}.

When ρr ≥ ρc ≥ ρl, a rarefaction wave is formed. The formulas are the same as those

given in Section 2.2.

2.4 Boundary conditions for the highway exit

In this subsection we discuss the boundary condition at the right boundary x = xend, which

is the highway exit.

13



We consider a typical exit setup with a traffic signal, which alternates between green and

red lights. This is similar to the piecewise constant boundary condition considered for the

entrance in the previous subsection. The constant values of the density ρ for the green and

red lights are ρl = 0 and ρl = ρmax, respectively.

When ρl = ρmax, corresponding to the situation of a red light, a left-moving shock is

formed. We again only consider the situation ρr ≤ ρc ≤ ρl, corresponding to the situation

where the density at the left of xend belongs to the regime of Flux I in (4). The value

∆x determining the shock location xend + ∆x after time ∆t (recall that in this case ∆x is

negative) is given by (19), except that the right flux f̂r given by (16) is simplified to

f̂r = 0

and the top flux f̂t given by (18) is simplified to

f̂t = ρmax ∆x.

Therefore, the coefficients in the quadratic equation (19) which determines the shock location

xend + ∆x are simplified to

F̃1(∆t) = ρl − ρr

F̃2(∆t) = −2[d1(ρl − ρr)∆t + 2d2ρl(ρl − ρr)∆t + (ρl − ρr)(xl − xr)]

F̃3(∆t) = ∆t{d2
1(ρl − ρr)∆t + 2d1ρr(−xl + xr) − 2{−[e0 + ρl(e1 + e2ρl)](xl − xr)

+d0[2d2(ρl − ρr)∆t + xl − xr] + d2[−2e2ρlρ
2
l ∆t + 2e2ρ

2
l ρr∆t + 2e0(ρr − ρl)∆t

+2e1ρl(ρr − ρl)∆t + ρ2
rxl − ρ2

rxr]}}

When ρl = 0, corresponding to the situation of a green light, a rarefaction wave is formed.

The formulas are the same as those given in Section 2.2.

3 Solution procedure

In this section we summarize the solution procedure, concentrating on the discussion of

finding the earliest time when the waves (characteristic lines or shocks) from the previous

14



initial condition intersect with one another and hence the construction of the entropy solution

must be restarted based on a new piecewise linear initial data.

Recall our assumption, as stated in Section 2, that the x-axis is divided into a number of

intervals, within each of them the initial density is given by a linear function ρ(x, 0) = α+β x

which is completely contained in one of the regimes ρ ≤ ρc or ρ ≥ ρc. We consider several

cases of wave interactions separately below, and then take the smallest time from these cases,

which will serve as the time to restart the solution procedure with a new piecewise linear

initial data. The cases being considered are: natural break time for each individual linear

piece, and the interaction between waves from two adjacent nodes (including the boundary

nodes). For the latter case, we also distinguish between the situation of the two adjacent

nodes corresponding to a shock and a rarefaction wave respectively, and the situation of

the two adjacent nodes both corresponding to shocks. Notice that the situation of the two

adjacent nodes both corresponding to rarefaction waves are included in the case of natural

break time for the individual linear piece between the two nodes.

Once the smallest time of wave interactions is found, the density function is obtained

at this time using the formulas in Section 2 as a new piecewise linear function, and the

procedure is repeated, until the final desired time is reached.

3.1 Natural break time for each individual linear piece

For an element e in which the initial linear density profile is an increasing function, the

natural break time, see Figure 6, can be determined by the following formula (Whitham,

1974):

τe = − 1

q′′(ρ) ∂ρ
∂x

Notice that under our assumption (concave quadratic flux q and increasing linear density

ρ) the denomination is a negative constant, hence τe is a positive constant. Indeed, if the

interval e = (xl, xr) and the initial condition density values at the interval boundaries are

ρl = ρ(x+
l , 0) and ρr = ρ(x−

r , 0), see Figure 6, and assuming that the flux function in the

15



element e is:

q(ρ) = a0 + a1 ρ + a2 ρ2

then

τe =

{ xr−xl

2a2(ρl−ρr)
ρr > ρl

∞ otherwise
(21)

e

τe

Characteristic Characteristic

xl
xr

(ρl)
(ρr)

m m+1

Figure 6: Natural break for an increasing linear profile.

3.2 A shock intersecting with its adjacent characteristic line

We consider the situation that a shock from the element boundary xr = xl intersects with

the characteristic line from the right boundary xr of the element e, see Figure 7.

Assuming the flux function in the element e is

q1(ρ) = d0 + d1 ρ + d2 ρ2

16
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Shock
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(ρl )

xr

(ρr )
_

( ρl )

_
xl

_
xr_

( ρr )

Characteristic

m m+1

e
_
e

Figure 7: A shock intersecting with its right neighbor’s characteristic line

and the flux function in the element e is

q2(ρ) = e0 + e1 ρ + e2 ρ2,

by substituting the straight line function of the characteristic line from the node xr into

the shock location trajectory (13) for the shock from the node xr = xl, we obtain a cubic

equation for the intersecting time t:

T1t
3 + T2t

2 + T3t + T4 = 0 (22)

where, with δ1 = xr − xl, δ2 = xr − xl, we have

T1 = −2e2(ρl − ρr)(ρl − ρr)[d
2
1 − 4d0d2 + 4d2e0 + e2

1 + 4e1e2ρr − 4d2e2ρ
2
r + 4e2

2ρ
2
r − 2d1(e1 + 2e2ρr)]
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T2 = (d12 + e12)(ρl − ρr)δ1 − 4e1e2{ρl(ρl − 2ρr)δ1 + ρr[−ρl(δ1 + δ2) + ρr(2δ1 + δ2)]}

2d1{−e1(ρl − ρr)δ1 + 2e2{ρl(ρl − 2ρr)δ1 + ρr[−ρl(δ1 + δ2) + ρr(2δ1 + δ2)]}}

+4{e2{−(d0 − e0)(ρl − ρr)δ2 + e2ρr{ρl(−2ρl + 3ρr)δ1 + ρr[−ρr(3δ1 + 2δ2) + ρrδ2]

+ρl[−ρrδ2 + 2ρr(δ1 + δ2)]}} + d2{−(d0 − e0)(ρl − ρr)δ1 + e2{ρl(ρ
2
l − 2ρ2

r)δ1 +

ρr[−ρ2
l δ1 − ρlρrδ2 + ρr(2ρrδ1 + ρrδ2)]}}}

T3 = 2{d2[−ρlδ
2
1(ρl + ρr) + ρr(ρlδ

2
1 + ρrδ

2
1 + ρrδ1δ2)] − δ1{−(d0 − e0)δ2 + d1[ρlδ1 − ρr(δ1 + δ2)]

e1[−ρlδ1 + ρr(δ1 + δ2)]} + e2{ρlδ
2
1(−ρl + 3ρr) − ρ2

l δ1δ2 + ρlρrδ1(δ1 + 2δ2)

−ρr[−2ρrδ1δ2 + ρr(3δ
2
1 + 4δ1δ2)]}}

T4 = δ2
1[(ρl + ρr)δ2 + ρlδ1 − ρr(δ1 + 2δ2)]

We can then determine the earliest intersection point of the shock and the characteristic line

by finding the smallest positive root of equation (22). As this is a cubic equation and exact

root formulas exist, such a root can be found readily.

A symmetric situation is when a shock from the element boundary xr = xl intersects

with the characteristic line from the left boundary xl of the element e, see Figure 8.

The procedure to obtain the intersecting time is similar. We have the cubic equation

T̃1t
3 + T̃2t

2 + T̃3t + T̃4 = 0 (23)

where, with δ1 = xr − xl, δ2 = xr − xl, we have

T̃1 = 2d2[d
2
1 − 2d1e1 + e2

1 + 4e2(d0 − e0) + 4d2ρl(d1 − e1) + 4d2ρ
2
l (d2 − e2)](ρl − ρr)(ρl − ρr)

T̃2 = −d2
1(ρl − ρr)δ1 − [e2

1 + 4(d0 − e0)e2](ρl − ρr)δ1 − 4d2ρl{−ρ2
l δ2 + 2ρr[ρrδ1 − ρl(δ1 + δ2)]

+ρl[−3ρrδ1 + ρrδ2 + ρl(3δ1 + 2δ2)]} − 2d1{−e1(ρl − ρr)δ1 + 2d2{ρr[ρrδ1 − ρl(δ1 + δ2)]

+ρl[−2ρrδ1 + ρl(2δ1 + δ2)]}} + 4d2{−(d0 − e0)(ρl − ρr)δ2 + e2[2ρ
2
l (ρl − ρr)δ1 + ρlρ

2
l δ2

+ρr(−ρlρrδ1 + ρrρrδ1 − ρ2
l δ2)] + e1{ρr[ρrδ1 − ρl(δ1 + δ2)] + ρl[−2ρrδ1 + ρl(2δ1 + δ2)]}}
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Figure 8: A shock intersecting with its left neighbor’s characteristic line

T̃3 = 2{e2{[−ρlρr + ρrρr + ρl(−ρl + ρr)]δ
2
1 − ρ2

l δ1δ2} + δ1{(d0 − e0)δ2

+[ρrδ1 − ρl(δ1 + δ2)](e1 − d1)}

+d2{−ρ2
l δ1δ2 + ρr[ρrδ

2
1 + ρrδ1δ2 − ρlδ1(δ1 + 2δ2)] + ρl[−3ρrδ

2
1 + ρl(3δ

2
1 + 4δ1δ2)]}}

T̃4 = δ2
1[ρrδ1 + (ρl + ρr)δ2 − ρl(δ1 + 2δ2)]

3.3 Two intersecting adjacent shocks

We now consider the situation that two adjacent nodes xm and xm+1 correspond to two

shocks which will intersect at time ∆t, see Figure 9. This is the most difficult case since

no closed form formula exists for the intersecting time ∆t. We will therefore resort to a

nonlinear equation solver such as the Newton’s method.

We assume that the shock location of the shock from the node xm at time ∆t is xm+∆xm

and denote Gm(∆t) = ∆xm. Likewise, the shock location of the shock from the node xm+1
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∆t

Shock
Shock

m m+1

e1 e e2

Figure 9: Two intersecting adjacent shocks.

at time ∆t is xm+1 +∆xm+1 and we denote Gm+1(∆t) = ∆xm+1. The displacements Gm(∆t)

and Gm+1(∆t) are determined by (13) or (19). Therefore, we can define the function

S(∆t) = xm+1 − xm + Gm+1(∆t) − Gm(∆t) (24)

which measures the distance between the two shocks. Clearly, S(0) = xm+1 − xm > 0, and

we would like to find the root of S(∆t), which corresponds to the time that the two shocks

intersect. As for each fixed ∆t, S(∆t) and S ′(∆t) can both be readily computed, we can easily

set up a Newton iteration to solve for the root of S(∆t) with ∆t = 0 as the initial guess. In

the Appendix, we will show the uniqueness of the intersecting point of the two shock curves

before the natural break time of the element in between, if they do intersect. Therefore,

S(∆t) has at most one zero before the natural break time of the element in between, which

facilitates the convergence of the Newton iteration procedure.
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4 Numerical examples

In this section we provide three numerical examples to illustrate the explicit formulas for the

entropy solutions obtained in the previous sections. The flow-density relationship is given

by (3)-(4), with

q(ρ) =

⎧⎨
⎩

−0.4ρ2 + 100ρ, 0 ≤ ρ ≤ 50
−0.1ρ2 + 15ρ + 3500, 50 ≤ ρ ≤ 100
−0.024ρ2 − 5.2ρ + 4760, 100 ≤ ρ ≤ 350

see Figure 10.
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Figure 10: Flow-density relationship used in the numerical examples.

We also use the fifth order finite difference WENO scheme (Jiang and Shu, 1996; Zhang et

al., 2003) to compute the solution and make a comparison. The purpose of this comparison

is to validate the computation of WENO schemes against the presumably exact entropy

solutions obtained by the procedure in this paper.

Example 1. Consider a homogeneous highway with a length of 2 km. Due to a certain
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incident on the road, an initial density distribution with a peak of 150 veh/km is formed as

shown in Figure 11. Assume that the entrance of the highway is blocked and no traffic is

allowed to enter from the upstream end. The exact solution of this problem can be worked

out using the procedure in this paper, shown as solid lines in Figure 12, in comparison with

the numerical solution obtained by the WENO scheme using N = 200 uniform grid points,

shown as circles. We can see that the two results agree quite well.
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Figure 11: The initial density profile for Example 1.

In order to demonstrate the performance of the solution procedure derived in this paper,

we show in Figure 13 the space-time diagram of all waves (shocks and rarefaction waves)

involved in the evolution process for Example 1 until t = 3.0 min. The relevant breaking

points and density values at nodes are also shown in Table 1. We can see that the procedure

works well for this example with relatively few restarts to reach the target time t = 3.0 min.
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Table 1: Breaking points and density values at nodes for the evolution process for Example
1 until t = 3.0 min.

Time (min) Element xl (km) xr (km) ρl (veh/km) ρr (veh/km)
t0 = 0 1 0.000 0.167 0.0 50.0

2 0.167 0.333 50.0 100.0
3 0.333 0.500 100.0 150.0
4 0.500 1.000 150.0 150.0
5 1.000 1.167 150.0 100.0
6 1.167 1.333 100.0 50.0
7 1.333 1.500 50.0 0.0
8 1.500 2.000 0.0 0.0

t1 = 0.162 1 0.000 0.271 0.0 0.0
2 0.271 0.313 82.4 97.7
3 0.313 0.466 102.2 150.0
4 0.466 0.966 150.0 150.0
5 0.966 1.140 150.0 100.0
6 1.140 1.153 100.0 100.0
7 1.153 1.347 100.0 50.0
8 1.347 1.496 50.0 50.0
9 1.496 1.771 50.0 0.0
10 1.771 2.000 0.0 0.0

t2 = 0.211 1 0.000 0.307 0.0 0.0
2 0.307 0.456 102.9 150.0
3 0.456 0.956 150.0 150.0
4 0.956 1.131 150.0 100.0
5 1.131 1.149 100.0 100.0
6 1.149 1.351 100.0 50.0
7 1.351 1.545 50.0 50.0
8 1.545 1.852 50.0 0.0
9 1.852 2.000 0.0 0.0

t3 = 0.300 1 0.000 0.358 0.0 0.0
2 0.358 0.438 124.0 150.0
3 0.438 0.938 150.0 150.0
4 0.938 1.117 150.0 100.0
5 1.117 1.142 100.0 100.0
6 1.142 1.358 100.0 50.0
7 1.358 1.633 50.0 50.0
8 1.633 2.000 50.0 0.0
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Table 1: (continued)

t4 = 0.425 1 0.000 0.412 0.0 0.0
2 0.412 0.912 150.0 150.0
3 0.912 1.096 150.0 100.0
4 1.096 1.131 100.0 100.0
5 1.131 1.369 100.0 50.0
6 1.369 1.758 50.0 50.0
7 1.758 2.000 50.0 23.1

t5 = 0.667 1 0.000 0.505 0.0 0.0
2 0.505 0.862 150.0 150.0
3 0.862 1.056 150.0 100.0
4 1.056 1.111 100.0 100.0
5 1.111 1.389 100.0 50.0
6 1.389 2.000 50.0 50.0

t6 = 1.274 1 0.000 0.737 0.0 0.0
2 0.737 0.954 150.0 100.0
3 0.954 1.061 100.0 100.0
4 1.061 1.439 100.0 50.0
5 1.439 2.000 50.0 50.0

t7 = 1.600 1 0.000 0.900 0.0 0.0
2 0.900 1.033 100.0 100.0
3 1.033 1.467 100.0 50.0
4 1.467 2.000 50.0 50.0

t8 = 1.778 1 0.000 1.019 0.0 0.0
2 1.019 1.481 100.0 50.0
3 1.481 2.000 50.0 50.0

t9 = 2.333 1 0.000 1.528 0.0 0.0
2 1.528 2.000 50.0 50.0

t10 = 2.711 1 0.000 2.000 0.0 0.0
t11 = 3.000 1 0.000 2.000 0.0 0.0
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Example 2. We consider a long homogeneous freeway of length 20 km. The entrance

density is 50 veh/km. Due to an incident near the downstream end of the freeway, the traffic

density profile shown in Figure 14 is formed in which a jam-packed condition of 5 km long

occurs from 10 to 15 km measured from the upstream entrance of the freeway. In order to

release the traffic jam condition downstream, the authority blocks the freeway entrance for

10 min, after which traffic is released again from the freeway entrance at the capacity density

of 75 veh/km. After 20 min, the entrance flow returns back to normal with a density of 50

veh/h. The variation of traffic density at the upstream entrance of the freeway is illustrated

in Figure 15. The period of analysis is 2 hours.

The exact solution of this problem is worked out using the procedure in this paper, shown

as solid lines in Figure 16, in comparison with the numerical solution obtained by the WENO

scheme using N = 200 uniform grid points, shown as circles. We can again see that the two

results agree quite well.

Again, in order to demonstrate the performance of the solution procedure derived in this

paper, we show in Figure 17 the space-time diagram of all waves (shocks and rarefaction

waves) involved in the evolution process for Example 2 until t = 120 min. The relevant

breaking points and density values at nodes are also shown in Table 2. We can see that the

procedure works well for this example with relatively few restarts to reach the target time

t = 120 min.

Example 3. This example has the same initial condition and entrance boundary condition

as those in Example 2. However, at the exit boundary, a traffic signal is installed, with a

repeated pattern of 2 minutes green light followed by 1 minute red light.

As before, the exact solution of this problem is worked out using the procedure in this

paper, shown as solid lines in Figure 18, in comparison with the numerical solution obtained

by the WENO scheme using N = 400 uniform grid points, shown as circles. We see once

again that the two results agree quite well.
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Table 2: Breaking points and density values at nodes for the evolution process for Example
2 until t = 120 min.

Time (min) Element xl (km) xr (km) ρl (veh/km) ρr (veh/km)
t0 = 0 1 0.000 10.000 50.0 50.0

2 10.000 15.000 350.0 350.0
3 15.000 18.571 350.0 100.0
4 18.571 19.286 100.0 50.0
5 19.286 20.000 50.0 0.0

t1 = 0.714 1 0.000 0.952 0.0 0.0
2 0.952 9.841 50.0 50.0
3 9.841 14.738 350.0 350.0
4 14.738 18.452 350.0 100.0
5 18.452 18.512 100.0 100.0
6 18.512 19.345 100.0 50.0
7 19.345 20.000 50.0 50.0

t2 = 6.429 1 0.000 8.571 0.0 0.0
2 8.571 12.643 350.0 350.0
3 12.643 17.500 350.0 100.0
4 17.500 18.036 100.0 100.0
5 18.036 19.821 100.0 50.0
6 19.821 20.000 50.0 50.0

t3 = 8.571 1 0.000 8.571 0.0 0.0
2 8.571 11.857 350.0 350.0
3 11.857 17.143 350.0 100.0
4 17.143 17.857 100.0 100.0
5 17.857 20.000 100.0 50.0

t4 = 10.000 1 0.000 8.571 0.0 0.0
2 8.571 11.333 350.0 350.0
3 11.333 16.905 350.0 100.0
4 16.905 17.738 100.0 100.0
5 17.738 20.000 100.0 52.5

t5 = 15.143 1 0.00 0.429 75.0 50.0
2 0.429 5.143 50.0 50.0
3 5.143 8.571 50.0 0.0
4 8.571 9.448 350.0 350.0
5 9.448 16.048 350.0 100.0
6 16.048 17.310 100.0 100.0
7 17.310 20.000 100.0 58.5
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Table 2: (continued)

t6 = 18.182 1 0.000 0.682 75.0 50.0
2 0.682 8.182 50.0 50.0
3 8.182 8.333 350.0 350.0
4 8.333 15.541 350.0 100.0
5 15.541 17.056 100.0 100.0
6 17.056 20.000 100.0 60.7

t7 = 19.231 1 0.000 0.769 75.0 50.0
2 0.769 7.949 50.0 50.0
3 7.949 15.366 350.0 100.0
4 15.366 16.969 100.0 100.0
5 16.969 20.000 100.0 61.3

t8 = 30.000 1 0.000 1.667 75.0 50.0
2 1.667 5.678 50.0 50.0
3 5.678 13.571 306.2 100.0
4 13.571 16.071 100.0 100.0
5 16.071 20.000 100.0 65.6

t9 = 44.742 1 0.000 0.698 50.0 50.0
2 0.698 2.895 69.0 50.0
3 2.895 11.115 264.1 100.0
4 11.115 14.843 100.0 100.0
5 14.843 20.000 100.0 68.4

t10 = 54.000 1 0.000 1.195 50.0 50.0
2 1.195 9.571 245.7 100.0
3 9.571 14.071 100.0 100.0
4 14.071 20.000 100.0 69.5

t11 = 61.319 1 0.000 8.352 231.9 100.0
2 8.352 13.462 100.0 100.0
3 13.462 20.000 100.0 70.1

t12 = 111.429 1 0.000 9.286 100.0 100.0
2 9.286 20.000 100.0 72.2

t13 = 120.000 1 0.000 8.571 100.0 100.0
2 8.571 20.000 100.0 72.4
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Table 3: CPU time comparison between the solution procedure in this paper and the fifth
order WENO scheme.

Example # Analytical (sec) WENO (sec) N ending time t (min)
Example 1 1.669×10−3 0.3484 200 3
Example 2 2.675×10−3 0.4609 200 120
Example 3 7.933×10−2 2.045 400 120

Finally, in Table 3 we compare the CPU time used by the procedure in this paper and by

the fifth order WENO scheme with an appropriate number of uniform grid points to achieve

a comparable accuracy, for the three examples shown above. We can see clearly that the

exact solution procedure developed in this paper is much less CPU time intensive than the

finite difference WENO method.

5 Conclusions

We have developed in this paper a procedure to explicitly compute the entropy solution for a

Lighthill-Whitham-Richards traffic flow model with with a flow-density relationship which is

piecewise quadratic, continuous, concave, but not differentiable at the junction points, and

with piecewise linear initial condition and piecewise constant boundary conditions. The pro-

cedure usually involves very few restarts and hence rapid computation for realistic traffic flow

situations, using very small CPU time comparing with a high order finite difference WENO

scheme. Three representative numerical examples, involving various initial and boundary

conditions including that for traffic control signals, are used to demonstrate the efficiency

and effectiveness of this solution procedure. The solutions obtained agree very well with

those obtained by the finite difference WENO scheme which uses much more CPU time.

In future work we will attempt to remove the condition of continuity for the flow-density

relationship in order to better model certain realistic traffic flows such as the famous λ-waves.
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A Appendix

In this Appendix we study in more detail the situation discussed in Section 3.3, that two

adjacent nodes correspond to two shocks which will intersect. Referring to Figure 19, we

assume that two shocks S1(t) and S2(t), starting from the two adjacent nodes xl and xr,

intersect first at time t∗. The inner element e has two edge densities ρl and ρr at the foot of the

shocks S1(0) and S2(0). We further assume that the intersecting time t∗ is before the natural

break time of the element e given by (21); otherwise, we do not need to be concerned with

the intersection time of the two shocks anyway because the solution procedure has already

been restarted before the two shocks have the chance to intersect.

The shock curves S1(t) and S2(t), considered individually, may certainly be defined be-

yond t = t∗. As our procedure to determine the intersection time t = t∗ in Section 3.3 is

algebraic, using a Newton iterative solver to find the root of the nonlinear equation (24), we

would like to prove that this nonlinear equation has at most one root before the natural break

time of the element e, in order to facilitate the convergence of the Newton iteration proce-

dure. The uniqueness of the root of (24) is equivalent to the uniqueness of the intersecting

point t = t∗ of S1(t) and S2(t).

We prove this uniqueness by showing the monotonicity of the density values ρ1(t) (the

right value of the left shock S1(t)) and ρ2(t) (the left value of the right shock S2(t)), see

again Figure 19. By continuity of the density between the two adjacent shocks, we clearly

have ρ1(t
∗) = ρ2(t

∗). Furthermore, as the density profile within the element e is linear, and

the characteristic lines between the two adjacent shocks do not intersect, it is easy to see

geometrically that ρ1(t) and ρ2(t) must be monotone with opposite trends (that is, either

ρ1(t) is monotonically increasing and ρ2(t) is monotonically decreasing, or vice versa). We
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will also prove this fact algebraically below. With this fact, we have clearly established the

uniqueness of the intersecting point t = t∗ of the two shock curves S1(t) and S2(t).

Assume that the governing flux of the element e is

q(ρ) = e2ρ
2 + e1ρ + e0

we have, by (6)-(7), the formulas for ρ1(t) and ρ2(t):

ρ1(t) =
ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S1(t) + xl)

xr − xl − 2e2(ρl − ρr)t

ρ2(t) =
ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S2(t) + xr)

xr − xl − 2e2(ρl − ρr)t

Therefore we have

ρ′
1(t) = −(ρl − ρr){(e1 + 2e2ρl)(xl − xr) + 2e2(ρl − ρr)S1(t) + [2e2(ρr − ρl)t + xr − xl]S

′
1(t)}

[2e2(ρl − ρr)t + xl − xr]2

ρ′
2(t) = −(ρl − ρr){(e1 + 2e2ρr)(xl − xr) + 2e2(ρl − ρr)S2(t) + [2e2(ρr − ρl)t + xr − xl]S

′
2(t)}

[2e2(ρl − ρr)t + xl − xr]2

On the one hand S ′
1(t) > q′(ρ1(t)) and S ′

2(t) < q′(ρ2(t)), by the entropy condition. That

is to say, S ′
1(t) > 2e2ρ1(t) + e1 and S ′

2(t) < 2e2ρ2(t) + e1.

On the other hand [2e2(ρr − ρl)t + xr − xl] > 0 since we assume that time t is less than

the natural break time of the element given by (21).

We now have

(e1 + 2e2ρl)(xl − xr) + 2e2(ρl − ρr)S1(t) + [2e2(ρr − ρl)t + xr − xl]S
′
1(t)

> (e1 + 2e2ρl)(xl − xr) + 2e2(ρl − ρr)S1(t) + [2e2(ρr − ρl)t + xr − xl](2e2ρ1(t) + e1)

= (e1 + 2e2ρl)(xl − xr) + 2e2(ρl − ρr)S1(t)

+[2e2(ρr − ρl)t + xr − xl]

(
2e2

ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S1(t) + xl)

xr − xl − 2e2(ρl − ρr)t
+ e1

)

= (e1 + 2e2ρl)(xl − xr) + 2e2(ρl − ρr)S1(t)

+2e2[ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S1(t) + xl)] + [2e2(ρr − ρl)t + xr − xl]e1

= 0
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and

(e1 + 2e2ρr)(xl − xr) + 2e2(ρl − ρr)S2(t) + [2e2(ρr − ρl)t + xr − xl]S
′
2(t)

< (e1 + 2e2ρr)(xl − xr) + 2e2(ρl − ρr)S2(t) + [2e2(ρr − ρl)t + xr − xl](2e2ρ2(t) + e1)

= (e1 + 2e2ρr)(xl − xr) + 2e2(ρl − ρr)S2(t)

+[2e2(ρr − ρl)t + xr − xl]

(
2e2

ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S2(t) + xr)

xr − xl − 2e2(ρl − ρr)t
+ e1

)

= (e1 + 2e2ρr)(xl − xr) + 2e2(ρl − ρr)S2(t)

+[2e2(ρr − ρl)t + xr − xl]e1 + 2e2[ρlxr − ρrxl + e1(ρl − ρr)t − (ρl − ρr)(S2(t) + xr)]

= 0

Therefore ρ′
1(t) < 0, ρ′

2(t) > 0 if ρl > ρr; and ρ′
1(t) > 0, ρ′

2(t) < 0 if ρl < ρr. The desired

monotonicity is proven.
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Figure 12: The exact entropy solution obtained by the procedure in this paper (solid line)
and the numerical solution obtained by using a fifth order WENO finite difference scheme
with N = 200 uniform grid points (circles). Example 1. Top left: t = 0.2112 min; top right:
t = 0.4245 min; bottom left: t = 1.060 min; bottom right: t = 1.600 min.
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Figure 13: The time-space diagram for all waves (shocks and rarefaction waves) involved in
the evolution process for Example 1 until t = 3.0 min.
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Figure 14: The initial density profile for Example 2.
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Figure 15: The density variation at the entrance in time for Example 2.

39



Distance(km)

D
en

si
ty

(v
eh

/k
m

)

0 5 10 15 20
0

50

100

150

200

250

300

350

Distance(km)

D
en

si
ty

(v
eh

/k
m

)

0 5 10 15 20
0

50

100

150

200

250

300

Distance(km)

D
en

si
ty

(v
eh

/k
m

)

0 5 10 15 20
0

50

100

150

200

250

300

350

Distance(km)

D
en

si
ty

(v
eh

/k
m

)

0 5 10 15 20
0

50

100

150

200

250

300

350

Figure 16: The exact entropy solution obtained by the procedure in this paper (solid line)
and the numerical solution obtained by using a fifth order WENO finite difference scheme
with N = 200 uniform grid points (circles). Example 2. Top left: t = 10 min; top right:
t = 30 min; bottom left: t = 60 min; bottom right: t = 90 min.
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Figure 17: The time-space diagram for all waves (shocks and rarefaction waves) involved in
the evolution process for Example 2 until t = 60 min (top) and until t = 120 min (bottom).
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Figure 18: The exact entropy solution obtained by the procedure in this paper (solid line)
and the numerical solution obtained by using a fifth order WENO finite difference scheme
with N = 400 uniform grid points (circles). Example 3. Top left: t = 3 min; top right:
t = 30 min; bottom left: t = 60 min; bottom right: t = 90 min.
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Figure 19: Two adjacent shocks intersect at time t = t∗.
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