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Abstract

In this paper, we consider convergence of classical high order Godunov-type schemes

towards entropy solutions for scalar conservation laws. It is well known that sufficient condi-

tions for such convergence include total variation boundedness of the reconstruction and cell

or wavewise entropy inequalities. We prove that under large time steps, we only need total

variation boundedness of the reconstruction to guarantee such convergence. We discuss high

order total variation bounded reconstructions to fulfill this sufficient condition and provide

numerical examples on one dimensional convex conservation laws to assess the performance of

such large time step Godunov-type methods. To demonstrate the generality of this approach,

we also prove convergence and give numerical examples for a large time step Godunov-like

scheme involving Sanders’ third order total variation diminishing reconstruction using both

cell averages and point values at cell boundaries.
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1 Introduction

In this paper, we consider the Cauchy problem of the scalar conservation law:

{
ut + ∇ · f(u) = 0, in R

m × [0, T ]
u(x, 0) = u0(x), in R

m (1.1)

where u0(x) ∈ BV, the space of functions with bounded variation. We do not consider

boundary conditions and assume that the initial condition is either compactly supported

or periodic. In most of our presentation we will concentrate on the one dimensional case

m = 1, and will point out similarities and differences for higher dimensions m > 1. The

scheme under consideration is the classical Godunov-type scheme, consisting of the following

three stages to evolve the cell averages from time level n (denoted by ūn) to time level n + 1

(denoted by ūn+1):

1. Reconstruction: obtain a high order piecewise polynomial reconstruction un(x) whose

cell averages agree with the given cell averages ūn. We denote this reconstruction

operator as Re(ūn).

2. Evolution: evolve un(x) by the conservation law (1.1) exactly for a time step ∆t, to

obtain a solution ũn+1(x) which is in general not piecewise polynomial anymore. We

denote this evolution operator as S∆t(u
n).

3. Averaging: average the function ũn+1(x) to obtain the cell averages ūn+1 at time level

n + 1. We denote this averaging operator as A(ũn+1).

The Godunov-type scheme, using the notations introduced above, can be described ab-

stractly as {
ū0 = A(u0)
ūn+1 = A ◦ S∆t ◦ Re (ūn), n = 0, 1, · · · , N − 1.

(1.2)

The purpose of the reconstruction step is to increase the formal accuracy of the scheme.

It is usually achieved by using cell averages of several neighboring cells to obtain a high order

reconstructed polynomial. In order to be more specific, let us first introduce some notations.
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For example, in the one dimensional case, the mesh is given by Ij = [xj− 1
2
, xj+ 1

2
]. The center

of the cell Ij is given by xj = 1
2

(
xj− 1

2
+ xj+ 1

2

)
, and the size of the cell Ij is denoted by

∆x = xj+ 1
2
− xj− 1

2
, which is considered to be a constant (uniform mesh) in this paper for

simplicity of notations. The cell average of a function u(x) in the cell Ij is defined as

ūj = A(u)j =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

u(x) dx

A second order reconstruction would be a piecewise linear function, and the linear recon-

struction pj(x) in cell Ij could be the unique linear polynomial satisfying

1

∆x

∫ x
j− 1

2

x
j− 3

2

pj(x) dx = ūj−1,
1

∆x

∫ x
j+1

2

x
j− 1

2

pj(x) dx = ūj,

namely, pj(x) agrees with the given cell averages of u(x) over the two cells {Ij−1, Ij}, which

is called the stencil of the reconstruction pj(x). Usually, we require that the stencil for the

reconstruction in cell Ij contains at least Ij itself. Additional cells in the stencil can be

chosen according to symmetry or stability (non-oscillation) considerations. For example, the

stencil for the linear polynomial pj(x) above could also be {Ij, Ij+1}, which would of course

produce a different reconstructed linear polynomial.

The reconstruction is called (formally) k-th order accurate, namely

|Re(ū)(x) − u(x)| ≤ C∆xk, x ∈ Ij (1.3)

if the reconstructed polynomial in Ij is (k−1)-th degree with a stencil of k cells over which the

function u(x) is smooth. Here and below C (or C̃) will denote a generic constant independent

of the mesh sizes ∆x and ∆t, which may have different values in different locations. For

more details of second and higher order reconstructions, we refer to [11, 18].

A reconstruction is called total variation bounded (TVB) if

TV (Re(ū)) ≤ (1 + C∆x)TV (ū) (1.4)

and it is called total variation diminishing (TVD) if (1.4) holds with C = 0. Here the total

variation of a piecewise smooth function g(x) is defined as usual

TV (g) =

∫
|g′(x)| dx
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and the total variation of ū in (1.4) is defined with ū considered as a piecewise constant

function.

Since the exact evolution operator S∆t and the averaging operator A do not increase the

total variation of a function, the total variation of the final solution ūN of the Godunov-type

scheme at a fixed time T = N∆t, is bounded by a constant C independent of the mesh sizes

∆x and ∆t, when both of them go to zero, if the reconstruction is TVB. This constant C is

the total variation of the initial data if the reconstruction is TVD.

By compactness, the sequence of numerical solutions of a Godunov-type scheme with

a TVB reconstruction, when the mesh sizes ∆x and ∆t both go to zero, has a conver-

gent subsequence in L1. Since the scheme is conservative, the limit of such a convergent

subsequence is a weak solution to (1.1). However, because of the non-uniqueness of weak

solutions, we cannot conclude the convergence of the original sequence of numerical solu-

tions, nor can we claim that the limit of a convergent subsequence is the physically relevant

entropy solution. Typically, we would need an additional cell entropy inequality, e.g. [15],

or a wavewise entropy inequality, e.g. [21], to imply such convergence. Such cell or wave-

wise entropy inequalities are very difficult to obtain for high order schemes, especially for

non-convex conservation laws for which such entropy inequalities are needed for all entropies

rather than just for one of them. As far as we know, within self-similar finite difference or

finite volume framework, such cell or wavewise entropy inequalities have been obtained only

for second order MUSCL type schemes for scalar one dimensional convex conservation laws

[15, 21], and for a special second order scheme for general conservation laws which evolves

cell averages and cell slopes independently [1]. These schemes are all explicit schemes with

the usual CFL restriction ∆t = O(∆x). It seems that for such situation a cell or wavewise

entropy inequality is necessary for convergence towards entropy solutions, see for example

[15] in which it is proven that finite volume schemes (those which evolve only cell averages

and rely on reconstruction to achieve higher order accuracy) which satisfy all entropy condi-

tions are necessarily only first order accurate, and [20] in which a counter example is shown
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to demonstrate that second order TVD Godunov-type scheme can converge to an entropy

violating solution for non-convex conservation laws. We remark that cell entropy inequality

for the square entropy can be obtained in more general situations (arbitrary order of accu-

racy, general triangulation in multi-space dimensions, arbitrary scalar conservation laws) for

the semi-discrete discontinuous Galerkin method [7], but this is a totally different class of

schemes in which no reconstruction is involved and the complete polynomial within a cell is

evolved in time to obtain high order accuracy.

We now mention a few papers in the literature which directly motivated our work in

this paper. Lions and Souganidis [13] proved the convergence of an implicit MUSCL scheme

to the entropy solution of strictly convex scalar one dimensional Hamilton-Jacobi equation

and conservation law under a large time step assumption, namely ∆x = o(∆t). For one

dimensional convex Hamilton-Jacobi equations, which are very closely related to conservation

laws (1.1), Ferretti [3] proved the convergence of a semi-Lagrangian scheme to the viscosity

solution (the corresponding solution to the entropy solution for conservation laws), again

under a large time step assumption ∆x = o(∆t). This convergence holds for quite general

high order reconstructions, e.g. the ENO reconstruction [6] up to fifth order and WENO

reconstruction [8] up to ninth order, see [3, 2]. The message in [13, 3, 2] seems to be that

it is easier to prove convergence for large time step (∆x = o(∆t)) schemes. Of course, such

choice of the time step violates the traditional CFL condition for local explicit schemes. One

would need either to take implicit time discretization, as in [13], or semi-Lagrangian time

discretization, namely following the characteristics, as in [3, 2].

In this paper we prove that, indeed, the large time step assumption ∆x = o(∆t) allows

us to bypass the verification of cell or wavewise entropy conditions and prove the conver-

gence towards the entropy solution of Godunov-type schemes solely under the assumption of

a TVB reconstruction, for general scalar conservation laws (1.1). Since self-similar TVB

reconstruction is available in one dimension to third order accuracy [12], we then have

third order accurate Godunov-type schemes in one dimension which can be proven con-
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vergent towards the entropy solution. Of course, to actually implement the large time step

Godunov-type schemes is not trivial. We discuss an effective implementation, similar to the

semi-Lagrangian scheme in [3, 2] for Hamilton-Jacobi equations, for one dimensional scalar

convex conservations.

The paper is organized as follows. Section 2 contains our main convergence result and

its proof. In section 3, the TVB property of the numerical solution is considered. Examples

of high order TVB reconstruction are given. Section 4 discusses an effective implementation

of the large time step Godunov-type scheme for one dimensional scalar convex conservation

laws and provides numerical results verifying the performance of such schemes. In order

to demonstrate the generality of this approach, we consider in section 5 a Godunov-like

scheme using a third order TVD reconstruction due to Sanders [16], which uses both cell

averages and point values at cell boundaries for the reconstruction and does not exactly fit

our large time step Godunov-type scheme framework, but the convergence can be obtained

along similar lines. Concluding remarks are given in section 6.

2 Convergence of large time step Godunov-type schemes

We consider the Godunov-type scheme (1.2) for solving the scalar conservation law (1.1),

under the following three assumptions:

1. The reconstruction operator Re satisfies

‖ū − Re(ū)‖L1 ≤ C ∆xTV (ū) (2.1)

for any piecewise constant function ū;

2. The total variation of the numerical solution is uniformly bounded

TV (ūn) ≤ C (2.2)

for all mesh sizes ∆x and ∆t satisfying n∆t ≤ T ;
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3. Large time step condition

lim
∆x→0

∆x

∆t
= 0 (2.3)

We have the following convergence result under these assumptions.

Theorem 2.1. The numerical solution of the Godunov-type scheme (1.2) for solving the

scalar conservation law (1.1) converges in L1 to the entropy solution of (1.1) when the mesh

size ∆x goes to zero, if the three assumptions (2.1), (2.2) and (2.3) are satisfied.

Proof: We denote the exact entropy solution of (1.1) at time level tn by u(·, tn) and the L1

difference between this exact solution and the reconstructed numerical solution un = Re(ūn)

at time level tn by en:

en = ‖u(·, tn) − Re(ūn)‖L1. (2.4)

First, we notice that

‖A(u(·, tn)) − ūn‖L1 = ‖A(u(·, tn)) − A ◦ S∆t ◦ Re (ūn−1)‖L1

= ‖A (u(·, tn) − S∆t ◦ Re (ūn−1)
) ‖L1

≤ ‖u(·, tn) − S∆t ◦ Re (ūn−1)‖L1

= ‖S∆t (u(·, tn−1)) − S∆t ◦ Re (ūn−1)‖L1

≤ ‖u(·, tn−1) − Re (ūn−1)‖L1 = en−1 (2.5)

where the third inequality is due to the fact that the averaging operator A does not increase

the L1 norm of a function, and the fifth inequality is due to the L1 contraction property of

the exact entropy solution operator S∆t of (1.1) [10]. Also for a bounded variation function

w, it is easy to verify that

‖w − A(w)‖L1 ≤ C∆xTV (w) (2.6)
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In fact, for the one dimensional case

‖w − A(w)‖L1 =
∑

j

∫
Ij

|w(x) − w̄j |dx =
∑

j

∫
Ij

|w(x) − w(x̄j)|dx

=
∑

j

∫
Ij

∣∣∣∣∣
∫ x

x̄j

w′(ξ)dξ

∣∣∣∣∣dx ≤
∑

j

∫
Ij

∫
Ij

|w′(ξ)|dξdx

= ∆x
∑

j

∫
Ij

|w′(ξ)|dξ = ∆xTV (w)

where we have used the mean value theorem to conclude that the cell average w̄j equals

w(x̄j) for some point x̄j inside Ij, which is valid if w(x) is continuous inside Ij . However,

(2.6) is valid also when w′(x) contains δ-functions, as long as it is of bounded variation. The

proof for the multi-dimensional case is similar.

We can now proceed to prove the desired convergence

en = ‖u(·, tn) − Re(ūn)‖L1

≤ ‖u(·, tn) − A(u(·, tn))‖L1 + ‖A(u(·, tn)) − ūn‖L1 + ‖ūn − Re(ūn)‖L1

≤ C∆xTV (u(·, tn)) + en−1 + C∆xTV (ūn)

≤ C̃∆x + en−1

≤ · · ·

≤ C̃n∆x + e0

= C̃T
∆x

∆t
+ e0 → 0 as ∆x → 0

where for the third inequality we have used (2.6), (2.5) and the assumption (2.1), for the

fourth inequality we have used the fact that the exact entropy solution u(·, tn) is of bounded

variation and the assumption (2.2), and for the last limit we have used the large time step

assumption (2.3).

Next, we prove that the assumption (2.1) is satisfied by all commonly used reconstruc-

tions, including the high order ENO and WENO reconstructions [6, 8]. As before, for

simplicity we divide the computational domains into uniform cells (in one dimension these
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are non-overlapping intervals of the same length ∆x covering the whole computational do-

main). We require the reconstruction to be a piecewise polynomial function, namely it is a

polynomial over each cell Ij. The reconstructed polynomial in Ij is uniquely determined by

requiring that it has the same cell average as the given one over each cell in a stencil, which

is a set of finitely many cells (the number of cells in this set is fixed and does not depend

on the mesh size ∆x) and contains the given cell Ij . For such reconstructions we have the

following result.

Lemma 2.2. The assumption (2.1) is satisfied by any piecewise polynomial reconstruction

with a local stencil containing finitely many cells.

Proof: We prove this lemma for the one dimensional case. The proof for the multi-

dimensional case is similar. Assume the reconstruction stencil for cell Ij is Ij−l(j), · · · , Ij+r(j).

Since the stencil contains Ij and has only finitely many cells, we have 0 ≤ l(j), r(j) ≤ M

for a fixed integer M . The reconstructed polynomial in cell Ij can be written as

p(x) =

r(j)∑
i=−l(j)

pi

(
x − xj

∆x

)
ūj+i (2.7)

where pi(ξ) are polynomials independent of ∆x and the location Ij, see for example [18] for

the explicit expression of pi(ξ). We therefore have |pi(ξ)| ≤ C for some constant C when

ξ is in the relevant range |ξ| ≤ 1
2
. Also, by consistency (i.e. the reconstruction is exact if

ūj ≡ 1), we have
r(j)∑

i=−l(j)

pi

(
x − xj

∆x

)
= 1

Hence

p(x) − ūj =

r(j)∑
i=−l(j)

pi

(
x − xj

∆x

)
(ūj+i − ūj)
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We now have

‖ū − Re(ū)‖L1 =
∑

j

‖ū − Re(ū)‖L1(Ij)

=
∑

j

∫
Ij

∣∣∣∣∣∣
r(j)∑

i=−l(j)

pi

(
x − xj

∆x

)
(ūj+i − ūj)

∣∣∣∣∣∣ dx

≤ CM(2M + 1)∆x
∑

j

|ūj+1 − ūj|

= C̃∆xTV (ū)

Clearly, Lemma 2.2 covers both the linear reconstructions, for which the reconstruction

stencil relative to Ij is fixed, i.e. l(j) and r(j) do not depend on j, as well as the ENO

reconstruction [6], for which the reconstruction stencil depends on the local smoothness of

the data ū. Since the WENO reconstructions [8] are linear combinations of fixed stencil

reconstructions with bounded weights (linear combination coefficients, which depend on the

local smoothness of the data ū), Lemma 2.2 also covers WENO reconstructions. Notice that

Lemma 2.2 is valid for reconstructions of arbitrarily high order accuracy.

With Lemma 2.2 we obtain the following corollary.

Corollary 2.3. If the reconstruction operator Re is based on piecewise polynomial recon-

struction with a local stencil containing finitely many cells, then the numerical solution of

the Godunov-type scheme (1.2) for solving the scalar conservation law (1.1) converges in L1

to the entropy solution of (1.1) when the mesh size ∆x goes to zero, if the two assumptions

(2.2) and (2.3) are satisfied.

Proof: We would just need to combine the results in Theorem 2.1 and Lemma 2.2.
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3 TVB property of the numerical solution and exam-

ples of the TVB reconstruction operator

The result of the previous section indicates that, apart from the large time step assumption

(2.3), which causes difficulties in the actual implementation of the scheme and will be dis-

cussed in more detail in next section, we would only need to have a total variation bounded

numerical solution to imply convergence. If the reconstruction operator Re is TVB, i.e. it

satisfies (1.4), then we easily have

TV (ūn) = TV (A ◦ S∆t ◦ Re (ūn−1))

≤ TV (Re(ūn−1))

≤ (1 + C∆x)TV (ūn−1)

≤ · · ·

≤ (1 + C∆x)n TV (ū0)

≤ (1 + C∆t)n TV (u0)

≤ eCT TV (u0)

for any n and ∆t such that n∆t ≤ T . Here we have used the fact that neither the averaging

operator A nor the exact entropy solution evolution operator S∆t increases the total variation

of a function for the second inequality, and the assumption (2.3) for the sixth inequality (in

fact, here we do not need the large time step assumption, we just need the assumption

that ∆x ≤ C∆t). We therefore only need to verify the total variation boundedness of the

reconstruction (1.4) in order to guarantee convergence towards entropy solutions for a large

time step Godunov-type scheme.

Next we discuss two examples of TVB reconstructions (1.4). We concentrate our attention

on self-similar reconstructions, namely reconstructions which do not depend explicitly on the

mesh size ∆x (see the example of the reconstruction (2.7) in which the polynomials pi(ξ)

do not depend on ∆x [18]). In fact, almost all known self-similar TVB reconstructions are
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actually TVD. It is very difficult to obtain self-similar TVB reconstructions in two or higher

dimensions [4], hence we restrict our attention in one dimension.

1. Second order MUSCL reconstruction: This reconstruction [19] is piecewise linear and is

second order accurate except at extrema, where it degenerates to first order accuracy.

The reconstructed polynomial in cell Ij is given by

p(x) = ūj + sj (x − xj)

where the slope sj is given by

sj = m

(
ūj+1 − ūj

∆x
,
ūj − ūj−1

∆x

)

with the usual definition of the minmod function m [5]

m(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

In words, the slope is taken as the smaller one (in magnitude) between those of the two

reconstruction linear polynomials based on the stencils {Ij−1, Ij} and {Ij, Ij+1}, unless

these two slopes are of opposite sign (i.e. we are at an extremum of the cell average

ū), in which case the slope is taken as zero. This reconstruction is clearly TVD.

2. Third order non-oscillatory central reconstruction: This reconstruction [12] is piece-

wise quadratic and is third order accurate except at extrema, where it degenerates to

second order accuracy. The reconstructed polynomial in cell Ij is based on qj(x), the

reconstructed quadratic polynomial over the stencil {Ij−1, Ij, Ij+1}, with modification

to satisfy a non-oscillatory property (no new extremum) and a maximum principle.

The first step is to obtain the non-oscillatory property and is given by

p1
j(x) = ūj + θj (qj(x) − ūj) (3.1)
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where the limiter θj is defined as

θj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

(
Mj+ 1

2
− ūj

Mj − ūj
,
mj− 1

2
− ūj

mj − ūj
, 1

)
, if ūj−1 < ūj < ūj+1

min

(
Mj− 1

2
− ūj

Mj − ūj
,
mj+ 1

2
− ūj

mj − ūj
, 1

)
, if ūj−1 > ūj > ūj+1

1, if (ūj+1 − ūj) (ūj − ūj−1) ≤ 0

where

Mj = max
x∈Ij

qj(x), mj = min
x∈Ij

qj(x),

Mj± 1
2

= max

(
1

2
(ūj + ūj±1), qj±1(xj± 1

2
)

)
, mj± 1

2
= min

(
1

2
(ūj + ūj±1), qj±1(xj± 1

2
)

)
.

The second step is to further modify p1
j (x) to satisfy a maximum principle. If we denote

M = max
x∈R

u0(x), m = min
x∈R

u0(x),

and

M1
j = max

x∈Ij

p1
j (x), m1

j = min
x∈Ij

p1
j (x),

then the final reconstructed polynomial is given by

pj(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε(1)
(
p1

j (x) − M1
j

)
+ M, when M1

j > M and m1
j ≥ m

ε(2)
(
p1

j (x) − m1
j

)
+ m, when M1

j ≤ M and m1
j < m

ε(1)
(
p1

j (x) − M1
j

)
+ M, when ε(1) < ε(2), M1

j > M and m1
j < m

ε(2)
(
p1

j (x) − m1
j

)
+ m, when ε(1) ≥ ε(2), M1

j > M and m1
j < m

p
(1)
j (x), when M1

j ≤ M and m1
j ≥ m

(3.2)

with

ε(1) =
M − ūj

M1
j − ūj

, ε(2) =
m − ūj

m1
j − ūj

.

It is proven in [12] that the reconstruction (3.2) is TVB. Moreover, we have

‖p1
j(x) − ūj‖L1 = θj‖qj(x) − ūj‖L1 ,

and

‖pj(x)−ūj‖L1 = ε(i)‖p1
j (x)−ūj‖L1 , i = 1, 2 or ‖pj(x)−ūj‖L1 = ‖p1

j (x)−ūj‖L1

13



with 0 ≤ θj ≤ 1 and 0 ≤ ε(i) ≤ 1. Therefore,

‖pj(x) − ūj‖L1 ≤ ‖p1
j (x) − ūj‖L1 ≤ ‖qj(x) − ūj‖L1.

Hence clearly assumption (2.1) is also satisfied by this reconstruction, using Lemma

2.2.

Other possible TVB reconstructions in one dimension include the very high order TVD

reconstructions in [14] (however these reconstructions degenerate to first order accuracy at

smooth extrema), or the high order TVB reconstructions in [17] (however the reconstructions

are no longer self-similar).

4 Implementation of the scheme and numerical exam-

ples for one dimensional scalar convex conservation

laws

In this section, we discuss a practical implementation of the large time step Godunov-type

scheme discussed in the previous section, for one dimensional scalar convex conservation

laws, using a semi-Lagrangian type scheme similar to that used in [3, 2] for Hamilton-Jacobi

equations.

To implement one time step of the Godunov-type scheme, assume that we have the cell

averages ūn available, and we apply a reconstruction operator to obtain the reconstruction

un(x) = Re(ūn)(x), which is a piecewise polynomial function. Our job would be to evolve

un(x) exactly for a time step ∆t, to obtain a solution ũn+1(x), and then take the cell averages

of this solution to obtain ūn+1 = Aũn+1. It is in general very difficult to obtain the solution

ũn+1(x), especially when ∆t is large, however we do not need the details of this solution

ũn+1(x), only its cell averages Aũn+1. As demonstrated in Figure 4.1, if we draw a backward

characteristic line Γj+ 1
2

from each of the cell boundaries xj+ 1
2

at time level tn+1 back to time

level tn with the foot located at yj+ 1
2
, such that the entropy solution of (1.1) is a constant

uj+ 1
2

along this backward characteristic line Γj+ 1
2
, then we can apply the divergence theorem
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over the trapezoid region Ωj to obtain an explicit formula for ūn+1
j as

∆xūn+1
j =

∫ y
j+1

2

y
j− 1

2

un(x)dx −
(
∆tf

(
uj+ 1

2

)
+
(
yj+ 1

2
− xj+ 1

2

)
uj+ 1

2

)

+
(
∆tf

(
uj− 1

2

)
+
(
yj− 1

2
− xj− 1

2

)
uj− 1

2

)
(4.1)

x

t

xj-1/2
xj+1/2

yj-1/2
yj+1/2

Ωj
Γj+1/2

tn+1

tn

Figure 4.1: The trapezoid region Ωj in the x-t plane.

Now, the only difficulty left for the implementation of the Godunov-type scheme is to

find the backward characteristic lines Γj+ 1
2
. Notice that there might be multiple forward

characteristic lines from the reconstruction in the previous time level un(x) which cross at

the target point
(
xj+ 1

2
, tn+1

)
. Even though only one of those characteristic lines (or at most

two if the solution happens to be discontinuous at
(
xj+ 1

2
, tn+1

)
) should be correct and the

remaining forward characteristic lines will have crossed other characteristic lines before the

time tn+1 and should be ignored as they are no longer valid after such crossing, it seems

difficult to numerically implement the finding of this correct characteristic line with low
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computational cost. We have therefore used another strategy to numerically find the correct

characteristic line Γj+ 1
2
. First, we draw forward characteristic lines for all cell Ii from

(
xi− 1

2
, un

(
x+

i− 1
2

))
,

(
xi+ 1

2
, un

(
x−

i+ 1
2

))
,

and (for piecewise polynomials of degree at least 2) from any internal extrema of un(x) inside

the interval Ii. We denote the left-most and right-most intersections of these characteristic

lines with the line t = tn+1 as ξi− 1
2

and ξi+ 1
2

respectively, and define

Ji =
[
ξi− 1

2
, ξi+ 1

2

]
(4.2)

as the domain of influence of the interval Ii for the time level tn+1. Likewise, we draw the

two forward characteristic lines for all cell-boundary points xi+ 1
2

from

(
xi+ 1

2
, un

(
x−

i+ 1
2

))
,

(
xi+ 1

2
, un

(
x+

i+ 1
2

))
,

and denote the left and right intersections of these two characteristic lines with the line

t = tn+1 as η−
i+ 1

2

and η+
i+ 1

2

respectively, and define

J̃i+ 1
2

=
[
η−

i+ 1
2

, η+
i+ 1

2

]
(4.3)

as the domain of influence of the cell-boundary xi+ 1
2

for the time level tn+1. Clearly, because

of the convexity of f(u) and hence the monotonicity of f ′(u), the sets

Cj+ 1
2

=
{
i : xj+ 1

2
∈ Ji

}
, C̃j+ 1

2
=
{
i : xj+ 1

2
∈ J̃i+ 1

2

}
(4.4)

contain all candidate intervals and cell boundary points at time level tn which will contain

forward characteristic lines crossing the target point
(
xj+ 1

2
, tn+1

)
. Furthermore, we can

use the minimum and maximum values of f ′(un) to estimate the largest possible region of

dependency for the point
(
xj+ 1

2
, tn+1

)
at the time level tn, and search for candidates of

the sets Cj+ 1
2

and C̃j+ 1
2

only within this region of dependency to save computational cost.

For each Ji with i ∈ Cj+ 1
2
, we should be able to find a forward characteristic line from

(x∗
i , t

n), for some point x∗
i ∈ Ii, such that it crosses the target point

(
xj+ 1

2
, tn+1

)
. The
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solution u∗ = un(x∗
i ) is a constant along this line, which can be found through the implicit

characteristic equation

u∗ = un
(
xj+ 1

2
− f ′ (u∗) ∆t

)
. (4.5)

For the Burgers equations with piecewise polynomial reconstruction of degree no larger than

4, u∗ can be obtained analytically. For the general situation a Newton iteration might be

needed to find u∗. Likewise, for each J̃i+ 1
2

with i ∈ C̃j+ 1
2
, we can find a forward characteristic

line from (xi+ 1
2
, tn) with a solution value u∗ between un

(
x−

i+ 1
2

)
and un

(
x+

i+ 1
2

)
, such that it

crosses the target point
(
xj+ 1

2
, tn+1

)
. The solution u∗ can be found by the the characteristic

equation which is simpler than (4.5):

f ′(u∗) =
xj+ 1

2
− xi+ 1

2

∆t
. (4.6)

Among all the {x∗
i , u

∗} and {xi+ 1
2
, u∗} that we have found, we would need to choose the foot

of the correct backward characteristic line yj+ 1
2

according to the classical Lax formula [9]

g
(
yj+ 1

2

)
= min

y
g(y) where g(y) =

∫ y

−∞
un(ξ)dξ + ∆tL

(
xj+ 1

2
− y

∆t

)
(4.7)

where the lower limit −∞ in the integral is irrelevant and can be replaced by any fixed point,

and

L(v) =

∫ v

(f ′)−1(u)du

is the Legendre transform of f(u). If there are multiple minimizers to g(y), corresponding

to the situation that the solution is discontinuous at
(
xj+ 1

2
, tn+1

)
, then we will just take

the smallest minimizer as yj+ 1
2
, corresponding to the left limit value of the solution at the

discontinuity
(
xj+ 1

2
, tn+1

)
. It is here that we use the property that the conservation law has

a convex flux f(u), as the Lax formula is only valid for convex conservation laws.

We now summarize our implementation of the large time step Godunov-type scheme for

a scalar one dimensional convex conservation law (1.1), from ūn to ūn+1:

1. Perform a reconstruction to obtain a piecewise polynomial un(x).
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2. Find the domain of influence Ji for each cell Ii via (4.2) and the domain of influence

J̃i+ 1
2

for each cell boundary point xi+ 1
2

via (4.3).

3. Find the set Cj+ 1
2

of all candidate intervals and the set C̃j+ 1
2

of all candidate cell

boundary points at time level tn which will contain forward characteristic lines crossing

the target point
(
xj+ 1

2
, tn+1

)
, via (4.4).

4. For each Ji with i ∈ Cj+ 1
2
, find a forward characteristic line from (x∗

i , t
n) with the

solution value u∗, via (4.5). Likewise, for each J̃i+ 1
2

with i ∈ C̃j+ 1
2
, find a forward

characteristic line from (xi+ 1
2
, tn) with a solution value u∗, via (4.6).

5. Use the Lax formula (4.7) to determine the correct backward characteristic line {yj+ 1
2
, uj+ 1

2
}

among all the {x∗
i , u

∗} and {xi+ 1
2
, u∗} that we have found above.

6. Use (4.1) to obtain ūn+1
j for all j.

In the following we provide numerical results of the large time step Godunov-type scheme

applied to the Burgers equation, namely (1.1) with f(u) = u2

2
, for several different recon-

structions and for both smooth and discontinuous solutions. We take ∆t = ∆x0.9 in all

runs.

Example 4.1. Burgers equation with the initial condition

u0(x) = sin(πx), −1 ≤ x < 1 (4.8)

with periodic boundary condition. The solution at t = 0.2 is still smooth and we record the

L1 errors and numerical orders of accuracy in Table 4.1, for the first order Godunov method

(no reconstruction), second order MUSCL reconstruction, and third order non-oscillatory

reconstruction in [12]. All these cases correspond to TVB reconstructions and hence provable

convergence for the large time step Godunov-type scheme according to the discussions in the

previous two sections. We can see clearly from Table 4.1 that all schemes achieve their

designed order of accuracy.
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Table 4.1: L1 errors and numerical orders of accuracy for different TVD reconstructions.
Burgers equation with initial condition (4.8). t = 0.2

Number of constant MUSCL Liu and Osher
cells L1 error order L1 error order L1 error order
34 1.26E-2 – 1.38E-3 – 1.41E-4 –
68 6.30E-3 1.00 2.89E-4 2.26 2.75E-5 2.35
136 3.80E-3 0.72 8.44E-5 1.77 4.38E-6 2.65
272 2.00E-3 0.92 2.66E-5 1.66 5.85E-7 2.90
544 1.06E-3 0.91 7.55E-6 1.81 7.65E-8 2.93
1088 5.33E-4 0.99 1.76E-6 2.09 9.72E-9 2.97

Even though the third order linear central reconstruction (namely the stencil for recon-

structing the polynomial in Ij is fixed as {Ij−1, Ij, Ij+1}) and the third order ENO recon-

struction [6] are not proven TVB, they perform well in this smooth test case, yielding the

expected third order accuracy for the large time step Godunov-type scheme, see Table 4.2.

Table 4.2: L1 errors and numerical orders of accuracy for third order linear central and ENO
reconstructions. Burgers equation with initial condition (4.8). t = 0.2

Number of central ENO
cells L1 error order L1 error order
34 1.51E-4 – 1.37E-4 –
68 2.65E-5 2.51 2.90E-5 2.24
136 3.86E-6 2.78 5.05E-6 2.52
272 5.21E-7 2.88 6.59E-7 2.93
544 6.79E-8 2.93 9.63E-8 2.77
1088 8.65E-9 2.97 1.21E-8 2.98

Example 4.2. Burgers equation with a discontinuous initial condition

u0(x) =

{
1, if − 1 ≤ x < 0
3, if 0 ≤ x < 1

(4.9)

with periodic boundary condition. The solutions of the large time step Godunov-type scheme

at t = 0.2 for different reconstructions are shown in Figure 4.2. We can see in general good

agreement between the numerical and the exact entropy solutions. The first order Godunov
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scheme is showing some stair-like features in the rarefaction region, which is well known, and

the schemes based on linear reconstructions, namely the second order upwind reconstruction

(for this case with f ′(u) > 0 the stencil for reconstructing the polynomial in Ij is fixed

as {Ij−1, Ij}) and the third order central reconstruction are both slightly oscillatory. The

schemes based on MUSCL, Liu-Osher non-oscillatory and ENO reconstructions are all non-

oscillatory as expected.

5 Convergence of the large time step Godunov-like

scheme based on Sanders’ TVD reconstruction

Sanders [16] proposed a third order accurate TVD (he called it total variation non-expansive)

scheme by evolving both the cell average and the values at two end points of a cell. He can

then obtain a third order TVD scheme instead of the usual Godunov-type TVD scheme which

degenerates to second order at best. This scheme does not fit the framework of Godunov-

type schemes that we have discussed before, since it evolves not just the cell averages but also

point values of the solution at cell boundaries. However, the solution procedure is sufficiently

similar to Godunov-type schemes and therefore we will call it a Godunov-like scheme. The

scheme is based on a reconstruction operator Rs, which produces a piecewise quadratic

function. After a suitable initialization to obtain a piecewise quadratic initial numerical

solution u0(x), the Godunov-type scheme based on Sanders’ reconstruction operator Rs can

be summarized as:

1. Evolution: evolve un(x) by the conservation law (1.1) exactly for a time step ∆t, to

obtain a solution ũn+1(x) which is in general not piecewise polynomial anymore. Recall

that this evolution operator is denoted as S∆t (un).

2. Reconstruction: obtain a piecewise quadratic polynomial reconstruction un(x) by Sanders’

reconstruction. We denote this reconstruction operator as un+1 = Rs (ũn+1).
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Figure 4.2: Burgers equation with the discontinuous initial condition (4.9). t = 0.2. 80
uniform cells. (a) First order scheme with no reconstruction; (b) second order MUSCL
reconstruction; (c) second order upwind reconstruction; (d) third order ENO reconstruction;
(e) third order linear central reconstruction; (f) third order non-oscillatory reconstruction of
Liu and Osher.
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This Godunov-like scheme, using the notations introduced above, can be described ab-

stractly as {
u0 = Rs(u0)
un+1 = Rs ◦ S∆t (un), n = 0, 1, · · · , N − 1.

(5.1)

We will first discuss the TVD reconstruction operator Rs, then prove the convergence of

the large time step Godunov-like scheme based on this reconstruction. Finally we will discuss

the implementation of this scheme, again for one dimensional scalar convex conservation laws,

and provide numerical examples.

5.1 Sanders’ TVD reconstruction

Sanders’ reconstruction Rs maps a bounded variation function u(x) to a piecewise quadratic

polynomial, satisfying the following four properties:

1. Agreement of the cell averages:∫
Ij

Rs(u)(x)dx =

∫
Ij

u(x)dx, ∀j (5.2)

2. TVD:

TV (Rs(u)) ≤ TV (u) (5.3)

3. Maximum (and minimum) principle:

sup Rs(u)(x) ≤ sup u(x), inf Rs(u)(x) ≥ inf u(x)

4. Third order accuracy:

Rs(u)(x) = u(x) + O(∆x3)

when u is locally smooth.

Let us now describe the details of the reconstruction operator Rs. First, given the cell

average ūj and the cell boundary values u+
j− 1

2

and u−
j+ 1

2

, we can easily construct a unique

quadratic polynomial qj(x) such that

1

∆x

∫ x
j+ 1

2

x
j− 1

2

qj(x) dx = ūj , qj

(
xj− 1

2

)
= u+

j− 1
2

, qj

(
xj+ 1

2

)
= u−

j+ 1
2

.
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In fact, if we denote

a = u+
j− 1

2

− ūj, b = u−
j+ 1

2

− ūj , (5.4)

then the quadratic polynomial qj(x) is given by

qj(x) = q̂(a, b)(x) + ūj = 3(a + b)

(
x − xj

∆x

)2

+ (b − a)

(
x − xj

∆x

)
− 1

4
(a + b) + ūj (5.5)

We denote M to be the larger one (in magnitude) of a and b and m the smaller one, ρ = m
M

,

E =

⎧⎨
⎩

sup
Ij

(u − ūj), if M ≤ 0

inf
Ij

(u − ūj), if M > 0
(5.6)

and Ê = E
M

. Let

τ+ = −Ê · 3(1 + ρ)

1 + ρ + ρ2
, τ− = −1

2

(
(ρ + 3Ê) − 3(Ê − ρ)(3Ê + ρ)

1
2

)

and

τl =

⎧⎪⎪⎨
⎪⎪⎩

1, if − 1 ≤ ρ ≤ −1
2

1, if − 1
2

< ρ < 0 and a = M
min(τ−, 1), if − 1

2
< ρ < 0 and b = M

min(τ+, 1), if 0 ≤ ρ ≤ 1

τr =

⎧⎪⎪⎨
⎪⎪⎩

1, if − 1 ≤ ρ ≤ −1
2

1, if − 1
2

< ρ < 0 and b = M
min(τ−, 1), if − 1

2
< ρ < 0 and a = M

min(τ+, 1), if 0 ≤ ρ ≤ 1

then the TVD reconstruction in Ij is defined by

Rs(u)(x) = q̂(τla, τrb)(x) + ūj (5.7)

with q̂ defined in (5.5). It is proved in [16] that the reconstruction Rs is third order accurate

and TVD.

5.2 Convergence of the Godunov-like scheme based on Sanders’
reconstruction

In this subsection we prove the convergence of the Godunov-like scheme (5.1) based on

Sanders’ reconstruction.
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Theorem 5.1. The numerical solution of the Godunov-like scheme (5.1) with Sanders’

reconstruction (5.7) for solving the scalar conservation law (1.1) converges in L1 to the

entropy solution of (1.1) when the mesh size ∆x goes to zero, if the large time step assumption

(2.3) is satisfied.

Proof: We again denote the exact entropy solution of (1.1) at time level tn by u(·, tn) and

the L1 difference between this exact solution and the numerical solution un at time level tn

by en:

en = ‖u(·, tn) − un‖L1 . (5.8)

First, the total variation of the numerical solution is bounded (in fact, diminishing):

TV (un) = TV (Rs ◦ S∆t (un−1))

≤ TV (un−1)

≤ · · ·

≤ TV (u0) ≤ TV (u0) (5.9)

where we have used the fact that neither the reconstruction operator Rs nor the exact

entropy solution evolution operator S∆t increases the total variation of a function, for the

second inequality.
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We now proceed to prove the desired convergence

en = ‖u(·, tn) − un‖L1

≤ ‖u(·, tn) − S∆t(u
n−1)‖L1 + ‖S∆t(u

n−1) − A ◦ S∆t(u
n−1)‖L1 + ‖A ◦ S∆t(u

n−1) − un‖L1

= ‖S∆t(u(·, tn−1)) − S∆t(u
n−1)‖L1 + ‖S∆t(u

n−1) − A ◦ S∆t(u
n−1)‖L1

+‖A ◦ Rs ◦ S∆t(u
n−1) − Rs ◦ S∆t(u

n−1)‖L1

≤ ‖u(·, tn−1) − un−1‖L1 + C∆xTV (S∆t(u
n−1)) + C∆xTV (Rs ◦ S∆t(u

n−1))

≤ en−1 + C∆xTV (un−1) + C∆xTV (un−1)

≤ en−1 + C̃∆x

≤ · · ·

≤ C̃n∆x + e0

= C̃T
∆x

∆t
+ e0 → 0 as ∆x → 0

where for the third equality we have used the cell average preserving property (5.2) of Rs;

for the fourth inequality we have used the fact that the exact entropy solution operator S∆t

is an L1 contraction, and the inequality (2.6) with w = S∆t(u
n−1) and w = Rs ◦ S∆t(u

n−1)

respectively; for the fifth inequality we have used the fact that the reconstruction operator

Rs and the exact entropy solution operator S∆t are both TVD; and for the sixth inequality

we have used the fact that the total variation of the numerical solution is bounded (5.9).

5.3 Implementation and numerical examples

For one dimensional scalar convex conservation law (1.1), the implementation of the large

time step Godunov-like scheme based on Sanders’ reconstruction operator Rs is similar to

that for the large time step Godunov-type scheme described in detail in section 4. This is

because the procedure described in section 4 provides both the cell average ūn+1
j and the cell

boundary values uj− 1
2

and uj+ 1
2
, hence a and b in (5.4) are available. The only additional

information needed is the relevant extremum value E in (5.6), which is in general difficult

to obtain. We follow Sanders [16] and take instead the corresponding extremum value E
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at the previous time level tn between the feet of the characteristics yj− 1
2

and yj+ 1
2
. This

approximation of E is exact if there is no discontinuity within the trapezoid Ωj (see Figure

4.1), and is over-estimating (larger for the sup and smaller for the inf) if there is at least one

shock within Ωj . It does not affect the accuracy and TVD property of the reconstruction

Rs.

In the numerical experiments we take ∆t = ∆x0.9 as before. We test the large time step

Godunov-like scheme based on both a unmodulated third order reconstruction (qj as given

by (5.5)) and on Sanders’ TVD reconstruction Rs. We again first test the smooth solution

as in Example 4.1. The L1 errors and numerical orders of accuracy are shown in Table 5.1.

We can see clearly third order accuracy for the scheme based on both reconstructions from

Table 5.1.

Table 5.1: L1 errors and numerical orders of accuracy for the third order unmodulated third
order reconstruction (5.5) and Sanders’ TVD reconstruction Rs. Burgers equation with
initial condition (4.8). t = 0.2

Number of unmodulated third order Sanders
cells L1 error order L1 error order
40 1.37E-5 – 1.37E-5 –
80 2.26E-6 2.59 2.26E-6 2.59
160 3.64E-7 2.63 3.64E-7 2.63
320 5.12E-8 2.83 5.31E-8 2.77
640 6.70E-9 2.93 6.78E-9 2.97

Next, we test the discontinuous solution as in Example 4.2. Figure 5.1 displays the

numerical solution. We can see again good agreement between the numerical and the exact

entropy solutions. The scheme based on the unmodulated third order reconstruction is

slightly oscillatory, and the scheme based on Sanders’ TVD reconstruction is not oscillatory,

as expected.
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Figure 5.1: Burgers equation with the discontinuous initial condition (4.9). t = 0.2. 80
uniform cells. Left: unmodulated third order reconstruction; Right: Sanders’ TVD recon-
struction.

6 Concluding remarks

The main result of this paper is the proof of convergence towards entropy solutions of large

time step Godunov-type schemes with total variation bounded reconstructions for general

scalar conservation laws. It is somewhat surprising that no cell or wavewise entropy inequal-

ities are needed in the proof. We have also discussed practical implementation of such large

time step Godunov-type schemes for scalar one dimensional convex conservation laws and

have provided numerical examples to demonstrate the performance of these schemes. Fu-

ture work will include investigations on practical implementation for more general equations,

and on possible elimination of the total variation bounded assumption on the reconstruction

(or the replacement of this condition by a weaker condition easier to satisfy for high order

reconstructions in multi-space dimensions).
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