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Abstract

It was established in [4, 5] that importance sampling algorithms for
estimating rare-event probabilities are intimately connected with two-
person zero-sum differential games and the associated Isaacs equation.
The purpose of the present paper and a companion paper [6] is to
show that the classical sense subsolutions of the Isaacs equation can
be used as a basic and flexible tool for the construction and analysis
of efficient importance sampling schemes. The importance sampling
algorithms based on subsolutions are dynamic in the sense that during
the course of a single simulation, the change of measure used at each
time step may depend on the outcome of the simulation up until that
time. While [6] focuses on a theoretical aspects, the present paper dis-
cusses explicit methods of constructing subsolutions, implementation
issues, and simulation results.
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1 Introduction and background

It was established in [4, 5] that importance sampling algorithms for estimat-
ing rare-event probabilities or functionals that are largely determined by
rare-events are closely related to deterministic differential games. More pre-
cisely, the asymptotic optimal performance of importance sampling schemes
can be characterized by the value function of a two-person zero-sum differ-
ential game, which can in turn be characterized by the solution to the Isaacs
equation (a nonlinear PDE) associated with the game. It was also discussed
in [4, 5] that one can construct asymptotically optimal importance sampling
algorithms based on this solution.

The purpose of the present paper and a companion paper [6] is to ex-
plore this connection in further depth. A main new feature is that it is
possible to construct efficient importance sampling schemes based on subso-
lutions of the Isaacs equation. This leads to a more general class of schemes
and lends great flexibility to the designer. We will see that one can often
construct subsolutions that are structurally simpler than the actual solu-
tion, but which correspond to asymptotically optimal (or at least nearly
asymptotically optimal) importance sampling schemes that reflect this sim-
pler structure. This simplicity is important, since one is often interested in
properties other than just asymptotic optimality, e.g., ease of construction
and ease of implementation. The companion paper [6] focuses on theoretical
aspects of this approach, and proves a basic result on the asymptotic perfor-
mance of importance sampling schemes that are based on subsolutions. In
contrast, the present paper will focus on methods for constructing subsolu-
tions and their application to various process models, events, and expected
values.

The theory in [6] assumes a setting that includes as special cases both
the sum of independently identically distributed (iid) random variables and
the empirical measure of a finite-state Markov chain. However, its potential
application is much broader, and includes, for example, systems with state
dependencies, systems with constrained dynamics, and expected values in-
volving path-dependent events. Indeed, while many examples discussed in
the present paper do not fit directly into the theoretical framework of [6],
we will see that efficient importance sampling algorithms can be designed
via subsolutions.

The paper is organized as follows. In Section 2 we focus on a particu-
lar problem of interest: importance sampling for sums of a functional of a
Markov chain. This is a special case of the model studied in [6]. We first re-
call the Isaacs equation that is appropriate for this problem, and then review
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the notion of a subsolution/control pair for this equation. Such pairs define
importance sampling schemes, and we also review the theoretical bounds on
performance one obtains from a subsolution. Section 3 discusses methods for
the construction of subsolutions for this particular problem in great detail,
starting with the simplest possible examples and then extending to more
complicated situations. Section 4 is devoted to examples. Whenever possi-
ble, we have chosen examples for which there is an alternative method to
compute (at least approximately) the true value. The only exception is the
example of Section 4.5. The first part of Section 4 the applies the techniques
of Section 3 to problems involving sums of random variables, and presents
simulation results for the corresponding schemes. However, the use of sub-
solution methods extends far beyond the simple setting of sums of random
variables. For example, the paper [3] shows how to apply subsolutions to
construct and analyze importance sampling schemes for stochastic networks.
The second part of Section 4 considers several other types of problems to
which the approach can be applied, including multi-dimensional level cross-
ing problems, probabilities and expected values that depend on a sample
path of a process, and an interesting mixed open/closed queueing network.
Although the theoretical analysis of these problems is not covered by [6], in
each case the application of the Isaacs equation and subsolution approach
follows the pattern laid out for the simple case of sums of random variables.
The examples are representative, but far from exhaustive. To streamline
the presentation the details of certain constructions are postponed to an
appendix.

2 Review of the main theoretical results

This section reviews the theoretical results in [6]. To ease exposition, we
specialize to Markov chains and leave out various technical assumptions on
the underlying processes and relevant functionals. See [6] for these details.

2.1 Basic setup

Let Y
.
= {Yi, i ∈ N0} denote a Markov chain with state space S. Assume

that S is a Polish space, and let p(y, dz) denote the probability transition
kernel. Our interest is in sums of the form

Xn
.
=
1

n

n−1[
i=0

g (Yi) ,
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where g : S → Rd is a given measurable function.
An important component of the analysis is the eigenvalue/eigenvector

problem associated with the non-negative kernel expkα, g(z)lp(y, dz) for an
arbitrary α ∈ Rd:]

S

]
Rd
e'α,g(z)�r(z;α)p(y, dz) = eH(α)r(y;α). (2.1)

It follows from (2.1) that, for each α ∈ Rd,

P (y, dz;α)
.
= e'α,g(z)�−H(α)

r(z;α)

r(y;α)
p(y, dz) (2.2)

defines a probability transition kernel. The large deviation rate function L
associated with the process {Xn} can be expressed in terms of the eigenvalue
H. Indeed, L is the convex conjugate of H, that is, for each β ∈ Rd,

L(β) = sup
α∈Rd

[kα,βl −H(α)].

2.2 The Isaacs equation and subsolution

Suppose one wishes to estimate the expected value of certain functionals of
Xn for large n, using importance sampling algorithms based on changes of
measure of the form (2.2). It follows from [5] that the optimal performance
of such schemes can be characterized by the Isaacs equation

Wt + sup
α∈Rd

inf
β∈Rd

H(DW ;α,β) = 0 (2.3)

with a suitable terminal condition. Here W : (x, t) ∈ Rd × [0, 1] → R, Wt

denotes the partial derivative with respect to t, DW the gradient in x, and

H(s;α,β) .= ks,βl+ L(β) + kα,βl −H(α) (2.4)

for s,α,β ∈ Rd.
In order to construct good importance sampling schemes, one does not

need the solution to the Isaacs equation. It turns out that finding a good
subsolution (more precisely, a subsolution/control pair) is often sufficient.
We need the following definition. Given K ∈ N, consider a function W̄ :
Rd × [0, 1] → R and, for 1 ≤ k ≤ K, functions ρk : Rd × [0, 1] → R,
ᾱk : Rd × [0, 1]→ Rd.
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Definition 2.1 The collection (W̄ , ρk, ᾱk) will be called a generalized sub-
solution/control if the following conditions hold. ρk : Rd × [0, 1] → R, k =
1, . . . ,K is a partition of unity, i.e., each ρk is non-negative, and

K[
k=1

ρk(x, t) = 1

for all (x, t) ∈ Rd × [0, 1]. W̄t and DW̄ have representations

W̄t(x, t) =
K[
k=1

ρk(x, t)rk(x, t), DW̄ (x, t) =
K[
k=1

ρk(x, t)sk(x, t),

and for each k = 1, . . . ,K

rk(x, t) + inf
β∈Rd

H(sk(x, t); ᾱk(x, t),β) ≥ 0.

The functions (rk, sk, ρk, ᾱk) are uniformly bounded and Lipschitz continu-
ous.

For any generalized subsolution/control (W̄ , ρk, ᾱk), it is not difficult to
show that

W̄t + sup
α∈Rd

inf
β∈Rd

H(DW̄ ;α,β) ≥ 0.

In other words, W̄ is a classical subsolution to the Isaacs equation (2.3).
It will turn out that the (ρk, ᾱk)-component determines the change of mea-
sure used in importance sampling, and so we use terminology “subsolu-
tion/control.”

Remark 2.1 For the special case where K = 1, and with notation ᾱ = ᾱ1,
we simply write (W̄ , ᾱ) and call it a subsolution/control pair.

Remark 2.2 Suppose that W̄ is a classical subsolution to the Isaacs equa-
tion (2.3), that is

W̄t + sup
α∈Rd

inf
β∈Rd

H(DW̄ ;α,β) ≥ 0.

Let α∗(x, t) be the supremizer in the above display [indeed, one can easily
identify α∗(x, t) = −DW̄ (x, t)/2]. Then (W̄ ,α∗) is a subsolution/control
pair, provided that α∗ is uniformly bounded and Lipschitz continuous.
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2.3 Importance sampling algorithms based on subsolutions

In this section we describe the importance sampling algorithms associated
with a given generalized subsolution/control (W̄ , ρk, ᾱk). For fixed n, let

ᾱk,j(x)
.
= ᾱk(x, j/n), ρk,j(x)

.
= ρk(x, j/n).

Processes {X̄j} and {Ȳj} are constructed recursively as follows. Let X̄0 = 0
and Ȳ0 = Y0. Given that X̄j = x and Ȳj = y, simulate Ȳj+1 under the
distribution

K[
k=1

ρk,j(x)P (y, dz; ᾱk,j(x)) . (2.5)

In other words, one first simulates a multinomial random variable I taking
values in {1, 2, . . . ,K} such that P{I = k} = ρk,j(x), and then simulates
Ȳj+1 from the distribution P (y, dz; ᾱI,j(x)). Finally, update the state dy-
namics by letting

X̄j+1
.
= X̄j +

1

n
g(Ȳj+1).

An unbiased importance sampling estimator can then be obtained by
multiplying the functional of interest by a Radon-Nikodým derivative (i.e.,
likelihood ratio). For example, suppose we are interested in estimating
E[G(Xn)] for some function G. A single sample of the unbiased importance
sampling estimator is

Zn
.
= G(X̄n)

n−1\
j=0

%
K[
k=1

ρk,j(X̄j) · ekᾱk,j(X̄j),g(Ȳj+1)l−H(ᾱk,j(X̄j))

· r(Ȳj+1; ᾱk,j(X̄j))
r(Ȳj ; ᾱk,j(X̄j))

�−1
. (2.6)

The importance sampling algorithm is then just the sample average of a
number of independent replications of Zn.

Remark 2.3 In most of the applications considered in this paper, one can
construct a generalized subsolution/control (W̄ , ρk, ᾱk) where the ᾱk are all
constants and with K of moderate size. This has a distinct advantage in
numerical implementation. For example, in the Markov chain case, to com-
pute a change of measure one often needs to numerically solve the eigen-
value/eigenvector problem. If ᾱk is not a constant, one needs to solve eigen-
value/eigenvector problems over and over again, depending on the current
state of the simulation. This could become very computationally demand-
ing.
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2.4 The main theoretical result

To simplify the exposition, we specialize for now to the case where the
quantity of interest is

E[G(Xn)] = E[1{Xn∈A}] = P{Xn ∈ A}.
for some Borel set A ⊂ Rd, and assume the large deviation limit

lim
n→∞

1

n
logP{Xn ∈ A} = − inf

β∈A
L(β).

For convenience let γ
.
= infβ∈A L(β).

The following result is a special case of Theorem 7.1 of [6].

Theorem 2.2 Let (W̄ , ρk, ᾱk) be a generalized subsolution/control such that

W̄ (x, 1) ≤ 0 (2.7)

for all x ∈ A. Let V n be the second moment of the associated importance
sampling estimator, that is,

V n
.
= E

�
(Zn)2

�
,

where Zn is defined in (2.6). Let

Wn .= − 1
n
log V n.

Then
lim inf
n→∞ Wn ≥ W̄ (0, 0).

The theorem provides a lower bound for the exponential decay rate of the
second moment of the importance sampling estimator Zn. An upper bound
that is independent of the importance sampling scheme also holds. Indeed,
consider any importance sampling estimator one might use to approximate
P{Xn ∈ A}, and analogous toWn, let Ŵn denote the normalized logarithm
of its second moment. Then an elementary calculation based on Jensen’s
inequality shows that

lim sup
n→∞

Ŵn ≤ 2γ.
Thus a natural goal in importance sampling design is to come as close to
this upper bound as possible. In other words, we would like to find a sub-
solution/control for which W̄ (0, 0) is close to 2γ. Any importance sampling
estimator that achieves this maximal exponential decay rate is called as-
ymptotically optimal.
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Remark 2.4 Theorem 2.2 holds under much greater generality [6]. For
example, suppose one is interested in the expectation

E[G(Xn)] = E[exp{−nF (Xn)}]

for some function F . A result analogous to Theorem 2.2 holds except that
the terminal condition as in equation (2.7) is replaced by

W̄ (x, 1) ≤ 2F (x)

for all x ∈ Rd.

2.5 Discussion

The use of subsolutions is applicable in much broader settings than those
discussed in this section, or even those in [6]. For instance, an interesting
class of problems is to estimate the probabilities of path dependent events
(say, events that depend on the extrema of the sample path). In this case,
the subsolution needs to satisfy certain boundary conditions besides the ter-
minal condition. Another interesting class of problems where the use of
subsolutions appears crucial involve probabilities associated with systems
with constrained dynamics (e.g., queuing networks [3]), where the bound-
ary condition and/or terminal condition may take more complicated forms.
Depending on the class of changes of measure used and the dynamics of the
system, the Isaacs equation may take a different form from the one used
here. However, it is always the case that the use of subsolutions is criti-
cal to the construction of importance sampling schemes. Section 4 presents
a few such examples even though they are not covered by the theoretical
framework of [6].

3 Construction of generalized subsolution/controls

To illustrate how one can construct generalized subsolution/controls, we
specialize to the setup of Section 2 and assume that the quantity of interest
is

E[G(Xn)] = E[1{Xn∈A}] = P{Xn ∈ A}.
The extrapolation to more general setups will also be considered later in the
paper.

There are several concerns in the construction. To begin, the terminal
condition W̄ (x, 1) ≤ 0 for x ∈ A must be satisfied in order for Theorem
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2.2 to be valid. Secondly, one wishes W̄ (0, 0) to be as close as possible to
the optimal decay rate 2γ. Finally, one would like the controls (ρk, ᾱk) to
take simple forms, since this gives importance sampling algorithms that are
simpler and easier to implement.

Our construction is as follows. We first identify a family of particularly
simple subsolution/control pairs to the Isaacs equation (2.3). For each of
these pairs, say (W̄ , ᾱ), W̄ is affine in (x, t) and ᾱ takes constant value.
W̄ will actually be a solution to the Isaacs equation alone (i.e., with the
terminal condition unspecified). This family, denoted from now on by A,
will contain the building blocks for our construction. It is the appropriate
family for the class of problems under consideration, where the Hamiltonian
H does not depend on x.

If the terminal condition (2.7) is satisfied by an element of A and if
W̄ (0, 0) is sufficiently close to 2γ, then the construction is complete. This
is always possible when A is convex (see Case 1 in Section 3.2.1 below).
When this is not possible, it is often possible to take a finite collection of
such pairs, say {(W̄k, ᾱk), k = 1, 2, . . . ,K}, so that the minimum of {W̄k}
satisfies the terminal condition (2.7) and ∧Kk=1W̄k(0, 0) equals 2γ.

Since the each W̄k is a classical subsolution, their minimum is a weak
sense subsolution, but not a classical sense subsolution. However, there are
several simple and easily implemented methods for mollifying ∧Kk=1W̄k to
produce a generalized subsolution/control (W̄ , ρk, ᾱk). These are discussed
in Section 3.3.

3.1 Affine solutions to the Isaacs equation

In this section we identify A, the collection of affine subsolution/control
pairs to the Isaacs equation (2.3).

For any given ᾱ ∈ Rd and c̄ ∈ R, consider the affine function

W̄ (x, t) = −2kᾱ, xl+ c̄− 2(1− t)H(ᾱ).

We claim that (W̄ , ᾱ) is a subsolution/control pair. Indeed, thanks to the
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convex conjugacy between H and L,

W̄t + inf
β∈Rd

H(DW̄ ; ᾱ,β)

= W̄t + inf
β∈Rd

�
DW̄,β

�
+ L(β) + kᾱ,βl −H(ᾱ)�

= 2H(ᾱ) + inf
β∈Rd

[k−2ᾱ,βl+ L(β) + kᾱ,βl −H(ᾱ)]
= H(ᾱ) + inf

β∈Rd
[L(β)− kᾱ,βl]

= 0.

Let A be the collection of all such functions, that is

A .
=
q
(W̄ , ᾱ) : W̄ = −2kᾱ, xl+ c̄− 2(1− t)H(ᾱ), ᾱ ∈ Rd, c̄ ∈ R

r
.

Remark 3.1 It is not difficult to show that for every (W̄ , ᾱ) ∈ A, the affine
function W̄ is indeed a solution to the Isaacs equation (2.3).

3.2 Piecewise affine viscosity subsolutions

As mentioned above, the technique used to construct a generalized subsolu-
tion/control requires finding a finite collection of affine subsolution/control
pairs in A such that their minimum satisfies the appropriate terminal condi-
tion and takes a large value at (0, 0) [preferably 2γ, the optimal exponential
decay rate]. We begin in this section with the simplest examples.

3.2.1 Example: Estimating P{Xn ∈ A}
Consider the setup in Section 2.1, and suppose that one wishes to estimate
P{Xn ∈ A} for some Borel set A ⊂ Rd. Throughout this section we assume

inf
β∈A◦

L(β) = inf
β∈Ā

L(β) ∈ (0,∞),

where A◦, Ā denote the interior and the closure of A, respectively. It follows
that the exponential decay rate is

γ = inf
β∈A

L(β) = inf
β∈A◦

L(β) = inf
β∈Ā

L(β).

Let β∗ ∈ Ā denote a minimizer of L over Ā. Let α∗ satisfy

L(β∗) = sup
α∈Rd

[kα,β∗l −H(α)] = kα∗,β∗l −H(α∗).
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α∗ is called the convex conjugate of β∗.

Case 1. Consider the simplest case where A is a convex set. Thanks to the
convexity of Ā, the vector −α∗ defines an outward normal of Ā. It follows
that

A ⊂ {x ∈ Rd : kx,α∗l ≥ kβ∗,α∗l}. (3.1)

Consider the element of A with ᾱ = α∗ and c̄ = 2kβ∗,α∗l, i.e.,

W̄ (x, t) = −2kα∗, xl+ 2kβ∗,α∗l − 2(1− t)H(α∗).

Thanks to the inequality (3.1), for each x ∈ A

W̄ (x, 1) = −2kα∗, xl+ 2kβ∗,α∗l ≤ 0.

Therefore, when A is convex, (W̄ ,α∗) provides a simple subsolution/control
pair that satisfies the terminal condition. The value at (0, 0) is

W̄ (0, 0) = 2kβ∗,α∗l − 2H(α∗) = 2L(β∗) = 2γ,

the largest possible value. Note that the analysis holds if we replace the
convexity assumption on A by the assumption that (3.1) holds.

Case 2. More generally, suppose that for some K ∈ N,

A ⊂ ∪Kk=1 {x : kx,αkl ≥ kβk,αkl}

where βk and αk are convex conjugates, and that for each k L(βk) ≥ γ. A
necessary and sufficient condition for these two assumptions to hold is that
A should be contained in the union of a finite number of half-spaces, and
that the infimum of L on each of these half spaces is at least γ. In this case
βk can be taken as the point on the kth half space that minimizes L, and
we have γ = L(βk) for some k. Several of the numerical examples in Section
4 will fall into this category.
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β1
A

α1

α2

β2

Figure 1. Example of a non-convex A with a two-piece subsolution.

Define an affine subsolution/control pair (W̄k,αk) by

W̄k(x, t)
.
= −2kαk, xl+ 2kαk,βkl − 2(1− t)H(αk)

for each k = 1, . . . ,K. Consider the pointwise minimum

W̄ (x, t)
.
= ∧Kk=1W̄k(x, t).

As we have pointed out, W̄ defines a weak sense subsolution to the Isaacs
equation. The terminal condition (2.7) is satisfied. Since for each x ∈ A
kx,αkl ≥ kβk,αkl for some k, we have

W̄ (x, 1) ≤ W̄k(x, 1) = −2 kx,αkl+ 2 kβk,αkl ≤ 0.

Finally, we observe that

W̄ (0, 0) = ∧Kk=1W̄k(0, 0) = 2 ∧Kk=1 [kβk,αkl − 2H(αk)] = 2 ∧Kk=1 L(βk) = 2γ.

The last equality holds since L(βk) ≥ γ for each k and with equality for
some k.
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3.2.2 Example: Estimating E exp{−nF (Xn)}
Consider the setup in Section 2.1, and suppose that one wishes to estimate
E exp{−nF (Xn)} for some measurable function F : Rd → R ∪ {+∞}. Let
γ
.
= infβ∈Rd [F (β) + L(β)], and assume that

lim
n→∞

1

n
logE exp{−nF (Xn)} = −γ.

This large deviation limit holds under various sets of regularity conditions
on F [2]. In this case the terminal condition (2.7) is replaced by

W̄ (x, 1) ≤ 2F (x)

for x ∈ Rd (see Remark 2.4).
The development here parallels the probability case as described in the

previous section. For simplicity, we assume that there exists β∗ that min-
imizes L(β) + F (β) over β ∈ Rd, and let α∗ be its convex conjugate. To
avoid technicalities, we also assume that L is differentiable at β∗, and thus

α∗ = DL(β∗).

Case 1. We first consider the simplest case where F is convex. Consider
an affine subsolution/control pair (W̄ ,α∗) where

W̄ (x, t)
.
= −2 kα∗, xl+ 2[F (β∗) + kα∗,β∗l]− 2(1− t)H(α∗).

Since β∗ is a minimizer of L(x) + F (x), we have

0 ∈ ∂(L+ F )(β∗),

where ∂ denotes the set of subdifferentials. Therefore

−α∗ = −DL(β∗) ∈ ∂F (β∗).

It follows that the affine function W̄ (x, 1) is a supporting hyperplane to 2F
at β∗, and hence

W̄ (x, 1) ≤ 2F (x)
for every x, i.e., the terminal condition holds. Also observe that

W̄ (0, 0) = 2F (β∗) + 2 kα∗,β∗l − 2H(α∗) = 2F (β∗) + 2L(β∗) = 2γ.
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Case 2. Next suppose that F is no longer convex. If there exists a convex
function G such that G ≤ F , G(β∗) = F (β∗), and

inf
β∈Rd

[L(β) +G(β)] = inf
β∈Rd

[L(β) + F (β)] = γ,

then we reduce to the previous case. More generally, suppose there exist
convex functions Gk, k = 1, . . . ,K, such that

∧Kk=1Gk ≤ F, (3.2)

and for each k,

inf
β∈Rd

[L(β) +Gk(β)] ≥ inf
β∈Rd

[L(β) + F (β)] . (3.3)

If eachGk is bounded from below and lower semicontinuous then a minimizer
βk of L(β)+Gk(β) will exist, and we can define the weak sense subsolution

W̄ (x, t)
.
= ∧Kk=1W̄k(x, t),

where (W̄k,αk) is the affine subsolution/control pair with

W̄k(x, t)
.
= −2 kαk, xl+ 2[Gk(βk) + kαk,βkl]− 2(1− t)H(αk).

The same argument as in Case 1 shows that the terminal condition W̄ (x, 1) ≤
2F (x) is satisfied, and we have

W̄ (0, 0) = ∧Kk=1[L(βk) +G(βk)] ≥ 2γ.

Actually, the equality holds, since (3.2) implies (3.3) must hold as an equality
for some k.

3.3 Mollification

As discussed previously, once a weak sense subsolution is identified as the
pointwise minimum of a collection of affine subsolution/control pairs, mol-
lification is used to produce generalized subsolution/controls.

Let (W̄k,αk) ∈ A, k = 1, 2 . . . ,K, be affine subsolution/control pairs. We
use a standard numerical approximation which we call exponential weighting
for W̄ (x, t) = ∧Kk=1W̄k(x, t). Let δ be a small positive number, and define

W̄ δ(x, t)
.
= −δ log

#
K[
k=1

e−
1
δ
W̄k(x,t)

$
.
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For 1 ≤ i ≤ K, let
ρδi (x, t)

.
=

e−
1
δ
W̄i(x,t)SK

k=1 e
− 1

δ
W̄k(x,t)

.

Then one can easily verify

DW̄ δ(x, t) =
K[
k=1

ρδk(x, t)DW̄k(x, t)

and

W̄ δ
t (x, t) =

K[
k=1

ρδk(x, t)
�
W̄k

�
t
(x, t),

and so W̄ δ takes the form prescribed for a generalized subsolution/control
with ᾱk(x, t) ≡ αk. It is obvious that the three functions sk(x, t) = DW̄k(x, t) =
−2αk, rk(x, t) =

�
W̄k

�
t
(x, t) = 2H(αk) and ᾱk(x, t) are uniformly bounded

and Lipschitz continuous, and it is easy to check that the same is true with
regard to ρδk(x, t) for each fixed δ > 0. Therefore, (W̄ δ, ρδk, ᾱk) is a general-
ized subsolution/control.

For a fixed (x, t) let l satisfy W̄ (x, t) = W̄l(x, t). Then

e−
1
δ
W̄k(x,t) ≤ e− 1

δ
W̄l(x,t)

for k = 1, . . . ,K. Therefore

e−
1
δ
W̄l(x,t) ≤

K[
k=1

e−
1
δ
W̄k(x,t) ≤ Ke− 1

δ
W̄l(x,t),

which implies

W̄l(x, t) ≥ W̄ δ(x, t) ≥ W̄l(x, t)− δ logK.

Since l achieves the minimum, for all (x, t)

W̄ (x, t) ≥ W̄ δ(x, t) ≥ W̄ (x, t)− δ logK.

Thus if W̄ satisfies a given terminal condition then so will W̄ δ, though
W̄ δ(0, 0) ≥ W̄ (0, 0)− δ logK implies there may be a small reduction of the
value at (0, 0).

It is important to observe is that, as equation (2.5) indicates, the sub-
solution W̄ δ itself does not play any explicit role in the computation of the
change of measure and the algorithm is completely determined by (ρδk, ᾱk).
However, the function W̄ δ characterizes the performance of the correspond-
ing importance sampling algorithm through results such as Theorem 2.2.
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Remark 3.2 Recall that mollification will possibly results in a small re-
duction in the value W̄ (0, 0). The inequality W̄ δ ≤ W̄ suggests one could
perhaps satisfy the terminal condition by considering W̄ δ + c instead of W̄ δ

for some c > 0, which would reduce the loss at (0, 0). However, this will
not eliminate the gap in all circumstances. It is worth noting that one can
construct a sequence of schemes indexed by n which achieves the theoretical
bound on performance if one chooses δ → 0 as n → ∞ in an appropriate
way. We will not pursue this issue here, since our computational experience
suggests it is not needed to obtain good performance. However, the inter-
ested reader can consult [3] for the precise statement and further details in
the context of stochastic networks.

Remark 3.3 Exponential weighting is not the only way to achieve mollifi-
cation. For example, one can mollify W̄ (x, t) = ∧Kk=1W̄k(x, t) by integration
against a smooth convolution kernel, for which a standard choice is

η(x)
.
=

�
C exp{1/(nxn2 − 1)}, if nxn < 1,

0 , if nxn ≥ 1,

where C is the normalizing constant so that the integral of η over Rd is one
[7, Section 7.2]. However, we do not recommend this method since in this
case the weights {ρδk(x, t)} involve integrations that can be computationally
demanding. In contrast, the weights are very easy to compute when using
the exponential weighting mollification. In fact, for all the numerical exam-
ples in Section 4 where mollification is needed, if one mollifies by integration
against the convolution kernel η, the resulting importance sampling schemes
will yield very similar estimates and standard errors (for the same sample
size) as those based on the exponential weighting mollification, even though
the latter is much faster.

3.4 Discussion

The construction of generalized subsolution/controls can be extended in
many ways and to many other situations. Depending on the problem at
hand, the Isaacs equation, the terminal condition, and the boundary con-
ditions (if any) may take different forms (see Section 2.5). For example,
when computing escape probabilities with a stochastic network one is par-
ticularly interested in combining subsolutions so as to satisfy appropriate
boundary conditions [3]. In other problems, one way wish to expand A so
that it also includes (W̄ , ᾱ) where W̄ is a strict subsolution to the Isaacs
equation, or even a non-affine subsolution of some specific form. However,
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the basic structure for constructing an importance sampling scheme remains
the same: We identify a class of subsolution/control pairs which correspond
to changes of measures of simple form, and use these pairs as the building
blocks for generalized subsolution/controls.

4 Examples of importance sampling algorithms

In this section we give examples of importance sampling algorithms based on
subsolutions. As noted in the Introduction, some of these examples are not
covered by the theoretical framework in the companion paper [6]. The role
of these examples is to demonstrate the broad applicability of subsolutions
in importance sampling. Unless specified otherwise, the importance sam-
pling algorithm based on a generalized subsolution/control will follow the
description in Section 2.3 with the new distribution determined by equation
(2.5).

4.1 Example: Estimating P{Xn ∈ A} for convex A
Assume that {Y1, Y2, . . .} is a sequence of iid 2-dimensional N(0, I2) random
variables, where I2 is the 2× 2 identity matrix. Let

Xn =
1

n

n[
i=1

Yi,

and consider the estimation of P{Xn ∈ A} for a convex set A of the form

A =
�
x ∈ R2 : (x− a)2 + y2 ≤ r2� ,

with 0 < r < a. Clearly {Xn ∈ A} is a rare event for large n.
For this model, H(α) = nαn2/2 and L(β) = nβn2/2. Cramér’s Theorem

yields

lim
n→∞

1

n
logP{Xn ∈ A} = − inf

β∈A
L(β) = −1

2
(a− r)2 .= −γ,

with the minimizing β∗ = (a − r, 0). The convex conjugate of β∗ is just
α∗ = (a− r, 0).

As discussed in Section 3.2.1, the affine subsolution/control pair (W̄ ,α∗)

W̄ (x, t) = −2kα∗, xl+ 2kβ∗,α∗l − 2(1− t)H(α∗)
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satisfies the terminal condition (2.7) and W̄ (0, 0) = 2L(β∗) = 2γ. By Theo-
rem 2.2 the importance sampling algorithm based on (W̄ ,α∗) is asymptoti-
cally optimal.

In this example, (W̄ ,α∗) induces an importance sampling scheme that
takes the simplest possible form, and indeed one that is well known in the im-
portance sampling literature. Let µ be the underlying distribution N(0, I2).
Then the {Ȳi} are iid with distribution

ν(dy) = e'α
∗,y�−H(α∗)µ(dy) =

1

2π
e−8y−α

∗82/2dy,

which is the distribution of N(α∗, I2).
The table below gives numerical results. We take a = 2, r = 1, and run

simulations for the cases n = 25, 50, 100. Each estimate consists of 20,000
replications. The theoretical value (which is available from the standard
statistics software S-plus) is presented for comparison. The standard error is
also a numerical estimate, and C.I. stands for “confidence interval,” though
this is only formal since we make no assertion regarding normality of errors.

n = 25 n = 50 n = 100
Theoretical value 1.99× 10−7 5.39× 10−13 5.36× 10−24
Estimate 2.00× 10−7 5.48× 10−13 5.44× 10−24
Standard Error 0.04× 10−7 0.12× 10−13 0.14× 10−24
95% C.I. [1.92, 2.08]× 10−7 [5.24, 5.72]× 10−13 [5.16, 5.72]× 10−24

Table 1. Estimating P{Xn ∈ A} for convex A.

Remark 4.1 This algorithm based on (W̄ ,α∗) coincides with the impor-
tance sampling based on what one might call the “standard heuristic,” which
states that the change of measure used in the analysis of the large deviation
lower bound is a good choice for importance sampling. As demonstrated in
[9, 10, 4, 5], the standard heuristic importance sampling is efficient only in
very special situations.

4.2 Example: Estimating P{Xn ∈ A} for non-convex A
In this section, we give numerical estimates of P{Xn ∈ A} when A ⊂ Rd
takes the form

A ⊂ {x : kx,α1l ≥ kβ1,α1l} ∪ {x : kx,α2l ≥ kβ2,α2l} , (4.1)

with αk ∈ Rd and βk ∈ Rd convex conjugates for k = 1, 2.
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As discussed in Section 3.2.1, one can construct affine subsolution/control
pairs (W̄k,αk) with

W̄k(x, t)
.
= −2kαk, xl+ 2kαk,βkl − 2(1− t)H(αk)

such that their minimum

W̄ (x, t)
.
= W̄1(x, t) ∧ W̄2(x, t)

is a (weak sense) subsolution which satisfies the terminal condition (2.7).
Using the exponential weighting mollification scheme presented in Sec-

tion 3.3, for any choice of δ one produces a generalized subsolution/control
(W̄ δ, ρδk,αk). The importance sampling algorithm is determined by (ρ

δ
k,αk).

We will present two numerical examples: one for one-dimensional iid
normal random variables, the other for a two-dimensional finite state Markov
chain. Both examples have already appeared [4, 5]. The difference is that in
these papers the importance sampling algorithm was based on the solution
of the Isaacs equation, and whence the state dependence of the change of
measure was much more involved.

4.2.1 IID normal random variables

Assume that {Y1, Y2, . . .} is a sequence of iid N(0, 1) random variables, and

Xn
.
=
1

n

n[
i=1

Yi.

Suppose we are interested in estimating P{Xn ∈ A} for the non-convex set
A = (−∞, a] ∪ [b,∞)

with a < 0 < b. One can write A in the form of (4.1) by taking α1 = β1 = a
and α2 = β2 = b.

The importance sampling algorithm based on a generalized subsolu-
tion/control (W̄ δ, ρδk,αk) is as follows. We simulate {Ȳ1, Ȳ2, . . .} recursively.
Let X̄0 = 0 and

X̄j =
1

n

j[
i=1

Ȳj .

By (2.5), the conditional distribution of Ȳj+1 given X̄j = x is

2[
k=1

ρδk(x, j/n)
1√
2π
e(y−αk)

2/2dy.
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For numerical experimentation, we take a = −0.25, b = 0.2, and run
simulations for n = 100, 200, 500. The mollification parameter δ is set as
0.02. Each estimate consists of 20,000 simulations.

n = 100 n = 200 n = 500
Theoretical value 2.90× 10−2 2.54× 10−3 3.88× 10−6
Estimate 2.87× 10−2 2.50× 10−3 3.92× 10−6
Standard Error 0.03× 10−2 0.04× 10−3 0.08× 10−6
95% C.I. [2.81, 2.93]× 10−2 [2.42, 2.58]× 10−3 [3.76, 4.08]× 10−6

Table 2. P{Xn ∈ A} with one-dimensional, non-convex A.

4.2.2 A finite state Markov chain

Consider a two-node tandem Jackson network with arrival rate λ and con-
secutive rates µ1, µ2. We assume the queueing system is stable, that is,
λ < µ1 ∧ µ2. The system has finite buffers of size B1 and B2, respectively.

The embedded time-homogeneous discrete-time Markov chain is Y =
{Yi = (Y 1i , Y 2i ), i ∈ N0}, representing the queue lengths of the nodes at the
epochs of transitions in the network. This process has the finite state space
S
.
= {(y1, y2) : yi = 0, 1, . . . , Bi, i = 1, 2}. It is assumed that the system

is initially empty, i.e., Y0 = (Y 10 , Y
2
0 ) = (0, 0). The transition probability

matrix of Y is denoted by P .
We are interested in estimating a class of probabilities associated with

buffer overflow. More precisely, define g : S → {0, 1}2 by

g(y)
.
=
�
1{y1=B1}, 1{y2=B2}

�
for every y = (y1, y2) ∈ S. Let

Xn
.
=
1

n

n−1[
i=0

g(Yi).

We wish to estimate P{Xn ∈ A}, where A takes the form

A = {(x1, x2) : x1 ≥ ε1 or x2 ≥ ε2}

for some 0 ≤ ε1, ε2 ≤ 1.
For each k = 1, 2, let βk ∈ R2 be the minimizer of L(β) over the half

space
Hk

.
= {(x1, x2) : xk ≥ εk}.

20



If αk ∈ R2 is the convex conjugate of βk, then we can write A in the form
of (4.1), that is,

A = ∪2k=1Hk = ∪2k=1 {x : kx,αkl ≥ kβk,αkl} .

The importance sampling algorithm based on a generalized subsolu-
tion/control (W̄ δ, ρδk,αk) is as follows. We simulate {Ȳ0, Ȳ1, . . .} recursively,
with initial state Ȳ0 = (0, 0). Let

X̄j =
1

n

j[
i=0

g(Ȳj).

Thanks to (2.5), the conditional distribution of Ȳj+1, given X̄j = x and
Ȳj = y, is the mixture

2[
k=1

ρδk(x, j/n)Pk(y, ·),

where Pk is a transition probability matrix defined by (2.1) and (2.2):

Pk(y, z) = e
'αk,g(z)�−H(αk) r(z;αk)

r(y;αk)
P (y, z), y, z ∈ S.

In the numerical simulation we take B1 = B2 = 6, and λ = 0.2, µ1 =
µ2 = 0.4, and set ε1 = 0.3, ε2 = 0.4. The mollification parameter is chosen
as δ = 0.1. We run simulations for n = 50, 80, 110, and each estimate
consists of 20,000 replications. The theoretical values are obtained using a
recursive algorithm and presented for comparison.

n = 50 n = 80 n = 110
Theoretical pn 5.15× 10−9 3.47× 10−12 1.83× 10−15
Estimate 5.05× 10−9 3.39× 10−12 1.87× 10−15
Standard Error 0.21× 10−9 0.13× 10−12 0.08× 10−15
95% C.I. [4.63, 5.47]× 10−9 [3.13, 3.65]× 10−12 [1.71, 2.03]× 10−15

Table 3. P{Xn ∈ A} with two-dimensional, non-convex A.

4.3 Example: Estimating an expectation E exp{−nF (Xn)}
Although the estimation of E exp{−nF (Xn)} is a generalization of the prob-
lem of estimating probabilities, as we saw in Section 3.2.2, the principle of
constructing generalized subsolution/control is unchanged. Below we give a
simple numerical experiment for illustrative purposes.
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Consider a sequence of iid N(0, 1) random variables {Y1, Y2, . . .} and let

Xn =
1

n

n[
i=1

Yi.

We wish to estimate E exp{−nF (Xn)} where F is defined as follows:

F (x)
.
=


0 , if x ≤ −(1 + a−1),

a(x+ 1) + 1 , if −(1 + a−1) < x ≤ −1,
1 , if −1 < x ≤ 1,

−b(x− 1) + 1 , if 1 < x ≤ 1 + b−1,
0 , if x > 1 + b−1,

and where a, b are positive constants. Under these assumptions, we have
H(α) = α2/2 and L(β) = β2/2, and

lim
n→∞

1

n
logE exp{−nF (Xn)} = − inf

β∈R
[F (β) + L(β)]

.
= −γ.

Note that F can be written as G1 ∧G2 ∧G3, with

G1(x) = (ax+ a+ 1)
+, G2(x) = 1, G3(x) = (bx− b− 1)−

all convex functions. For each k = 1, 2, 3, let βk be the minimizer of L(β) +
Gk(β) over β ∈ Rd, and αk the convex conjugate point of βk, whence αk =
βk. Then equations (3.2) and (3.3) hold, and one can follow the general
construction detailed in Section 3.2.2.

Let (W̄k,αk) be the subsolution/control pair

W̄k(x, t)
.
= −2 kαk, xl+ 2[Gk(βk) + kαk,βkl]− 2(1− t)H(αk).

Their minimum W̄ = W̄1 ∧ W̄2 ∧ W̄3 is a (weak sense) subsolution that
satisfies the terminal condition W̄ (x, 1) ≤ 2F (x) [Remark 2.4]. Furthermore,

W̄ (0, 0) = 2 inf
k
[Gk(βk) + L(βk)] = 2 inf

β
[F (β) + L(β)] = 2γ,

the optimal decay rate.
A generalized subsolution/control (W̄ δ, ρδk,αk) obtained as in Section 3.3

induces the following importance sampling scheme. Let X̄0 = 0, and

X̄j =
1

n

j[
i=1

Ȳi.
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The sequence {Ȳ1, Ȳ2, . . .} is simulated recursively so that the conditional
distribution of Ȳj+1, given X̄j = x, is the mixture of normal distributions

3[
k=1

ρδk(x, j/n)
1√
2π
e(y−αk)

2/2.

In the numerical simulation, we take a = 3/2, b = 4, and it is easy
to check that α1 = β1 = −3/2, α2 = β2 = 0, and α3 = β3 = 5/4. The
mollification parameter δ is set to 0.1. We run simulations for n = 10, 20, 30,
with 20,000 simulations for each estimate.

n = 10 n = 20 n = 30
Theoretical value 1.03× 10−4 1.87× 10−8 5.63× 10−12
Estimate 1.02× 10−4 1.86× 10−8 5.73× 10−12
Standard Error 0.01× 10−4 0.03× 10−8 0.09× 10−12
95% C.I. [1.00, 1.04]× 10−4 [1.80, 1.92]× 10−8 [5.58, 5.91]× 10−12

Table 4. E exp{−nF (Xn)} for one-dimensional, non-convex F .

4.4 Example: Level crossing

In this section we consider importance sampling estimates for level crossing
probabilities. To illustrate the main idea, we specialize to the following
setup. Let {Y1, Y2, . . .} be a sequence of iid random vectors taking values in
Rd with common distribution µ, and A ⊂ Rd a Borel set. Define the partial
sum

Sn =
n[
i=1

Yi

with S0 = 0, and for every real number z > 0 let

Tz = inf

�
n ≥ 0 : 1

z
Sn ∈ A

�
.

Under certain conditions, {Tz < ∞} is a rare event for large z and its
probability will decay exponentially in the sense that

lim
z→∞

1

z
logP{Tz <∞} = −γ

for some γ > 0. The simplest example is when {Yi} are iid, one dimensional
random variables with a negative expectation and A = (1,∞). Naturally,
the question is how to estimate P{Tz <∞} for large z.
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The theoretical framework presented in [6] does not cover this case — for
example the time horizon is now infinite (see Remark 4.2 for more informa-
tion). However, the use of subsolutions still carries over and leads to simple
and efficient importance sampling algorithms, and we will outline their use
in the next few paragraphs.

Let H be the log-moment generating function for Y1, and let L be the
Legendre transform of H. It is not hard to argue that the Isaacs equation
associated with level crossing problems is of the same form as (2.3), except
that there is no time dependence. In other words, the Isaacs equation is

sup
α∈Rd

inf
β∈Rd

H(DW ;α,β) = 0 (4.2)

and with boundary condition W (x) = 0 for x ∈ A. Here W : Rd → R and
DW is its gradient, and as before

H(s;α,β) = ks,βl+ L(β) + kα,βl −H(α)
for s,α,β ∈ Rd. A generalized subsolution/control (W̄ , ρk, ᾱk) is defined in
a completely analogous fashion to Definition 2.1.

For a given generalized subsolution/control (W̄ , ρk, ᾱk), the correspond-
ing importance sampling algorithm is as follows. Fix the parameter z. Let
X̄0 = 0. Given X̄j = x, we simulate Ȳj+1 under the distribution

K[
k=1

ρk(x)P (dy; ᾱk(x)),

where P (dy;α) is the exponential twist

P (dy;α) = e'α,z�−H(α)µ(dz)

and with µ the distribution of Y1. Finally, we update the dynamics and let

X̄j+1 = X̄j +
1

z
Ȳj+1.

The simulation will be stopped at time

T̄z
.
= inf

�
n ≥ 0 : X̄n ∈ A

�
= inf

�
n ≥ 0 : 1

z
S̄n ∈ A

�
,

and one forms the importance sampling estimator

Zz
.
= 1{T̄z<∞} ·

T̄z−1\
j=0

%
K[
k=1

ρk(X̄j) · ekᾱk(X̄j),Ȳj+1l−H(ᾱk(X̄j))
&−1

.
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The performance of this importance sampling algorithm can be char-
acterized by a result analogous to Theorem 2.2, except that the terminal
condition (2.7) should be replaced by the boundary condition

W̄ (x) ≤ 0 (4.3)

for all x ∈ A. Therefore, the goal is to construct a generalized subsolu-
tion/control (W̄ , ρk,αk) of a simple form that satisfies the boundary condi-
tion (4.3) and such that W̄ (0) is as close as possible to the optimal decay
rate 2γ.

The construction follows the same path, that is, one first identifies a
class of affine subsolution/control pairs and then builds a generalized subso-
lution/control by mollifying the minimum of such affine subsolution/control
pairs as was done Section 3.3. The class of affine subsolution/control pairs
that serve as building block, again denoted by A, takes a different form in
this setting:

A .
=
q
(W̄ , ᾱ) : W̄ (x) = −2kᾱ, xl+ c̄, ᾱ ∈ Rd,H(ᾱ) ≤ 0, c̄ ∈ R

r
.

It is not difficult to check that every (W̄ , ᾱ) ∈ A is indeed is subsolu-
tion/control pair, since

inf
β∈Rd

H(DW̄ ; ᾱ,β) = inf
β∈Rd

[k−2ᾱ,βl+ L(β) + kᾱ,βl −H(ᾱ)]
= inf

β∈Rd
[k−ᾱ,βl+ L(β)]−H(ᾱ)

= −2H(ᾱ)
≥ 0.

Analogous to the discussion in Section 3.2, suppose, for example, that
there exists K ∈ N so that

A ⊂ ∪Kk=1 {x : kx, ᾱkl ≥ c̄k}

for some c̄k ∈ R and ᾱk ∈ Rd such that H(ᾱk) ≤ 0. Then for each k, one
can define an affine subsolution/control pair (W̄k, ᾱk) ∈ A with

W̄k(x)
.
= −2kᾱk, xl+ 2c̄k.

The minimum of {W̄k} is a weak sense subsolution to the Isaacs equation
(4.2) and it satisfies the boundary condition (4.3). One then mollifies in
order to obtain a generalized subsolution/control (W̄ δ, ρδk, ᾱk).
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Remark 4.2 In the theoretical analysis one needs to “bound” the infinite
time horizon in a certain way — essentially to justify an approximation by
a finite time problem — and then apply a verification argument similar the
one used in [6]. More details can be found in [3], where analysis of this type
is carried out for the problem of estimating buffer overflow probabilities in
queueing networks.

We next present two examples. The first example is a one dimensional
level crossing problem, which has been studied extensively [12, 11, 1], and we
will see how the subsolution approach leads to the commonly used change
of measure. The second example was studied in [10], where it was used as
a counterexample to illustrate the danger of blindly following the standard
heuristic approach to importance sampling.

For each example the numerical experiment considers exponential ran-
dom variables. There are two reasons for choosing the exponential distribu-
tion. One is that an assumption we used very often to facilitate the analysis
(e.g., in [4, 5, 6]) is that the log moment generating function H is finite
everywhere. This is not true for exponential distributions, and as we will
see in fact it is not necessary. The second reason is that for exponential dis-
tributions the level crossing probabilities can be explicitly computed, and
these theoretical values can be used for comparison to indicate the accuracy
of the importance sampling estimates.

4.4.1 One dimensional level crossing

Assume that {Y1, Y2, . . .} are iid random variables with common distribution
µ and that E[Yi] < 0. Let Sn = Y1 + · · · + Yn be the partial sum. Let
A = (1,∞) and

Tz
.
= inf {n ≥ 0 : Sn ∈ zA} = inf {n ≥ 0 : Sn > z} .

Let H be the log moment generating function

H(α) = log

]
R
eαyµ(dy),

and define ᾱ to be the unique positive solution to H(α) = 0. It is well known
that, under mild conditions,

lim
z→∞

1

z
logP{Tz <∞} = −ᾱ,
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or, γ = ᾱ. It obvious that

A ⊂ {x : x · ᾱ ≥ ᾱ},
and thus

W̄ (x) = −2ᾱx+ 2ᾱ,
and ᾱ are a subsolution/control pair which also satisfies the boundary con-
dition W (x) ≤ 0 for x ∈ A. Note that W̄ (0) = 2ᾱ = 2γ, whence the cor-
responding importance sampling algorithm is asymptotically optimal. This
subsolution/control pair induces a change of measure that coincides with
the classical choice, that is, the algorithm simulates iid {Ȳi} with common
distribution

ν(dy) = eᾱy−H(ᾱ)µ(dy).

For numerical experimentation, we consider the special case where for
some constant θ > 0, Yi + θ is exponentially distributed with parameter λ.
The assumption of E[Yi] < 0 is equivalent to θλ > 1. A bit of algebra yields
that ᾱ is the unique positive root to the equation

0 = H(α) = −αθ + logλ− log(λ− α), (4.4)

and that the simulation distribution is

ν(dy) = (λ− ᾱ)e−(λ−ᾱ)(y+θ)dy.

Thus the {Ȳi+θ} are iid exponentially distributed with parameter λ− ᾱ. It
is not difficult to show that EȲi > 0, and thus T̄z is finite with probability
one.

Below is a numerical result. We take λ = 1, θ = 2, and run simulations
for m = 10, 20, 30. Each estimate uses 20,000 simulations. The theoretical
values are obtained by explicitly solving an associated integral equation (we
omit the details). Indeed,

P{Tz <∞} = λ− ᾱ

λ
e−ᾱz. (4.5)

The value of ᾱ is obtained by numerically solving equation (4.4) using the
bisection method, and ᾱ ≈ 0.80.

m = 10 m = 20 m = 30
Theoretical value 7.04× 10−5 2.44× 10−8 8.44× 10−12
Estimate 7.11× 10−5 2.44× 10−8 8.30× 10−12
Standard Error 0.07× 10−5 0.02× 10−8 0.08× 10−12
95% C.I. [6.97, 7.28]× 10−5 [2.40, 2.48]× 10−8 [8.14, 8.46]× 10−12

Table 5. Estimating probability of level crossing for 1-dim random walk.

27



4.4.2 Two dimensional level crossing

Let {Yn = (Y 1n , Y
2
n ), n ∈ N} be a sequence of iid random vectors with

E[Y 1i ] < 0, E[Y 2i ] < 0, and common distribution µ. As before, denote
the partial sum by

Sn = (S
1
n, S

2
n)
.
=

n[
i=1

Yi.

Let
A
.
= {x = (x1, x2) : x1 > 1 or x2 > 1} .

It follows that

Tz = inf {n ≥ 0 : Sn ∈ zA} = inf
�
n ≥ 0 : S1n > z or S2n > z

�
.

Let

H(α) = log

]
R2
e'α,y�µ(dy)

and let ᾱ1
.
= (γ1, 0) and ᾱ2

.
= (0, γ2) where γk > 0 is the unique positive

number such that H(ᾱk) = 0, k = 1, 2. Under mild conditions, we have

lim
z→∞

1

z
logP{Tz <∞} = −γ .

= −γ1 ∧ γ2.

We have
A ⊂ {x : kx, ᾱ1l ≥ γ1} ∪ {x : kx, ᾱ2l ≥ γ2} .

For each k = 1, 2, an affine subsolution/control pair is (W̄k, ᾱk) with

W̄k(x)
.
= −2kᾱk, xl+ 2γk.

If W̄ = W̄1 ∧ W̄2, then W̄ is a subsolution in a weak sense that satisfies
the boundary condition (4.3). Also note that W̄ (0) = 2(γ1 ∧ γ2) = 2γ, the
optimal decay rate. A generalized subsolution/control (W̄ δ, ρδk, ᾱk) is then
be obtained by mollification, and the corresponding importance sampling
algorithm is as follows. Let S̄n = Ȳ1 + · · · + Ȳn. We recursively simulate
{Ȳ1, Ȳ2, . . .} such that given S̄j/z = x, the conditional distribution of Ȳj+1
is the mixture

2[
k=1

ρδk(x)P (dy; ᾱk),

where
P (dy; ᾱk) = e

'ᾱk,y�−H(ᾱk)µ(dy).
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We stop the simulation once the process {S̄n/z} reaches the set A.
For the purpose of numerical experimentation, we consider the special

case where for some constants θk > 0, the distribution of Y k1 + θk is ex-
ponential with parameter λk, k = 1, 2. Assume θkλk > 1, or equivalently
E[Y k1 ] < 0, for every k = 1, 2. We also assume that {Y 1i } and {Y 2i } are in-
dependent sequences. Under these conditions, for each k, γk > 0 is uniquely
determined and satisfies the equation

0 = −γkθk + log λk − log(λk − γk), (4.6)

and

P (dy; ᾱ1) = (λ1 − γ1)e
−(λ1−γ1)(y1+θ1)dy1 · λ2e−λ2(y2+θ2)dy2,

P (dy; ᾱ2) = λ1e
−λ1(y1+θ1)dy1 · (λ2 − γ2)e

−(λ2−γ2)(y2+θ2)dy2.

Below is a numerical result. We take λ1 = λ2 = 1, and θ1 = 2, θ2 = 3.
We run simulations for m = 10, 20, 30, and each estimate consists of 20,000
simulations. The theoretical values can be easily obtained from the one-
dimensional formula (4.5). Again, the value of γk is obtained by numeri-
cally solving equation (4.6) using the bisection method, with γ1 ≈ 0.80 and
γ2 ≈ 0.86. It is worth pointing out that the importance sampling estimate
suggested by the standard heuristic, which is to simulate iid {Ȳi} with dis-
tribution P (dy; ᾱ1), will have unbounded variance as z tends to infinity [10,
Theorem 2(i)]. The mollification parameter δ is taken as 0.1.

m = 10 m = 20 m = 30
Theoretical value 9.51× 10−5 2.88× 10−8 9.24× 10−12
Estimate 9.56× 10−5 2.87× 10−8 9.31× 10−12
Standard Error 0.10× 10−5 0.03× 10−8 0.09× 10−12
95% C.I. [9.36, 9.76]× 10−5 [2.81, 2.93]× 10−8 [9.13, 9.49]× 10−12

Table 6. Probability of level crossing for 2-dim random walk.

4.5 Example: A path-dependent event

Let {Y1, Y2, . . .} be a sequence of iid random variables with common distri-
bution µ and E[Yi] = 0. As before, let H be the log-moment generating
function and L its convex conjugate. Fix n ∈ N, and for 1 ≤ i ≤ n define

Xi
.
=
1

n

i[
j=1

Yj ,
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with X0
.
= 0. We are interested in estimating

En
.
= E

k
e−nF (Xn)1{max0≤i≤nXi≥h}

l
where h > 0 is a given constant. Let AC[0, 1] denote the collection of all
absolutely continuous functions on [0, 1]. Assume that the large deviation
limit

lim
n→∞

1

n
logEn = −γ

holds, with γ the solution of the following variational problem:

γ = inf

�] 1

0
L(φ̇(t)) dt+ F (φ(1)) : φ ∈ AC[0, 1], max

0≤t≤1
φ(t) ≥ h,φ(0) = 0

�
.

(4.7)
To write down the Isaacs equation associated with this estimation prob-

lem, we need to expand the state space to accommodate the path-dependence
of the event. More precisely, the state process will be (Xi, Bi), where

Bi
.
= 1{max0≤j≤iXj≥h}

is the indicator of whether or not the “barrier” h has been breached by
step i. This problem can then be thought of as a combination of the level
crossing problem of Section 4.4 and the finite time problem of Section 3.2.
First consider the problem conditioned on Bi = 1. In this case the large
deviation problem takes exactly the same form as in Section 3.2, and the
subsolutions of interest are characterized by

W̄t(1, x, t) + sup
α∈R

inf
β∈R

H(DxW̄ (1, x, t);α,β) ≥ 0

with H be as defined in (2.4), together with the terminal condition

W̄ (1, x, t) ≤ 2F (x). (4.8)

An appropriate subsolution will give us a good importance sampling scheme
for use at all times after the threshold is crossed. The question then is
to identify the importance sampling scheme to use before the threshold is
crossed. Let us suppose that as soon as the threshold is crossed we switch
to the scheme associated with W̄ (1, x, t), so that W̄ (1, x, t) identifies an
upper bound on the performance after this time. We are therefore back in
the setting of the level crossing problem, though there is now an exit cost
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W̄ (1, h, t) depending on the (scaled) time that the barrier is crossed. Hence
the subsolution for times prior to crossing the barrier is also

W̄t(0, x, t) + sup
α∈R

inf
β∈R

H(DxW̄ (0, x, t);α,β) ≥ 0

(where the time derivative is needed because the exit cost depends on time),
together with the boundary condition

W̄ (0, x, t) ≤ W̄ (1, x, t) (4.9)

for x ≥ 1, t ∈ [0, 1].
Generalized subsolution/controls to these equations are defined as in

Sections 4.4 and 3.2, and the corresponding importance sampling algorithm
is as follows. Let X̄0 = 0 and B̄0 = 0. Given X̄j = x and B̄j = b, we
simulate Ȳj+1 under the distribution

K[
k=1

ρk(b, x, j/n)P (dy; ᾱk(b, x, j/n))

where P (dy;α) is the exponential twist

P (dy;α)
.
= e'α,y�−H(α)µ(dy).

Then we update the dynamics by

X̄j+1 = X̄j +
1

n
Ȳj+1, B̄j+1 = 1{max0≤i≤j+1 X̄i≥h}.

The performance of this importance sampling algorithm can be charac-
terized by an analogous result to Theorem 2.2. In particular, if V n is the
second moment of a single sample of the importance sampling estimator
corresponding to W̄ , then

lim inf
n→∞ −

1

n
logV n ≥ W̄ (0, 0, 0).

Therefore, the goal is to find a structurally simple generalized subsolu-
tion/control (W̄ , ρk, ᾱk) satisfying (4.9) and (4.8) with the value of W̄ (0, 0, 0)
as large as possible, preferably equal to the optimal decay rate 2γ.

For illustration, we will consider the simple setting where

En = P

�
max
0≤i≤n

Xi ≥ h,Xn ≤ l
�
,
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for some constant 0 < l < h. In other words, F (x) = ∞ for x > l and 0
otherwise. As in the cases studied previously, a subsolution can be identified
in terms of the solution to the large deviation variational problem. Using
convexity and Jensen’s inequality, this problem can be written in the form

inf

�
ρ0L

�
h

ρ0

�
+ ρ1L

�
l − h
ρ1

�
: ρi ≥ 0, i = 0, 1, ρ0 + ρ1 = 1

�
.

Since the mean of µ is zero, L(β) = 0 if and only if β = 0, and thus
the infimum is achieved at ρ∗i with ρ∗i > 0 for i = 1, 2. Let β

∗
0 = h/ρ

∗
0 and

β∗1 = (l−h)/ρ∗1, and let α∗0 and α∗1 be the convex conjugates, respectively. We
claim that H(α∗0) = H(α∗1). Indeed, the necessary condition for a minimizer
gives

L (β∗0)− L� (β∗0)β∗0 − L (β∗1) + L� (β∗1)β∗1 = 0
Using the characterization

α∗i = L
� (β∗i ) ,

we have

H(α∗0) = L
� (β∗0)β

∗
0 − L (β∗0) = L� (β∗1)β∗1 − L (β∗1) = H(α∗1).

Using that the interpretation of W̄ (1, x, t) as the solution to the finite
time problem with the given terminal condition, we know from Section 3.2
that a subsolution is given by

W̄ (1, x, t) = −2α∗1x+ 2lα∗1 − 2(1− t)H(α∗1).

As subsolution for the times prior to exceeding h we use the form

W̄ (0, x, t) = −2α∗0x+ c0 − 2(1− t)H(α∗0).

Since H(α∗0) = H(α∗1), to satisfy the boundary condition we need −2α∗0h+
c0 ≤ −2α∗1h+ 2β∗1α∗1, and to obtain the largest value for W̄ (0, 0, 0) we take
c0 = 2(α

∗
0−α∗1)h+2lα, so that the two functions agree on x = h. It follows

that

W̄ (0, 0, 0) =
�
W̄ (0, 0, 0)− W̄ (0, h, ρ∗0)

�
+
�
W̄ (1, h, ρ∗0)− W̄ (1, l, 1)

�
+W̄ (1, l, 1)

= 2α∗0h− ρ∗02H(α
∗
0) + 2α

∗
1(l − h)− ρ∗12H(α

∗
1)

= 2ρ∗0 [α
∗
0β
∗
0 − 2H(α∗0)] + 2ρ∗1 [α∗1β∗1 − 2H(α∗1)]

= 2γ.
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In other words, the corresponding scheme is asymptotically optimal.
For a numerical example we take Yi ∼ N(0, 1). The corresponding im-

portance sampling algorithm takes a very simple form. Let X̄0 = 0 and
B̄0 = 0. If B̄j = 0, that is, the sample path maximum has not yet surpassed
barrier h, we simulate Ȳj+1 under the distribution N(2h− l, 1). If B̄j = 1,
that is, the barrier h has already been reached, we simulate Ȳj+1 under the
distribution N(l − 2h, 1). Then we update the dynamics by

X̄j+1 = X̄j +
1

n
Ȳj+1, B̄j+1 = 1{max0≤i≤j+1 X̄i≥h}.

In the numerical experiment below, h = 1 and l = 0.8. Simulations were
run for n = 10, 20, 30, and each estimate consists of 20,000 samples. What
we call the “theoretical value” is an estimate based on 1 billion samples of
the importance sampling scheme.

n = 10 n = 20 n = 30
Theoretical value 1.68× 10−5 9.66× 10−9 6.09× 10−12
Estimate 1.74× 10−5 9.58× 10−9 6.26× 10−12
Standard Error 0.04× 10−5 0.27× 10−9 0.19× 10−12
95% C.I. [1.66, 1.82]× 10−5 [9.04, 10.12]× 10−9 [5.88, 6.64]× 10−12

Table 7. Estimating a path-dependent probability.

4.6 Example: A mixed open-closed queueing network

Consider the mixed open and closed queueing network as shown in Figure
2.

1

µ11

µ12

µ2

λ

2

Figure 2. An open/closed queueing network.
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The open jobs arrive at server 1 according to a Poisson process with rate
λ. There is one closed job that circulates between server 1 and server 2,
and it has pre-emptive priority over open jobs at server 1. All services rates
are exponentially distributed. The service rates at server 1 are µ11 for open
jobs and µ12 the closed job, and the service rate at server 2 is µ2. Note
that this system is equivalent to an M/M/1 queue with server breakdowns
or vacations.

The state of the system is described by process {(Yt, Zt) : t ≥ 0}, where
Yt and Zt are the numbers of open jobs and closed jobs at server 1 at time
t. We wish to estimate pn, the probability that the number of open jobs
reaches n before the system returns to state (0, 0), given that the system
starts in (0, 0).

In general, the system can have multiple closed jobs. Even though we
only consider the case of one closed job, the approach works for the general
case, with the sole difference being that the computation of γ becomes more
involved.

The following stability assumption will be in effect throughout this sec-
tion:

λ

µ11
+

µ2
µ2 + µ12

< 1. (4.10)

Under this assumption, the system is stable, and pn is a rare-event proba-
bility when n gets large.

The associated large deviation asymptotics can be characterized by an
ODE. More precisely, let y ∈ {0, 1, . . . , n}, z ∈ {0, 1}, and Vn(y, z) the
probability that the number of open jobs reaches n before the system returns
to state (0, 0), given that the system starts in (y, z) [whence pn = Vn(0, 0)
by definition]. Given any x ∈ [0, 1] and z ∈ {0, 1}, we have

lim
n→∞

1

n
log Vn(enxf, z) = −v(x)

where v is a viscosity solution to an ordinary differential equation (ODE).
To describe this ODE, we define the convex function

c(s)
.
=

�
s log s− s+ 1, s ≥ 0

+∞ , s < 0
,

and introduce the notation ρ = (ρ0, ρ1), Θ̂ = (λ̂0, λ̂1, µ̂11, µ̂12, µ̂2). For β ∈ R
define

L(β)
.
= inf

ρ,Θ̂
G(ρ, Θ̂), (4.11)
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where

G(ρ, Θ̂)
.
= ρ0

%
λc

#
λ̂0
λ

$
+ µ12c

�
µ̂12
µ12

�&

+ ρ1

%
λc

#
λ̂1
λ

$
+ µ11c

�
µ̂11
µ11

�
+ µ2c

�
µ̂2
µ2

�&

and with the infimum in (4.11) taken over all (ρ, Θ̂) such that

ρ0 ≥ 0, ρ1 ≥ 0, ρ0+ρ1 = 1, ρ0µ̂12 = ρ1µ̂2, β = ρ0λ̂0+ρ1λ̂1−ρ1µ̂11. (4.12)
One can show that function L is indeed convex and explicitly calculate the
Legendre transform H of L. Indeed, we have (see the appendix for details)

H(α) = inf
q
[H0(α, q) ∨H1(α, q)] (4.13)

where

H0(α, q) = λ(eα − 1) + µ12(eq − 1),
H1(α, q) = λ(eα − 1) + µ11(e−α − 1) + µ2(e−q − 1).

Then v satisfies the ODE

0 = inf
β∈R

�
v�(x) · β + L(β)� = −H(−v�(x)),

with the boundary condition v(1) = 0. Solving this ODE (again see the
appendix for details), we obtain

v(x) = γ(1− x), (4.14)

where

γ = − log (λ+ µ11 + µ12 + µ2) +
s
(λ+ µ11 + µ12 + µ2)2 − 4µ11(λ+ µ12)

2µ11(1 + λ−1µ12)

is a positive number. In particular,

lim
n→∞

1

n
log pn = −v(0) = −γ.

Moreover, the minimizing Θ̂ for (4.11) is

Θ∗ = (λ∗0,λ
∗
1, µ

∗
11, µ

∗
12, µ

∗
2) = (e

γλ, eγλ, e−γµ11, eq
∗
µ12, e

−q∗µ2), (4.15)
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where q∗ is the minimizer in equation (4.13) with α = γ, or

q∗ = log
λ+ µ12 − λeγ

µ12
. (4.16)

Now let us consider the construction of importance sampling algorithms.
We first describe the associated Isaacs equation. Let Θ̄

.
= (λ̄0, λ̄1, µ̄11, µ̄12, µ̄2).

Define
L̄(β, Θ̄)

.
= inf

ρ,Θ̂

k
2G(ρ, Θ̂)− Ḡ(ρ, Θ̂, Θ̄)

l
(4.17)

where

Ḡ(ρ, Θ̂, Θ̄)
.
= ρ0

%
λ̄0c

#
λ̂0
λ̄0

$
+ µ̄12c

�
µ̂12
µ̄12

�&

+ ρ1

%
λ̄1c

#
λ̂1
λ̄1

$
+ µ̄11c

�
µ̂11
µ̄11

�
+ µ̄2c

�
µ̂2
µ̄2

�&

and the infimum in (4.17) is taken over all (ρ, Θ̂) satisfying the constraints
(4.12). The Isaacs equation associated with importance sampling can then
be written as

sup
Θ̄

inf
β

�
W �(x) · β + L̄(β, Θ̄)� = 0,

with boundary condition W (1) = 0. Let W̄ = 2v. It is not difficult to
show (see the appendix for details) that (W̄ ,Θ∗) defines a affine subsolu-
tion/control pair to the Isaacs equation, and it satisfies the terminal con-
dition W̄ (1) = 2v(1) = 0. Furthermore, W̄ (0) = 2v(0) = 2γ, the optimal
decay rate.

The importance sampling algorithm corresponding to this affine subso-
lution/control pair (W̄ ,Θ∗) is very simple. When z = 1, we simulate the
system under the alternative probability measure such that the open job
arrival rate is λ∗1 and the service rate for the closed job at server 1 is µ∗12.
When z = 0, the simulation distribution is such that the open job arrival
rate is λ∗0 and the service rate for the open job is µ∗11 and the service rate
for the closed job at server 2 is µ∗2. Note that, for this special network, since
λ∗0 = λ∗1

.
= λ∗, the above change of measure is equivalent to simulation under

the alternative rates (λ∗, µ∗11, µ∗12, µ∗2).
In the numerical example below we take λ = 1, µ11 = 4, µ12 = 2, µ2 =

0.5. It is easy to check that the stability condition (4.10) holds. We run sim-
ulations for n = 20, 40, 80, and each estimate consists of 20,000 simulations.
The theoretical value can be found in [8].
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n = 20 n = 40 n = 80
Theoretical value 3.91× 10−8 2.02× 10−15 5.40× 10−30
Estimate 3.93× 10−8 2.01× 10−15 5.45× 10−30
Standard Error 0.03× 10−8 0.02× 10−15 0.04× 10−30
95% C.I. [3.87, 3.99]× 10−8 [1.97, 2.05]× 10−15 [5.37, 5.53]× 10−30

Table 8. Overflow probabilities of a mixed open-closed queueing network.

4.7 Example: A “universal” importance sampling scheme

For all the examples we have discussed, finitely many affine subsolution/control
pairs are used to construct a generalized subsolution/control. In this sec-
tion, we present an example where infinitely many subsolution/control pairs
are used for this purpose. The corresponding importance sampling scheme
has some interesting features, which are further discussed in Remark 4.3.

For illustration, we consider again the simple setting where {Y1, Y2, . . .}
is a sequence of iid random variables taking values in Rd and let

Xn
.
=
1

n

n[
i=1

Yi

with X0
.
= 0. We wish to estimate P{Xn ∈ A} where A ⊂ Rd is a Borel set,

and assume a large deviation limit holds, that is,

lim
n→∞

1

n
logP{Xn ∈ A} = − inf

β∈A
L(β) = −γ.

A new way to construct a subsolution is as follows. Consider the level
set of the rate function L

Θγ
.
=
q
β ∈ Rd : L(β) ≥ γ

r
.

It follows easily that Θγ is the complement of a convex set and that A ⊂ Θγ .
For each β ∈ ∂Θγ , let α(β) be its convex conjugate (assuming its existence).
Define (W̄β ,α(β)) ∈ A by

W̄β(x, t)
.
= −2kα(β), xl+ 2kα(β),βl − 2(1− t)H[α(β)].

Let
W̄ (x, t)

.
= inf

�
W̄β(x, t) : β ∈ ∂Θγ

�
.

Then W̄ defines a (weak sense) subsolution to the Isaacs equation (2.3).
Furthermore, thanks to the convexity of Θγ , we have

W̄ (x, 1) = inf {−2kα(β), x− βl : β ∈ ∂Θγ} ≤ 0
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for x ∈ Θγ . In particular, W̄ satisfies the terminal condition (2.7) since
A ⊂ Θγ . In many cases (e.g., when L is finite), we have

W̄ (0, 0) = inf {2kα(β),βl − 2H[α(β)] : β ∈ ∂Θγ}
= inf {2L(β) : β ∈ ∂Θγ}
= 2γ,

the optimal decay rate.
Using Remark 2.2 and Theorem 2.2, if W̄ were continuously differentiable

then (W̄ , ᾱ) with α(x, t) = −DW̄ (x, t)/2 would form a subsolution/control
pair, and the corresponding importance sampling schemes would be asymp-
totically optimal performance. Since W̄ is not continuously differentiable,
one possibility is to resort to mollification. However, an alternative that
is possible in some cases is to show that for each ε > 0 one can find a
smooth function W̄ ε such that (W̄ ε, ᾱ) form a subsolution/control pair and
W̄ ε → W̄ as ε→ 0. This approach is used in the following example.

To give a concrete example, we will work out the details for iid N(0, Id)
sequence {Y1, Y2, . . .}, where Id denotes the identity matrix of dimension d.
It follows that H(α) = nαn2/2, L(β) = nβn2/2, and whence

Θγ =
q
β ∈ Rd : nβn ≥

s
2γ
r
.

In this case α(β) = β, and

W̄ (x, t)
.
= inf {−2kβ, xl+ 2kβ,βl − 2(1− t)H(β) : nβn ∈ ∂Θγ}
= inf

q
−2kβ, xl+ 2(1 + t)γ : nβn =

s
2γ
r

= −2
s
2γnxn+ 2(1 + t)γ.

It is not difficult to check by direct computation that W̄ satisfies the Isaacs
equation (2.3) except at {x = 0}, and W̄ (x, 1) ≤ 0 on Θγ . In particular, we
have W̄ (0, 0) = 2γ.

Even though W̄ is not continuously differentiable at {x = 0}, it induces
a control

ᾱ(x, t)
.
= −DW̄ (x, t)

2
=
s
2γ

x

nxn , if x 9= 0.

For x = 0, we just define
ᾱ(x, 0)

.
=
s
2γθ, (4.18)

where θ is an arbitrarily fixed unit vector. We claim that the importance
sampling scheme corresponding to this control ᾱ is asymptotically optimal.
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Indeed, consider the approximating sequence W̄ ε defined as follows. Let

W̄ ε(x, t)
.
= −2

s
2γ
s
nxn2 + ε+ 2(1 + t)γ.

It is not difficult to check that, for every ε > 0, W̄ ε is continuously differen-
tiable and (W̄ ε, ᾱ) is a subsolution/control pair. The asymptotic optimality
follows if one applies Theorem 2.2 to this subsolution/control pair, and ob-
serves that

lim
ε→0

W ε(0, 0) = W̄ (0, 0) = 2γ,

the optimal decay rate.
For numerical experimentation, we take d = 2 and

A
.
=
�
x = (x1, x2) : (x1 + a)

2 + x22 ≥ R2
�

for some constants 0 < a < R. It follows that

γ = inf
β∈A

L(β) =
1

2
(R− a)2,

with minimizer β∗ = (R−a, 0). Setting θ = (1, 0) in equation (4.18), the im-
portance sampling scheme is as follows. We recursively simulate {Ȳ1, Ȳ2, . . .}
and let

X̄j =
1

n

j[
i=1

Ȳi.

The conditional distribution of Ȳj+1 given X̄j = x = (x1, x2) is

N

��
(R− a)x1/nxn
(R− a)x2/nxn

�
, I2

�
if x 9= 0, and

N

��
R− a
0

�
, I2

�
if x = 0.

For the table below we take R = 0.5, a = 0.05. We run simulations
for n = 40, 80, 120, and each estimate consists of 20,000 simulations. The
theoretical value can be obtained using standard software such as S-plus.

n = 40 n = 80 n = 120
Theoretical value 8.49× 10−3 1.00× 10−4 1.40× 10−6
Estimate 8.38× 10−3 1.04× 10−4 1.50× 10−6
Standard Error 0.18× 10−3 0.04× 10−4 0.07× 10−6
95% C.I. [8.02, 8.74]× 10−3 [0.96, 1.12]× 10−4 [1.36, 1.64]× 10−6

Table 9. A “universal” scheme
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Remark 4.3 An important feature of this approach is that the construction
of the importance sampling scheme does not need any information on the
set A other than γ, the infimum of L(β) over β ∈ A. It is for this reason
that the scheme might be called “universal.” The scheme has strengths and
weaknesses. On one hand, the scheme is simple and applicable in more
general settings. On the other hand, it is often the case that one knows
some more detailed properties of target set A, which can be used to design
more efficient schemes. Furthermore, there is a practical computational
issue of obtaining W̄ as the minimum of infinitely many subsolutions in the
case of, say, sums of functionals of a Markov chain. However, here one may
be willing to approximate Θγ by a finite number of points and then use
exponential weighting for mollification.

4.8 Summary

We have shown that importance sampling schemes based on subsolutions
can be applied in a wide variety of settings and deliver excellent perfor-
mance. Besides being fast and accurate, the behavior of the schemes is very
stable across a broad range of problem formulations. For example, in each
setting and for each simulation we use the same number of samples (20,000)
with remarkably similar performance. Moreover the asymptotic behavior of
the schemes can be backed up by rigorous theoretical justification. Both
of these properties stand in sharp contrast to the instability and poor per-
formance exhibited by standard heuristic importance sampling schemes in
many situations [10, 9, 4, 5].

5 Appendix. Computation for the mixed open-
closed network example

Proof of Equation (4.13). We first define two functions. Let δ =
(δ1, δ2) ∈ R2, and define

L0(δ)
.
= λc

�
δ1
λ

�
+ µ12c

�
δ2
µ12

�
.

Similarly, let η = (η1, η2) ∈ R2 and define

L1(η)
.
= inf

+
λc

#
λ̂1
λ

$
+ µ11c

�
µ̂11
µ11

�
+ µ2c

�
µ̂2
µ2

�,
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where the infimum is taken over all (λ̂1, µ̂11, µ̂2) such that

λ̂1 − µ̂11 = η1, − µ2 = η2.

It is not difficult to show by direct computation that Li is convex and its
convex conjugate is Hi, for each i = 0, 1. Given θ = (θ1, θ2) ∈ R2, let

Q(θ)
.
= inf {ρ0L0(δ) + ρ1L1(η) : ρ0 ≥ 0, ρ1 ≥ 0, ρ0 + ρ1 = 1, ρ0δ + ρ1η = θ} .

Thanks to [2, Corollary D.4.3], G is a convex function whose convex conju-
gate is H0 ∨H1. Also, it is easy to see by definition that

L(β) = Q(β, 0).

Thus L is convex and its convex conjugate is H.

Proof of Equations (4.14) — (4.16). Consider the equation

H(α) = inf
q
[H0(α, q) ∨H1(α, q)] = 0.

For every fixed α,H0(α, q) is a strictly increasing function of q and limq→∞H0(α, q) =
+∞. Similarly, for each fixed α, H1(α, q) is a strictly decreasing function
of q and limq→−∞H1(α, q) = +∞. It follows that, for each fixed α, there
exists a unique q = q(α) such that

H0(α, q(α)) = H1(α, q(α)) = H(α).

Therefore, solving H(α) = 0 is equivalent to finding (α, q) such that

H0(α, q) = H1(α, q) = 0,

which yields the γ of (4.14) and the q∗ of (4.16). Thus (γ, q∗) satisfies

H0(γ, q
∗) = H1(γ, q∗) = 0. (5.1)

(It turns out that (0, 0) is also a solution, but it is elementary that this root
does not characterize the relevant solution to the PDE.) The computation
for Θ∗ is straightforward and thus omitted.

Proof that (W̄ ,Θ∗) is a subsolution/control pair. We only need to
show that

inf
β

�−2γβ + L̄(β,Θ∗)� ≥ 0. (5.2)
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However, analogous to the proof of equation (4.13), one can show that
L(β,Θ∗) is convex with respect to β and its Legendre transform, denoted
by H̄(α), is

H̄(α) = inf
q

�
H̄0(α, q) ∨ H̄1(α, q)

�
with

H̄0(α, q) =

�
λ2

λ∗0
eα − 2λ+ λ∗0

�
+

�
µ212
µ∗12

eq − 2µ12 + µ∗12
�

H̄1(α, q) =

�
λ2

λ∗1
eα − 2λ+ λ∗1

�
+

�
µ211
µ∗11

e−α − 2µ11 + µ∗11
�
+

�
µ22
µ∗2
e−q − 2µ2 + µ∗2

�
.

Then the inequality (5.2) reduces to −H̄(2γ) ≥ 0. Indeed, we claim that

H̄(2γ) = 0. (5.3)

To this end, note that

H̄(2γ) = inf
q

�
H̄0(2γ, q) ∨ H̄1(2γ, q)

�
.

However, by direction computation and equations (4.15), (5.1), we have

H̄0(2γ, 2q
∗) = 2λ(eγ − 1) + 2µ12(eq∗ − 1) = 2H0(γ, q∗) = 0

and

H̄1(2γ, 2q
∗) = 2λ(eγ − 1) + 2µ11(e−γ − 1) + 2µ2(e−q∗ − 1) = 2H1(γ, q∗) = 0.

It is now very easy to argue that

H̄(2γ) = inf
q

�
H̄0(2γ, q) ∨H1(2γ, q)

�
= H̄0(2γ, 2q

∗) ∨H1(2γ, 2q∗) = 0,

which completes the proof.
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