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Abstract— Consider a communications network consisting of
mobiles, some of which can serve as a receiver and/or transmitter
in a multihop path. There are random external data processes,
each destined for some destinations. At each mobile the data
is queued according to the source-destination pair until trans-
mitted. The capacities of the connecting channels are randomly
varying. Time is divided into small scheduling intervals. At
the beginning of the intervals, the channels are estimated via
pilot signals and this information is used for the scheduling deci-
sions during the interval, concerning the allocation of transmis-
sion power and/or time, bandwidth, and perhaps antennas, to
the various queues in a queue and channel-state dependent way,
to assure stability. Lost packets might or might not have to be
retransmitted. General networks are covered, conditions used in
previous works are weakened, and the distributions of the in-
put file lengths can be heavy tailed. The resulting controls are
readily implementable. The choice of Liapunov function allows a
range of tradeoffs between current rates and queue lengths, under
very weak conditions. Because of the non-Markovian nature of
the problem, we use the perturbed Stochastic Liapunov function
method, which is designed for such problems. Extensions con-
cerning acknowledgments, multicasting, non-unique routes, and
others, are available.

Index terms: Scheduling in stochastic networks, randomly-

varying link capacities, mobile networks, stochastic stability, sta-

bility of networks with randomly varying links, routing in ad-hoc

networks, perturbed stochastic Liapunov functions, heavy tailed

distributions.

I. Introduction

Consider a network of M mobiles or nodes. There
are S external sources of bursty data processes, each
source having a unique entry and destination node in
the system. In this short paper, the routing is a priori
fixed for each of the source-destination pairs. This sim-
plifies the notation considerably, but is not necessary
for the method to work [8]. At each mobile the data is
queued, until transmitted, in an infinite buffer depend-
ing on the source. We are concerned with the allocation
of power and/or time and bandwidth to the queues in a
queue and channel-state dependent way to assure sta-
bility. The capacities of the connecting channels are a
correlated random process. Time is divided into small
scheduling intervals. At the beginning of the intervals,
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the capacities (or surrogates such as the S/N ratios)
are estimated via pilot signals and this information is
then used to make the scheduling decisions during that
interval. Using such information can improve the per-
formance dramatically [1]. Owing to the random nature
of the arrival and channel processes, the computation
or even the existence of stabilizing policies is not at all
obvious. The approach is a network extension of the de-
velopment for the one-node case in [4]. The references
[5], [8] are for networks, and contain many extensions
to non-unique routing, acknowledgments of receipt of
packets required, multicasting, randomly varying num-
bers of users, randomly available frequencies or oppor-
tunistic frequency allocation, etc., and develop methods
for getting the a priori routes. This paper uses a sim-
pler Liapunov function perturbation, based on a simple
mixing condition, that has many advantages and allows
us to deal with processes not covered by previous work.
It is more manageable, and it extends the methods so
that heavy tailed input processes can be handled. All
the extensions in the references can be carried over to
the heavy tailed case.

Owing to the non-Markovian nature of the sys-
tem state1 classical stability methods cannot be used
without revision, and a perturbed Liapunov function
method [4], [7] is adapted to obtain the desired results.
With this method, and X denoting the vector of queue
values (measured in packets) at all the nodes, one starts
with a basic Liapunov function V (X) that works for
a “mean flow” system. Then one gets a perturbation
δV (n) to V (X) so that V (X(n))+δV (n) can be used as
a Liapunov function for the actual non-Markov phys-
ical system and imply the desired stability. The ac-
tual decision rule is based on the gradient of V (X) and
is readily implemented. The basic result is that, if a
certain “mean flow” or fluid approximation process is
stable, then so is the physical system under our schedul-
ing rule. This stabilizability of the mean flow approx-
imation can often be readily verified. The condition is
“nearly” necessary as well.

The (n+1)st scheduling interval is called the nth slot.

1For example, Rayleigh fading is not Markovian].
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The time argument n denotes the beginning of the nth
slot, and is referred to as “time n.” Let Xi,k(n) denote
the queue size at time n at node k of data coming from
source i. If node k is not on the path for source i, then
Xi,k(n) ≡ 0. Define the vectors Xk(n) = {Xi,k(n), i ≤
S} and X(n) = {Xk(n), k ≤ M}, with canonical values
Xk and X, resp. For weights wi,k ≥ 0, and until further
notice, the basic Liapunov function will be2

V (X) =
∑
i,k

wi,kXp
i,k, p ≥ 2. (1.1)

(1.1) will be modified slightly for the heavy tailed case.
Stability is supposed to assure a robustness of be-

havior to small changes in the system. For this reason,
as well as because {X(n)} is rarely Markovian, it is
preferable to use methods that do not require Marko-
vianness. The perturbed Liapunov function method is
a powerful tool for such a purpose. Generally, there are
many criteria that are of interest to each of the users,
e.g., mean delay and variance of delay. One should ex-
periment with the form of the Liapunov function to see
what the tradeoffs are between competing criteria, a
procedure that yields better results than simply work-
ing with a single fixed rule, whatever it is.

There is much work on scheduling under various
types of randomness. But, other than [4], [5], [8] little is
available for the general network case when the chan-
nels are randomly varying. For the one-node case, if
the rate of transmission is proportional to power, then
[1], [10] gets rules for power allocation whose form is
similar to ours when p = 2 (called “max weight” rules
there), and which are based on stability considerations.
Large deviations estimates and a Markovian setup are
used. Reference [12] considered the problem of dy-
namic power allocation. Since the channel-rate and
data-arrival processes are i.i.d. sequences, the range
of applications is small.

The papers [2], [3] deal with related problems, again
essentially for one-node systems. There is a set of
parallel processors, and the connectivities between the
sources and the processors vary randomly. They prove
results concerning the limit of (queue length at t)/t,
and show that this limit is zero. This is used to show
that the integral of the “rates” of transmission per unit
time converges. Such a result does not quite imply sta-
bility (in our sense) of the queue length process, since
it can grow sublinearly. They allocate a single resource
(e.g., bandwidth) and the rate is proportional to the
allocation. The work [11], for a one node model, has
a Markovian channel-state process, the data input se-
quence is i.i.d., and a “complete resource pooling” con-
dition is required. The decision rule is the same as
ours for a quadratic Liapunov function. The emphasis

2One could let the powers depend on i, k, or use sums of ap-
propriate convex functions [8]. But the simpler form (1.1) is
adequate.

is on stability in the heavy traffic limit, and showing
how the problem simplifies there. Section 2 states the
assumptions, Section 3 gives the stability proof for the
non-heavy-tailed case, and the changes for the heavy-
tailed case are in Section 4.

II. Assumptions

Queue (i, k) is the queue for source i at node k. If
the path for source i does not use node k, then the
queue does not exist. Let k denote a canonical node,
and f(i, k) the node that the output of queue (i, k) goes
to. I.e., queue (i, k) feeds to queue (i, f(i, k)). If node k
is the final destination for source i, then terms involv-
ing f(i, k) are ignored. Let b(i, k) denote the node that
queue (i, k) is fed from. I.e., queue (i, b(i, k)) feeds to
queue (i, k). If node k is the origin node for source i,
then terms involving b(i, k) are ignored. Let Fn denote
the minimal σ-algebra that measures the systems data
until time n as well as the channel state in slot n. This
channel state is available at time n. Let En denote the
expectation conditioned on Fn. We say that the pack-
ets sent in slot n are sent at time n. Let di,k(n) denote
the number of packets sent from queue (i, k) at time
n. It will depend on the current channel state and will
be a function of the resources (e.g., power, bandwidth)
allocated to that queue. Let ai,k(n) denote the random
number of arrivals in slot n from the exterior, if any,
from source i at node k. These will be non-zero only
for the unique node k(i) at which source i enters the
network.

Stability. An appropriate definition of stability is a
“uniform mean recurrence time” property [4], [5]. Sup-
pose that there are 0 < q0 < ∞ and a real-valued
F (·) ≥ 0 such that: For any n, and σ1 = min{k ≥
n : |X(k)| ≤ q0}, we have3

En [σ1 − n] ≤ F (X(n))I{|X(n)|≥q0}. (2.1)

Then the system is said to be stable. The definition im-
plies recurrence to some compact set. If |X(n)| reaches
a level q1 > q0, then the conditional expectation of
the time required to return to a value q0 or smaller is
bounded by a function of q1, uniformly in the past his-
tory and in n. The right side of (2.1) depends only on
X(n), and not on any other data, even though the chan-
nel and arrival processes are random and correlated.

The decision rule. The number of packets trans-
mitted from queue (i, k) in slot n is di,k(n), and this
depends on the committed resources. The assignments
are subject to constraints. If the constraints are only
local, such as bounds on the total nodal power, the
di,k(n) for all i can be determined at node k. If the
constraints involve more than one node (e.g., if neigh-
boring nodes cannot use the same carrier frequency),

3σ1 =∞, unless otherwise defined.



then the assignments require coordination among the
nodes.

As in classical stability-control theory, the idea is
to choose the di,k(n) to minimize EnV (X(n + 1)) −
V (X(n)) as well as possible. To motivate the actual
rule, first evaluate EnV (X(n+1))−V (X(n)). We have

wi,k

[
EnXp

i,k(n + 1)−Xp
i,k(n)

]
= wi,kXp−1

i,k (n)
[
−di,k(n) + Enai,k(n) + di,b(i,k)(n)

]
+O(Xp−2

i,k (n)).

Summing over i and k yields, modulo O(Xp−2
i,k (n)) and

the “arrival” terms,

−
∑
i,k

[
wi,kXp−1

i,k (n)− wi,f(i,k)X
p−1
i,f(i,k)(n)

]
di,k(n)

= −
∑
i,k

wi,kXp−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
.

(2.2)
The O(Xp−2

i,k (n)) are nonlinear functions of di,k(n) and
higher conditional moments of the ai,k(n), and would
be hard to deal with. Fortunately, as in [4], it is enough
to work with the term that is first order in the decisions,
those in (2.2).

If the decisions can be made independently at each
node, then our decision rule (for each k) is a maximizer
in

max
{di,k(n):i}

∑
i

[
wi,kXp−1

i,k (n)− wi,f(i,k)X
p−1
i,f(i,k)(n)

]
di,k(n).

(2.3)
If there are constraints that involve a set of nodes, then
the decisions for them must be made together, and the
decision rule is a maximizer in

max
{di,k(n);i,k}

∑
i,k

[
wi,kXp−1

i,k (n)− wi,f(i,k)X
p−1
i,f(i,k)(n)

]
di,k(n),

(2.4)
or, equivalently (by rearranging terms in (2.4)), in

max
{di,k(n);i,k}

∑
i,k

wi,kXp−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
.

(2.5)
X(n) is rarely Markovian, so classical stochastic sta-
bility theory [6] cannot be used directly. However, the
perturbed Liapunov function method [4], [7], [9] will al-
low us to show that the rules (2.3), (2.4), or (2.5) yield
a stable system.

Let Lk(n) denote the (vector) set of channel
states, at time n, of all of the channels originating
at node k, which are the links {(i, k), (i, f(i, k)) :
all i using node k}. Lk(n) could be simply the set of
S/N ratios at the receiver corresponding to unit trans-
mitted power. It is convenient to work with the vector
Lk(n), rather than with the individual links, since the
decisions at each node k depend on the states of all

of the outgoing links. Lk(n) might denote other quan-
tities besides the channel quality. For example, there
might be power constraints that vary randomly due to
interference from exogenous sources. If some link at
node k is unavailable at time n, then that fact could
also be included in Lk(n). We suppose that the range
of values of the channel state vector is a finite set for
each node k. We use the (vector-valued) symbol j for
the canonical value of Lk(n), for any k, n. The range of
the variable j will depend on the node k and will not be
specified. Let ui,k(j,X) denote the control function at
queue (i, k). It represents the resources (power, time,
bandwidth, etc.) allocated to queue (i, k). Also, unless
otherwise noted, its dependence on the queues is only
on Xk and the required queue values at the immedi-
ate upstream nodes, namely the Xi,f(i,k) for all i. If
source i does not use node k, then ignore ui,k(j,X).
The control ui,k(j, X) determines the amount of data
that is sent. Let gi,k(j, Xi,k, ui,k(j, X)) denote the ac-
tual amount of data that is sent from queue (i, k) un-
der channel state j and control ui,k(·). This defines
di,k(n); i.e., the channel rate for queue (i, k) associ-
ated with current channel state j = Lk(n) and control
ui,k(j,X(n)) is di,k(n) = gi,k(j, Xi,k(n), ui,k(j,X(n))).
The Xi,k is an argument of gi,k(·) only because the
amount sent cannot be larger than the queue content.

Assumptions. (A2.4) requires that there are controls
under which the mean service rate/slot at queue (i, k)
for any i that uses node k is slightly greater than λ̄a

i .
Similar conditions are commonly used in the study of
the stability of stochastic networks.

A2.1. The maximizing constrained di,k(n) exist and
are Borel functions of the {X(n), Lk(n), i, k}.

A2.2. There is a K1 < ∞ such that for all i,
En|ai,k(n)|p ≤ K1. There are λ̄a

i,k and a ρ(k) which
goes to zero as k → ∞ such that |Enαi,k(l) − λ̄a

i,k| ≤
ρ(l − n), for all n, l ≥ n, ω, i, k.

The λ̄a
i,k, called the mean external data arrival rate for

source i at node k, is zero if k 6= k(i). Define λ̄a
i =

λ̄a
i,k(i).

A2.3. There are Πk,j ≥ 0 such that
∑

j Πk,j = 1 and
|EnI{Lk(l)=j} −Πk,j | ≤ ρ(l − n), for all n, l ≥ n, ω.

A2.4. Define K0 = maxi,k,j,u,X gi,k(j, Xi,k, ui,k(j, X)).
There is a control {ũi,k(·); i, k} under which the fol-
lowing holds. There are {q̃j

i,k; i, k} such that q̃j
i,k =

gi,k(j, Xi,k(n), ũi,k(j,X(n))) if Xi,k(n) ≥ K0. 4 Also,
gi,k(j, Xi,k(n), ũi,k(j,X(n))) ≤ q̃j

i,k if Xi,k(n) < K0.

4The lower bound K0 is introduced only because if the queue
content is smaller than the maximum of what can be transmitted
on a scheduling interval, then the mean output might be too small
to assure the −c0 value. E.g., if a queue is empty, then there are
no departures.



The q̃j
i,k satisfy, for nodes k used by source i,

q̄i,k =
∑

j

q̃j
i,kΠk,j > λ̄a

i . (2.6)

Comments on the assumptions. (A2.2) and (A2.3)
are simply mixing conditions on the data arrival and
channel processes, resp., and do not appear to be re-
strictive. Let Πk,j denote the steady state probability
of channel state j at node k. Then (A2.3) says that
the conditional probability of state j at time l given
the data to time n converges to the steady state value
as l − n → ∞. It holds for the received signal power
associated with Rayleigh fading.

By the definition (2.6), for k 6= k(i), q̄i,b(i,k) =∑
j q̃j

i,b(i,k)Πb(i,k),j . It is implied by (A2.4) that there

is c0 > 0 such that the q̃j
i,k can be chosen to satisfy

λ̄a
i − q̄i,k(i) ≤ −c0, (2.7a)

and, for k 6= k(i),

average into (i, k)− average out of (i, k)

= q̄i,b(i,k) − q̄i,k ≤ −c0.
(2.7b)

.
Consider an example, where the control is over either

power, bandwidth, or time. Let the rates be propor-
tional to the allocations Bj

i,k, with constants of propor-
tionality cj

i,k. The rate is qj
i,k = cj

i,kBj
i,k. There are the

resource constraints
∑

i Bj
i,k ≤ Bk for each j, k, and the

mean throughput constraints
∑

j qj
i,kΠk,j > λ̄a

i , all k.
Any solution qj

i,k satisfies (A2.4).

III. Liapunov Function Perturbations and
Proof

The perturbations. We now define the Liapunov
function perturbation δV (n). This will be a sum of
terms, one corresponding to each input process one to
each output process of each queue. The motivation for
the structure of the perturbations should be apparent
from the way that they are used in the proof. Addi-
tional background, applications and motivation are in
[7], [9]. Recall that k(i) = arrival node for data from
source i. The “arrival” perturbations are, for k = k(i)
and some integer m ≥ 0,

δV a
i,k(n) = wi,kXp−1

i,k (n)
n+m−1∑

l=n

En

[
ai,k(l)− λ̄a

i,k

]
,

(3.1)
The value of m will be chosen in the proof. Set
δV a

i,k(n) = 0 if k 6= k(i).
Recall that the vector-valued channel state j denotes

the canonical state of the set of channels on the forward
links from the node in question. In (3.2), we define two

sets of perturbations. The top one is concerned with the
effects of the departure of packets from queue (i, k) on
the value of EnXp

i,k(n+1)−Xp
i,k(n), under channel state

j, and the “reference” rates q̃j
i,k of (A2.4). The bottom

one is concerned with the effects on this value of the
inputs to (i, k) from queue (i, b(i, k)), when the channel
state at node b(i, k) is j, and under the “reference” rates
q̃j
i,b(i,k). Define

δV d,+
i,k,j(n) =

−wi,kXp−1
i,k (n)q̃j

i,k

n+m−1∑
l=n

En

[
I{Lk(l)=j} −Πk,j

]
,

δV d,−
i,k,j(n) =

wi,kXp−1
i,k (n)q̃j

i,b(i,k)

n+m−1∑
l=n

En

[
I{Lb(i,k)(l)=j} −Πb(i,k),j

]
.

(3.2)
The full Liapunov function perturbation δV (n) and the
time-dependent Liapunov function Ṽ (n) are

δV (n) =
∑
i,k

δV a
i,k(n) +

∑
i,k,j,±

δV d,±
i,k,j(n),

Ṽ (n) = V (X(n)) + δV (n).
(3.3)

Theorem 3.1. Under (A2.1)–(A2.4) the system is sta-
ble.

Proof. Ṽ (n) is the (time-varying) Liapunov function
that is to be used. We need to show that there is c > 0
such that EnṼ (n+1)− Ṽ (n) ≤ −c when |X(n)| is large
enough, and then that this inequality together with the
bounds on δV (n) imply (2.1).

As usual in stability proofs, one must evaluate

EnṼ (n + 1)− Ṽ (n) =
∑
i,k

wi,kEn

[
Xp

i,k(n + 1)−Xp
i,k(n)

]
+

∑
i,k

En

[
δV a

i,k(n + 1)− δV a
i,k(n)

]
+

∑
i,k,j,±

En

[
δV d,±

i,k,j(n + 1)− δV d,±
i,k,j(n)

]
.

This will be done component by component, and then
the results added. This will have the effect of either
“averaging” undesirable terms or else suitably domi-
nating them. This is the key to the effectiveness of the
method. A first order Taylor expansion yields∑

i,k

wi,kEn

[
Xp

i,k(n + 1)−Xp
i,k(n)

]
= O(Xp−2

i,k (n))

+
∑
i,k

wi,kXp−1
i,k (n)

[
Enai,k(n)− di,k(n) + di,b(i,k)(n)

]
.

(3.4)
Now consider the “arrival” perturbation component

(3.1). If k = k(i), then

EnδV a
i,k(n + 1)− δV a

i,k(n) =

−wi,kXp−1
i,k (n)

[
Enai,k(n)− λ̄a

i,k

]
+ εa

i,k(n),



where

εa
i,k(n) = wi,kXp−1

i,k (n)
∣∣Enai,k(n + m)− λ̄a

i,k

∣∣
+m wi,kO(Xp−2

i,k (n))
≤ wi,kXp−1

i,k (n)ρ(m) + m O(Xp−2
i,k (n)).

(3.5)

Thus, summing over i, k,∑
i,k

En

[
δV a

i,k(n + 1)− δV a
i,k(n)

]
= −

∑
i,k

wi,kXp−1
i,k (n)

[
Enai,k(n)− λ̄a

i,k

] (3.6)

plus error terms bounded by∑
i,k

wi,kXp−1
i,k (n)ρ(m) + m

∑
i,k

O(Xp−2
i,k (n)). (3.7)

By adding (3.4) and (3.6), the wi,kXp−1
i,k (n)Enai,k(n)

terms are replaced by the mean value term
wi,kXp−1

i,k (n)λ̄a
i,k term and an “error” term. The er-

ror term will be dominated by the main terms of order
p−1 for large values of the queue state and appropriate
values of m. Such replacements are the motivation for
the form of the perturbation (3.1).

Now deal with the top term in (3.2). This will help to
“average” the di,k(n) term in (3.4). By the definitions,

En

[
δV d,+

i,k,j(n + 1)− δV d,+
i,k,j(n)

]
=

−wi,kEnXp−1
i,k (n + 1)q̃j

i,k

n+m∑
l=n+1

En+1

[
I{Lk(l)=j} −Πk,j

]
+wi,kXp−1

i,k (n)q̃j
i,k

n+m−1∑
l=n

En

[
I{Lk(l)=j} −Πk,j

]
(3.8)

This expression can be written as

wi,kXp−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
−wi,kEnXp−1

i,k (n + 1)q̃j
i,k

n+m∑
l=n+1

En+1

[
I{Lk(l)=j} −Πk,j

]
+wi,kXp−1

i,k (n)q̃j
i,k

n+m−1∑
l=n+1

En

[
I{Lk(l)=j} −Πk,j

]
.

(3.9)
Writing Xp−1

i,k (n + 1) = Xp−1
i,k (n) + [Xp−1

i,k (n + 1) −
Xp−1

i,k (n)] and expanding the bracketed term yields

En

[
δV d,+

i,k,j(n + 1)− δV d,+
i,k,j(n)

]
= wi,kXp−1

i,k (n)q̃j
i,k

[
I{Lk(n)=j} −Πk,j

] (3.10)

plus error terms that are bounded by

wi,k q̃j
i,kXp−1

i,k (n)
∣∣EnI{Lk(n+m)=j} −Πk,j

∣∣+m O(Xp−2
i,k (n)).

Analogously, one can show that

En

[
δV d,−

i,k,j(n + 1)− δV d,−
i,k,j(n)

]
=

−wi,kXp−1
i,k (n)q̃j

i,b(i,k)

[
I{Lb(i,k)(n)=j} −Πb(i,k),j

]
(3.11)

plus error terms bounded by

wi,kq̃j
i,b(i,k)X

p−1
i,k (n)

∣∣∣EnI{Lb(i,k)(n+m)=j} −Πb(i,k),j

∣∣∣
+m O(Xp−2

i,k (n)).

Adding all terms in (3.4), (3.6), (3.10), (3.11), plus
the error terms, and cancelling where possible yields

EnṼ (n + 1)− Ṽ (n) =
∑
i,k

wi,kXp−1
i,k (n)λ̄a

i,k

+
∑
i,k

[
−wi,kXp−1

i,k (n)di,k(n) + wi,kXp−1
i,k (n)di,b(i,k)(n)

]
+

∑
i,k,j

wi,kXp−1
i,k (n)q̃j

i,k

[
I{Lk(n)=j} −Πk,j

]
−

∑
i,k,j

wi,kXp−1
i,k (n)q̃j

i,b(i,k)

[
I{Lb(i,k)(n)=j} −Πb(i,k),j

]
+ error terms bounded by (2 + 2K0)×(3.7).

(3.12)
Separate out the terms in the middle three lines of

(3.12) that do not involve the Πk,j variables, getting

−
∑
i,k

wi,kXp−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
+

{ ∑
i,k

wi,kXp−1
i,k (n)

∑
j

[
q̃j
i,kI{Lk(n)=j}

]
−

∑
i,k

wi,kXp−1
i,k (n)

∑
j

[
q̃j
i,b(i,k)I{Lb(i,k)(n)=j}

] }
.

The last expression can be written as

−
∑
i,k

wi,kXp−1
i,k (n)

[
di,k(n)− di,b(i,k)(n)

]
+

∑
i,k

wi,kXp−1
i,k (n)

[
q̃

Lk(n)
i,k − q̃

Lb(i,k)(n)

i,b(i,k)

]
.

(3.13)

Suppose, for the moment, that all Xi,k(n) ≥ K0.
Then, by (A2.4) there is a control {ũi,k(·)} such that
under channel state j the output from queue (i, k)
will be q̃j

i,k = gi,k(j, Xi,k(n), ũi,k(j,X(n))). Since the
di,k(n) are chosen by one of the maximization rules
(2.3), (2.4), or (2.5), and the q̃j

i,k outputs defined in
(A2.4) are not necessarily maximizers, the expression
(3.13) is non-positive. Using this fact in (3.12) together
with the definition of q̄i,k in (A2.4) yields the upper
bound to (3.12):∑

i,k

wi,kXp−1
i,k (n)

[
λ̄a

i,k − q̄i,k + q̄i,b(i,k)

]
+(2 + 2K0)

∑
i,k

wi,kXp−1
i,k (n)ρ(m) + m

∑
i,k

O(Xp−2
i,k (n)).

(3.14)
By (2.6), λ̄a

i,k − q̄i,k + q̄i,b(i,k) ≤ −c0. Select the integer
m so that (2+2K0)ρ(m) ≤ c0/2. Thus, since m is now



fixed,

EnṼ (n + 1)− Ṽ (n)

≤ −[c0/2]
∑
i,k

wi,kXp−1
i,k (n) + O(|X(n)|p−2).

(3.15)
We also have

|δV (n)| = O(|X(n)|p−1) (3.16)

and, by (3.15),

EnṼ (n + 1)− Ṽ (n) → −∞, unif. in n as X(n) →∞.
(3.17)

By (3.17), there are c1 > 0 and q0 > 0, such that, for
|X(n)| ≥ q0,

EnṼ (n + 1)− Ṽ (n) ≤ −c1. (3.18)

Given small δ > 0, (3.16) implies that for q0 sufficiently
large,

|V (X(n))− Ṽ (n)| ≤ δ(1 + V (X(n)). (3.19)

Let σ0 be a stopping time for which |X(σ0)| = c2 > q0,
and define σ1 = min{n > σ0 : |X(n)| ≤ q0}. Then, by
(3.18), we have

Eσ0 Ṽ (σ1)− Ṽ (σ0) ≤ −c1Eσ0 [σ1 − σ0]. (3.20)

Using (3.20) and the bound (3.19) on Ṽ (n)− V (X(n))
to bound Ṽ (σi)− V (X(σi)), i = 0, 1, yields

−δEσ0 [1 + V (X(σ1))] + Eσ0V (X(σ1)) ≤ Eσ0 Ṽ (σ1)

≤ −c1Eσ0(σ1 − σ0) + [δ + V (X(σ0))(1 + δ)]

or

Eσ0(σ1−σ0) ≤
2δ + V (X(σ0))(1 + δ) + δEσ0V (X(σ1))

c1
,

which implies that the definition of stability (2.1) holds
since V (X(σ1)) ≤ sup|x|≤q0

V (x).
There is no space to complete the details when some

components of X(n) are less than K0. The required
adjustments are minor and it can be shown, similarly
to what was done in [8], that the contributions of those
terms are bounded, so that the contributions for large
Xi,k(n) dominate. The details are omitted.

Comments. The rule (2.3) requires that each node k
know the value of the Xi,k(n) and Xi,f(i,k)(n) for all i
that use node k. It is easily seen from the proof that
the value of Xi,f(i,k)(n) need only be known approxi-
mately at node k. The quantities q0, δ, c1 all depend on
the values of the ρ(·) in (A2.2) and (A2.3) and on the
excess capacity of the system as quantified by c0. If the
rate of mixing of the channel process is very slow, then
the queues will often have very large excursions, de-
spite the fact of stability. Consider the possibility that

some links are preempted by priority users from time to
time, where the intervals of availability are defined by
a renewal process that is independent of the arrival and
channel rate processes. Then it can be shown that the
results continue to hold, but with the q̄i,k multiplied by
the fraction of time that the channel is available, so the
capacity must be sufficient to handle the down times.
Under the other assumptions, (A2.4) is sufficient but
not necessary for stability, but it is “nearly” necessary
in the following sense. Suppose that for each allowable
choice of the {q̃j

i,k}, there is some (i0, k0) such that
q̄i0,b(i0,k0) − q̄i0,k0 > 0. Then the system is not stable.

IV. Heavy Tailed Input Distributions

Poisson arrival processes. Suppose that source i
generates input files whose lengths have heavy tailed
distributions in that their second moment is finite but
for some 0 < δ < 1 the (1 + δ)th moment is finite. Let
the file creation process be Poisson with rate c̄i/slot
with mean file size m̄i. Thus the mean input rate/slot
is d̄i = c̄im̄i. Suppose that successive files are mutually
independent, and that the file size is known when cre-
ated5 and that the file is sent to the system at a rate
λ̄a

i > d̄i packets/slot. [Note the new definition of λ̄a
i .]

Use the following slightly revised model of the system.
Introduce a fictitious node, called p(i). Suppose that
the entire contents of any new file from source i is sent
all at once to this node, and then sent from this node
to the true entry node k(i) of the network at a rate λ̄a

i ,
if queue p(i) is not empty. This is the source i process
that would have gone to node k(i) directly if node p(i)
were not introduced, as in the previous sections.

Augment X(n) by the new state Xp(i)(n) and add
the term [1 + Xp(i)]1+δ/(1 + δ) to V (X). This term
will not affect the decision rule since the output from
node p(i) is not controllable. From the point of view
of the proof, the input rate to node k(i) from p(i) is
constant at λ̄a

i if Xp(i)(n) > 0. Suppose, w.l.o.g., that
the input file size is always greater than λ̄a

i and is an
integral multiple of λ̄a

i .
The only new contribution to the proof is the behav-

ior of (divided by 1 + δ)

En[1 + Xp(i)(n + 1)]1+δ − En[1 + Xp(i)(n)]1+δ. (4.1)

This can be written as

En

[
1 + Xp(i)(n) + θi(n)

(
ap(i)(n)− dp(i)(n)

)]δ

×
(
ap(i)(n)− dp(i)(n)

)
,

(4.2)
where θi(n) is a random variable with values in [0, 1],
and dp(i)(n) = λ̄a

i if the queue is not empty. In the
event that there is no arrival at n, by the monotonicity

5These file sizes will not be used by the decision rule. It is only
required that they be included in Fn,



of (1 + x)δ we can bound (4.2) from above by

−dp(i)(n)
[
1 + Xp(i)(n)

]δ
. (4.3)

In the event that there is an arrival at n, treating the
two components due to the arrivals and departures sep-
arately and using (a + b)δ ≤ aδ + bδ, (4.2) can be
bounded above by

−dp(i)(n)
[
1 + Xp(i)(n)

]δ

+
[
1 + Xp(i)(n)

]δ
m̄i + E|ap(i)(n)|1+δ.

(4.4)

To get the desired bound, weigh (4.3) by (1 − c̄i) and
(4.4) by c̄i. Repeat the above procedure for each heavy
tailed input. The rest of the proof is as for Theorem 3.1.
One only needs to keep track of the different powers of
the Xi,k(n). The condition (A2.2) need hold only for
the non-heavy=tailed inputs. No additional perturba-
tions are needed, due to the Poisson and i.i.d property
of the input sequence ap(i)(n).

Renewal arrival processes. Continue to suppose
that the heavy tailed arrival file sizes from source i are
i.i.d., with mean m̄i. But now, let the arrival times
constitute a random point process. Let Ia

i (l) denote
the indicator function of an arrival at time l, and sup-
pose that, for some c̄i > 0, |EnIa

i (l) − c̄i| ≤ ρ(l − n)
for all n, l ≥ n, ω, where ρ(n) → 0 as n → ∞. Then
the proof, modified as above, goes through, with the
additional perturbation

δV a
p(i)(n) =

[
1 + Xp(i)(n)

]δ
m̄i

n+m−1∑
l=n

[EnIa
i (l)− c̄i] ,

(4.5)
where the integer m is chosen as in the proof. Next,
suppose that the file sizes are correlated and that
|EnIa

i (l)ap(i)(l)− d̄i| ≤ ρ(l− n) for all n, l ≥ n, ω. then
the modified proof goes through, with use of the per-
turbation

δV a
p(i)(n)

=
[
1 + Xp(i)(n)

]δ
n+m−1∑

l=n

[
EnIa

i (l)ap(i)(l)− d̄i

]
.

(4.6)
.
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