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Abstract— We study the problem of establishing secure com-
munication channels in resource-constrained wireless networks
using key predistribution. Pairwise communication channels
between nodes are secured using link keys which are established
as a function of cryptographic seeds predistributed to each
node. We propose a general model for seed assignment which
regulates the number of nodes sharing each seed. In addition,
we provide a general model for wireless network connectivity
where communication is restricted by both radio range and
an independent pairwise relationship. We provide probabilistic
analysis for network connectivity and resilience to node capture
in terms of our seed assignment and network connectivity models.
Finally, we provide a numerical example demonstrating how
the proposed approach reduces key wastage while maintaining
resilience to node capture of prior results.

I. I NTRODUCTION

Applications involving large-scale wireless networks de-
ployed in hostile environments require the development of
secure protocols that can operate in a decentralized manner.
Due to limitations such as the wireless radio range, battery
energy, and computational capability of each node, secure
protocols for resource-constrained networks rely on shared
symmetric keys.

A promising approach to symmetric key establishment in
wireless networks is key predistribution, studied in various
forms in many papers (e.g. [1]–[10]). In a key predistribu-
tion scheme,seedsare assigned to nodes prior to network
deployment. For generality, we use the term seed to refer to
any secret quantity, such as a key [4], [5], [7], [8], hashed
secret [3], [6], or secret share [1], [2], [9], [10], used for
key establishment. The network is then randomly deployed,
suggesting that the assignment of seeds cannot rely on post-
deployment node location and must be tolerant to random
placement of nodes. After physical deployment, neighboring
nodes must determine if they share a sufficient number of
seeds to establish alink keyfor secure communication. Hence,
a key predistribution scheme must specify methods for both
pre-deploymentseed assignmentand post-deploymentlink key
establishment. The link key establishment protocol requires
each node to use the individually assigned seeds as inputs,
and thus depends on the outcome of seed assignment. Hence,
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seed assignment plays a crucial role in providing a connected
network while maximizing the resilience to captured nodes.

The most resource efficient method of seed assignment
is the assignment of a single master seed to every node
in the network. This solution requires minimal storage and
minimal communication overhead for key updates. However,
the compromise of a single node exposes the master key and
compromises the security of the entire network. A solution
which prevents compromise due to node capture is the as-
signment of a unique pairwise key to each pair of nodes.
However, this scheme requires storage for(N − 1) keys in
each of theN nodes and a total of

(
N
2

)
keys. Furthermore,

addition of a single node to the network would require
O(N) communication overhead to update every node with an
additional pairwise key. Hence, methods of seed assignment
for key predistribution schemes exhibit a trade-off between
resilience to node capture and resource efficiency.

A. Motivation

The authors of [4] proposed random key predistribution
to balance the trade-off between resilience to node capture
and storage efficiency. Seed assignment in [4] consists of the
assignment of a random selection ofK seeds from a pool of
P seeds for each node, whereP andK are chosen to provide
a connected network with a specified probability. The link key
establishment protocol in [4] determines if a seed is shared,
in which case the shared seed is used directly as the link key.
We notice that each node selects a given seed randomly with a
probability K

P using this scheme. Thus, the number of nodes
which share the given seed is a random variable distributed
according to a binomial distribution with parameters(N, K

P ).
Hence, the number of nodes sharing each of theP seeds
is highly variable, taking values between0 and N with an
expected value ofµ = NK

P . If the number of nodes sharing a
seed is much less thanµ, the probability that any two of the
nodes will be within wireless communication range is very
small. Hence, the probability that such a seed will be used
to establish a link key is very small. On the other hand, if
the number of nodes sharing a seed is much greater thanµ, a
large number of link keys will be established using the seed.
An adversary able to recover such a seed will thus be able
to compromise a large number of secure channels throughout
the network. Such worst-casetail-effectsdue to assignment
of seeds to a number of nodes much greater or much less
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Fig. 1. The simulated histogram of the number of nodes sharing each seed satisfies a binomial distribution. The simulated and theoretical plots are given on
(a) linear vertical axis and (b) logarithmic vertical axis.

than µ cannot be analyzed by an average-case probabilistic
analysis, such as those provided in [5], [9], [10]. Furthermore,
any key predistribution scheme which uses a similar random
seed selection method suffers from the same tail-effects of the
binomial distribution.

To demonstrate the binomial distribution typical of random
key predistribution, we provide Fig. 1 which compares the
simulated histogram of the number of nodes sharing each seed
with the number of nodes given by the binomial distribution.

B. Contribution

In order to reduce key wastage due to assignment of seeds
to a very small number of nodes and minimize the impact
of every compromised seed on the remaining network, we
propose the regulation of the number of nodes which share
each seed. As will be shown, such regulation does not affect
the average-case performance in terms of network connectivity
or resilience to node capture. However, the occurrence of tail-
effects, as discussed in Section I-A, can be reduced.

The contributions of this work are as follows. We propose a
general model for seed assignment using discrete probability
distributions to regulate the number of nodes which share
each seed. The model preserves the average-case performance
of existing schemes (e.g. [4], [10]) in terms of network
connectivity and resilience to node capture. Furthermore, we
propose three seed assignment algorithms for use with the
seed assignment model. In addition, we propose a connectivity
model for networks in which communication is restricted by
radio range and an independent pairwise relationship such as
the existence of a shared seed. Finally, we demonstrate the
application of our seed assignment and connectivity models
and analytically compare the results to previous works.

The paper is organized as follows. We propose our seed
assignment model in Section II. In Section III, the appropriate
network connectivity model for secure wireless networks is

derived. Section IV presents the analysis of network connec-
tivity and resilience to node capture according to the proposed
models. Numerical examples and comparison to previous
works are presented in Section V.

II. PROPOSEDSEED ASSIGNMENTMODEL

We propose a general model for seed assignment which
allows for explicit control of the number of nodes which share
each seed. The model is given with respect to the following
definitions.

A. Model Definitions

The setS(s) of nodes which are assigned the seeds is
defined as theassignment setof seed s. The number of
nodes sharing each seed is regulated by the designation of
an assignment distributionP which specifies the probability
P(λ) that an assignment setS(s) has sizeλ, i.e. P(λ) =
Pr[|S(s)| = λ]. The set of valuesλ with non-zero probability
mass is defined as thesupportΛ of the assignment distribution,
i.e. Λ = {λ : P(λ) > 0}. The average size of an assignment
set under an assignment distributionP is denoted by

µ =
∑
λ∈Λ

λP(λ).

The given definitions provide the basis for the proposed
seed assignment model. However, the seed assignment model
further requires analytical elements to allow for the design
of assignment distributions which can avoid the tail-effects
discussed in Section I-A. Furthermore, given an desirable
assignment distribution, the model required a seed assignment
algorithm which can realize the given distribution.

B. Assignment Distribution Design

Though the design of an assignment distribution is
application-dependent, we provide a brief discussion of some



desirable and achievable properties of assignment distribu-
tions.

Based on the discussion in Section I that seeds should not be
assigned to small or large sets of nodes, the optimal solution is
to assign every seed to a fixed number of nodes, i.e.|Λ| = 1.
As stated in [7], this optimal solution is not always achievable.
Hence, we consider assignment distributions with|Λ| ≥ 1,
including the binomial distribution discussed in Section I-A.

To approximate the optimal solution with|Λ| = 1, it is
highly desirable to specify the setΛ by a contiguous set of
integers{λ ∈ Z : λmin ≤ λ ≤ λmax} such that|Λ| is
as small as possible. Furthermore, to best approximate the
optimal solution, the value of the assignment distributionP
should be larger for the values ofλ nearest toµ. As will
be discussed in Section II-D, trade-offs exist which further
complicate the design problem.

C. Seed Assignment Algorithms

An algorithm which assigns seeds to nodes based on a
desired assignment distributionP must take into account the
assumption that each of theN nodes receives exactlyK
seeds. Assuming the assignment distributionP is specified, we
propose three seed assignment algorithms based on repeated
sampling of the assignment distributionP, noting that many
such algorithms can be designed. The algorithms presented
in this section are theRandom Weighted Seed Selection
(RWSS), Random Assignment Set Selection (RASS), andRan-
dom Node Partition (RNP)algorithms. Each of the algorithms
is described and presented as code, in which the function
sample(P) refers to a sample of the assignment distribution
P and the functionselect(n, X) refers to a random selection
of n items from the setX.

RWSS Algorithm:Let Ψ represent the set of pairs(s, λ)
where s is a seed andλ is a sample of the assignment
distribution P. Initially, Ψ = ∅. Since the total number of
seed assignments isNK, pairs(s, λ) are generated and added
to Ψ until ∑

(s,λ)∈Ψ

λ ≥ N ·K.

For each of theN nodes,K pairs (s, λ) with λ > 0 are
selected fromΨ. The seeds for each of theK selected pairs
is assigned to the node. Each valueλ for the selected pairs is
decremented before replacing the pairs inΨ. The decreasing
value of λ will ensure that each seed is assigned only as
many times as specified by the sample ofP. The algorithm
terminates as soon as each of theN nodes has receivedK
seeds. The RWSS algorithm is presented in Fig. 2.

RASS Algorithm:Let Ω = {1, . . . , N} represent the set of
N nodes. For each seeds, a sampleλ ∈ Λ of the assignment
distribution P is generated. The assignment setS(s) of λ
nodes is randomly chosen fromΩ, and the seeds is assigned
to the nodes inS(s). A node is removed fromΩ as soon as
it is assignedK seeds. Hence, the algorithm terminates once
|Ω| = 0. The RASS algorithm is presented in Fig. 3.

RNP Algorithm:The set{1, . . . , N} is randomly partitioned
into subsetsS1, . . . , ST such that the subset sizes|Si| are

Algorithm : RWSS(N, K,P)
Ψ← ∅, j ← 1
while

∑
(s,λ)∈Ψ λ < N ·K do

Ψ← Ψ ∪ (sj , sample(P))
j ← j + 1

end while
for n from 1 to N do

Ψ0 ← {(s, λ) ∈ Ψ : λ > 0}
E ← select (Ψ0, min(K, |Ψ0|))
if |E| < K then

F ← select (Ψ \ E, K − |E|)
E ← E ∪ F

end if
assign{s : (s, λ) ∈ E} to n
(s, λ)← (s, λ− 1) for (s, λ) ∈ E

end for

Fig. 2. RWSS Algorithm

Algorithm : RASS(N, K,P)
Ω← {(1, 0), . . . , (N, 0)}
while |Ω| > 0 do

λ← sample(P)
S ← select (Ω, min(λ, |Ω|))
assign next seed to{n : (n, c) ∈ S}
(n, c)← (n, c + 1) for (n, c) ∈ S
Ω← Ω \ {(n, c) ∈ S : c = K}

end while

Fig. 3. RASS Algorithm

samples of the assignment distributionP. The nodes in each
subsetSi are assigned a common seed, ensuring that each node
receives exactly one seed. The set-partition step is repeated a
total of K times. To ensure that each|Si| reflects a sample of
P, the final partition subsetST in each round is combined with
a random selection of nodes which are then omitted from the
subsequent round. The RNP Algorithm is presented in Fig. 4.

D. Finite Sampling Effects

In the three algorithms presented in the previous section, a
finite number of samples are taken from the assignment dis-
tribution P. As discussed below, each of the three algorithms
can result in assignment sets of sizeλ /∈ Λ near termination
of the algorithm. We refer to the occurrence of such sets as
boundary effects. In what follows, we discuss these boundary
effects and how they can be avoided.

Algorithm : RNP (N, K,P)
Φ1 ← ∅
for i from 1 to K do

Φ← {1, . . . , N} \ Φ1

while |Φ| > 0 do
λ← sample(P)
S ← select (Φ, min(λ, |Φ|))
if |S| < λ and i < K then

Φ1 ← select ({1, . . . , N} \ S, λ− |S|)
S ← S ∪ Φ1

end if
assign next seed to nodes inS
Φ← Φ \ S

end while
end for

Fig. 4. RNP Algorithm



1) RWSS Algorithm:Near the end of the RWSS algorithm,
the number of seeds with positive weight may be less than
K. In order to avoid very small assignment sets, a random
selection of seeds withλ = 0 can be combined with the
remaining seeds to ensure that every node receivesK seeds.
This technique can result in a small number of assignment sets
with size slightly greater thanλmax and a small number of
assignment sets of size slightly less thanλmin.

2) RASS Algorithm:Near the end of the RASS algorithm,
the number of nodes with fewer thanK seeds may be smaller
than the generatedλ. Hence, assignment sets of size less than
λmin may occur before the algorithm terminates. If desired,
these small sets of remaining nodes can be added to previously
designated assignment sets, possibly leading to a small number
of assignment sets of size greater thanλmax.

3) RNP Algorithm:The repeated samples of the assignment
distributionP in each round of the RNP algorithm will often
not sum toN . As discussed above, the last subsetST can
be combined with a random selection of nodes which are
then omitted from the subsequent round. In theKth round,
however, a single assignment set of size less thanλmin

may occur. The special case whereΛ = {λ} and N
λ is an

integer does not suffer from boundary effects. This special
case approximates the use of combinatorial designs [7], [8].

Through extensive simulation, we notice that the occurrence
of boundary effects increases as|Λ| decreases. Hence, there
exists a trade-off between minimizing the size of the support
Λ and minimizing the boundary effects which occur. In order
to balance this trade-off, however, the analytical properties
of seed assignment in terms of the assignment distribution
must be investigated. Hence, we are interested in analyzing
probabilistic network connectivity and resilience to node cap-
ture. The model for network connectivity is presented in the
next section, and the analysis based on this model is provided
in Section IV. Furthermore, the worst-case resilience to node
capture, also analyzed in Section IV, can be considered in the
design of an assignment distribution.

III. N ETWORK CONNECTIVITY MODEL

In order to design an assignment distribution used for seed
assignment, we propose a model for wireless connectivity in
which communication is limited both by radio range and an
independent (random or deterministic) logical restriction, such
as the existence of shared predistributed seeds. We assume
thatN nodes are deployed uniformly at random with resulting
locationsxu ∈ A ⊂ R2 for u = 1, . . . , N and each node has
an omni-directional antenna with radio ranger. Based on the
assumptions, we derive the probabilityPG(k) that the network
is k-connected using graph theory and spatial statistics.

We derive the probabilityPG(k) using three graphs: the
physical graph, logical graph, andnetwork graph. The physi-
cal graphGP models communication restricted by radio range
such that a pair of nodes are adjacent inGP if and only if
they are within radio range. The logical graphGL models
logical relationships resulting from the given relationR such
that a pair of nodes are adjacent inGL if and only if the

relationR is true. The network graphG is given by the edge-
wise intersection ofGP andGL, appropriately modeling the
desired restrictions on the wireless network. The probability
PG(k) is then given by the probability that the graphG is
k-connected.

We provide the following results relating to the node degree
and the connectivity of the network graphG. The final result
given in Theorem 2 provides a probabilistic connectivity
model which can be used to provide sufficient parameters for
desired network connectivity.

Lemma 1:Given a nodeu with degreeD in the logical
graphGL, the probabilityPr[du ≥ k] that u has degree at
leastk in the network graphG is given by

Pr[du ≥ k] = 1− e−ρ D+1
N πr2

k−1∑
i=0

(ρD+1
N πr2)i

i!
.

Proof: The physical graphGP can be modeled by a
geometric random graph with vertices distributed according
to a two-dimensional Poisson point process with rateρ = N

|A| .
Thus, the probability distribution of the number of nodes
d within distancer of the nodeu is given by a Poisson
distribution with parameterρπr2 [11]. Hence, the probability
that the number of nodesd is at least a given valuek in the
physical graphGP is given by

Pr[d ≥ k] = 1− e−ρπr2
k−1∑
i=0

(ρπr2)i

i!
. (1)

Given that a vertexu has degreeD in GL, the degreedu

of nodeu in the network graphG is at leastk if and only
if at least k of the D neighbors ofu in GL are within
distancer of u. Since the neighbors ofu in GL are determined
independently of the neighbors ofu in GP , the neighbors of
u in G are uniformly distributed in the regionA. Thus, the
neighbors ofu in GL form a geometric random graphGu

P ,
which can be represented by a two-dimensional Poisson point
process with rateD+1

|A| = ρD+1
N . Hence, replacingρ by ρD+1

N
in (1) completes the proof.

Theorem 2:The network graphG resulting from edge-wise
intersection of a physical graphGP and a logical graphGL

with average node degreeD is k-connected with probability
PG(k) given by

PG(k) =

(
1− e−ρ D+1

N πr2
k−1∑
i=0

(ρD+1
N πr2)i

i!

)N

whereρ = N
|A| is the node density in the regionA.

Proof: The probability that the degreedu of a nodeu is
at leastk in the network graphG is given by Lemma 1. Thus,
the minimum node degreedmin = min{du : u = 1, . . . , N}
is at leastk in G with probability given by

Pr[dmin ≥ k] = Pr[d1 ≥ k, . . . , dN ≥ k]. (2)

Due to the properties of the Poisson point process, the prob-
abilities given by Lemma 1 are independent and identically
distributed for each nodeu. Hence, the minimum node degree



Fig. 5. The required radio ranger of each node to guarantee network
connectivity increases as the number of nodesD which share seeds with a
given node decreases. This illustration compares the caseD = N − 1 to
D << N .

dmin is at leastk with probability Pr[dmin ≥ k] = Pr[du ≥
k]N . As r increases, a geometric random graph becomesk-
connected, asymptotically, as soon as the minimum vertex
degree isk with high probability [12], [13]. Hence, the
probability of connectivity is given byPG(k) = Pr[dmin ≥
k].

The result of Theorem 2, with fixed values ofk, N , and
ρ, suggests that as the number of nodesD which share seed
with a given node decreases, the radio ranger of each node
must increase as illustrated by Fig. 5.

IV. A NALYSIS OF SEED ASSIGNMENT

In this section, we provide probabilistic analysis for seed
assignment using a given assignment distributionP. We
provide a general probabilistic analysis for resilience to node
capture. We compute the probability that two nodes share a
given seed and the probability that two nodes share exactlyi
seeds fori = 1, . . . ,K. Finally, we compute the probability
of network connectivity using Theorem 2.

A. Resilience to Node Capture

The resilience to node capture for a given key predistribu-
tion scheme can be measured by computing the fraction of
links f(x) which are compromised whenx nodes have been
randomly captured. However, the means of compromising a
link depend on the link key establishment protocol and the type
of seeds which are assigned. Hence, for generality, we measure
resilience to node capture by deriving an approximation for the
probability pc(m,x) that exactlym of the x captured nodes
contain a given seed.

Lemma 3:Given uncaptured nodesu andv which share a
seeds such thatλ = |S(s)| is known, if x � N andm � λ,
the probabilitypc(m,x, λ) that exactlym of the x captured

nodes contains can be approximated as

pc(m,x, λ) ≈
(

x

m

)(
λ− 2
N − 2

)m(
N − λ

N − 2

)x−m

.

Proof: If x � N andm � λ, then we can assume that
each of the captured nodes contains the seeds independently,
and the selection ofx out of (N−2) nodes can be modeled as
repeated trials of selection with replacement. For each trial, the
probability that the selected node contains the seeds given that
(λ−2) of the(N−2) nodes contains is λ−2

N−2 . The assumption
of independence suggests that each of thex trials can be
modeled as an independent Bernoulli random variable. Hence,
the probability thatm of the x trials are successful is given
by a binomial distribution, and the probabilitypc(m,x, λ) is
as desired.

Lemma 3 demonstrates the claims that a seed shared by
a large set of nodes leads to a high probability of link key
compromise as discussed in Section I. Hence, this lemma can
be used to evaluate the worst-case resilience to node capture
for a given seed assignment protocol. The following theorem
can similarly be used to evaluate the average resilience to node
capture.

Theorem 4:Given an assignment distributionP with mean
µ, uncaptured nodesu and v which share a seeds, and x
captured nodes, the probabilitypc(m,x) that exactlym of the
x captured nodes contains can be approximated as

pc(m,x) ≈
(

x

m

)(
µ− 2
N − 2

)m(
N − µ

N − 2

)x−m

whereµ is the mean of a given assignment distributionP.
Proof: This result is an approximation to the result of

Lemma 3 obtained by replacingλ by the meanµ of the
assignment distributionP.

B. Probability of Sharing Seeds

We next compute the probability that a given pair of nodes
sharei of the K assigned seeds, fori = 1, . . . ,K. Lemma 5
computes the probability that a given pair of nodes will share
a given seed such that the number of nodes sharing the seed is
known. Theorem 6 computes the probability that a given pair
of nodes will sharei of the K assigned seeds such that the
number of nodes sharing each seed is known. This theorem can
be used to evaluate the worst-case probability of sharing seeds
for a given assignment distributionP. Finally, Theorem 7
computes the average probability that a given pair of nodes
will share i of the K assigned seeds for a given assignment
distributionP.

Lemma 5:A node u containing a seeds, such thatλ =
|S(s)| is known, will shares with a nodev with probability
p(s, λ) = λ−1

N−1 .
Proof: Given a nodeu containings, exactly(λ− 1) of

the remaining(N−1) nodes contains. Hence, the probability
that v is one of these(λ− 1) nodes is λ−1

N−1 .
Theorem 6:A node u containing seedss1, . . . , sK , such

that λj = |S(sj)| for j = 1, . . . ,K are known, will share ex-
actly i seeds with a nodev with probabilityps(i, λ1, . . . , λK)



given by

ps(i, λ1, . . . , λK) =
1

i!(K − i)!

∑
π

 i∏
j=1

λπj
− 1

N − 1

×
K∏

j=i+1

N − λπj

N − 1


where the summation is over all permutationsπ =
(π1, . . . , πK) of (1, . . . ,K).

Proof: The event thatv sharessj with u can be modeled
as a Bernoulli trial with success probabilityp(sj , λj) given
by Lemma 5. The probability thati of the K independent
events occur is given by the probability that the sum ofK
independent Bernoulli random variables is equal toi. Since
the success probabilities of theK events are not equal, the
total probability is summed over all possible choices ofi of
the K events, represented by the firsti entries of a permu-
tation of (1, . . . ,K). For a given permutation(π1, . . . , πK)
of (1, . . . ,K), the contribution to the total probability is the
product ofp(sπj , λπj ) for j = 1, . . . , i and 1 − p(sπj , λπj )
for j = i + 1, . . . ,K. To compensate for permutations which
result in the choice of the samei events, the probability is
multiplied by 1

i!(K−i)! .
Theorem 7:A nodeu will share exactlyi seeds with a node

v with probability ps(i) given by

ps(i) =
(

K

i

)(
µ− 1
N − 1

)i(
N − µ

N − 1

)K−i

whereµ is the mean of the assignment distributionP.
Proof: Since the random variablesλ1, . . . , λK are in-

dependent, the probabilityps(i) can be computed by taking
the expected value ofps(i, λ1, . . . , λK), as given by Theo-
rem 6, with respect to each of the random variables. Letting
the expected value with respect toλj be denotedEj [·], the
probability ps(i) is given by

ps(i) =
1

i!(K − i)!

∑
π

 i∏
j=1

Eπj
[λπj

]− 1
N − 1

×
K∏

j=i+1

N − Eπj [λπj ]
N − 1

 . (3)

Identical distribution of theλj suggests that eachEπj
[λπj

] is
equal to the meanµ of the assignment distributionP. The
product terms are thus independent of the indexj, and the
summands are independent of the permutationπ, so the sum-
of-products form is replaced by a single product of exponents
with coefficient K!

i!(K−i)! =
(
K
i

)
.

C. Network Connectivity

Theorem 2 provides the probability of network connectivity
as a function of the average node degreeD in the logical
graphGL. Assuming the logical graph relationR is true if
and only if the given pair of nodes share at least one seed, we
compute the average degreeD. We first compute the expected

Fig. 6. Seed assignment to nodes in the network is represented by
a combinatorial occupancy problem where each pair of nodes(u, v) is
represented by a bin, and a shared seed between nodesu andv is indicated
by a ball in the bin(u, v).

degreed(u) of a nodeu in GL given that the sizesλj of
the K assignment sets corresponding to the seeds assigned to
nodeu are known. This computation is done by mapping the
assignment of seeds to nodeu to a combinatorial occupancy
problem. Each pair of nodes(u, v), for v 6= u, is represented
by a bin, and a shared seed between nodesu andv corresponds
to a ball in the bin representing(u, v). Hence, the expected
degreed(u) is given by the average number of non-empty bins.
The average node degreeD in GL is then computed by taking
the expected value ofd(u) with respect to the assignment
distribution P. The mapping to a combinatorial occupancy
problem is illustrated in Fig. 6.

Lemma 8:Given a nodeu with seedss1, . . . , sK , such that
λj = |S(sj)| for j = 1, . . . ,K are known, the probability
Pr[e(u) ≥ E] that the number of nodese(u) which will not
share a seed withu is at leastE is given by

Pr[e(u) ≥ E] =
N−1∑
m=E

(−1)m−E

(
m− 1
E − 1

)(
N − 1

m

) K∏
j=1

(
N−1−m

λj−1

)(
N−1
λj−1

) .

Proof: The event thatu and(λj−1) other nodes contain
a seedsj corresponds to placing(λj −1) balls in the(N −1)
bins (u, v), v 6= u. If the set ofm ≥ E bins to remain empty
is given, the number of ways to place the(λj − 1) balls in
the (N − 1−m) bins is

(
N−1−m

λj−1

)
. Thus, the total number of

ways to assignK seeds in such a way that a particular set of
m ≥ E bins remains empty is

∏K
j=1

(
N−1−m

λj−1

)
. The number

of ways to select them bins to remain empty is
(
N−1

m

)
. By

the Inclusion-Exclusion Principle [14], the number of ways
M(E) thatK subsets of bins can be chosen such that at least



E bins remain empty is given by

M(E) =
N−1∑
m=E

(−1)m−E

(
m− 1
E − 1

)(
N − 1

m

) K∏
j=1

(
N − 1−m

λj − 1

)
. (4)

Dividing M(E) by the total number of ways to choose theK
subsets given byM(0) yields the probability that at leastE
bins remain empty.

Theorem 9:Given a nodeu with seedss1, . . . , sK , such
that λj = |S(sj)| for j = 1, . . . ,K are known, the expected
degreed(u) of u in the logical graphGL is given by

d(u) = (N − 1)

1−
K∏

j=1

λj − 1
N − 1

 .

Proof: The expected number of empty binsE [e(u)] can
be computed using the fact that

E [e(u)] =
N−1∑
E=1

Pr[e(u) ≥ E] (5)

since e(u) is a non-negative discrete random variable [15].
Substituting the result of Lemma 8 into (5) provides an
expression forE [e(u)]. The expected degreed(u) is then given
by

d(u) = N − 1− E [e(u)] (6)

because each non-empty bin corresponds to an edge in the
graphGL. ReplacingE [e(u)] with the result from Lemma 8
yields

d(u) = N − 1−
N−1∑
E=1

N−1∑
m=E

(−1)m−E

(
N − 1

m

)(
m− 1
E − 1

) K∏
j=1

(
N−1−m

λj−1

)(
N−1
λj−1

) . (7)

Reversing the order of summation and appropriately changing
the limits of summation yields

d(u) = N − 1−
N−1∑
m=1

(
N − 1

m

) K∏
j=1

(
N−1−m

λj−1

)(
N−1
λj−1

) m∑
E=1

(−1)m−E

(
m− 1
E − 1

)
. (8)

The binomial theorem suggests that
m∑

E=1

(−1)m−E

(
m− 1
E − 1

)
= 0m−1. (9)

Since 00 = 1, the only non-zero term of the summation is
when m = 1. Hence the expected degree of nodeu is given
by

d(u) = N − 1−
(

N − 1
1

) K∏
j=1

(
N−2
λj−1

)(
N−1
λj−1

) (10)

= (N − 1)

1−
K∏

j=1

N − λj

N − 1

 . (11)

Theorem 10:The expected node degreeD in the logical
graphGL(N,R) is given by

D = (N − 1)

(
1−

(
N − µ

N − 1

)K
)

.

Proof: The expected node degreeD is computed by
taking the expected value ofd(u) given by Theorem 9 with
respect to each of the independent random variablesλj for
j = 1, . . . ,K, denoted byEj [·]. The expected node degreeD
is thus given by

D = (N − 1)

1−
K∏

j=1

N − Ej [λj ]
N − 1

 . (12)

Identical distribution of theλj suggests thatEj [λj ] can be
replaced by the meanµ of the assignment distributionP
completing the proof.

Theorem 10 can then be applied directly to the result of
Theorem 2 to yield the probabilityPG(k) that the secure
network isk-connected.

V. NUMERICAL EXAMPLE AND COMPARISON TO

PREVIOUS WORKS

In this section, we provide numerical examples demonstrat-
ing the use of the proposed seed assignment and network
connectivity models. The examples are analytically compared
to the existing key predistribution schemes of [4] and [10]. For
both examples, we consider a network ofN = 10, 000 nodes
deployed over a regionA of area|A| = 1 km2. Each node
is equipped with a radio of ranger = 40 m and has storage
for 200 key-length quantities. Connectivity is guaranteed with
probability 0.999.

A. Comparison with Random Key Predistribution [4]

Since each stored quantity in this scheme is a key,K = 200.
For this example, we assume that no more than24 nodes are
allowed to share a given seed. The given parameters can be
applied to Theorem 2 and Theorem 10 to yield a minimum
average assignment set size ofµ ≥ 20.5. Based on design
parameters, we select the assignment distribution given by

P(λ) =


λ−16

20 , λ ∈ {17, . . . , 20}
25−λ

20 , λ ∈ {21, . . . , 24}
0, else

(13)

which is symmetric overµ = 20.5 and has supportλ =
{17, . . . , 24}. Furthermore, we choose the RWSS protocol
for illustration, noting that boundary effects may result in
assignment sets of sizeλ /∈ Λ with negligible probability. The
desired and simulated assignment distributions are illustrated
in Fig. 7. We compare this scheme to that of [4] with the
same design parameters. A random subset ofK = 200 seeds
from a set ofP =

⌊
NK

µ

⌋
= 97, 561 seeds is independently

selected and assigned for each node. Each assigned seed is a
cryptographic key used directly as a link key. A link secured
using a seeds is compromised as soon as the adversary
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Fig. 7. The plot compares the designed assignment distribution in (13) with
the simulated distribution forN = 10, 000 andK = 200. The plotted values
of the simulated distribution forλ outside the supportΛ = {17, . . . , 24}
represent the boundary effects due to finite sampling ofP.

captures a single node containings. Hence, the probability
of link compromise is approximated by Theorem 4 as

f(x) = 1− pc(0, x) ≈ 1−
(

N − µ

N − 2

)x

. (14)

The binomial distribution resulting from random key predistri-
bution yields an average assignment set size ofµ = NK

P . Thus,
the result of (14) is approximately equal to the probability of
link compromise

f(x) = 1−
(

1− K

P

)x

(15)

published in [5]. However, the example given above has the
distinct advantage of avoiding the tail-effects discussed in
Section I-A. Based on the binomial distribution resulting from
the seed assignment protocol of [4], the parameters given in
the example yield a probability ofPr[λ ≤ 16] = 0.190 that at
most 16 nodes share a seed and a probability ofPr[λ ≥ 25] =
0.186 that 25 or more nodes share a seed. Hence, the use of
our protocols eliminates the 19% of seeds shared by fewer
nodes than desired and the 18.6% of seeds shared by more
nodes than desired, resulting in a more balanced assignment
of seeds to nodes.

The worst-case probability of sharing at least one seed can
be computed using Theorem 6 as1− ps(0, λmin, . . . , λmin).
For the scheme of [4], this probability is0 becauseλmin = 1.
However, we compare to the simulated results shown in Fig. 1
whereλmin = 4, yielding a worst-case probability of0.058.
The scheme designed above yields a worst-case probability
of 0.274 of sharing at least one seed, demonstrating a sig-
nificant increase in the worst-case probability. The worst-case
resilience is evaluated forx = 50 using Lemma 3 asf(x) =
1 − pc(0, x, λmax). For the scheme of [4], this probability
is 1 becauseλmax = N . However, we again compare to
the simulated results shown in Fig. 1 whereλmax = 42,
yielding a worst-case probability off(50) = 0.186. The
scheme designed above yields a worst-case probability of
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Fig. 8. The plot compares the designed assignment distribution in (16) with
the simulated distribution forN = 10, 000 andK = 10. The plotted values
of the simulated distribution forλ outside the supportΛ = {361, . . . , 400}
represent the boundary effects due to finite sampling ofP.

f(50) = 0.109, demonstrating a significant decrease in the
worst-case probability.

B. Comparison with Polynomial-Pool Scheme [10]

For this scheme, each seed is given by thet coefficients of
the corresponding polynomial share, so the number of seeds
K and thresholdt must satisfyKt ≤ 200. Hence, we choose
K = 10 and t = 20. For this example, we assume that no
more than400 nodes are allowed to have shares of the same
polynomial. The given parameters can be applied to Theorem 2
and Theorem 10 to yield a minimum average assignment set
size ofµ ≥ 380.3. Based on the design parameters, we select
the assignment distribution given by

P(λ) =


λ−360

420 , λ ∈ {361, . . . , 380}
401−λ

420 , λ ∈ {381, . . . , 400}
0, else

(16)

which is symmetric overµ = 380.5 and has supportλ =
{361, . . . , 400}. Furthermore, we choose the RWSS algorithm
for illustration, noting that boundary effects may result in
assignment sets of sizeλ /∈ Λ with negligible probability. The
desired and simulated assignment distributions are illustrated
in Fig. 8. We compare this scheme to that of [10] with the
same design parameters. Shares of a random subset ofK = 10
polynomials from a set ofP =

⌊
NK

µ

⌋
= 262 polynomials are

assigned to each node. A link key is compromised when at
leastt shares of the common polynomial are recovered from
captured nodes. According to Theorem 4, the average case
probability that at leastt of thex captured nodes contain shares
of a given polynomial is

f(x) = 1−
t−1∑
m=0

pc(m,x)

≈ 1−
t−1∑
m=0

(
x

m

)(
µ− 2
N − 2

)m(
N − µ

N − 2

)x−m

. (17)



The binomial distribution resulting from random polynomial
selection yields an average assignment set size ofµ = NK

P .
Thus, the result of (14) is approximately equal to the proba-
bility of link compromise

f(x) = 1−
t−1∑
m=0

(
x

m

)(
K

P

)m(
1− K

P

)x−m

(18)

published in [10]. However, the example given above has
the distinct advantage of avoiding the tail-effects discussed in
Section I-A. Based on the binomial distribution resulting from
the seed assignment protocol of [4], the parameters given in
the example yield a probability ofPr[λ ≤ 360] = 0.160
that at most 360 nodes share a seed and a probability of
Pr[λ ≥ 401] = 0.137 that 401 or more nodes share a
seed. Hence, the use of our protocols eliminates the 16% of
seeds shared by fewer nodes than desired and the 13.7% of
seeds shared by more nodes than desired, resulting in a more
balanced assignment of seeds to nodes.

The worst-case probability of sharing at least one seed can
be computed using Theorem 6 as1− ps(0, λmin, . . . , λmin).
For the scheme of [10], this probability is0 becauseλmin = 1.
We choose to compare using the smallest value ofλ such that
P(λ)∗P ≥ 1, providing the expected minimum assignment set
size in lieu of simulation. This value is given byλmin = 341
and yields a worst-case probability of0.293. The scheme
designed above yields a worst-case probability of0.307 of
sharing at least one seed, demonstrating a slight increase in the
worst-case probability. The worst-case resilience is evaluated
for x = 500 using Lemma 3 asf(x) = 1 − pc(0, x, λmax).
For the scheme of [10], this probability is1 becauseλmax =
N . In this case, we choose to compare using the largest
value of λ such thatP(λ) ∗ P ≥ 1, providing the expected
maximum assignment set size in lieu of simulation. This value
is given byλmax = 416 and yields a worst-case probability of
f(500) = 0.594. The scheme designed above yields a worst-
case probability off(500) = 0.523, demonstrating a slight
decrease in the worst-case probability.

The major advantage of our seed assignment model for
threshold secret-sharing schemes [9], [10] arises in cases
where the storage requirement is high enough to allow for
a thresholdt such thatt > µ. In such a case, the assignment
distribution can be designed withλmax = t, leading to a
fraction of compromised links equal to0 for all values of
x.

VI. CONCLUSION

We proposed a general model for seed assignment which
regulates the number of nodes sharing each seed using a dis-
crete probability distribution. The proposed model enables the
reduction of key wastage while providing the same resilience

to node capture as existing schemes. We proposed three
seed assignment algorithms based on taking samples of a
probability distribution and discussed the boundary effects
which result from taking only a finite number of samples. In
addition, we proposed a general model for wireless network
connectivity in which communication is limited by radio range
and restricted by an independent pairwise relationship such as
the existence of a shared seed. We analyzed the probabilistic
network connectivity and resilience to node capture for seed
assignment schemes using the proposed models. Finally, we
provided numerical examples to illustrate the use of the seed
assignment models as well as a comparison to existing key
predistribution schemes.
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