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Abstract

The Markov chain approximation numerical methods are widely used
to compute optimal value functions and controls for stochastic as well
as deterministic systems. We extend them to controlled general nonlin-
ear delayed reflected diffusion models. The path, control, and reflection
terms can all be delayed. Previous work developed numerical approxi-
mations and convergence theorems. But when the control and reflection
terms are delayed those and all other current algorithms normally lead
to impossible demands on memory. An alternative “dual” approach was
proposed by Kwong and Vintner for the linear deterministic system with
a quadratic cost function. We extend the approach to the general non-
linear stochastic system, develop the Markov chain approximations and
numerical algorithms, and prove the convergence theorems. The approach
reduces the memory requirement significantly. For the no-delay case, the
method covers virtually all models of current interest. The method is
robust and the approximations have physical interpretations as control
problems closely related to the original one. These advantages carry over
to the delay problem.
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1 Introduction

The paper [6] extended the numerical methods of [10], known as the Markov
chain approximation methods, to controlled delayed diffusion models, to numer-
ically obtain the optimal costs and controls. The state of the model, as needed
for the numerical procedure, consists of the segment of the path over the delay
interval and of the control path as well (if the control is also delayed). De-
layed reflection terms were not dealt with. Convergence theorems were proved
and “numerically efficient” representations of the state data were developed
that reduced the memory requirements to manageable size for low-dimensional
problems, if the path only were delayed. If the control and/or reflection terms
are also delayed, then the memory requirements with any current method is
prohibitive.

In this paper we will take an alternative approach that greatly reduces the
memory requirements for general nonlinear stochastic problems where the con-
trol and reflection terms, as well as the path variables, are delayed. The ap-
proach was suggested by the work in [13] which dealt only with the linear deter-
ministic system with a quadratic cost function, and the development depended
heavily on the linear structure. But the idea can be extended to the problem
of concern here and has numerous advantages.1 With this method, the de-
lay equation is replaced by a type of stochastic wave equation with no delays,
and its numerical solution yields the optimal costs and controls for the original
model. With appropriate numerical algortihms the memory requirements are
much reduced over more direct methods.

Delayed reflection terms occur frequently in applications to communications
systems, where one of the reflection terms corresponds to buffer overflow. This
data is then communicated to the controller via a transportation delay. In fact
such problems have been a major motivation for this work and an example is
given in the next section. There is an large literature on the delayed linear
system, quadratic cost, and white Gaussian noise case [2, 7, 9, 11, 13]. As for
the no-delay case, the analysis is essentially the same with and without driving
noise. The problem reduces to the study of an abstract Ricatti equation. But
little has been available for the general nonlinear stochastic problem.

The basic idea of the numerical method is to first approximate the con-
trol problem by a control problem with a suitable approximating Markov chain
model, then solve the Bellman equation for the approximation, and then prove
the convergence of the optimal costs to that for the original problem as the
approximation parameter goes to zero. The method is robust and the approxi-
mations have physical interpretations as control problems closely related to the
original one.

Models for many physical problems have reflecting boundaries. They occur
naturally in models arising in queueing/communications systems [8], where the
state space is often bounded owing to the finiteness of buffers and nonnegativity
of their content, and the internal routing determines the reflection directions on

1The author would like to thank Kasi Itô for bringing the paper to his attention.
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the boundary. See the example in Section 2. Numerical analysis for dynamical
models is usually done in a bounded region. A common way of bounding a
state space is to impose a reflecting boundary, if one does not exist already. One
selects the region so that the boundary plays a minor role. Alternatively, one can
stop the process on exit from a given bounded set. We work with the reflecting
boundary case, since it is of considerable importance. The modifications that
are required when the boundary is absorbing are minor.

The model and assumptions are in Section 2. The assumptions on the re-
flection directions are those in [10] and are standard for the reflected diffusion
model (also known as the Skorokhod problem). Section 3 is concerned with a
representation of the solution in terms of a type of stochastic wave equation
without delay terms. This is an extension to the general nonlinear stochastic
system of the idea in [13] for the deterministic linear problem. The reference
contains a history of the idea, still for the linear deterministic system. With
this representation, the delays are eliminated, but one must solve a PDE. It is
shown that the representation is equivalent to the original problem in that any
solution to one yields a solution to the other. Owing to the special form of the
PDE, there are straightforward ways of getting numerical approximations.

To prepare ourselves for what will be required for the numerical approxima-
tions, a discrete-time approximation is developed in Section 4. This will suggest
the correct scaling and illustrate the type of algebraic manipulations that are
required. It might also be a convenient way of simulating the original system.
The Markov chain approximation method is reviewed in Section 5, starting with
the simpler no-delay case. The types of continuous-time interpolations that will
be of interest are outlined and the asymptotic equivalence of their scalings is
proved. We try to set the problem up so that the methods and results of [10]
can be used without excessive duplication of details and the proofs in [10] can
be appealed to and used where possible. The form of the transition probabilities
for the approximating Markov chain are given. The fundamental assumption
required for the convergence of the numerical procedure is the so-called “local
consistency condition” [10]. This says little more than that the conditional mean
change (resp, variance) in the state of the approximating chain is proportional
to the drift (resp, covariance) of the diffusion, modulo small errors. This would
seem to be a minimal condition. In general, it need not hold everywhere (see,
e.g., [10, Section 5.5]).

The proofs of convergence in [10] are purely probabilistic, being based on
weak convergence methods. The idea is to interpolate the chain to a continuous-
time process in a suitable manner, and then show that the interpolated processes
converge to an optimal diffusion as the approximating parameter goes to zero.
The Skorohod topology is used on the path spaces. The criterion for tightness
for vector-valued processs is [10, Theorem 2.1, Chapter 9].

Section 6 contains the main development of the approximation for the delay
case. Motivated by the ideas in Sections 4 and 5, it is shown how to construct
the approximating chains for the representation introduced in Section 3. The
method is very close to that used for the no-delay case. Representations of the
resulting process are developed that facilitate proving that the optimal costs
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for the approximating chain converge to that for the original diffusion. The
development is designed so that the convergence proofs in [10] can be appealed
to. In Section 7, the size of the state space that is needed for the solution of the
Bellman equation is discussed, and it is seen that the approach does moderate
the requirements considerably. Although the form of the algorithm is motivated
by those used for the no-delay problem, it is more complicated. But then the
delay problem is substantially more complicated and the proposed algorithm
seems considerably better in terms of memory requirement than any current
alternative if the control and/or reflection terms are delayed.

The algorithms can be used to obtain optimal value functions or controls.
Controls for delay systems will usually be too complicated for direct practical
use. But the values provide benchmarks. One would normally try to approx-
imate the optimal control by realizable forms. For example, one might try to
approximate the control for the example in Section 2 by a rate dependent thresh-
old on the buffer size. The algorithms can be used for numerical exploration.
For example, to explore the effect of changing delay, under optimality condi-
tions. Generally, a cost function is a compromise between competing criteria,
and the values of the individual components of the cost as well as the total
value are important. By varying the weights or the form of the components, the
algorithms give the tradeoffs between components under the best conditions,
namely under the optimal controls. All of this is very useful information for the
designer.

2 The Model and Assumptions

A motivating example. Due to the finite speed of electromagnetic signaling,
delays are a common and crucial part of many telecommunications systems.
One important example is the AIMD (additive increase multiplicative decrease)
model that arises in (FTP) control of internet traffic over long distances. The
following model, from [1], is a good example.

dx1(t) = c1dt− κ0dy22(t− τ) + κ1u1(x2(t− τ), x1(t− τ))dt+ dz1(t),

x2(t)− x2(0) =
∫ t

0

[x1(s)− b] ds+ w(t) + z2(t). (2.1)

Here c1 and b are constants, w(·) is a real-valued Wiener process, x2(·) represents
a scaled buffer content and x1(·) is a scaled and centered rate of transmission.
The buffer and source are separated by a channel with a transmission delay.
The buffer is finite and 0 ≤ x2(t) ≤ B. The reflection term z2(·) serves to
keep x2(·) in the desired range. We write z2(·) = y21(·)− y22(·) where the non-
decreasing reflection component y22(·) represents buffer overflows (lost packets)
and can increase only when x2(t) = B. The nondecreasing component y21(·)
keeps the buffer content nonnegative. In this model, overflow packets are not
acknowledged. Hence after the communication delay τ , the lack of acknowledg-
ment causes an automatic decrease in the transmission rate x1(·). The u1(·) is
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a control that allows the user to adjust its transmission rate as a function of the
delayed data. The scaled rate variable x1(·) might not be physically bounded.
But for the purposes of numerical approximations, it is usually confined to an
appropriate set and kept in that set by means of boundary reflection z1(·). Note
that the delayed reflection term y22(·) is an essential component of the model.

The model. The general model has the form of a controlled reflected diffusion
process with possible delays in the state, control, and reflection term. Let IRr

denote Euclidean r-space. The r-dimensional state process x(·) will be con-
fined to a convex polyhedron G ∈ IRr, with a nonempty interior, by means of
the boundary reflection process z(·), as in [6]. The conditions on the reflection
directions on the boundary are spelled out below. Let xi denote the ith com-
ponent of a vector x. Note that what is usually penalized are buffer overflows,
and on the boundaries associated with overflows, the reflection directions are
usually inward normals to the boundary.

Assumptions on the state space G. Assumptions (A2.1) and (A2.2) are
the ones used in [10] (see Section 5.7 of that reference), and are standard in the
treatment of general reflecting diffusions [3, 4], [8, Section 3.5].

A2.1. The state space G is the intersection of a finite number of closed half
spaces in Euclidean r-space IRr and is the closure of its interior (i.e., it is a
closed convex polyhedron with an interior and planar sides). Let ∂Gi, i = 1, . . . ,
denote the faces of G, and ni the interior normal to ∂Gi. Interior to ∂Gi, the
reflection direction is denoted by the unit vector di, and 〈di, ni〉 > 0 for each i.
The possible reflection directions at points on the intersections of the ∂Gi are
in the convex hull of the directions on the adjoining faces. Let d(x) denote the
set of reflection directions at the point x ∈ ∂G, whether it is a singleton or not.
No more than r constraints are active at any boundary point.

A2.2. For each x ∈ ∂G, define the index set I(x) = {i : x ∈ ∂Gi}. Suppose
that x ∈ ∂G lies in the intersection of more than one boundary; that is, I(x) has
the form I(x) = {i1, . . . , ik} for some k > 1. Let N(x) denote the convex hull
of the interior normals ni1 , . . . , nik

to ∂Gi1 , . . . , ∂Gik
, resp., at x. Then there is

some vector v ∈ N(x) such that γ′v > 0 for all γ ∈ d(x).
There is a neighborhood N(∂G) and an extension of d(·) to N(∂G) that is

upper semicontinuous in the following sense: For each ε > 0, there is ρ > 0 that
goes to zero as ε→ 0 and such that if x ∈ N(∂G)−∂G and distance(x, ∂G) ≤ ρ,
then d(x) is in the convex hull of the directions {d(v); v ∈ ∂G, distance(x, v) ≤
ε}.
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Our general model takes the form, where we define dµ(θ) = µ(θ)−µ(θ−dθ),

dx(t) = c(x(t), u(t))dt+ dt

∫ 0

−τ

b(x(t+ θ), u(t+ θ), θ)dθ

+dt
∫ 0

−τ

g(x(t+ θ), u(t+ θ), θ)dµ(θ) + σ(x(t))dw(t) + dz(t)

+dt
∫ 0

θ=−τ

p(θ)dθy(t+ θ).

(2.2)

Here w(·) is a standard and possibly vector-valued Wiener process, z(·) is the
reflection term and τ > 0 is the non-random maximum delay. We can represent
z(·) as z(t) =

∑
i diyi(t), where yi(·) denotes the nondecreasing process that

can increase only when x(t) is on the ith face of G. The last integral in (2.2) is
with respect to dθ in the sense that

p(θ)dθy(t+ θ) = p(θ) [y(t+ θ + dθ)− y(t+ θ)] .

The initial condition is the pair x̂ = {x(s),−τ ≤ s ≤ 0}, û = {u(s),−τ ≤ s ≤
0}. One could incorporate the term containing b(·) into the term containing g(·).
But the idea is that the first term represents distributed delays, while the latter
can represent “point” delays, ” so we prefer to use both terms. See [8, 10] for
more detail on controlled reflected diffusions.

Note that in the example (2.1) the delayed reflection term is y22(·), a com-
ponent of z2(·), and it appears only in the equation for x1(·). Since x1(·) is
bounded, the processes x2(·), z2(·) are well defined and hence the term y22(·)
in the equation for x1(·) is well defined; it is continuous and nondecreasing. In
order to assure that the reflection and solution for (2.2) are well defined we
need to assure that the delayed reflections and non-delayed reflections are “sep-
arated.” This consideration and the structure of the motivating example lead
to the following assumption for the p(·) in (2.2).

A2.3. There is τ0 ∈ (0, τ ] such that p(θ) = 0 for θ ≥ −τ0.

A2.4. The control takes values in a compact set U and is measurable (as a
function of (ω, t)) and is nonanticipative with respect to w(·). The functions
b(·), c(·), p(·), g(·) are bounded and continuous. All functions of θ have value
zero for θ < −τ and θ > 0. The function σ(·) is bounded and continuous and
µ(·) is a finite measure on [−τ, 0] with µ([−t, 0]) → 0 as t → 0. We suppose
that z(t) = 0, t ≤ 0.

A2.5. There is a unique weak sense solution to (2.2) for each initial condition
and admissible control.

The reflected diffusion model (2.2) is known as the Skorokhod problem. For
a detailed discussion of the Skorohod problem and the assumptions (A2.1) and
(A2.2), see [8, Chapter 3], [3, 4]. Let |z|(t) denote the variation of z(·) on the
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interval [0, t]. By a solution to (2.2) we mean the following. The z(·) is the reflec-
tion process and satisfies the following conditions: |z|(t) < ∞ with probability
one (w.p.1) for all t, and there is a measurable function γ(·) with γ(t) ∈ d(x(t))
w.p.1 such that z(t) =

∫ t

0
γ(s)d|z|(s). This says only that the reflection process

can change only when x(t) is on the boundary, and the increments are in a
correct reflection direction.

Comments on the assumptions. One can always construct the extension in
(A2.2). Under (A2.1)–(A2.2), the choice of the reflection direction on the corners
and edges of G has no effect on the process. To see that (A2.1) is natural in
applications note the following. If the state space is being bounded for purely
numerical reasons, then the reflections are introduced only to give a compact
set G, which should be large enough so that the effects on the solution in the
region of main interest are small. A common choice is a hyperrectangle with
interior normal reflection directions. The condition (A2.2) implies (see [3, 8]),
the so-called “completely-S” condition, the fundamental boundary condition for
the modelling of stochastic networks, [5, 8, 12], and which is used to ensure that
z(·) has bounded variation w.p.1. Various extensions are possible. A jump term
can be added with no additional problems, provided that it does not involve a
delay. The x(·) could also be delayed in the function σ(·). A delayed Wiener
process term such as

dt

∫ t

0

σ1(x(t+ θ), θ)dθw(t+ θ)

can be added.

Comment on the delayed reflection term in (2.2). Consider a one-
dimensional problem. Let p(θ) = 1/δ on the interval [−∆−δ,−∆], ∆ > 0, δ > 0,
with value zero elsewhere. Then, with y(t) = 0, t ≤ 0, we have∫ t

0

ds

∫ 0

−τ

p(θ)dθy(s+ θ) =
1
δ

∫ t−∆

t−∆−δ

y(s)ds ≈ y(t−∆)

for small δ. In this way, point delays as well as distributed delays can be
approximated.

Relaxed controls. For purposes of proving approximation and limit theo-
rems, it is usual and very convenient to work in terms of relaxed controls.
Recall the definition of a relaxed control m(·) [10]. It is a measure on the
Borel sets of U × [0,∞), with m(A × [0, ·]) being measurable and nonantic-
ipative with respect to w(·) for each Borel A ∈ U , and satisfying m(U ×
[0, t]) = t. Write m(A, t) = m(A× [0, t]). The left-hand derivative2 m′(dα, t) =
lim0<δ→0[m(dα, t)−m(dα, t− δ)]/δ is defined for almost all (ω, t). By the def-
initions, m(dα ds) = m′(dα, s)ds. For 0 ≤ v ≤ τ , we write m(dα, ds − v) for

2In [10] mt was used to denote the derivative. But this notation would be confusing in the
context of the notation required to represent the various delays in this paper.
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m(dα, s − v) − m(dα, s − ds − v). The weak topology is used on the relaxed
controls. Thus mn(·) converges to m(·) if and only if

∫ ∫
φ(α, s)mn(dα ds) →∫ ∫

φ(α, s)m(dα ds) for all continuous functions φ(·) with compact support.
With this topology, the space of relaxed controls is compact. An ordinary
control u(·) can be written as the relaxed control m(·) defined by its derivative
m′(A, t) = I{u(t)∈A}, where IK is the indicator function of the set K. Then
m(A, t) is the amount of time that the control takes values in the set A by time
t. The controls for the numerical procedure will be ordinary controls, but those
for the limit might be relaxed. For the initial condition on [−τ, 0] we use an
ordinary control. The relaxed control form of (2.2) is

dx(t) = dt

∫
U

c(x(t), α)m′(dα, t) + dt

∫
U

∫ 0

−τ

b(x(t+ θ), α, θ)m′(dα, t+ θ)dθ

+dt
∫ 0

−τ

∫
U

g(x(t+ θ), α, θ)m′(dα, t+ θ)dµ(θ) + σ(x(t))dw(t)

+dz(t) + dt

∫ 0

θ=−τ

p(θ)dθy(t+ θ).

(2.3)
The following theorem is [10, Theorem 1.1, Chapter 11]. The last assertion

is proved by working recursively on intervals (see (A2.3) for the definition of τ0)
(0, τ0], (τ0, 2τ0], , . . . , until the interval (0, T ] is covered.

Lemma 2.1. Assume (A2.1)–(A2.2). Let f(·) and σ(·) be measurable and non-
anticipative processes of the appropriate dimension, and bounded in absolute
value by some constant K <∞. Define

dX(t) = f(t)dt+ σ(t)dw(t) + dZ(t), X(0) ∈ G,

where Z(·) is the reflection term. Let |Z|(t) denote the variation of Z(·) on the
interval [0, t]. Then

lim
T→0

sup
X(0),f,σ

E|Z|2(T ) = 0. (2.4)

For each T <∞,
sup

X(0),f,σ

E|Z|2(T ) <∞. (2.5)

Let Yi(·) denote the component of the reflection process that is due to reflection
on the ith face, with corners and edges assigned in any way at all to the adjacent
faces. Assume the condition (A2.3) on p(·), and redefine X(·) by

dX(t) = f(t)dt+ σ(t)dw(t) + dt

∫ 0

θ=−τ

p(θ)dθY (t+ θ) + dZ(t), X(0) ∈ G.

Then (2.4) and (2.5) continue to hold.

With p(·) omitted, the bounds in (2.4) and (2.5) depend on E supt≤T |X(0)+∫ t

0
f(s)ds+

∫ t

0
σ(s)dw(s)|2, and the appropriate “recursive”adjustments are made

when p(·) 6= 0.
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An extension. Suppose that the system evolves as dX(t) = f(t)dt+σ(t)dw(t)+
dt
∫ 0

θ=−τ
p(θ)dθY (t+ θ) on the intervals [n∆, n∆+∆), and the reflection comes

in at times n∆ if X(n∆−) 6∈ G. Then the lemma holds if limT,∆→0 replaces
limT→0 in (2.4). The proof is similar to that in the reference.

A discounted cost function. Let x̂ and û denote the canonical value of the
path and control segments, resp., on [−τ, 0]. For β > 0, some vector q, and
control process u(·) on [0,∞), the cost function is

W (x̂, û, u) = Eu
x̂,û

∫ ∞

0

e−βt [k(x(t), u(t))dt+ q′dy] , (2.6)

with the analogous form for a relaxed control. The function k(·) is bounded,
continuous, and real-valued. If two adjacent faces of G have the same reflection
direction, then the associated components of the vector q must be the same. By
Lemma 2.1, the reflection term component of the cost is well defined. The Eu

x̂,û

denotes the expectation given the initial condition and that control u(·) is used.
Let V (x̂, û) denote the infimum of the costs, over all controls.

Existence of an optimal control. The existence of an optimal relaxed control
was shown in [6, Theorem 2.1] for a one-dimensional model without a delayed
reflection term. The proof in the case of concern here is similar. One takes
minimizing sequences of controls and then a weakly convergent subsequence of
the (path, relaxed control, Wiener process, reflection term) and shows that the
limit satisfies (2.3) and that the minimizing sequence of costs converges to the
cost for the limit processes. Furthermore ([6, Theorem 2.3]) the infimum of the
cost over the relaxed controls is equal to the infimum of the costs over ordinary
controls.

3 A Useful Representation of x(·)
For −τ < θ ≤ 0, define processes χ0(·) and χ1(·) by

dχ0(t) = χ1(t, 0)dt+ c(χ0(t), u(t))dt+ σ(χ0(t))dw(t) + dz0(t), (3.1)

dtχ
1(t, θ) = −dθχ

1(t, θ) + b(χ0(t), u(t), θ)dt

+g(χ0(t), u(t), θ) [µ(θ)− µ(θ − dt)] + p(θ)dy0(t).
(3.2)

The reflection term z0(·) will be for the process χ0(·), which takes values in the
constraint set G and is subject to the boundary conditions (A2.1) and (A2.2).
The interpretation of the stochastic partial differential equation (3.2), as well
as of the relaxed control form (3.2r) below, is given by (3.5), (3.6) below, which
defines the solution. Theorem 3.1 shows that χ0(·) = x(·). If there is no delayed
reflection term, then the values of χ1(t, θ) will be seen to be bounded. If the
solution is not bounded, then “numerical” bounds will have to be added, and
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we return to this point in Section 6. The relaxed control forms of (3.1) and (3.2)
are

dχ0(t) = χ1(t, 0)dt+
∫

U

c(χ0(t), α)m′(dα, t)dt+σ(χ0(t))dw(t) + dz0(t), (3.1r)

dtχ
1(t, θ) = −dθχ

1(t, θ) + dt

∫
U

b(χ0(t), α, θ)m′(dα, t)

+
∫

U

g(χ0(t), α, θ)m′(dα, t) [µ(θ)− µ(θ − dt)] + p(θ)dy0(t).
(3.2r)

These processes will be the basis of the development of the numerical method.
The linear and deterministic form of (3.1), (3.2) were used in [13] to represent
the linear and deterministic analog of (2.2), but without the analog of the terms
involving µ(·) or the reflection.

The initial conditions for (3.1) and (3.2) are χ0(0) = x(0), z0(s) = z1(s, θ) =
0 for s ≤ 0, and

χ1(0, θ) =
∫ θ

−τ

b(x(γ − θ), u(γ − θ, γ)dγ

+
∫ θ

−τ

g(x(γ − θ), u(γ − θ), γ)dµ(γ) +
∫ θ

−τ

p(γ)dγy
0(γ − θ).

(3.3)

The boundary condition is χ1(t,−τ) = 0.

Note on dimension and size of the system state. The dimension of
χ1(·) is equal to the number of components of x(·) whose dynamical terms have
delays. Thus the method would currently be impractical if the dynamics of more
than one component of x contained delays. For the components xi(·) whose
dynamical terms do not have delays, simply define χ0

i (·) = xi(·), χ1
i (·) = 0.

The dimension of χ1(·) does not depend on the number of controls. Suppose
that delayed values of components xi(·), i = 1, . . . , r1, ui(·), i = 1, . . . , r2, and
yi(·), i = 1, . . . , r3, are required. For the original problem, the full system state
consists of the initial condition x(0) and the memory segments of the xi(·), i =
1, . . . , r1, ui(·), i = 1, . . . , r2, and yi(·), i = 1, . . . , r3, where the ui(·) have no
particular regularity properties and are difficult to approximate efficiently. The
full system or memory state for (3.1), (3.2), is just x(0) and the current values
χ1(t, θ), −τ ≤ θ ≤ 0.

A semigroup representation of (3.1), (3.2). The part dtχ
1(t, θ) = −dθχ

1(t, θ)
of (3.2) is a type of wave equation and its semigroup will play a major role. Fol-
lowing [13], define the semigroup Φ(·) (where −τ ≤ θ ≤ 0) by

(Φ(t)f(·))(θ) =
{
f(θ − t), −τ ≤ θ − t ≤ 0,
0, otherwise. (3.4)

Φ(·) will only act on functions of θ.
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The construction of the numerical approximations will use the dynamical
representation (3.1), (3.2) as a heuristic guide, but the solution to (3.1), (3.2)
is always interpreted in the “variation of constants” form

dχ0(t) = χ1(t, 0)dt+ c(χ0(t), u(t))dt+ σ(χ0(t))dw(t) + dz0(t), (3.5)

χ1(t, θ) = Φ(t)χ1(0, θ) +
∫ t

0

Φ(t− s)
[
b(χ0(s), u(s), θ)ds+ p(θ)dy0(s)

]
+
∫ t

0

Φ(t− s)g(χ0(s), u(s), θ) [µ(θ)− µ(θ − ds)] .
(3.6)

The integral involving µ(·) is well defined, since the integration is to be done
after the operation by Φ(t− s) and we can write∫ t

0

Φ(t− s)g(χ0(s), u(s), θ) [µ(θ)− µ(θ − ds)]

=
∫ t

0

g(χ0(s), u(s), θ − t+ s)I{−τ≤θ−t+s≤0} [µ(θ − t+ s)− µ(θ − t+ s− ds)]

=
∫ θ

max{θ−t,−τ}
g(χ0(γ + t− θ), u(γ + t− θ), γ)dµ(γ).

(3.7)
For the relaxed control form of (3.6), use the forms∫ t

0

Φ(t− s)
∫

U

b(χ0(s), α, θ)m′(dα, s)ds,

∫ t

0

∫
U

Φ(t− s)g(χ0(s), α, θ)m′(da, s) [µ(θ)− µ(θ − ds)] ,

and in (3.5) use dt
∫

U
c(χ0(t), α)m′(dα, t). The cost function is (2.6) with χ0(t)

replacing x(·).
The following theorem is a nonlinear and stochastic version of the linear and

deterministic result in [13].

Theorem 3.1. Assume (A2.1)–(A2.5). Then (3.1) and (3.2) have the weak
sense unique solution

χ0(·) = x(·), (3.8)

χ1(t, θ) =
∫ θ

−τ

b(χ0(t+ γ − θ), u(t+ γ − θ), γ)dγ +
∫ θ

−τ

p(γ)dγy
0(t+ γ − θ)

+
∫ θ

−τ

g(χ0(t+ γ − θ), u(t+ γ − θ), γ)dµ(γ).

(3.9)
The analogous result holds for the relaxed control form, where we use∫ θ

−τ

∫
U

b(χ0(t+ γ − θ), α, γ)m′(dα, t+ γ − θ)dγ,

11



∫ θ

−τ

∫
U

g(χ0(t+ γ − θ), α, γ)m′(dα, t+ γ − θ)dµ(γ)

in place of the first and third terms on the right side of (3.9).

Comment on uniqueness. We assumed that (2.2) and (2.3) have unique
weak-sense solutions for any admissible control. The proof shows that any
solution to (3.5), (3.6) has the form (3.8), (3.9). Given x(·) satisfying (2.2)
or (2.3), replace χ0(·) in (3.9) by x(·). Setting θ = 0 and substituting (3.9)
into (3.5) with χ0(·) = x(·) yields that (3.5) is just (2.2). Conversely, given a
solution to (3.5), (3.6), where χ1(·) is given by (3.9), we have that χ0(·) solves
(2.2). Hence, the solution to (3.5), (3.6) is also weak-sense unique.

Proof. For simplicity in the notation, work with ordinary rather than relaxed
controls. The development for the relaxed control form is analogous.

From the comments above concerning uniqueness, we need only show that
any measurable and non-anticipative solution (χ0(·), χ1(·)) satisfying (3.5), (3.6)
implies (3.9). Consider the representation (3.6). The component due to the
initial condition in (3.3) is

Φ(t)χ1(0, θ) =
∫ θ−t

−τ

b(χ0(γ − θ + t), u(γ − θ + t), γ)I{−τ≤θ−t≤0}dγ

+
∫ θ−t

−τ

g(χ0(γ − θ + t), u(γ − θ + t), γ)I{−τ≤θ−t≤0}dµ(γ)

+
∫ θ−t

−τ

p(γ)dγy
0(γ − θ + t)

=
∫ max{θ−t,−τ}

−τ

b(χ0(γ − θ + t), u(γ − θ + t), γ)dγ

+
∫ max{θ−t,−τ}

−τ

g(χ0(γ − θ + t), u(γ − θ + t), γ)dµ(γ)

+
∫ max{θ−t,−τ}

−τ

p(γ)dγy
0(γ − θ + t).

(3.10)

At θ = 0, we have∫ max {−τ,−t}

−τ

b(χ0(γ + t), u(t+ γ), γ)dγ.

+
∫ max{−t,−τ}

−τ

g(χ0(γ + t), u(γ + t), γ)dµ(γ)

+
∫ max{−t,−τ}

−τ

p(γ)dγy
0(γ + t).

(3.11)

Continuing with the main term in (3.6) involving b(·), we have, with the
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substitution γ = θ − t+ s or s = γ − θ + t,∫ t

0

Φ(t− s)b(χ0(s), u(s), θ)ds =
∫ t

0

b(χ0(s), u(s), θ − t+ s)I{−τ≤θ−t+s≤0}ds

=
∫ θ

θ−t

b(χ0(γ − θ + t), u(γ − θ + t), γ)I{−τ≤γ≤0}dγ

=
∫ θ

max{θ−t,−τ}
b(χ0(γ − θ + t), u(γ − θ + t), γ)dγ.

,

(3.12)
Now consider the delayed reflection term. For the main term in (3.6),∫ t

0

Φ(t− s)p(θ)dy0(s) =
∫ t

0

p(θ − t+ s)I{−τ≤θ−t+s≤0}dy
0(s)

=
∫ θ

θ−t

p(γ)I{−τ≤γ≤0}dγy
0(γ − θ + t) =

∫ θ

max{θ−t,−τ}
p(γ)dγy

0(γ − θ + t).

(3.13)
The main term in (3.6) involving the measure µ(·) was evaluated in (3.7).
Adding (3.10), (3.12), (3.13) and (3.7), yields (3.9). Setting θ = 0 in (3.9)
and substituting it into (3.5) yields

dχ0(t) = dt

∫ 0

−τ

b(x(t+ γ), u(t+ γ), γ)dγ + dt

∫ 0

−τ

p(γ)dγy
0(t+ γ)

+dt
∫ 0

−τ

g(χ0(t+ γ), u(t+ γ), γ)dµ(γ) + c(χ0(t), u(t))dt+ σ(χ0(t))dw(t) + dz0(t),

which is the equation for x(·).

4 A Discrete Time and State Approximation:
Motivation

A numerical procedure. The forms (3.1), (3.2) will motivate the numerical
algorithms. But we will need to show that the processes associated with the
numerical algorithms converge to (3.5), (3.6) with χ0(·) = x(·), where x(·) solves
(2.2) or (2.3). The actual numerical algorithms for getting the optimal costs will
be discussed in Section 6. To prepare ourselves for that discussion and the types
of algebraic manipulations that will be needed, in this section we will discuss a
simple discrete time approximation to (3.5), (3.6). This approximation is not
intended to be used to solve the optimal control problem, but it will provide
helpful insights and guides and is useful for simulation.

Let us formally consider a simple discrete-time discrete-θ approximation to
(3.1), (3.2), where δ is the interval for θ and ∆ is the time interval and use
piecewise constant interpolations in time. Then, for −τ < θ ≤ 0, t = n∆, and
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letting χ0,δ,∆(·), χ1,δ,∆(·) denote the approximations, we can write

χ0.δ,∆(t+ ∆)− χ0.δ,∆(t) = ∆χ1,δ,∆(t, 0) + ∆c(χ0,δ,∆(t), u(t))+

σ(χ0,δ,∆(t))[w(t+ ∆)− w(t)] + [z0,δ,∆(t+ ∆)− z0,δ,∆(t)],

χ1,δ,∆(t+ ∆, θ)− χ1,δ,∆(t, θ) = −
[
χ1,δ,∆(t, θ)− χ1,δ,∆(t, θ − δ)

] ∆
δ

+∆
[
b(χ0,δ,∆(t), u(t), θ) + p(θ)

[
y0,δ,∆(t+ ∆)− y0,δ,∆(t)

]]
+g(χ0,δ,∆(t), u(t), θ) [µ(θ)− µ(θ − δ)] ,

(4.1)

with boundary condition χ1,δ,∆(t,−τ) = 0 and initial condition being the dis-
cretization of (3.3). The z0,δ,∆(·) above is the reflection process for χ0,δ,∆(·),
and diy

0,δ,∆
i (·) is the component due to reflection on the ith face of G. If this

process ever leaves the set G, then it is immediately reflected back in accordance
with the local reflection direction as defined in (A2.1), (A2.2). Note that the
backward difference in θ is used. Since we are interested in only the general ap-
proach, let us suppose that u(·) is continuous. In Sections 5 and 6, the controls
are arbitrary.

We must have ∆ = δ if there is to be convergence to the correct limit as
the discretization levels go to zero. So, let ∆ = δ henceforth and with uδ(·)
denoting the piecewise constant discretization of u(·), rewrite (4.1) as

χ0,δ(t+ δ) = χ0,δ(t) + δχ1,δ(t, 0) + δc(χ0,δ(t), uδ(t))

+σ(χ0,δ(t)) [w(t+ δ)− w(t)] +
[
z0,δ(t+ δ)− z0,δ(t)

]
,

(4.2)

χ1,δ(t+ δ, θ) = χ1,δ(t, θ − δ) + δ
[
b(χ0,δ(t), uδ(t), θ)

]
+g(χ0(t), uδ(t), θ) [µ(θ)− µ(θ − δ)] + p(θ)

[
y0,δ(t+ δ)− y0,δ(t)

]
,

(4.3)
with χ1,δ(t,−τ) = 0.

For functions f(t, θ), define the operator Φδ, analogously to (3.4), by

(Φδf(·))(t, θ) = f(t, θ − δ), −τ ≤ θ − δ ≤ 0, (4.4)

with (Φδf(·))(t, θ) = 0 otherwise. Iterating (4.4) yields

[Φδ]kf(iδ, θ) = f(iδ, θ − kδ)I{−τ≤θ−kδ≤0}. (4.5)

Now (4.3) can be written as

χ1,δ(t+ δ, ·) = Φδχ1,δ(t, ·) + δ
[
b(χ0,δ(t), uδ(t), ·)

]
+g(χ0(t), uδ(t), θ) [µ(θ)− µ(θ − δ)] + p(·)

[
y0,δ(t+ δ)− y0,δ(t)

]
,

(4.6)
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with χ1,δ(t,−τ) = 0. Iterating yields

χ1,δ(nδ, θ) = [Φδ]nχ1,δ(0, θ) +
n−1∑
i=0

[Φδ]n−i−1δ
[
b(χ0,δ(iδ), uδ(iδ), θ)

]
+

n−1∑
i=0

[Φδ]n−i−1
[
g(χ0,δ(iδ), uδ(iδ), θ)

]
[µ(θ)− µ(θ − δ)]

+
n−1∑
i=0

[Φδ]n−i−1p(θ)
[
y0,δ(iδ + δ)− y0,δ(iδ)

]
.

(4.7)

and

χ0,δ(nδ) = χ0,δ(0) + δ
n−1∑
i=0

χ1,δ(iδ, 0) + δ
n−1∑
i=0

c(χ0,δ(iδ), uδ(iδ))

+
n−1∑
i=0

σ(χ0,δ(iδ)) [w(iδ + δ)− w(iδ)] + z0,δ(nδ).

Theorem 4.1. Assume (A2.1)–(A2.5) and let the admissible controls uδ(·)
converge to the continuous admissible control u(·). Then χ0,δ(·) converges to
x(·) and the costs converge as well.

Proof. Let χ0,δ(·), uδ(·) denote piecewise constant, right continuous, interpola-
tions, with intervals δ. Let ε(t, δ) denote a function that goes to zero, uniformly
in (t, ω) on any bounded t-interval, as δ → 0. Its value might change from usage
to usage. Then, for t = nδ, the first sum in (4.7) is

δ

n−1∑
i=0

b(χ0,δ(iδ), uδ(iδ), θ − t+ iδ + δ)I{−τ≤θ−t+iδ+δ≤0}

=
∫ t

0

b(χ0,δ(s), uδ(s), θ − t+ s)I{−τ≤θ−t+s≤0}ds+ ε(t, δ)

=
∫ θ

max{θ−t,−τ}
b(χ0,δ(γ + t− θ), uδ(γ + t− θ), γ)dγ + ε(t, δ).

(4.8)

Since the χ0,δ(·) and uδ(·) are piecewise constant on the intervals [kδ, kδ + δ)
and θ is a (negative) integral multiple of δ, the ε(t, δ) term arises from the θ
dependence of b(x, u, θ). The treatment of the second sum in (4.7) is similar, as
follows. For t = nδ,

n−1∑
i=0

g(χ0,δ(iδ), uδ(iδ), θ − t+ iδ + δ)I{−τ≤θ−t+iδ+δ≤0} [µ(θ − t+ iδ + δ)− µ(θ − t+ iδ)]

=
∫ t

0

g(χ0,δ(s), uδ(s), θ − t+ s)I{−τ≤θ−t+s≤0} [µ(θ − t+ s)− µ(θ − t+ s− ds)] + ε(t, δ)

=
∫ θ

max{θ−t,−τ}
g(χ0,δ(γ + t− θ), uδ(γ + t− θ), γ)µ(dγ) + ε(t, δ).

(4.9)
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The contribution of the last sum in (4.7) is

n−1∑
i=0

p(θ − t+ iδ + δ)
[
y0,δ(iδ + δ)− y0,δ(iδ)

]
I{−τ≤θ−t+iδ+δ≤0}

=
∫ θ

max{θ−t,−τ}
p(γ)dγy

0,δ(γ + t− θ),

(4.10)

modulo an error that is due to the approximation of p(·) by a piecewise constant
function and that is bounded by ε(t, δ) times the variation of y0,δ(·) on the
interval [t − τ, t − τ0], where τ > τ0 > 0 is defined in (A2.3). The initial
condition is treated similarly and, analogously to the development in Theorem
3.1, adds terms of the form

∫max{θ−t,−τ}
−τ

to the expressions computed above.
Putting the pieces together yields

χ1,δ(t, θ) =
∫ θ

−τ

b(χ0,δ(t+ γ − θ), uδ(t+ γ − θ), γ)dγ +
∫ θ

−τ

p(γ)dγy
0,δ(t+ γ − θ)

+
∫ θ

−τ

g(χ0,δ(t+ γ − θ), uδ(t+ γ − θ), γ)dµ(γ)

+ε(t, δ)
[
1 + |z0,δ|(t− τ0)− |z0,δ|(t− τ)

]
,

χ1,δ(t, 0) =
∫ 0

−τ

b(χ0,δ(t+ γ), uδ(t+ γ), γ)dγ +
∫ 0

−τ

p(γ)dγy
0,δ(t+ γ)

+
∫ 0

−τ

g(χ0,δ(t+ γ), uδ(t+ γ), γ)dµ(γ) + ε(t, δ)
[
1 + |z0,δ|(t− τ0)− |z0,δ|(t− τ)

]
,

(4.11)

χ0,δ(t) = x(0) +
∫ t

0

χ1,δ(s, 0)ds

+
∫ t

0

c(χ0,δ(s), uδ(s))ds+
∫ t

0

σ(χ0,δ(s))dw(t) + z0,δ(t).
(4.12)

Substituting (4.11) into (4.12) yields that χ0,δ(·) satisfies (2.2), modulo the error
terms. It follows from Lemma 2.1 and its extension that the error terms go to
zero as δ → 0 in that for each T <∞

lim
δ→0

E sup
t≤T

ε(t, δ)
[
1 + |z0,δ|(t− τ0)− |z0,δ|(t− τ)

]
= 0.

The main issue concerns the convergence properties of the reflection pro-
cess z0,δ(·). A weak convergence argument can be used. The set of processes
(χ0,δ(·), uδ(·), w(·), z0,δ(·)) is tight in the Skorohod topology and all limits are
continuous. One needs to show that the weak sense limit (x̄(·), ū(·), w̄(·), z̄(·))
of any weakly convergent subsequence satisfies (2.2), where z̄(·) is the reflec-
tion term, and all processes are nonanticipative with respect to the standard
Wiener process w̄(·). The proof of [10, Theorem 1.2, Chapter 11] can be used
to complete the demonstration. It yields that z̄(·) must be the reflection pro-
cess for x̄(·), as well as the nonanticipativity properties. Clearly, (ū(·), w̄(·)) has
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the same probability law as (u(·), w(·)). This and the weak-sense uniqueness of
solutions implies that the original sequence converges, as desired.

The costs converge due to this pathwise convergence and the continuity of the
function k(·), and to the fact that, for any T <∞, Lemma 2.1 and its extension
imply that the reflection terms on the intervals [nT, nT + T ] are uniformly (in
n, δ) integrable, since they satisfy (2.4) and (2.5) uniformly in (small) δ.

5 The Markov Chain Approximation Method

5.1 Brief Review of the No-Delay Case

In preparation for the approximation for the delay case, let us recall the basic
numerical procedure for the non-delayed problem. The first step is the deter-
mination of a finite-state controlled Markov chain that has a continuous-time
interpolation that is an “approximation” of the controlled reflected diffusion
process x(·). The second step solves the optimization problem for the chain
and a cost function that approximates the one used for x(·). Let h denote the
approximation parameter. The reference [6] contains some additional details
concerning the delay problem. The system of concern in this subsection is

dx = b(x, u)dt+ σ(x)dw + dz. (5.1)

where x ∈ G, and z(·) is the reflection process.
To construct the approximation, start by defining Sh, a discretization of

IRr, which we let be a grid with the distance between points in any coordinate
direction being h. The precise requirements are quite general and are spelled
out via the local consistency condition given below. In general, the interval can
depend on the coordinate direction and the discretized state space need not be
a grid. It is only the points in G and their immediate neighbors that will be of
interest. Next define the approximating controlled Markov chain ξh

n. Its state
space will be a subset of Sh, and is usually divided into two parts. The first part
is Gh = G ∩ Sh, on which the chain approximates the diffusion part of (5.1). If
the chain tries to leave Gh, then it is returned immediately, consistently with
the local reflection direction. Thus, define ∂G+

h to be the set of points not in Gh

to which the chain might move in one step from some point in Gh. The set ∂G+
h

is the reflecting boundary for the chain. Let ph(x, x̃|α) denote the transition
probabilities at state x under control value α.

Local consistency on Gh. Let uh
n denote the controls used at step n for

ξh
n. Let Eh,α

x,n (respectively, covarh,α
x,n) denote the expectation (respectively, the

covariance) given all of the data to step n, when ξh
n = x, uh

n = α. Then the
chain must satisfy the following condition. There is a function ∆th(x, α) > 0
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such that (the formulas define bh(·) and ah(·))

Eh,α
x,n

[
ξh
n+1 − x

]
= bh(x, α)∆th(x, α) = b(x, α)∆th(x, α) + o(∆th(x, α)),

covarh,α
x,n

[
ξh
n+1 − x

]
= ah(x, α)∆th(x, α) = a(x)∆th(x, α) + o(∆th(x, α))

a(x) = σ(x)σ′(x), lim
h→0

sup
x,α

∆th(x, α) = 0,

‖ξh
n+1 − ξn

h‖ ≤ K1h,
(5.2)

for some real K1. With the methods in [10], ∆th(·) is obtained automatically
as a byproduct of getting the transition probabilities. Thus, in G, the first two
“conditional” moments of ξh

n+1 − ξh
n are very close to those of the “differences”

of the x(·) of (5.1).3 Approximations satisfying the local consistency condition
(5.2) are to be called explicit approximations.

Local consistency on the reflecting boundary ∂G+
h . From points in

∂G+
h , the transitions of the chain are such that they move to Gh, with the

conditional mean direction being a reflection direction at x. More precisely,
limh→0 distance(∂G+

h , Gh) = 0, and there are θ1 > 0 and θ2(h) → 0 as h → 0
such that for all x ∈ ∂G+

h ,

Eh,α
x,n

[
ξh
n+1 − x

]
∈ {aγ : γ ∈ d(x) and θ2(h) ≥ a ≥ θ1h} ,

∆th(x, α) = 0 for x ∈ ∂G+
h .

(5.3)

The last line of (5.3) says that the reflection from states on ∂G+
h is instantaneous.

The reference [10] has an extensive discussion of straightforward methods of
getting good approximations.

In all cases in [10], the transition probability for the chain in the no-delay
case can be represented as a ratio of the following form. For x ∈ Gh,

P{ξh
1 = x̃|ξh

0 = x, uh
0 = α} = ph(x, x̃|α) = Nh(x, x̃, α)/Dh(x, α),

∆th(x, α) = h2/Dh(x, α), inf
x,α

Dh(x, α) > 0, |x̃− x| = O(h)
(5.4)

where Nh(·), Dh(·) are functions of b(·), σ(·) of the form :

Nh(x, x̃, α) = N̄(hb(x, α), σ(x), x̃), Dh(x, α) = D̄(hb(x, α), σ(x)). (5.5)

The same general canonical forms (5.4) and (5.5) will be used for the delay
case. Define ∆thn = ∆th(ξh

n, u
h
n), δzh

n = [ξh
n+1 − ξh

n]I{ξh
n 6∈G} and let Fh

n denote
the minimal σ-algebra that measures the system data to step n. By centering
around the conditional expectation, we can write

ξh
n+1 = ξh

n + ∆thnb(ξ
h
n, u

h
n) + βh

n + δzh
n + o(∆thn), (5.6)

3The consistency condition need not hold everywhere. See [10, discussion in Section 5.5
and Theorem 10.5.3, and also the discussion concerning discontinuous dynamics in Section
10.2 of second ed.] for examples and more detail.
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where the martingale difference βh
n has conditional (on Fh

n ) covariance ah(ξh
n, u

h
n)∆thn.

The o(∆thn) term is due to the use of b(·) in lieu of bh(·) since by (5.2),

lim
h→0

sup
x,α

|bh(x, α)− b(x, α)| = 0.

.

Continuous-time interpolations. The discrete-time chain ξh
n is used for

the numerical computations. However, for the proofs of convergence, we use
a continuous-time interpolation ψh(·) that will approximate x(·). This is con-
structed as follows. Let νn, n = 0, 1, . . . , be mutually independent and exponen-
tially distributed random variables with unit mean, and that are independent
of {ξh

n, u
h
n, n ≥ 0}. Define thn =

∑n−1
i=0 ∆thi , ∆τh

n = νn∆thn, and τh
n =

∑n−1
i=0 ∆τh

i .
Then define ψh(t) = ξh

n for t ∈ [τh
n , τ

h
n+1). Define the continuous-time inter-

polations uh(·) of the control actions analogously and let its relaxed control
representation be denoted by mh(·), with time derivative mh,′(·). Let zh(·)
denote the interpolation of

∑n−1
i=0 δz

h
i .

Since the intervals between jumps are ∆thnνn, where νn is exponentially dis-
tributed and independent of Fh

n , the jump rate of ψh(·) when in state x is
1/∆th(x). Given a jump, the distribution of the next state is given by the
ph(x, y|α), and the conditional mean change, for x ∈ Gh and control value
α used, is bh(x, α)∆th(x, α). So we can decompose ψh(·) in terms of the
continuous-time compensator, reflection term, and and martingale as

ψh(t) = x(0) +
∫ t

0

bh(ψh(s), uh(s))ds+Mh(t) + zh(t), (5.7)

where the martingaleMh(t) has quadratic variation process
∫ t

0

ah(ξh(s), uh(s))ds.

In terms of the relaxed control we can write∫ t

0

bh(ψh(s), uh(s))ds =
∫ t

0

∫
U

bh(ψh(s), α)mh,′(s, dα)ds.

It can be shown that ([10, Section 10.4.1]) there is a martingale wh(·) (with
respect to the filtration generated by the state and control processes, possibly
augmented by an “independent” Wiener process) such that

Mh(t) =
∫ t

0

σh(ξh(s), uh(s))dwh(s) =
∫ t

0

σ(ξh(s))dwh(s) + εh(t),

where σh(·)[σh(·)]′ = ah(·) (recall the definition of ah(·) in (5.2)), wh(·) has
quadratic variation process It and converges weakly to a standard Wiener pro-
cess. The martingale εh(·) is due to the difference between σ(x) and σh(x, α)
and

lim
h→0

sup
uh

sup
s≤t

E|εh(s)|2 = 0 (5.8)
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for each t. Thus

ψh(t) = x(0)+
∫ t

0

∫
U

bh(ψh(s), α)mh,′(dα, s)ds+
∫ t

0

σ(ψh(s))dwh(s)+zh(t)+εh(t).

(5.9)
The following result [10, Theorem 1.3, Chapter 11] is an analog of Lemma 2.1.

Lemma 5.1. Assume (A2.1)–(A2.2) and that for some constant K, the b(x)
and σ(x) in (5.2) are replaced by arbitrary Fh

n -measurable random variables that
are bounded in norm by K. Then the corresponding reflection terms satisfy

lim
T→0

lim sup
h→0

sup
b(·),σ(·),x(0)

E
∣∣zh
∣∣2 (T ) = 0.

For any T <∞,
lim sup

h→0
sup

b(·),σ(·),x(0)

E
∣∣zh
∣∣2 (T ) <∞.

Note on convergence. For any subsequence h → 0, there is a further sub-
sequence (also indexed by h for simplicity) such that (ψh(·),mh(·), wh(·), zh(·))
converges weakly to random processes (x(·),m(·), w(·), z(·)), where m(·) is a re-
laxed control, (x(·),m(·), w(·), z(·)) is nonanticipative with respect to the stan-
dard vector-valued Wiener process w(·), and the set satisfies

x(t) = x(0) +
∫ t

0

∫
U

b(x(s), α)m′(dα, s)ds+
∫ t

0

σ(x(s))dw(s) + z(t),

where z(·) is the reflection term. Along the selected subsequence Wh(x,mh) →
W (x,m). The proofs of these facts are in [10, Chapters 10, 11].

5.2 The “Implicit” Numerical Procedure

It was noted in Section 4 that, for the approximations used there, the discretiza-
tion levels for time and for the θ variable must be the same. The time interval im-
plied by the Markov chain approximation discussed above is ∆th(ξh

n, u
h
n) = ∆thn,

which is commonly of the order of h2, but is not usually a constant. The transi-
tion probabilities can be modified so that ∆thn = ∆th, a constant, also of order
O(h2). If we used a discretization of the θ variable with levels O(h2), there
would be far too many θ-values for practical use. An alternative approxima-
tion, known as the implicit method [10, Chapter 12], avoids such problems and
will be readily adapted to and particularly useful for the delay problem. The
fundamental difference between the approximation discussed above and the so-
called implicit approaches to the Markov chain approximation lies in the fact
that in the former the time variable is treated differently than the state vari-
ables: It is a true “time” variable, and its value increases by ∆thn at step n. In
the implicit approach, the time variable is treated as just another state vari-
able. It is discretized in the same manner as are the other state variables: For

20



the no-delay case, the approximating Markov chain has a state space that is a
discretization of the (x, t)−space, and the component of the state of the chain
that comes from the original time variable does not necessarily increase its value
at each step. The idea is analogous when there are delays. Let δ > 0 be the
discretization level for the time variable. We will assume that δ = O(h). Let
ph,δ(x, nδ; x̃, nδ|α) denote the probability that the state x moves to x̃, and the
time variable does not advance, under control α. Let ph,δ(x, nδ;x, nδ+ δ|α) de-
note the probability that the state does not change but that the time advances.

Given the transition probabilities and interpolation interval ph(·),∆th(·),
those for the implicit method can readily be computed [10, Section 12.4]. Sup-
pose that at the current step the time variable does not advance. Then, condi-
tioned on this event and on the value of the current spatial state, the distribution
of the next spatial state is just the ph(x, x̃|α) used previously. So one needs only
determine the conditional probability that the time variable advances, condi-
tioned on the current state. This is obtained by a “local consistency” argument
and no matter how the ph(·) were derived, the (no-delay) transition probabili-
ties ph,δ(·) and interpolation interval ∆th,δ(·) for the implicit procedure can be
determined from the ph(·),∆th(·) by the formulas [10, Section 12.4], for x ∈ Gh,

ph(x, x̃|α) =
ph,δ(x, nδ; x̃, nδ|α)

1− ph,δ(x, nδ;x, nδ + δ|α)
,

ph,δ(x, nδ;x, nδ + δ|α) =
∆th(x, α)

∆th(x, α) + δ
,

∆th,δ(x, α) =
δ∆th(x, α)

∆th(x, α) + δ
.

(5.10)

The reflecting states are treated as before. One usually first computes the
transition functions for the explicit case, where they must satisfy (5.2), and then
uses those to get the transition probabilities for the implicit case via (5.10).

Let ξh,δ
n and φh,δ

n denote the spatial and temporal states at step n under
(5.10). Define ∆th,δ

n = ∆th,δ(ξh,δ
n , uh,δ

n ). Under (5.10), (5.2) holds for the process
ξh,δ
n , with the time interval ∆th,δ(·). We have Eh

n[φh,δ
n+1 − φh,δ

n ] = ∆th,δ
n and

φh,δ
n+1 = φh,δ

n + ∆th,δ
n + βh,δ

0,n. (5.11)

where the covariance of the martingale difference term βh,δ
0,n is o(∆th,δ

n ). Let δzh,δ
n

denote the reflection term for the ξh,δ
n process, and define the components δyh,δ

i,n

by δzh,δ
n =

∑
i diδy

h,δ
i,n . Analogously to what was done for the explicit case, define

∆τh,δ
n = νn∆th,∆

n , and τh,∆
n =

∑n−1
i=0 ∆τh,∆

i . The continuous time interpolation
is ψh,δ(t) = ξh,δ

n for t ∈ [τh,δ
n , τh,δ

n+1), with the analogous interpolations uh,δ(·)
and zh,δ(·) for the controls and reflection term

∑n−1
i=0 δz

h,δ
i , resp.

Asymptotic equivalence of the time scales. For each t ≥ 0, define the
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stopping times

dh(t) = max

{
n :

n−1∑
i=0

∆thi = thn ≤ t

}
, dh,δ(t) = max

{
n :

n−1∑
i=0

∆th,δ
i = th,δ

n ≤ t

}
.

Note that dh(t) will never be the index of a reflecting state, since the time
intervals for those are zero. Define dh

τ (t) and dh,δ
τ (t) analogously, but with ∆τh

n

and ∆τh,δ
n used, resp.

Theorem 5.2. For each t > 0,

lim
h→0

sup
uh

E sup
s≤t

dh(s)∑
i=0

(∆τh
i −∆thi )

2

= 0. (5.12)

Also,

lim
h→0,δ→0

sup
uh,δ

E sup
s≤t

dh,δ(s)∑
i=0

(∆τh,δ
i −∆th,δ

i )

2

= 0. (5.13)

The last assertion holds with dh,δ
τ (·) replacing dh,δ(·) and also with ∆thn(1−Ih,δ

n )
replacing ∆th,δ

n . Let φh,δ(·) denote the interpolation of the φh,δ
n with the intervals

∆th,δ
n . Then φh,δ(·) converges weakly to the process with value t at time t. The

result of the last sentence holds if the intervals are ∆τh,δ
n .

Proof. Owing to the mutual independence of the exponential random variables
{νn} and their independence of everything else, the discrete parameter process
Ln =

∑n
i=0(∆τ

h
i −∆thi ) is a martingale. Hence, the conditional expectation of

the squared term in (5.12) given the {∆thi } equals

E

dh(t)∑
i=0

[
∆τh

i −∆thi
]2 ∣∣∣∣∆thi , i <∞

 =
dh(t)∑
i=0

[∆thi ]2 ≤ (t+ sup
n

∆thn) sup
n

∆thn
h→ 0,

which yields (5.12) since by Doob’s inequality and the martingale property,
E supj≤n |Lj |2 ≤ 4E|Ln|2. Equation (5.13) and the assertion following it are
proved in the same way.

For the next to last assertion of the theorem, write

φh,δ(t) =
dh,δ(t)−1∑

i=0

∆th,δ
i +

dh,δ(t)−1∑
i=0

βh,δ
0,i .

The first sum equals t, modulo supn ∆th,δ
n . The variance of the martingale term

is δt, modulo δ+supn ∆th,δ
n , and the term converges weakly to the zero process.

This yields the next to last assertion of the theorem. This and (5.13) yields the
last assertion of the theorem.
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6 Approximating the System With Delays

The numerical approximations and convergence proofs for the delay problem
will now be developed. Although the form of the algorithm is motivated by
those used for the no-delay problem, it is more complicated. But the delay
problem is much more complicated and we are interested in algorithms that
ameliorate the memory requirements. It is seen from the discussion in Section
4 that the time variable and θ need to have the same increments if there is to
be convergence to the correct values. Discretizing θ and then χ0(t), χ1(t, θ) so
that (5.2) holds for the resulting process would require time and θ intervals of
order O(h2), so that θ would take O(1/h2) values, much too high. The implicit
method for the Markov chain approximation can be adapted to alleviate these
problems.

Let τ be an integral multiple of δ and let θ take values in T δ = {−τ +
δ, . . . ,−δ, 0}. Owing to the boundary condition χ1(t,−τ) = 0 there is no need
for θ = −τ . The Markov chain approximating (χ0(t), χ1(t, θ),−τ ≤ θ ≤ 0) will
be denoted by (ξ0,h,δ

n , ξ1,h,δ
n (θ), θ ∈ T δ). The ξ0,h,δ

n will take values in Gh∪∂G+
h

with instantaneous reflection back if it leaves Gh, in accordance with (A2.1)
and (A2.2). We suppose that for each θ ∈ T δ, ξ1,h,δ

n (θ) takes values in a regular
h-grid. Any interval of order O(h) can be used, but the notation becomes more
awkward.

Boundaries for ξ1,h,δ
n (θ). The ξ0,h,δ

n are in G, hence bounded. If p(·) = 0,
then (3.9) shows that |χ1(t, θ)| is bounded by |b|(τ+θ)+|g|µ([−τ, θ]) where |b|, |g|
are the sup values, and |ξ1,h,δ

n (θ)| can be taken to be bounded by slightly higher
values. One could stop the process ξ1,h,δ

n (θ) when it reached these values. In
the limit, as h, δ → 0, the ξ1,h,δ

n (θ) would not reach the boundaries and no other
precautions need to be taken in the construction of the algorithm. However,
if there is a delayed reflection term, then the bound is changed by the middle
term in (3.9). This term is bounded by a constant times the variation of z(·)
on [t − τ0, t − τ ], which satisfies Lemma 5.1 and, in the limit, Lemma 2.1. For
numerical purposes, we need to bound |ξ1,h,δ

n (θ)|. This will be done by stopping
it when it reaches some level such that the probability that the level is exceeded
by |χ1(t, θ)| on some large time interval [0, T ] is small. The ξ1,h,δ

n (θ) will be
stopped for all θ if any one hits the boundary. The required bound depends on
the discount factor β and the value of τ . If the bound is reached for small h, δ,
then there will be an error in computing the cost, the error depending on the
value of e−βt at that time. A reasonable procedure is to have the boundaries at
least twice what is needed if there were no delayed reflection term. If a boundary
is ever reached, the drop the reflection term and continue with the others. Until
Theorem 6.3, ignore these boundaries.

The algorithm for the implicit procedure. As in Section 5 for the so-called
implicit method, let φh,δ

n denote the time variable. The algorithm is slightly
different from the implicit method defined in Section 5. As there, the steps can
be divided into two classes, corresponding to the time variable advancing or not.
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Owing to the coordination between the advance in the time variable and the
“shift” in θ associated with the operator Φδ, if time advances at step n, then
the transitions are

ξ1,h,δ
n+1 (θ) = ξ1,h,δ

n (θ − δ), ξ0,h,δ
n+1 = ξ0,h,δ

n , φh,δ
n+1 = φh,δ

n + δ. (6.1)

The transition in (ξ0,h,δ
n , ξ1,h,δ

n (θ), θ ∈ T δ) if the time variable does not advance
at step n will be defined below. Let uh,δ

n denote the control applied at step n
and let Fh,δ

n denote the minimal σ-algebra that measures the system data to
step n, with the associated conditional expectation denoted by Eh,δ

n .
Recall the canonical form of the transition probabilities and time interval

in (5.4), (5.5). The identical forms will be used here for the transitions of the
component ξ0,h,δ

n . Thus, by (5.4), (5.5), for ξ0,h,δ
n = x0 ∈ Gh, ξ

1,h,δ
n (0) = x1 and

control value α used, the probability that ξ0,h,δ
n+1 takes the value x̃0, conditioned

on the event that the time variable does not advance at step n, is

ph
(
x0, x̃0

∣∣α, x1
)

=
N̄
(
h(x1 + c(x0, α)), σ(x0), x̃0

)
D̄ (h(x1 + c(x0, α)), σ(x0))

,
∣∣x̃0 − x0

∣∣ = O(h). (6.2)

Thus the transition probability for ξ0,h,δ
n has the same dependence on the full

drift vector and covariance matrix as for the non-delay case. Indeed, with the
correct drift and covariance used, any of the algorithms in [10, Chapter 5] can
be used to get (6.2).

Next define the interval ∆th(x0, x1, α) = h2/[D̄(h(x1 + c(x0, α)), σ(x0))].
Define the probability that the time variable advances at step n by (5.10),
namely,

ph,δ(x0, nδ;x0, nδ + δ|α, x1) =
∆th(x0, x1, α)

∆th(x0, x1, α) + δ
. (6.3)

Also, from (5.10), define the interval for the implicit procedure:

∆th,δ(x0, x1, α) =
δ∆th(x0, x1, α)

∆th(x0, x1, α) + δ
.

If ξ0,h,δ
n = x0 6∈ Gh, then the reflection back to Gh is instantaneous in that

∆th(x0, x1, α) = 0, and it is in accord with (A2.1)-(A2.2). Set δz0,h,δ
n = [ξ0,h,δ

n+1 −
ξ0,h,δ
n ]I{ξ0,h,δ

n 6∈Gh},

∆thn = ∆th(ξ0,h,δ
n , ξ1,h,δ

n (0), uh,δ
n ), ∆th,δ

n = ∆th,δ(ξ0,h,δ
n , ξ1,h,δ

n (0), uh,δ
n ).

At step n we first decide, according to (6.3), whether time advances or not.
The evolution of the time variable can be decomposed as (5.11). Let Ih,δ

n denote
the indicator function of the event that the time variable advances at step n.
By the local consistency condition, for ξ0,h,δ

n ∈ Gh and on the event that time
does not advance, we must have

E
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Ih,δ
n = 0,Fh,δ

n

]
= ∆thn

[
ξ1,h,δ
n (0) + c(ξ0,h,δ

n , uh,δ
n )
]
+ o(∆thn),

covarh,δ,α
n

[
ξ0,h,δ
n+1 − ξ0,h,δ

n

]
= a(ξ0,h,δ

n )∆thn + o(∆thn).
(6.4)
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Thus, we can write

ξ0,h,δ
n+1 = ξ0,h,δ

n

+
[
∆thnξ

1,h,δ
n (0) + ∆thnc(ξ

0,h,δ
n , uh,δ

n ) + β̃0,h,δ
n + δz0,h,δ

n

] (
1− Ih,δ

n

)
+ o(∆thn),

where the conditional covariance of the martingale difference β̃0,h,δ
n is a(ξ0,h,δ

n )∆thn+
o(∆thn). By centering Ih,δ

n about its conditional expectation, the above expres-
sion can be written as

ξ0,h,δ
n+1 = ξ0,h,δ

n + ∆th,δ
n ξ1,h,δ

n (0) + ∆th,δ
n c(ξ0,h,δ

n , uh,δ
n ) + β0,h,δ

n + δz0,h,δ
n + o(∆thn),

(6.5)
where the conditional covariance of the martingale difference β0,h,δ

n is a(ξ0,h,δ
n )∆th,δ

n +
o(∆th,δ

n ).Define δz̄0,h,δ
n = E

[
δz0,h,δ

n

∣∣Ih,δ
n = 0,Fh,δ

n

]
. Then we can write δz̄0,h,δ

n =∑
i diδȳ

0,h,δ
i,n , where δȳ0,h,δ

i,n can only increase if the reflection is to the ith face
of G. The error terms δz0,h,δ

n − δz̄0,h,δ
n are asymptotically negligible and will be

ignored; see [10, Theorem Equation 11.1.16], where a slightly different notation
is used. The values of δȳ0,h,δ

n and δz̄0,h,δ
n are known at step n.

The rule for (6.1) was easy to establish since χ0(t) evolves as a diffusion, so
any of the algorithms in [10] could be readily adapted. To develop an algorithm
for the ξ1,h,δ

n (θ) we use the development in Section 4 as a guide. The change
between updates of the time variable uses the three right hand terms of (4.3)
as a guide. Since there are usually several steps between updates of the time
variable, those three terms are approximated as a sum of terms. We proceed as
follows.

If time does not advance at step n, then ξ1,h,δ
n+1 (θ)− ξ1,h,δ

n (θ) is to satisfy

E
[
ξ1,h,δ
n+1 (θ)− ξ1,h,δ

n (θ)
∣∣Ih,δ

n = 0,Fh,δ
n

]
= qh,δ

n (θ), (6.6)

where (note that there is no “shift term” in θ since time is not advancing)

qh,δ
n (θ) = b(ξ0,h,δ

n , uh,δ
n , θ)∆thn + p(θ)δȳ0,h,δ

n

+g(ξ0,h,δ
n , uh,δ

n , θ)
[µ(θ)− µ(θ − δ)]

δ
∆thn,

and the boundary condition is ξ1,h,δ
n (−τ) = 0. To attain the conditional mean

(6.6), one randomizes between grid points that are closest to qh,δ
n (θ). Write[

ξ1,h,δ
n+1 (θ)− ξ1,h,δ

n (θ)
] (

1− Ih,δ
n

)
=
[
qh,δ
n (θ) + ρh,δ

n (θ)
] (

1− Ih,δ
n

)
, (6.7)

where ρh,δ
n (θ) is the randomization noise. The randomization can be correlated

in θ, but is independent in n. Theorem 6.1 shows that the noise due to the
randomization is asymptotically negligible. Recall that if δy0,h,δ

n 6= 0, then
∆thn = 0 and conversely.

If we sought to add the terms corresponding to the right hand three terms
in (4.3) only at the steps when the time variable is advanced, we would have

25



to keep track of the running sums of the qh,δ
n (θ) between such updates, which

would amount to an additional state component. No doubt there are other
forms that are advantageous.

The cost function is a discretization of (2.6). The initial data χ0(0), χ1(0, ·)
for (3.1), (3.2), is the function of the initial path and control segments x̂, û,
resp., as given by (3.3). Without loss of generality, we can suppose that the
values of the initial data (3.3) are on the grid for each θ. If control u(·) is used
on [0,∞), then the cost function can be written as

Wh,δ(χ0(0), χ1(0), u) = Wh,δ(x̂, û, u)

= Eu
x̂,û

∞∑
i=0

e−βth,δ
n
[
k(ξ0,h,δ

n , uh,δ
n )∆th,δ

n + q′δȳ0,h,δ
n

]
,

(6.8)

where Eu
x̂,û denotes the expectation given initial data x̂, û and the use of control

u(·) on [0,∞). Let V h,δ(χ0(0), χ1(0)) = V h,δ(x̂, û) denote the infimum of the
costs.

Let νn, n = 0, 1, . . . , be mutually independent and exponentially distributed
random variables with unit mean, and that are independent of {ξ0,h,δ

n , ξ1,h,δ
n (·), uh

n,
n ≥ 0} and the initial data. As in Section 5. define ∆τh,δ

n = ∆th,n
n νn, The ex-

pression (6.8) is asymptotically equivalent to

Eu
x̂,û

∞∑
i=0

e−βτh,δ
n
[
k(ξ0,h,δ

n , uh,δ
n )∆τh,δ

n + q′δȳ0,h,δ
n

]
. (6.9)

To assure that (6.9) is well defined, note that for any constant D > 0 and v
being exponentially distributed with mean unity, Ee−vD = 1/[1 + D]. This
implies that the exponential in (6.9) is equivalent to

∏n−1
i=0 1/[1+β∆th,δ

i ], which
implies that (6.9) is well defined and shows shows the asymptotic equivalence
between (6.8) and (6.9) as well. The form (6.8) (with perhaps a numerically
convenient approximation to the exponential) would be used in the numerical
computations and the form (6.9) in the proofs of convergence.

Recall the continuous time interpolation ψh(·) in Section 5. Define τh,δ
n =∑n−1

i=0 ∆τh,δ
i . Set ψ0,h,δ(t) = ξ0,h,δ

n for t ∈ [τh,δ
n , τh,δ

n+1), and define the interpo-
lations ψ1,h,δ(t, θ), uh,δ(·), z0,h,δ(·), z̄0,h,δ(·) and y0,h,δ(·), ȳ0,h,δ(·) analogously.
Let mh,δ(·) be the relaxed control representation of uh,δ(·), with the derivative
at t denoted by mh,δ,′(·, t). Analogously to (5.7) and (5.9) we can write

ψ0,h,δ(t) = x(0) +
∫ t

0

ξ1,h,δ(s, 0)ds

+
∫ t

0

∫
U

c(ψ0,h,δ(s, α)mh,δ,′(dα, s)ds+Mh,δ(t) + z0,h,δ(t).

The process z̄0,h,δ(·) is asymptotically equivalent to z0,h,δ(·). There is a mar-
tingale wh,δ(·) with quadratic variation process It and which converges weakly
to a Wiener process as (h, δ) → 0 such that

Mh,δ(t) =
∫ t

0

σ(ψ0,h,δ(s))dwh,δ(s) + εh,δ(t),
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where εh,δ(·), satisfies (5.8).
Define vh,δ

0 = 0 and, for n ≥ 0, set vh,δ
n+1 = min{i > vh,δ

n : φh,δ
i+1 − φh,δ

i = δ}.
The next step is to show that the noise due to the randomization done to attain
the conditional mean in (6.6) is negligible. This is (6.10) below. The expression
(6.11) shows that ξ1,h,δ

n (0) changes little between the steps that the time variable
changes.

Theorem 6.1. Assume (A2.1)–(A2.5) and that ∆th(x0, x1, α) = O(h2). Then,
for any t <∞,

lim
h,δ→0

sup
uh,δ,x̂,û,θ

E sup
n:τh,δ

n ≤t

∣∣∣∣∣
n−1∑
i=0

[Φδ]n−i−1Rh,δ
i (θ)

∣∣∣∣∣
2

= 0, (6.10)

where4

Rh,δ
i (θ) =

vh,δ
i+1−1∑

l=vh,δ
i

+1

ρh,δ
l (θ),

where ρh,δ
l (θ) is the randomization noise defined in (6.7). Also,

lim
h,δ→0

sup
uh,δ,x̂,û

sup
n:vh,δ

n ≤t

E sup
vh,δ

n +1≤l≤vh,δ
n+1

∣∣∣ξ1,h,δ
l (0)− ξ1,h,δ

vh,δ
n +1

(0)
∣∣∣2 = 0. (6.11)

Proof. For notational simplicity, write vh,δ
n simply as vn. First, let ξ0,h,δ

n 6∈ Gh,
so that we are at a reflection step, and consider the randomization noise associ-
ated with realizing the conditional mean p(θ)δȳ0,h,δ

n . Without loss of generality,
suppose that it is real-valued. Suppose that p(θ)δȳ0,h,δ

n lies in [lnh, lnh+h] where
ln is a (random) integer, either negative or positive. Then randomize between
the end points to get the desired mean p(θ)δȳ0,h,δ

n . To evaluate the variance
(always conditioned on Fh,δ

n ), without loss of generality we can suppose that we
have shifted the means so that ln = 0. Then the probability of selecting h is
p(θ)δȳ0,h,δ

n /h and, since δȳ0,h,δ
n = O(h), the conditional variance is

[
h− p(θ)δȳ0,h,δ

n

]2 p(θ)δȳ0,h,δ
n

h
+[p(θ)δȳ0,h,δ

n ]2
[
1− p(θ)δȳ0,h,δ

n

h

]
= O(h)|p(θ)δȳ0,h,δ

n |.

(6.12)
To evaluate the total effect on the interval [0, t], define the effect on the

randomization error due to the reflection steps:

Qh,δ
n (θ) =

vn+1−1∑
l=vn+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− p(θ)δȳ0,h,δ

l

]
I{ξ0,h,δ

l
6∈Gh}.

4The sup
n:τ

h,δ
n ≤t

is over all stopping times no bigger than the time needed to get to

interpolated time t.
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Then evaluate
n−1∑
i=0

[Φδ]n−i−1Qh,δ
i (θ), (6.13)

which is the total effect of the randomization noise on ξ1,h,δ
vn

(θ). The summands
in the last two expressions are martingale differences since

Eh,δ
vn+l

[(
ξ1,h,δ
vn+l+1(θ)− ξ1,h,δ

vn+l(θ)
)
− p(θ)δȳ0,h,δ

vn+l

]
I{ξ0,h,δ

vn+l
6∈Gh}I{vn+l<vn+1} = 0.

By this martingale property the mean square value of (6.13) is

E
n−1∑
i=0

[Φδ]n−i−1Eh,δ
vi

vi+1−1∑
l=vi+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− p(θ)δȳ0,h,δ

l

]2
I{ξ0,h,δ

l
6∈Gh}.

Now, using the conditional variance computation (6.12), we see that the contri-
bution to (6.10) due to the reflection steps is

O(h)E
[∣∣z0,h,δ

∣∣2 (t− τ0)−
∣∣z0,h,δ

∣∣2 (t− τ)
]
.

By Lemma 5.1, this satisfies (5.8).
Next consider the errors due to the non-reflection steps. Suppose that it has

been decided that time does not advance at step n and that ξ0,h,δ
n ∈ Gh. Then,

given this information, the conditional mean of the increment ξ1,h,δ
n+1 (θ)−ξ1,h,δ

n (θ)
is qh,δ

n (θ), with p(θ)δȳ0,h,δ
n = 0. The conditional variance of ξ1,h,δ

n+1 (θ)− ξ1,h,δ
n (θ)

is bounded above by that obtained if each of the two remaining components
were randomized separately. So, first consider the term b(ξ0,h,δ

n , uh,δ
n , θ)∆thn and

set the term involving µ(·) to zero. Suppose (w.l.o.g.) that we have centered the
b(ξ0,h,δ

n , uh,δ
n , θ)∆thn so that they are in [0, h]. Then choose h with probability

b(ξ0,h,δ
n , uh,δ

n , θ)∆thn/h. This yields a conditional variance of order O(h)∆thn.
Now redefine

Qh,δ
n (θ) =

vn+1−1∑
l=vn+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− b(ξ0,h,δ

l , uh,δ
l , θ)∆thl

]
I{ξ0,h,δ

l
∈Gh}.

As above, the summands are martingale differences and the mean square value
of (6.13), with the new definition of Qh,δ

n (θ) used, is

E
n−1∑
i=0

[Φδ]n−i−1Eh,δ
vi

vi+1−1∑
l=vi+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− b(ξ0,h,δ

l , uh,δ
l , θ)∆thl

]2
×I{ξ0,h,δ

l
∈Gh}.

(6.14)
Since Eh,δ

vn
[vn+1 − vn] = O(1/h), and the expectation (conditioned on Fh,δ

vn
)

of the typical summand of the inner sum of (6.14) is O(h)∆thl = O(h3), the
expectation (conditioned on Fh,δ

vn
) of the inner sum is O(h2). So (6.14) is O(h2)
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times the mean number of time updates needed to get to interpolated time t.
But this is O(t/h). So the contribution to the left side of (6.10) is zero.

Now consider the component of qh,δ
n (θ) defined by (setting b(·) = 0)

q̂h,δ
n (θ) =

[µ(θ)− µ(θ − δ)]
δ

g(ξ0,h,δ
n , uh,δ

n , θ)∆thn.

Again, suppose that we have centered so that it is in [0, h]. Then select h with
probability q̂h,δ

n (θ)/h. The conditional (on Fh,δ
n ) variance of ξ1,h,δ

n+1 (θ)− ξ1,h,δ
n (θ)

is O(h)q̂h,δ
n (θ) + [q̂h,δ

n (θ)]2 = O(h)q̂h,δ
n (θ). To evaluate the total effect on the

interval [0, t], redefine

Qh,δ
n (θ) =

vn+1−1∑
l=vn+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− q̂h,δ

l (θ)
]
I{ξ0,h,δ

l
∈Gh}.

Then evaluate (6.13) with this new definition of Qh,δ
n (θ). Since we set b(·) = 0,

the summands are martingale differences in that

Eh,δ
vn+l

[(
ξ1,h,δ
vn+l+1(θ)− ξ1,h,δ

vn+l(θ)
)
− q̂h,δ

vn+l(θ)
]
I{ξ0,h,δ

vn+l
∈Gh}I{vn+l<vn+1}(1−I

h,δ
vn+l) = 0.

With the new definition of Qh,δ
n (θ), the mean square value of (6.13) is

E

n−1∑
i=0

[Φδ]n−i−1Eh,δ
vi

vi+1−1∑
l=vi+1

[(
ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ)
)
− q̂h,δ

l (θ)
]2
. (6.15)

The (conditioned on Fh,δ
vn

) expectation of the inner sum in (6.15) is

O(h2)
[
(µ(θ)− µ(θ − δ))2 + (µ(θ)− µ(θ − δ))

]
Eh,δ

vi
[vi+1 − vi]

= O(h)
[
(µ(θ)− µ(θ − δ))2 + (µ(θ)− µ(θ − δ))

]
.

Now taking the shift [Φδ]n−i−1 in (6.15) into account and noting that µ(θ) −
µ(θ− δ) = 0 for θ < −τ , we see that (6.15) is O(h), uniformly in n. Thus (6.10)
holds. The verification of (6.11) is straightforward and the details are omitted.

A continuous time interpolation. Recall the definition of ∆τh,δ
n below

(5.11). Define ψ0,h,δ(t) = ξ0,h,δ
n , ψ1,h,δ(t, θ) = ξ1,h,δ

n (θ), and φh,δ(t) = φh,δ
n

for t ∈ [τh,δ
n , τh,δ

n+1). Recall the discussion of the boundaries on ξ1,h,δ
n (θ) at the

beginning of this section. They are ignored in the next theorem but reintroduced
in Theorem 6.3.
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Theorem 6.2. Assume (A2.1)–(A2.5) and that ∆th(x0, x1, α) = O(h2). Then∫ T

0

ψ1,h,δ(t, 0)dt =
∫ T

0

dt

∫ 0

−τ

dγ

∫
U

b(ψ0,δ(t+ γ), α, γ)mh,δ,′(dα, t+ γ)

+
∫ T

0

dt

∫ 0

−τ

p(γ)dγ ȳ
0,h,δ(γ + t)

+
∫ T

0

dt

∫ 0

−τ

dµ(γ)
∫

U

g(ψh,δ(γ + t), α, γ)mh,δ,′(dα, γ + t) + ρh,δ
0 (T ),

(6.16)
where

lim
h,δ→0

sup
uh,δ,x̂,û

E sup
s≤t

|ρh,δ
0 (s)| = 0. (6.17)

Proof. Continuing to use vn = vh,δ
n , we can write

ξ1,h,δ
vn+1

(θ) = ξ1,h,δ
vn+1(θ − δ) +Bh,δ

n (θ) + Ph,δ
n (θ) +Gh,δ

n (θ) +Rh,δ
n (θ). (6.18)

where Rh,δ
n (θ) was defined in Theorem 6.1 and

Bh,δ
n (θ) =

vn+1−1∑
l=vn+1

b(ξ0,h,δ
l , uh,δ

l , θ)∆thl ,

Ph,δ
n (θ) =

vn+1−1∑
l=vn+1

p(θ)δȳ0,h,δ
l = p(θ)

[
ȳ0,h,δ

vn+1
− ȳ0,h,δ

vn

]
,

Gh,δ
n (θ) = [µ(θ)− µ(θ − δ)]

vn+1−1∑
l=vn+1

g(ξ0,h,δ
l , uh,δ

l , θ)
∆thl
δ
.

Until further notice ignore the effects of the initial condition (3.3). First con-
sider the contribution of the b(·) terms to ψ1,h,δ(t, θ). Their total contribution
to ξ1,h,δ

vn+1(θ) is, for n ≥ 1,

n−1∑
i=0

[Φδ]n−i−1Bh,δ
i (θ) =

n−1∑
i=0

Bh,δ
i (θ − nδ + iδ + δ)

=
vn−1∑
l=0

b(ξ0,h,δ
l , uh,δ

l , θ − nδ + φh,δ
l + δ)∆thl (1− Ih,δ

l ).

This is equal to

vn−1∑
l=0

b(ξ0,h,δ
l , uh,δ

l , θ − nδ + φh,δ
l + δ)∆τh,δ

l (6.19)

plus a martingale “error” whose quadratic variation process is
∑n−1

l=0 O(∆τh,δ
l )2.

Define γh,δ(t) = max{n : τh,δ
n ≤ t}. The number of time advances that have
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occurred when interpolated time t is reached is φh,δ(t)/δ. For φh,δ(t) < t the
values of ψ1,h,δ(t, θ) and ξ1,h,δ

v
φh,δ(t)/δ

+1(θ) differ by the contributions of the iterates

in the interval [vφh,δ(t)/δ + 1, γh,δ(t) − 1], those that occur before interpolated
time t is reached but at or after the last update of the time variable before
interpolated time t is reached. By (6.11), the contributions of these terms for
θ = 0 is asymptotically negligible. Letting n = φh,δ(t)/δ and adding these
terms, (6.19) becomes

γh,δ(t)−1∑
l=0

b(ξ0,h,δ
l , uh,δ

l , θ − φh,δ(t) + φh,δ
l + δ)∆τh,δ

l .

By Theorem 5.2 and the continuity of b(·), the last expression equals, modulo
an error that satisfies (6.17),

γh,δ(t)−1∑
l=0

b

(
ξ0,h,δ
l , uh,δ

l , θ − t+
l−1∑
k=0

∆τh,δ
k

)
∆τh,δ

l ,

which for θ = 0 can be written as (modulo an error satisfying (6.17))∫ t

0

b
(
ψ0,h,δ(s), uh,δ(s),−t+ s

)
ds =

∫ t

max{0,t−τ}
b
(
ψ0,h,δ(s), uh,δ(s),−t+ s

)
ds

=
∫ 0

max{−t,−τ}

∫
U

b
(
ψ0,h,δ(γ + s), α, γ

)
mh,δ,′(dα, s+ γ)dγ,

(6.20)
where the last equality uses the change of variable γ = −t + s, the fact that
b(·, θ) = 0 for θ < −τ , and switches to relaxed control notation. The above
mentioned martingale error process has quadratic variation O(h) and satisfies
(6.17).

Next, consider the contribution of the p(θ)δȳ0,h,δ
l terms to ψ1,h,δ(t, θ). Fol-

lowing the development for the b(·) terms above, the contribution is

γh,δ(t)−1∑
l=0

p(θ − φh,δ(t) + φh,δ
l + δ)δȳ0,h,δ

l .

By Theorem 5.2, φh,δ
l is asymptotically equivalent to th,δ

l and τh,δ
l . Thus, by

Theorem 5.2 and the continuity of p(·), the right hand side can be written as

γh,δ(t)−1∑
l=0

p(θ − t+ τh,δ
l )δȳ0,h,δ

l

modulo an error that can be written as ε(h, δ)
[
|z0,h,δ|(t)− |z0,h,δ|(t− τ − δ)

]
,

where ε(h, δ) → 0 as h, δ → 0. By Lemma 5.1, the error term satisfies (6.17).
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Then, for θ = 0, by a change of variable and using the fact that p(θ) = 0 for
θ < −τ , we can write the last expression as∫ t

0

p(−t+ s)dȳ0,h,δ(s) =
∫ 0

max{−t,−τ}
p(γ)dγ ȳ

0,h,δ(t+ γ). (6.21)

Now consider the contribution of the terms involving g(·) to the integral∫ T

0
ψ1,h,δ(s, 0)ds. By (6.11), to evaluate this integral, we can suppose that

ψ1,h,δ
l (0) is constant on the intervals [τh,δ

vn
, τh,δ

vn+1
) between updates of the time

variable. Define Nh,δ(T ) = φh,δ(T )/δ. Then, making the piecewise constant
approximation, the integral is (modulo an error satisfying (6.17)),

Nh,δ(T )−1∑
n=0

ξ1,h,δ
vn

(0)
[
τh,δ
vn+1

− τh,δ
vn

]
. (6.22)

Until further notice, consider only the part that is due to the g(·) terms and
continue to ignore the effects of the initial condition. Then we have, for n ≥ 1,

ξ1,h,δ
vn

(θ) =
n−1∑
i=0

Gh,δ
i (θ − nδ + iδ + δ).

By the definition of Gh,δ
i (θ), this last expression can be written as

n−1∑
i=0

[µ(θ − nδ + iδ + δ)− µ(θ − nδ + iδ)]
δ

×
vi+1−1∑
l=vi+1

g(ξ0,h,δ
l , uh,δ

l , θ − nδ + iδ + δ)∆thl .

(6.23)

The sum (6.22) will only be changed by a quantity satisfying (6.17) if we replace
the inner sum in (6.23) by

Ĝh,δ
i (−n+ i) =

vi+1−1∑
l=vi

g(ξ0,h,δ
l , uh,δ

l , θ − nδ + iδ + δ)∆τh,δ
l .

Recall that g(·, θ) = 0 and µ(θ) = 0 for θ ≤ −τ . Let θ = 0. By a change of
variable n− i = q, the use of Ĝh,δ

i (·) in lieu of Gh,δ
i (·), and a change in the order

of summation, we can write (6.22) as

Nh,δ(t)−1∑
q=1

[µ(−qδ + δ)− µ(−qδ)]
Nh,δ(T )−1∑

n=q

Ĝh,δ
n−q(−q)

[
τh,δ
vn+1

− τh,δ
vn

]
δ

. (6.24)

The fraction on the right can be replaced by unity, only incurring an error that
satisfies (6.17). Then we can write the inner sum as (modulo an error satisfying
(6.17)) ∫ T−qδ

0

g(ψ0,h,δ(s), uh,δ(s),−qδ + δ)ds.
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Next, using this expression and the continuity of g(·), (6.24) can be approxi-
mated by ∫ 0

max{−T,−τ}
µ(dγ)

∫ T+γ

0

g(ψ0,h,δ(s), uh,δ(s), γ)ds

which is equal to∫ 0

−τ

µ(dγ)
∫ T

−γ

g(ψ0,h,δ(t+ γ), uh,δ(t+ γ), γ)dt. (6.25)

By Theorem 6.1, the contribution of the randomization errors ρh,δ
l (θ) to the left

side of (6.16) satisfies (6.17).
It can be shown, via analogous computations, that adding the effects of a

discretization of the initial condition (3.3) changes the inner integral in (6.25)
to
∫ T

0
, and in (6.20) and (6.21) changes the integral to

∫ 0

−τ
. The few details

are omitted. Finally, making these changes, integrating the resulting (6.20)
and (6.21) over [0, T ], and writing (6.25) in relaxed control notation, yields the
theorem.

Convergence of the numerical algorithm. Recall the representation (6.5).
The continuous time interpolation, Mh,δ(·) (with intervals ∆τh,δ

n }) of the mar-
tingale

∑n−1
i=0 β

0,h,δ
i is a martingale with quadratic variation process

∫ t

0
a(ψ0,h,δ(s))ds

plus an error that goes to zero as h, δ → 0. The next theorem shows that the
optimal values computed by the numerical algorithm converge to the optimal
value of the original problem as h, δ → 0.

Theorem 6.3. Assume (A2.1)–(A2.5) and that ∆th(x0, x1, α) = O(h2). Sup-
pose that there is no delayed reflection term and that the boundaries on ξ1,h,δ

n (θ)
are large enough so that they would not be exceeded by χ1(t, θ). Then there is a
martingale wh,δ(·) with quadratic variation process It, that converges weakly to
a Wiener process, and for which (modulo a term that goes to zero as h, δ → 0)

Mh,δ(t) =
∫ t

0

σ(ψh,δ(s)dwh,δ(s). (6.26)

For any sequence of controls for the chain, the set (ψ0,h,δ(·),mh,δ(·), wh,δ(·), z0,h,δ(·))
(interpolation intervals ∆τh,δ

n ) is tight in the Skorohod topology and converges
weakly to a solution to (2.3). The optimal costs for the chain {ξ0,h,δ

n , ξ1,h,δ
n (θ), θ ∈

T δ}, and cost function (6.8) converge to the optimal cost for original process
(2.3) and cost function (2.6) if the initial conditions are the same.

Now add the delayed reflection term and recall the discussion on boundaries
at the beginning of the section. The sequence (ξ0,h,δ(·),mh,δ(·), wh,δ(·), z0,h,δ(·))
is still tight and the limits of the optimal costs for the chain are arbitrarily close
to that for the original process if the boundaries are large enough.

Proof. With the preparation in Theorem 6.2 in hand, the proof follows that
in [10, Chapter 11] closely and the reader is referred to that reference for more

33



detail. Fix a control sequence. The martingale Mh,δ(·) is tight in the Skorohod
topology. Then, since the increments β0,h,δ

n are O(h), any weak-sense limit has
continuous paths with probability one. As noted above and in Section 5. the
proof [10, Section 10.4.1] implies that there is a martingale wh,δ(·) satisfying
(6.26), modulo an asymptotically negligible error, and that converges weakly to
a standard vector-valued Wiener process. The error is due to the o(∆thn) term
in (6.4). Lemma 5.1 is applicable and implies that z0,h,δ(·) is tight. Again, since
the δz0,h,δ

n are O(h), the tightness implies that all weak-sense limit processes
are continuous w.p.1. These facts and the boundedness of ξ1,h,δ

n (0) implies the
tightness of ψ0,h,δ(·) and the asymptotic continuity of any weak-sense limit. Any
sequence mh,δ(·) of relaxed controls is tight.

Now extract a weakly convergence subsequence with limit denoted by (x(·), w(·),
m(·), z(·)). Then the proofs in [10, Chapters 10, 11] imply that (x(·), w(·),m(·), z(·))
is nonanticipative with respect to w(·), that m(·) is an admissible relaxed con-
trol, and that the set satisfies (2.3). Also, the costs for the chain converge to
the cost for the limit process. If we let uh,δ(·) be an optimal control for the
chain, then these comments imply that lim infh,δ→0 V

h,δ(x̂, û) ≥ V (x̂, û). The
reverse inequality lim suph,δ→0 V

h,δ(x̂, û) ≤ V (x̂, û) is proved just as it was for
the no-delay problem in the reference. The presence of delays does not change
the structure and the details are omitted.

7 Size of the state space for the approximating
chain.

The comments concerning dimension and memory below (3.3) all apply to the
numerical procedures. Note that the complexity of the computation of ξ1,h,δ

n (θ)
is not heavily dependent on the dimension of the control variable, or on compo-
nents of x(·) that do not have delay components. If the control and reflection
term are not delayed, then [6] discusses useful numerical procedures, based on
the use of (2.2), without the need for auxiliary variables, and they are preferable
for such problems. Those procedures do not appear to be useful if the control
and/or the reflection processes are also delayed. In particular, one would have
to keep track of the values of the control the reflection terms over the delay
intervals and approximate them by finite-valued discrete-time processes that do
not lose too much information. These approximations become part of the state
space of the approximating chain, usually making its size much too large. For
such problems the approach of this paper is quite promising. The size of the
state space is the product of what is needed for ξ0,h,δ

n and ξ1,h,δ
n (θ), where θ

takes τ/δ values.
Consider a one-dimensional problem where g(·) = p(·) = 0 and let the dis-

cretization level for the ξ1,h,δ
n (θ) be h. Then there is a K < ∞ such that

|χ1(t, θ)| ≤ K(τ + θ),−τ ≤ θ ≤ 0. Without loss of generality, suppose that x(t)
has been centered so that it lies in an interval [0, B0] for some B0 < ∞. The
state space for ξ0,h,δ

n has [B0/h+ 3] points. There are τ/δ values for θ. Thus, if
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we bound ξ1,h,δ
n (θ) by K(τ+θ), the maximum number of points (which includes

the reflecting states) is

[B0/h+ 3]
Kτ

h

K(τ − δ)
h

· · · Kδ
h
.

While large, this is much better than a direct procedure (or the procedure in
[6]) when there are delays in the control. We will now improve it further.

Let h = δ and suppose that b(·) is Lipschitz continuous in θ, uniformly in
the other variables. Then

ξ1,h,δ
n (θ)− ξ1,h,δ

n (θ − δ) = O(δ) + noise, (7.1)

where the noise is due to the randomization and has variance (Theorem 6.1)
O(h∆thn) = O(h3). Since ξ1,h,δ

n (−τ) = 0, the state space can consist of the
differences ξ1,h,δ

n (θ) − ξ1,h,δ
n (θ − δ), −τ + δ ≤ θ ≤ 0. Recall the discussion in

Theorem 6.1 concerning the randomization noise. In the example there, when
doing the randomization to attain the desired conditional mean, the value h
was selected with a probability of order O(h), and the value zero with a high
probability. This implies that, with a high probability, the number of selections
of the value h between advances of the time variable is bounded by some small
number. Thus, suppose that we can (with a high enough probability) bound the
differences in (7.1) by Hδ, for some integer H. Then the size of the state space
is [B0/h+ 3][H]τ/h a considerable improvement. More care is needed if there is
a there is a g(·)µ or δy term. But there will still be an improvement. Clearly,
much more work is needed on the algorithms and state space representations.
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