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ABSTRACT

Most work on planning and problem solving within the field of
artificial intelligence assumes that the agent has complete knowledge of
all relevant aspects of the problem domain and problem situation. Inm
the real world, however, planning and acting must frequently be
performed without complete knowledge. This imposes two additional
burdens on an intelligent agent trying to act effectively. First, when
the agent entertains a.plan for achieving some goal, he must comsider
not only whéther the physical prerequisites of the plan have been
satisfied, but also whether he has all the information necessary to
carry out the plan. Second, he must be able to reason about what he can
do to obtain necessary information that he lacks. In this paper, we
present a theory of action in which these problems are taken into
account, showing how to formalize both the knowledge prerequisites of

action and the effects of action on knowledge.
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I THE INTERPLAY OF KNOWLEDGE AND ACTION

Planning sequences of actions and reasoning about their effects is
one of the most thoroughly studied zreas within artificial intelligence
(AI). Relatively little attention has been paid, however, +to the
important role that an agent's knowledge plays in planning and acting to
achieve a goal. Virtually all AI planning systems are designed to
operate with complete knowledge of all relevant aspects of the problem
domain and problem situation. Often any statement that cannot be
inferred to be true is ;ssumed to be false. In the real world, however,
planning and acting must frequently be performed without complete

knowledge of the situation.

This imposes two additional burdens on an intelligent agent trying
to act effeétively. First, when the agent entertains a plan for
achieving some goal, he must consider not only whether the physical
prerequigites of the plan have been satisfied, but also whether he has
ail the information necessary to carry out the plan. Second, he must be
able to reason a2bout what he can do to obtain necessary information that
he lacks. Al planning systems are usually based on the assumption that,
if there is an action an agent 1is physically able to perform, and
carrying out that action would result in the achievement of a goal P,

then the agent can achieve P. With goals such as opening a safe,




however, there are actions that any human agent of normal abilities is
physically capable of performing that would result in achievement of the
goal (in this case, dialing the combination of the safe), but it would
be highly misleading to claim that an agent could open a safe simply by
dialing the combination umless he actually knew that combination. On
the other hand, if the agent had a piece of paper on which the
combination of the safe was written, he could open the safe by reading
what was on the piece of paper and then dialing the combination, even if

he did not know it previously.

In this paper, we will describe a formal theory of knowledge and
action that is based on a general understanding of the relationship

1 .
between the two. The question of generality is somewhat problematical,

since different actions obvicusly bhave different prerequisites and
results that involve knowledge. What we will try to do is to set up a
formalism in which very general conclusions can be drawn, once a certain
minimum of information has been provided concerning the relation between

specific actions and the knowledge of agents.

To see what this amounts to, consider the notion of a test. The
essence of a test is that it is an action with a directly observable
result that depends conditionally on an unobservable precondition. In
the use of litmus paper to test the pH of a solution, the observable
result is whether the paper has turned red or blue, and the unobservable

precondition is whether the solution is acid or alkaline. What makes



such a test useful for acquiring knowledge is that the agent can infer
whether the solution is acid or alkaline on the basis of his knowledge
of the behavior of litmus paper and the observed color of the paper.
When one is'performing a test, it is this inferred knowledge, rather

than what is directly observed, that is of primary interest.

If we tried to formélize the results of such a test by making
simple assertions about what the agent knows subsequent to the action,
we would have to include the result that the agent knows whether the
solution 1is acid or alkaline 8s a separate assertion from the result
that he knows the color of the paper. If we did this, however, we would
completely miss the point that knowledge of the pH of the solution is
inferred from other knéwledge, rather than being a direct observation.

In effect, we would be stipulating what actions can be used as tests,

can be used as tests.

If we want a formal theory of how an agent's state of knowledge is
changed by his performing 2 test, we have to represent and be able to
draw inferences from the agent’s having several independent pieces of
informatidn. DObviously, we bhave to represent that, after the test is
performed, the agent knows the observable result. Furthermore, we have
to represent the fact that he knows that the‘ test has been performed.
If he just walks into the room and sees the 1litmus paper on the table,
he will know what color it is, but, unless he knows its recent history,

bhe will not have gained any knowledge about the acidity of the solution.




We also need to represent the fact that the agent understands how the
test works; that is, he knows how the observable rtesult of the action
depends on the unobservable preconditicon. Even if he sees the litous
paper put into the solution and then sees the paper change cclor, he
still will not know whether the solution is acid or alkaline unless he
knows how the color of the paper is related to the acidity of the
solution. Finally, we must be able to infer that, if the agent knows
(i) that the test took place, (ii) the observable result of the test,
and (iii) how the observable result depends on the unobservable
precondition, then he will know the unobservable precondition. Thus we
must know enough about-knowledge to tell us when an agent’s knowing a

certain collection of facts implies that he knows other facts as well.

From the preceding discussion, we can conclude that any formalism
that enables us to draw inferences about tests at this level of detail

must be able to represent the following types of assertions:

(1) After A performs ACT, he knows whether Q is true.

(2) After A performs ACT, he knows that he has just performed
ACT.

(3) A knows that Q will be true after he performs ACT if and
only if P is true now.
Moreover, in order to infer what information amn agent will gain as a
result of performing a test, the formalism must embody, or be able to

represent, general principles sufficient to conclude the following:



(4) If (1), (2), 2nd (3) are true, then, after performing ACT,
A will know whether P was true before he performed ACT.

It is important to emphasize that any work on these problems that
is to be of real value must seek to elicit general principles. For
instance, it would be possible to represent (1), (2), and (8) in 2n
arbitrary, ad hoc manner and to add an axiom that explicitly states (4),
thereby "capturing" the notion of a test. Such an approach, however,
would simply restate the superficial observations put forth in this
discussion. Our goal in this paper is to describe a formalism in which
specific facts like (4) follow from the most basic principles of

reasoning about knowledge and action.




IT FORMAL THEORIES OF KNOWLEDGE

A. A Modal Logic of Knowledge

Since formalisms for reasoning about action have been studied
extensively in AI, while formalisms for reasoning about knowledge have
not, we will first address the problems of reasoning about knowledge.
In Section IIT we will see that the formalism that we are led to as a
solution to these probléms turns out to be well suited to developing an

integrated theory of knowledge and action.

The first step in devising =2 formalism for reasoning about
knowledge is to decide what geneéral properties of knowledge we want that
formalism to capture, The properties of knowledge in which we will be
most interested are those that are relevant to planning and acting. One
such property is that anything that is known by someone must be true.
If P is false, we would not want to say that anyone knows P. It might
be that someone believes P or that someone believes he knows P, but it
simply could not be the case that anyone knows P. This is, of course, a
major difference between knowledge and belief., 'If we say that someone
believes P, we are not committed to saying that P is either true or
false, but if we say that someone knows P, we are committed to the truth

of P. The reason that this distinction is important for planring and



acting is simply that, for an agent to achieve his goals, the beliefs on
which he bases his actions must generally be true. After all, merely
believing that performing a certain action will bring about a desired

goal 1is not sufficient for being able to achieve the goal; the action

must actually have the intended effect.

Another principle that turns out to be important for planning is
that, if someone knows something, he kpnows that he knows it. This
principle is often required for reasoning about plans consisting of

several steps. Suppose an agent plans to use ACT to achieve his goal,
1

but, 1in order to perform ACT he needs to know whether P is true and
- 1

whether (@ is true. Subpose, further, that he already knows that P is

true and that he can find out whether Q is true by performing ACT . The
2

agent needs to be able to reason that, after performing ACT , he will
2

know whether P is true and whether § is true. He knows that he will

know whether @ is true because he understands the effects of ACT , but
2

how does be know that he will know whether P is true? Presumably it
ﬁorks something like this: he knows that P is true, so he knows that he

knows that P is true. If he knows how ACT affects P, he knows that he
2

will know whether P is true after he performs ACT . The key step in
) .

this argument is an instance of the principle that, if someone knows

something, he knows that he knows it.



It might seem that we would also want to have the principle that,
if someone does not know something, he knows that he does not know it—--
but this turns out to be false. Suppose that A believes that P, but P
is not true. Since P is false, A certainly does not know that P, but it
is highly unlikely that he knows that he does not know, since he thinks

that P is true.

Probably the most important fact about knowledge that we will want
to capture is that agents can reason on the basis of their knowledge.
All our examples depend on the assumption that, if an agent trying to
solve a problem has all the relevant information, he will apply his
knowledge to produce a solution. This creates a difficulty for us,
however, since agents (at least human ones) are not, in fact, aware of
all the logical consequences of their knowledge. The trouble is that we
can never be sure which of the inferences an agent could draw, he
actually will. The principle people normally use in reasoning about
what other people know seems to be something like this: if we can infer
that something is a consequence of what someone knows, then, lacking

information to the contrary, we will assume that the other person can

draw the same inference,

This suggests the adoption some sort of "default rule" (Reiter,
1980) for reasoning about what inferences agents.actually draw, but, for
the purposes of this study, we will make the simplifying assumption that
agents actually do draw all logically valid inferences from their

knowledge. We can regard this as the epistemological versionm of the



"frictionless case" in classical physics. For a more general framework
in which weaker assumptions about the deductive abilities of agents can

be expressed, see the work of Komolige (1984).

Finally, we will need to include the fact that these basic
properties of knowledge are themselves common knowledge. By this we
mean that everyone knows them, and everyone knows that everyone knows
them, and everyone knows that everyone knows that everyone knows them,
ad infinitum. This type of principle is obviously needed when reasoning
about what someone knows about what someone else knows, but it is also
important in planning, because an agent must be able to reason about

what he will know at various times in the future. In such a case, his

"future self" is analogous to another agent.

In his pioneering work on the 1logic of knowledge and belief,
Hintikka (1962) presents a formalism that captures all these properties.
We will define a formal logic based on Hintikka’s ideas, but modified
somewhat to be more compatible with the additional ideas of this paper.
So, what follows 1is similar to the logic developed by Hintikka in

spirit, but not in detail.

The language we will use initially is that of propositiomnal logic,
augmented by an operator KNOW and terms denoting agents. The formula
KNOW(A,P) is ipterpreted to mean that the agent denoted by the term A
knows the proposition expressed by the formula P. So, if JOHN denotes

John  and LIKES(BILL,MARY) means that Bill likes Mary,




KNOW (JOHN,LIKES (BILL ,MARY)) means that = John knows that Bill likes Mary.
The axioms of the logic are inductively defined as all instances of the

following schemata:

M1. P, such that P is an axiom of ordinary propositional logic
M2. KNOW(A,P) 2 P
M3. KNOW(A,P) 2 KNOW(A,KNOW(A,P))

M4. KNOW(A, (P 2 Q)) 2> (KNOW(A,P) > KNOW(A,Q))
closed under the principle that
M5. If P is an axiom, then KNOW(A,P) is an axiom.

The closure of the axioms under the inference rule modus ponens
(from (P 2 Q) and P, infer Q) defines the theorems of the system. This
system is very similar to those studied in modal 1logic. In fact, if A
is bheld fixed, the resulting system is isomorphic to the modal logic S4
(Hughes and Cresswell, 1968). We will refer to this system as the modal

logic of knowledge.

These axioms formalize in = straightforward way the principles for
reasoning about knowledge that we have discussed. M2 says that anything
that is known is true. M3 says that, if someone knows something, he
knows that he knows it. M4 says that, if someone knows a formula P and
a formula of the form (P 2 Q), then he knows the corresponding formula
Q. That is, everyone can (and does) apply modus ponens. M5 guarantees

that the axioms are common knowledge. It first applies to M1-M4, which

10



says that everyone knows the basic facts about knowledge; however, since
it also applies to its own output, we get axioms stating that everyone
knows that everyone knows, etc. Since M5 applies to the axioms of
propositional logic (Ml), we can infer that everyone knows the facts
they represent. Furthermore, because modus ponens is the only inference
rule needed in propositional logic, the presence of M4 will enable us to
infer that an agent knows any propositional consequence of his

knowledge.

B. A Possible-World Anpalysis of Knowledge

We could try to use the modal logic of knowledgé directly in a
computational system for reasoning about knowledge and action, but, as
we have argued elsewhere (Moore, 1980), all the obvious ways of doing
this encounter difficulties. (Konolige’'s recent work {1984) suggests
some pew, more promising possibilities, but some important questions
remain to be resolved.) There may well be solutions to these problems,
but it turns out that they can be circumvented entirely by changing the
language we use to describe what agents know. Instead of talking about
the individual propositions that an agent knmows, we will talk about what
states of affairs are compatible with what he knows. In philosophy,
these states of affairs are usually called "possible worlds," so we will

adopt that term here as well.

This shift to describing knowledge in terms of possible worlds is

based on a rich and elegant formal semantics for systems like our modal

11




logic of knowledge, which was developed by Hintikka (1962, 1971) in his
work on knowledge and belief. The advantages of this approach are that
it can be formalized within ordinary first-order classical 1logic in a
way that permits the use of standard automatic-deduction techniques in a

2
reasonably efficient manner and that, moreover, it gemeralizes nicely

to an integrated theory for describing the effects of actions on the

agent’s knowledge.

Possible-world semantics was first developed for the 1logic of
necessity and possibility. From an intuitive standpoint, a possible
world may be thought of as a set of circumstances that might have been
true in the actual world. Kripke (1963) introduced the idea that a
world should be regarded as possible, not absolutely, but only relative

to other worlds. That is, the world W might be a possible alternative
1

to W , but not to W . The relation of one world’s being a possible
2 3

alternative to another is called the accessibility relation. Kripke
then proved that the differences among some qf the most important axiom
systems for modal logic corresponded exactly to certain restrictions on
the accessibility relation of the possible-world models of those
systems. These fesults are reviewed in Kripke (1971). Concurréntly
with these developments, Hintikka (1962) publiéhed the first of his
writings on the logic of knowledge and belief, which included a model

theory that resembled Kripke's possible-world semantics. Hintikka's

original semantics was done in terms of sets of sentences, which he

12



called model sets, rather than possible worlds. Later (Hintikka, 1971},

however, he recast his semantics using Kripke’s concepts, and it is that

formulation we will use here.

Kripke’s semantics for necessity and possibility can be converted
into Hintikka’s semantics for knowledge by changing the interpretation
of the accessibility relation. To analyze statements of the form

KNOW(A,P), we will introduce a relation K, such that K(A,¥W ,W ) means

1 2
that the possible world W is compatible or consistent with what A knows
2
in the possible world W . In other words, for all that A knows in W ,
1 ' 1
he might just as well be in W . It is the set of worlds

2

{w | K(A,W ,w )} that we will use to characterize what A knows in W .
2 1 2 1

We will discuss A's knowledge 1in W in terms of this set, the set of
1

states of affairs that are consistent with his knowledge in ¥ , rather
) 1

than in terms of the set of propositions he knows. For the present, let
us assume that the first argument position of K admits the same set of
terms as the {first argument position of KNOW. When we consider
quantifiers and equality, we will have to modify this assumption, but it

will do for now.

Introducing K is the key move in our analysis of statements about

knowedge, so understanding what K means 1is particularly importamnt. To

13




illustrate, suppose that in the actual world——call it W —-A knows that
0

P, but does not know whether . If W is a world where P is false, then
1

¥ is not compatible with what A knows in W ; hence we would have
1 0

-K(A,W ,W ). Suppose that W and W are compatible with everything A
0 1 2 3

knows, but that Q is true in W and false ir W . Since A does not know
2 3

whether Q is true, for all he knows, he might be in either W or W
2 3

instead of W . Hence, we would have both K(A,W ,W ) and K(A,¥W W ).
0 : 0 2 0 3

This is depicted graphically in Figure 1.

Some of the properties of knowledge c¢an be captured by putting
constraints on the accessibility relation K. For instance, requiring

that the actual world W be compatible with what each knower knows in
0

W, i.e., Va (K(a,W
11

,¥ )), is equivalent to saying that anything that
0 0 ‘

0
is known is true. That i1s, if the actual world is compatible with what
everyone [actually] knows, then no one has any false knowledge. This
cofresponds to the modal axiom MZ2.

The definition of K implies that, if A knows that P in W , then P
0

must be true in every world W such that K(A,W ,W ). To capture the
1 0 1

fact that agents can reason with their knowledge, we will assume the

14



FIGURE 1 “A KNOWS THAT P~
“A DOESN'T KNOW WHETHER Q"

w

n

FIGURE 2 P IS TRUE IN EVERY WORLD THAT IS COMPATIBLE WITH WHAT A KNOWS”

15



converse is also true. That is, we assume that, if P is true in every

world W such that K(A,W ,W ), then A knows that P in W . (See Figure
1 0 1 0

2.) This principle is the model~theoretic analogue of axiom M4 in the
modal logic of knowledge. To see that this is so, suppose that A knows
that P and that (P 2 Q). Therefore, P and (P 2 Q) are both true in
every world that is cdmpatisle with what A knows. If this is the case,
though, then Q must be true in every world that is compatible with what

A knows. By our assumption, therefore, we conclude that A knows that Q.

Since this assumption, 1like M4, is equivalent to saying that an
agent knows all the logical consequences of his knowledge, it should be
interpreted oniy as a default rule. In a particular instance, the fact
that P follows from A's knowledge would be a justification for
concluding that A knows P. However, we should be prepared to retract
the conclusion that A knows P in the face of stronger evidence to the

contrary.

With this assumption, we can get the effect of M3--the axiom
stating that, if someone knows something, he knows that he knows it—-by

requiring that, for any W and W , if W is compatible with what A knows

1 2 1
in W and W is compatible with what A knows in W , then W is
0 2 . 1 2
compatible with what A knows in W . Formally expressed, this is
0

16



va ,w ,w (K(a ,W ,w ) 2 (K(a ,w ,w
2 1 1 1

) 3 K(a ,¥ ,w )))
1 1 1 0O 1 0 2

2
By our previous assumption, the facts that A knows are those that are
true in every world that is compatible with what A knows in the actual
world. Furthermore, the facts that A knows that he knows are those that
are true in every world that is compatible with what he knows in every
world that is compatible with what he knows in the actual world. By the
constraint we have just proposed, however, all these worlds must also be
compatible with what A knows in the actual world (see Figure 3), so, if

A knows that P, he knows that he knows that P.

Finally, we can get the effect of M5, tﬁe principle that the basic
facts about knowledge ;re themselves common knowledge, by generalizing
these constraints so that they hold not only for the actual world, but
for all possible worlds. This follows from the fact that, if these
constraints hold for all worlds, they hold for all worlds that are
compatible with what anyone knows in the actual world; they also hold
for all worlds that are compatible with what anyone knows in all worlds
that are compatible with what anyone knows in the actual world, etc.
Therefore, everyone knows the facts about knowledge that are represented
by the constraints, and everyone knows that everyone knows, etc. Note
that this generalization has the effect that the constraint
corresponding to M2 becomes the requirement that, for a given knower, K
is reflexive, while the comstraint corresponding to Mé becomes the

requirement that, for a given knower, K is transitive.

17




FIGURE 3 ‘“1F A KNOWS THAT P, THEN HE KNOWS THAT HE KNOWS THAT P”

Apnalyzing kpnowledge in terms of possible worlds gives us a very
nice treatment of knowledge about knowledge. Suppose A knows that B

knows that P. Then, if the actual world is W , in any world W such
0 1

that K(A,¥ ,W ), B knows that P. We now continue the analysis relative
0 1

to W, so that, in any world W such that k(B,W W), P is true.
1 2 ‘1 2

Putting both stages together, we obtain the analysis that, for any

worlds W and W such that K(A,W ,W ) and K(B,¥
0 1

,¥ )}, P is true in W .
1 2 2

1 2

(See Figure 4.)

18



FIGURE 4 A KNOWS THAT B KNOWS THAT P~

Given these constraints and assumptions, whenever we want to assert
or deduce something that would be expressed in the modal logic of
knowledgé by KNOW(A,P), we can instead assert or deduce that P is true
in every world that is compatible with what A knows. We can express
this in ordinary first-order logic, by treﬁting possible worlds as
individuals (in the logical semse), so that K is just‘ an ordinary
felation. We will therefore introduce an operator T such that T(W,P)

means that the formula P is true in the possible world W. If we let W
0]

denote the actual world, we can convert the assertion KNOW(A,P) into

19




vw (K(A,W ,w ) 2 T(w ,P})
1 0 1 1

It may seem that ‘we have not made any real progress, since,
although we have gotten rid of one nonstandard operator, KNOW, we have
introduced another one, T. However, T bhas an important property that
KNOW does not. Namely, T "distributes" ovef ordinary logical operators.
In other words, -P is true in W just in case P is not true in W, (P v Q)
is true in W just in case P is true in W or @ is true in W, and so on.
We might say that T is extensional, relative to a possible world. This
means that we can transform any formula so that T is applied only to
atomic formulas. We éan then turn T into an ordinary first-order
relation by treating all the nonintensional atomic formulas as names of
atomic propositions, or we can get rid of T by replacing the atomic
formulas with predicates on possible worlds. This is no 1loss to the

expressive power of the language, since, where we would have previously

asserted P, we now simply assert T(W ,P) or P(W ) instead.
‘ 0 0

C. Knowledge, Equality, and Quantification

The formalization of knowledge presented so far 1is purely
propositional; a number of additicnal problems grise when we attempt to
extend the theory to handle equality and quantification. For instance,
as Frege (1949) pointed out, attibutions of knowledge and belief lead to
violations of the prinéiple of equality substitutionmn. We are not
entiﬁled to infer KNOW(A,P(C)) from B = C and KNOW(A,P(B)) because A
might not kmow that the identity holds.

20



The possible-world analysis of. knowledge provides a very mneat
solution to this problem, once we realize that a term can denote
different objects in different possible worlds. For instance, if B is
the expression "the number of planets™ and ¢ is "nine," then, although
B =C is true in the actual world, it would be false in a world ip which
there was a tenth planet. * Thus, we will say that an equality statement
such as B = C is true in a possible world W just in case the denotationl
of the term B in W is the same as the denotation of the term C in W.
This is a special case of the more gemeral rule that a formula of the

form P(A ,...,A ) is true in W just in case the tuple consisting of the
1 n

denctations in W of the terms A ,...,A is in the extension in W of the
1 n

relation expressed by P, provided that we fix the interpretation of = in

all possible worlds to be the identity relation.

Given this interpretation, the inference of KNOW(A,P(C)) from B = C
and KNbW(A,P(B)) will be blocked (as it should be). To infer
KNOW(A,P(C)) from KNOW(A,P(B)) by identity substitution, we would have
toﬁknow that B and C denote the same object imn every world compatible
with what A knows, but the truth of B = C guarantees only that they
denote the same object in the actual world. On the other hand, if
KNOW(A,P(B)) and KNOW(A, (B*= C)) are both true, then in all worlds that
are compatible with what A knows, the denotation of B is in the
extension of P and is the same as the denotation of C; hence, the
denotation of C 1is in the extension of P. From this we can infer that

KNOW(A,P(C)) is true.

21




The introduction of quantifiers also causes problems. . To modify a
famous example from Quine (1971), consider the sentence "Ralph knows
that someone is a spy." This sentence has at least two interpretations.
One is that Ralph knows that there is at least one person who is a spy,
although he may have no idea who that person is. The other
interpretation is that there is a particular person whom Ralph knows to
be a spy. As Quine says (1971, p. 102), "The difference is vast;
indeed, if Ralph is like most of us, [the first] is true and [the
second] is false." This ambiguity was explained by Russell (1949) as a
difference of scope. The idea is that indefinite noun phrases such as
"someone" can be analyzed in context by paraphrasing sentences of the
form P("someone") as "There exists a person x such that P(x)," or, more
formally, 3x(PERSON(x) A P(x)). Russell goes on to point out that, in
sentences of the form "A knows that someone is a P," the rule for
eliminating "someone" can be applied to either the whole sentence or
only the subordinate clause, "someone is a P." Applying this
observation to "Ralph knows that someone is a spy," gives us the

following two formal representations:

(1) K‘I‘JOW(RALPH,EIx(PERSON(x) A SPY(x)))

(2) 3x(PERSON(x) A KNOW(RALPH,SPY(x)))

The most natural English paraphrases of these formulas are "Ralph

knows that there 1is a person who is a spy," and "There is a person who
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Ralph knows is a spy." These seem to correspond pretty well to the two
interprétations of the original sentence. 8o, the ambiguity in the
original sentence is mapped into an uncertainty as to the scope of the
operator KNOW relative to the existential quantifier introduced by the

indefinite description "someone."

Following a suggestion of Hintikka (1962), we can use a formula
similar to (2) to express the fact that someone knows who or what
something is. He points out that a sentence of the form "A knows who
{(or what) B is" intuitively seems to be equivalent to "there is someocne
(or something) that A knows to be B. But this can be represented
formally as "Ix(KNOW(A,{x = B))). To take a specific example, "John
knows who the Presidentris“ can be paraphrased as "There is someone whom

John knows to be the President," which can be represented by
(3) 3x(KNOW(JOHN, (x = PRESIDENT)))

In (1), XNO¥ may still be regarded as a purely propositional
operator, although the proposition to which it is applied now has a
quantifier in it. Put another way, KNOW still is used simply to express
a relation between a knower and the proposition he knows. But (2) and
(3) are not 56 simple. 4In these formulas there is a quantified variable
that, although bound outside the scope of the operator KNOW, has an
occurrence inside; this is sometimes called "quantifying in."

Quantifying into knowledge and belief contexts is frequently held to

pose serious problems of interpretation. Quine (1971), for instance,
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holds that it is unintelligible, because we have not specified what
proposition is known unless we say what description is used to fix the

value of the quantified variable.

The possible;world analysis, ‘however, provides us with a very
natural interpretation of quantifying in. We keep the standard
interpretation that Bx(P(xj) is true just in case there is some value
for x that satisfies P. If P is KNOW(A,Q(x)), themn 2 value for x
satisfies P(x) just in case that value satisfies Q(x) in every world
that is compatible with what A knows. So (2) is satisfied if there is a
particular person who is a spy in every world that is compatible with
what A knows.. That is, in every such world the same person is a spy.
On the other hand, (1).is satisfied if, in every world compatible with
what A knows, there is some person who is a spy, but it does not have to

be the same one in each case.

Note that the difference between (1) and (2) has been transformed
from a difference in the relative scopes of an existential quantifier
and the operator KNOW to a difference in the relative scopes of an
existential and a universal quantifier (the "every" in "every possible
world comp;tible with..."). Recall from ordinary first-order logic that
Ix(Vy(P(x,y))) entails Vy(3x(P(x,y))), but not vice versa. The
possible-world analysis, then, implies that we ghou]d be able to infer
"Ralph knows that there is a spy," from "There is someone Ralph knoﬁs to

be a spy," as indeed we can.
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When we look at how this amalysis applies to our representation for
"knowing who,™ we get a particularly satisfying picﬁure. We said that A
knows who B is means that there is someone whom A knows to be B. If we
analyze this, we conclude that there is a particular individual who is B
in every world that is compatible with what A knows. Suppose this were
not the case, and that, in some of the worlds compatible with what A
knows, one person is B, whereas in the other worlds, some other person
is B. In other words, for all that A knows, either of these two people
might be B. But this is exactly what we mean when we say that A does
not know who B is! Basically, the possible-world view gives us the very
natural picture that A knows who B is if A has narrowed the

possibilities for B down to a single individual.

VAnother consequence of +this analysis worth noting is that, if A
knows who B is and A knows who C 1is, we can conclude that A knows
whether B = C. If A knows who B is and who C is, then B has the the
same denotation in all the worlds that are compatible with what A knows,
and this is also true for C. Since, in all these worlds, B and C each
have only one denotation, they either depote the same thing everywhere
or denote different things everywhere. Thus, either B = C 1is true in
every world cﬁmpatible with what A knows or B # C is. From this we can
infer that either A knows that B and C are the same individual or that

they are not.

We now have a coherent account of quantifying in that is not framed

in terms of kpowing particular propositions. ' Still, in some cases
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knowing a certain proposition counts as knowing something that would be
expressed by quantifying in. For instance, the proposition that John

knows that 321-1234 is Bill's telephone number might be represented as

(4) KNOW(JOHN, (321-1234 = PHONE-NUM(BILL))),

which does not involve quantifying in. We would want to be able to
infer from this, however, that John knows what Bill’'s telephone number

is, which would be represented as
(5) 3x(KNOW(JOHN, (x = PHONE-NUM(BILL)))).

It might_ seem tha£ (5) can be derived from (4) simply by the
logical principle of existential gemeralization, but that principle is
not always valid in knowledge contexts. Suppose that (4) were not true,
but that instead Jobhn simply knew that Mary and Bill had the. same

telephone number. We could represent this as
(6) KNOW(JOHN, (PHONE-NUM(MARY) = PHONE-NUM(BILL))).

It 1is clear that we would not want to infer from (6) that John knows
what Bill’s telephone number is--yet, if existential generalization were
universally valid in knowledge contexts, this inference would go

through.

It therefore seems that, 1in knowledge contexts, existential
generalization can be applied to some referring expressions ("321-

1234"), but not to others ("Mary’s telephone number"). We will call the
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expressions to which existential generalization can be applied standard

identifiers, since they seem to be the omnes an agent would use to

identify an object for another agent. That is, "321-1234" is the kind

of answer that would always be appropriate for telling someone what

John's telephdne number is, whereas "Mary’s telephone number,®” as a
3.

general rule, would not.

In terms of- possible worlds, standard identifiers have a very
straightforward interpretation. Standard identifiers are simply terms
that have the same demotation in every possibie world. Following Kripke
(1972), we will call terms that haQe the same demotatiom in every
possible wérld. rigid designators. The conclusiorn that standard
identifiers are rigid designators seems inescapable. If a particular
expression can always be used by an agent to identify its referemt for
any other agent, then there must not be any possible circumstances under
which it could refer to something else. Otherwise, the first agent

could not be sure that the second was in a position to rule out those

other possibilities.

The-validity of existential generalization for standard identifiers
follows immédiately from their identification with rigid designators.
The possible-world amnalysis of KNOW(A,P(B)) is that, in every world
compatible wi%h what A knows, the denotatior of B in that world is in
the extemsion of P in that world. Existertial generalization fails in

general because we are unable to conclude that there is ary particular
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individual that is in the extension of P in all the relevant worlds. If
B is a rigid designator, however, the denotation of B is the same in
every world. Consequently, it is the same in every world compatible
with what A knows, and that demotation is an individual that is in the

extension of P in all those worlds.

There are a few more observations to be made: about standard
jidentifiers and rigid designators. First, in describing standard
identifiers we assumed that everyone knew what they referred to.
Identifying them with rigid designators makes the stronger claim that
what they refer to is common knowledge. That is, not only does everyome
know what a particular standard identifier denotes, but everyone knows
that everyone knows, efc. Second, although.it is natural to think of
any individual having a unique standard identifier, this is not required
by our theory. What the theory. does require is that, if there are two
standard identifiers for the same individual, it should be common

knowledge that they demote the same individual.
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IIT  FORMALIZING THE PUSSiBLE—WURLD ANALYSIS OF KNOWLEDGE

talanguage

A. Object Language and Me

As we 1indicated above, the analysis of knowledge in terms of
possible worlds can be formalized completely within first-order logic by
admitting possible worlds into the domain of qﬁanﬁification.and paking
the extension of every expression depend on the possible wbrld in which
it is evaluated. For éxﬁmple, the possible-world' ﬁnalysis of "A krnows
who B.is“ would be as follows: There is some individual x such that, in

every world w that is compatible with what the agent who 1is A in the
1

actual world knows in the actual world, x is B in w . This means that
1 .

in our formal theory we translate the formula of the modal logic of

knowledge,
3x (KNOW(A, (x = B))),

into the first-order formula,

Ix(vw (K(A(W ), W ,w ) D (x = B(w)))).
1 0O 01 ) 1

One convenient way of stating the translation rules precisely is to

axiomatize them in our first-order theory of knowledge. This can be
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done by introducing terms to denote formulas of -the modal logic of
knowledge (which we will henceforth call the object language) and

-_——- =

axiomatizing a truth definition for those formulas in a first-order
the advantage of letting us use either the modal language or the
possible-world language;—wﬁichever is more convenient for a barticular

purpose—-—while rigorously defining the connection between the two.

The typical method of representing expressions of one formal
language in another is to use string operations like concatenation or
list operations like CONS in LISP, so that the conjunction of P and Q
might be represented by something like CUNS(P,CUNS('A,CDNS(Q,NIL))),
which could be abbreviated LIST(P,’A,Q). This would be interpreted as a
list whose elements are P followed by the conjunction s;mbol followed by
Q. Thus, the metalanguage expression CONS(P,CONS('A,CONS(Q,NIL))) would
denote the object language expression (P A Q). McCarthy (1962) bhas
devised a much more elegant way to do the encoding, bhowever. For
purposes of semantic interpretation of the object language, which is
what we want to do, the details of the syntax of that language are
largely irrelevant. In particular, the only thing we need to know about
the syntax of conjunctions is that there is some way of taking P and @
and producing the conjunction of P and Q. We can represent this by
having a function AND such that AND(P,Q) denotes the conjunction of P
and §. To use McCarthy’s term, AND(P,Q) is an abstract syntax for

——— - T

representing the conjunction of P and Q.
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We will represent object language variables and: constants by
metalanguage constants; we will use metalanguage functions in an
abstract syntax to represent object language predicates, functions, and
sentence operators. For example, we will.represent the object lanaguagé
formula KNOW ( JOHN, 3x (P(x))) by the metalﬁnguage term
KNOW (JOHN,EXIST(X,P(X))), "where JOHN and X are metalanguage constants,

and KNOW, EXIST, and P are metalanguage functions.

Since KNOW(JOHN,EXIST(X,P(X))) is a term, if we want to say that
the object language formula it denotes 1is true, we have to do so

explicitly by means of a metalanguage predicate TRUE:
TRUE (KNOW (JOHN ,EXIST(X,P(X))})).

In the possible-world analysis of statements about knowledge, however,
an object language formula is not absclutely true, but only relative to
a possible world. Hence, TRUE expresses not absolute truth, but truth

in the actual world, which we will denote by W . Thus, our first axiom
0

is

L1.* ¥vp (TRUE(p ) = T(W ,p )),
1 1 0 1

where T(W,P) means that formula P is true in world W. To simplify the
axioms, we will let the metalanguage be a many-sorted logic, with
different sorts assigned to differents sets of variables. For instance,

the variables w , w ,... will range over possible worlds; x , x ,...
1 2 1 2
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will range over individuals in the domain of the object language; and

a, a,... will range over agents. Because we are axiomatizing the
1 2 '

object language itself, we will need several sorts for different types

of object language expressions. The variables p, p ,... will range
1 2

over object language formulas, and  t ,t ,... will range over chject
1 2

language terms.

The recursive definition of T for the propositional part of the
object language is as follows:
L2. ¥w ,p ,p (T(w ,AND(p ,p )) = (T(w ,p ) A T(w ,p )))
1 1 2 1 i 2 1 1 1 2

L3. ¥Yw ,p ,p (T(w ,OR(p ,p )) = (T(w ,p ) V T(w ,p )))
1 1 2 1 1 2 1 1 1 2

L4. ¥w ,p ,p (T(w ,IMP(p ,p ))
1 1 2

(T(w ,p ) 3 T(v .p)))
11 2 1 1 2

1

L5. Yw ,p ,p (T(w ,IFF(p ,p )) = (T(w ,p )
i1 2 1 1 2 1

T(w .p )))
1 1 2

L6. vw ,p (T(w ,NOT(p )) = -T(w ,p ))
1 1 1 1 1 1

Axioms L1-L6 merely +translate the logical connectives from the
object language to the metalanguage, using an ordinary Tarskian truth
definition. For instance, accordimg to L2, AND(P,Q) is true in a world
if and only if P and } are both true in the world. The other axioms
state that all the truth-functiomal connectives are "transparent® to T

in exactly the same way.
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To represent quantified object language formulas in  the
metalanguage, we will introduce additional functions into the abstract
syntax: EXIST and ALL. These functions will take two arguments—-a term
denoting an object language variable and a term denoting an object
language formula. Axiomatizing the interpretation of quantified object
language formulas presents some minor technical problems, however. We
would like to say something like this: EXIST(X,P) is true in W if and
only if there is some individual such that the open formula P is true of
that individual in W. We do not have any way of saying that an open
formula is true of an individual in a world, however; we just have the
predicate T,‘which simﬁly says that a formula is true in a world. One
way of solving the problem would be +to introduce a new predicate, or
perbaps redefine T, to express the Tarskian notion of satisfaction
rather than truth. This approach is semantically clean but
syntacticﬁlly clumsy, so we will instead follow the advice of Scott
(1970; p. 151) and define the truth of a quantified statement in terms
of substituting into the body of that statement =a rigid designator for

the value of the quantified variable.

In ' order to formalize this substitutional approach to the
interpretation of object language quantification, we mneed a rigid
designator inﬁ the object language for every individual. Since our
representation of the object language 1is in the form of an abstract
syntax, we can simply stipuléﬁe that there is a function @ that maps any

individual in the object language’s domain of discourse into an object




language rigid designator of that individual. The definition of T for
quantified statements is then given by the following axiom schemata:
L7. Ww (T(w ,EXIST(X,P)) = 3x (T(w ,P[&(x )/X])))
1 1 1 1 1

Ls. le(T(w ,ALL(X,P)) = vxl(T(wl.P[@(xl)/X])))

1

In these schemata, P may be any object language formula, X may be

any object language variable, and the notation P[@(x )/X] designates the
1

expression  that results from substituting @(x ) for every free
1

occurrence of X in P.

L7 says that an existentially quantified formula is true in a world
W if and only if, for some individual, the result of substituting a
rigid designator of that individual for the bound variable in the body
of the formula is true in W. L8 séys that a universally quantified
formula is true in W if and only if, for every individual, the result of
substituting =a rigid designator of that individual for the bound

variable in the body of the formula is true in W.

Except for the knowledge operator itself, the only part of the

truth definition of the object language that remains to be given is the

definition of T for atomic formulas. We remarked previously that a

formula of the form P(A ,...,A ) is true in 2 world W just in case the

tuple consisting of the denotations in W of the terms A ,...,A is in
1 n




the extension in W of the relation P. To axiomatize this principle, we
need two additions to the metalanguage. First, we need a function D .
that maps a possible world and an object language term into the
denotation of that term in that world. Second, for each n-place ocbject
lanéuage predicate P, we need a corresponding n+l-place metalanguage
predicate (which, by convention, we will write :P) that takes as its .
arguments the possible world in which the object language formula is to
be evaluated .and the denotatioms iﬁ that world of the arguments of the
object language predicate. The interpretation of an object language
atomic formula is then given by the axiom schema
‘LQ. Yw ;t ,...,t
1 1 n - -
(T(w ,P(t ,...,t )) = :P(w, ,D(w ,t),....,D(w ,t )))
1 1 n 1 1 1 l n
To eliminate the function D, we need to 1introduce a metalanguage
expression corresponding to each object language constant or function.
In the general case, the new expression will be a function with an extra
argument position for the possible world of evaluation. The axiom
schemata for D are then
LlO.‘Vw 4 (D(w ,8(x )) = x )
1 1 1 1 1

Lil. vw (D(w ,C) = :C(w))
1 1 - 1 -

L12. ¥w ,t ,...,t
1 1 n
{(D(w ,F(t ,...,t )) = :F(w ,D(w ,t ),...,D(v ,t ))),
1 1 n 1 1 1 1l n
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where C is an object language constant and F is  an object langauage
function, and we use the ":" convention already introduced for their

metalanguage counterparts.

Since €(x ) is a rigid designator of x , its value is x in every
1 1 1 :

possible world. In the gemeral case, an ‘object language constant will
have a corresponding metalanguage function that picks out the denotation
of the constant in a particular world. Similarly, an Object language
function will have a corresponding metalanguage function that maps a
possible world and the denotations of the arguments of the object
language function into the value of the object language function applied

to those arguments in that world.

It will be convenient to treat specially those object language
constants and functions that are (or can be used to comstruct) rigid
designators. We could introduce -additional axioms asserting that such
expressions have the same value in every possible world, but we can
accomplish the same end simply by making the corresponding metalanguage
expressions independent of the possible world of evaluation. So, for
object language comstants that are rigid designators, we will have a
variant of axiom LI11:

Llla. ¥w (D(w ,C) = :C) if C is a rigid designator.
1 1

We will similarly treat rigid functions-—-those that always map a

particular tuple of arguments into the same value in all possible

worlds:
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L12a. Vv ,t ,...,t (D(w ,F(t ,...,t )) = :F(O(w ,t ),...,D(w ,t )))
1 1 n 1 1 n 1 1 1 »n
if F is a rigid fupction.
Finally, we introduce a special axiom for the equality predicate of
the object language, fixing its interpretation in all possible worlds to
be the identity relation:

L13. Vw ,t .t (T(% .EQ(t ,t )) = (D(¥ ,t ) = D(w ,t )))
112 1 1 2 11 1 2

B. A First-Order Theory of Knowledge

The axioms given iﬁ the preceding section allow us to talk about a
formula of first-order  logic being true relative to a possible world
rather than absolutely. This generalization would be pointleés;
however, if we never had occasion to mention any possible worlds other
than the actual one. References to other possible worlds are introduced
by our axioms for knowledge:

Kl1. ¥Yw ,t ,p

1 1 1
(T(w ,KNOW(t ,p )) = ¥w (K(D(w ,t ),w ,w ) d T(w ,p)))
1 11 2 11 1 2 2 1

K2. va ,w (K(a ,w ,w ))
1 1 1 1 1

K3. va ,w ,w (K(2 ,w ,w) 3 ¥w (K(a ,# ,w') 3 K(z ,w ,w)))
1 1 2 1 1 2 3 1 2 3 1 1 3

K1 gives the possible-world analysis for object language formulas

of the form KNOW(A,P). The interpretation is that KNOW(A,P) is true in
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world W just in case P is true in every world that is compatible with
1

what. the agent denoted by A in W knows in W . Since an object language
1 1

term may denote different individuals in different possible worlds, we

use D(W ,A) to identify the denotation of A in W . K represents the
1 1

accessibility relation associated with KNOW, so K(D(W ,A),¥ ,¥ ) is how
1 1 2

we represent the fact W2 is compatible with what the agent denoted by A
in W knows in W .

1 1

As we pointed out before, the principle embodied in K1 is that an
agent knows everything- entailed by his knowledge. Since this is too
strong a generalization, in a more thorough analysis we would regard the
inference from the right side of - K1 to tﬁe left side as being a default
inference. K2 and K3 state constraints on the accessibility relation K
that we use to capture other properties of knowledge. They require

that, for a fixed agent :A, K(:A,w ,w ) be reflexive and transitive. We
1 2

have alreagy shown this entails that anythiﬁg that anyone knows must be
true, and that if someone knows something he knows that he knows it.
Finally, the fact that K1-K3 are asserted to hold for all possible
worlds implies that everyone knows the principles they embody, and
everyone knows that everyone knows, etc. In other 'words, these

principles are common knowledge.



To illustrate how our theory operates, we will show how to derive a
simple result in the logic of knowledge, that from the premises that A
knows that P(B) and A knows that B = C, we can conclude that A knows
that P(C). Our proofs will be in natural-deduction form. The axioms
and preceding lines that justify each step will be given to the right of .
the step. Subordinate proofs will be indicated by indented sections,
and ASS will mark the assumptions on which these subordinate proofs are
based. DIS(N,M) will indicate the discharge of the assumption on line N
with respect to the conclusion on line M. The general pattern of proofs
in this system will be to assert the object language premises of the
problem, transform thém into their metalanguage equivalents, using
axioms L1-L13 and K1, then derive the metalanguage version of the
conclusion using first-order logic and axioms such as K2 and K3, and
finally transform the conclusion back into the object language, again
using L1-L13 and K1. |

Given: TRUE(KNOW(A,P(B)))

TRUE (KNOW (A, EQ(B,C)))

Prove: TRUE (KNOW(A,P(C) )}

1. TRUE(KNO¥(A,P(B))) Given
2. T(¥ ,KNOW(A,P(B))) L1,1
0

3. K(D(¥W ,A),¥ ,w ) 3 T(w ,P(B)) K1,2
0 0 1 1 '

4. K(:AW ),¥ ,w ) 2 T(w ,P(B)) L11,3

0 0 1 1

5. TRUE(KNOW(A,EQ(B,C))) Given

6. T(¥ ,KNOW(A,EQ(B,C))) L1,5

, 0 : |

7. K(D(W ,A),¥ ,w ) > T(w ,EQ(B,C)) K1,6
0 0 1 1
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8. K(:A(W ),¥ ,w ) 2 T{w ,EQ(B,C)) : L11,7
0 0 1 1

9. KG:AW ), W ,w) ‘ " ASS
0O 0 1
10.  T(w ,P(B)) . 4,9
1
11. :P(w ,D(w ,B)) L9, 10
1 1
12.  :P(w ,:B(w)) L11,11
1 1
13. T(w ,EQ(B,C)) 8,9
1
14. D(w ,B) = D(w ,C) L13,13
1 1
15. :B(w ) = :C(w ) L11,14
1 1
16.  :P(w ,:C(w)) 12,15
1 1
17. :P(w ,D(w ,0)) L11,16
1 1 .
18. T(w ,P(C)) L9,17
1
19. K(:A(W ),¥ ,w ) 2 T(w ,P(C)) DIS(9,18)
o 0 1 1
20. K(D(W ,A),¥ ,w ) 2 T(w ,P(C)) L11,19
0 o1 1
21. T(W ,KNOW(A,P(C))) K1,20
o
22. TRUE(KNOW(A,P(C))) L1,21

A knows that P(B) (Line 1), so P(B) 1is true in every world
compatible with what A knows (Line 4). Similarly, since A knows that
B=C (Line 5), B=C 1is true in every world compatible with what A

knows (Liné 8). Let w be one of these worlds (Line 8). P(B) and B=C
. i

must be true in w (Lines 12 and 15), hence P(C) must be true in w
1 ' 1

(Line 16). Therefore, P(C) is true in every world compatible with what
A knows (Lime 19), so A kmows that P(C) (Line 22). If TRUE(EQ(B,C)) had

been given instead of TRUE(KNOW(A,EQ(B,C))), we would have had B= C
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true in W instead of w . In that case, the substitution of C for B in
0 1

P(B) (Line 16) would not have been valid, and we could mnot have
concluded that A knows that P(C). This proof seems long because we have
made each routine step a separate line. This is worth doing once to
illustrate all the formal details, but in subsequent examples we will

combine some of the routine steps to shorten the derivation.
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IV A POSSIBLE-WORLD ANALYSIS OF ACTION

In +the preceding sectjons, we have presented a framework for
describing what someone knows in terms of possible worlds. To
characterize the relation of knowledge to action, we need a theory of
action in these same terms. Fortunately, the standard way of looking at
actions in AI gives us just that sort of theory. Most AI programs that
reason about actions are based on a view of the world as a set of
possible states of affairs, with each action determining a binary
relation between states‘of affairs--one being the outcome of performing
the action in the other. We can integrate our analysis of knowledge
with this view of action by identifying the possible worlds used to
describe knowledge with the possible states of affairs used to describe

actions.

The identification of a possible world, as used in the analysis of
know]edge,_with the state of affairs at a particular time does not
require any changes in the formalization already presented, but it does
require a reinterpretation of what the axioms mean. If the variables

W ,... are réinterpreted as ranging over states of affairs, then "A

knows that P" will be analyzed roughly as "P is true in every state of

affairs that is compatible with what A knows in the actual state of

42



affairs.” It might seem that taking possible worlds to be states of
affairs, and therefore not extended in time, might make it difficult to
talk about what somecne knows regarding the past or future. That is not
the case, however. Knowledge about the past and future can be handled
by modal tense operators, with corresponding accessibility relations
between possible states-of-affairs/worlds. We could have a tense
operator FUTURE such that FUTURE(P) wmeans that P will be true at some
ti;e to come. If we 1let F be an accessibility relation such that

F(¥ ,¥ ) means that the state-of-affairs/world W 1lies in the future of
1 2 ' 2

the state-of-affairs/world W , then we can define FUTURE(P) to be true
1

in W just in case there is some W such that F(W ,W ) holds and P is
1 2 1 2

true in W .

2
This much is standard tense logic (e.g., Rescher and Urquhart,
1971). The interesting point is that statements about someone’s
knowledge of the future work ocut correctly, even though such knowledge
is analyzed in terms of alternatives to a state of affairs, rather than
alperﬂati?es to a possible world containing an entire course of events.
The proposition that John knows that P will be true 1is represented
simply by KNOW(JOHN,FUTURE(P)). The analysis of this is that FUTURE(P)
is true in every state of affairs that 1is compatible ‘with what John
knows, from which it follows that,‘for each state of affairs that is

compatible with what John knows, P is true in some future altermative to
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that state of affairs. An important point to note here is that two
states of affairs can be "internally" similar (that is, they coincide in
the truth-value assigned to any nonmodal statement), yet be distinct
because they differ in the accessibility relations they bear to other
possible states of affairs. Thus, although we treat a possible world as
a state of affairs rather ‘than a course of events, it is a state of
affairs in the particular course of even£s defined by its relationships

to other states of affairs.

For blanning and reasoning about future actiomns, instead of a tense
operator like FUTURE, which simply asserts what will be true, we need an
operator that 'describes what would be true if a certain event occurred.
Our approach will be té recast McCarthy’s situation calculus (McCarthy,
1968) (McCarthy and Hayes, 1968) so that it meshes with our possible-
world characterization of knowledge. The situation calculus is a first-
order language in which predicates that c¢an vary in truth-value over
time are given an extra argument to indicate what situations (i.e.,
states of affairs) they hold in, with a function RESULT that maps an
agent, an action, and a situation into the situation that results from
the agent's performance of the action in_ the first situation.
Statements about the effects of actions are then expressed by formulas
like P(RESULT(A,ACT,S)), which means that P is true in the situation

that results from A’s performing ACT in situation S.

To integrate these ideas into our logic of knowledge, we will

reconstruct the situation calculus as a modal logic. In parallel to the
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operator KNOW for talking about knowledge, we introduce an object
language operator RES for talking about the results of events.
Situations will not be referred to explicitly in the object language,
but they will reappear in the possible-world semantics for RES in the
metalanguage. RES will be a two-place operator whose first arguments is
a term denoting an event, and whose second argument is a formula.
RES(E,P) will mean that it is possible for the eveﬁt denoted by E to
occur and that, if it did, the formula P would then be true. The
possible-world semantics for RES will be specified in terms of an

accessiblity relation R, parallel to K, such that R(:E,¥ ,¥ ) means that
1 2

¥ is the situation/world that would result from the event :E happening
2 .

in W . ’
1

We assume that, if it is impossible for :E to happen in W (i.e.,
1

if the prerequisites of :E are not satisfied), then there is no W such
2

that R(:E,¥ ,¥ ) holds. Otherwise we assume that there is exactly one
1 2

4

W such that (:E,W ,¥ ) holds:
2 12

R1. vw ,w ,w ,e ((R{e ,w ,w ) AR(e ,w ,w )} ) (w =w))
1 2 31 1 1 2 1 1 3 2 3

(Variables e ,” e ,... range over events.) Given these assumptions,
1 2
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RES(E,P) will be true in a situation/world W just in case there is some
1

W that is the situation/world that results from the event described by
2

E happening in W , and in which P is true:

1

R2. vw ,t ,p (T(w ,RES(t ,p )) = 3w (R(D(w ,t ),w ,w ) AT(v ,p)))
1 1 1 1 1 1 2 1 1 1 2 2 1

The type of event we will normally be concerned with is the

performance of an action by =an agent. We will let DO(A,ACT) be a

description of the event consisting of the agent denoted by A performing

5
the action denoted by ACT. (We will assume that the set of possible

agents is the same as. the set of possible knowers.) We will want
DO(A,ACT) to be the standard way of referring to the event of A’'s
carrying out the action ACT, so DO will be a rigid function. Hence,
DO(A,ACT) will be a rigid designator of an event if A is a rigid

designator of an agent and ACT a2 rigid designator of am action.

Many actions can be thought of as general procedures applied to
particular‘objects. Such a general procedure will be represented by a
function that maps the objects to which the procedure is applied into
the action of applying the procedure to those objects. For instance, if
DIAL represents the general procedure of dialiné copbinations of safes,
SF a safe, and COMB(SF} the combination of SF, then DIAL(COMB(SF},SF)
represents the action of dialing the combination COMB(SF) on the safe
SF, and DO(A,DIAL(COMB(SF},SF)) represents the event of A’s dialiﬁg the
combination COMB(SF) on the safe SF.
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This formalism gives us the ability describe an agent’s knowledge
of the effects of carrying out an action. In the object language, we

can express the claim that A knows that P would result from A 's doing
1 2

ACT by saying that KNOW(A ,RES(DO(A ,ACT),P)) is true. The possible-
1 2

world analysis of this statement is that, for every world compatible

with what A knows in the actual world, there is a world that is the
1

result of A 's doing ACT and in which P is true (see Figure 5).
2

Formally, this is expressed by

Vo (K(:A ,¥ ,w ) 2 3w (R(:DD{:A ,:ACT),w ,w ) A T(w ,P))),
1 1 0 1 2 2 I 2 2

if we assume that A , A , and ACT are rigid designators.
1 2
In addition to simple, one-step actions, we will want tco talk about
complex combinations of actions. We will therefore introduce
expressions into the object language for action sequences, conditionals,

and iteration. If P 1is a formula, and ACT and ACT are action
1 2

descriptions, then (ACT ; ACT ), IF(P,ACT ,ACT ), and WHILE(P,ACT ) will
& 1 2 2 1

1

also be action descriptions. Roughly speaking, (ACT ; ACT ) describes
i 2

the sequenCé of actions consisting of ACT followed by ACT .
1 2

IF(P,ACT ,ACT ) describes the conditional action of doing ACT if P is
1 2 1
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R:po(:A,, :ACT)
-

R:po:A,, :ACT)

FIGURE 5 TRUE(KNOW(A,, RES{DO{A,, ACT),P})) =
Vwq (K{:Aq, Wp, wi) O 3wz (R{:DO{:Az, :ACT), W1,W2) A Tiwg, P}

true, otherwise doing ACT . WHILE(P,ACT ) describes the iterative
2 1

action of repeating ACT as long as P is true.
1

Definingl denotations for these complex action descriptions is
somewhat problematical, The difficulty comes from the fact that,
whenever we have an action described as a sequence of subactions, any
expression used 1in specifying one of the subactions needs to be
interpretea relative to the situation in which that subaction is carried
out. For instance, if PUTON(X,Y) denotes the action of putting X on Y,
STACK denotes a stack of blocks, TABLE denotes a table, and TOP picks

out the top block of a stack, we would want the execution of
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(PUTON (TOP(STACK) , TABLE) ; PUTON(TOP (STACK) , TABLE) )

to result in what were initially the top two blocks of the stack being
put on the table, rather than wha£ was initially the top block being put
on the table twice. The secoﬁd occurrence of TOP(STACK)} should be
interpreted with respect to the situation in which the first block has
already been removed. The problem is that, 1in general, what situation
exists after one step of a sequence of actions has beén excecuted
depends on who the agent is. If John picks up a certain block, he will
be holding the block; if, however, Mary performs the same action, she
will be holding the block. If ar action description refers to "the
block Mary is holding," exactly which block it is may depend on which
agent is carrying out ‘the action, but this i§ not specified by the

action description.

One way of getting around these difficulties conceptually would be
to treat actions as functions from agents to events, but notational
problems would remain nevertheless. We will therefore choose 2
different solution: treating complex actions as "virtual individuals"®
(Scott, 1970}, or pseudoentities. That is, complex action descriptions
will not be treated as referring expressions in themselves, but only as
component parts of more complex referring expressions. In particular,
if ACT is a complex action description (and A denotes an agent), we will
treat the event description DO(A,ACT), but not ACT itself, as having a
denotation. Complex action descriptions will be permitted to occur only

as part ‘of such event descriptions, and we will define the denotations
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of the event descriptions in a way that eliminates reference to complex
actions., We will, however, continue to treat actions as real entities
that can be quantified over, and simple action descriptions such as

DIAL (COMB(SF),SF) will still be considered to denote actioms.

The denotations of event descriptions formed from conditional and
iterative action descriptions can be defined as follows in terms of the
denotations of event descriptions formed from action sequence
descriptions:

R3. vw ,t ,t ,t ,p

1 1 2 3 1
((T(w ,p ) 2 (D(w ,DO(t ,IF(p ,t .t ))) =D(w ,DO(t ,t )))) A
1 1 3

1 1 1 2 1 1 2
(-T{(w ,p ) 2 (D(w ,DO(t ,IF(p ,t ,t ))) =D(w ,DO(t ,t )))))
1 1 1 1 12 3 1 1 3

R4. ¥Yw ,t ,t ,p

11 2 1
(D(w ,DO(t ,WHILE(p ,t ))) =
1 1 1 2
D(w ,DO(t ,IF(p ,(t ; WHILE(p ,t )),NIL)))
1 1 1 2 1 2

R3 says that performing the conditional action IF(P,ACT ,ACT ) resu1t$
1 2

in the same event as carrying out ACT in a situation where P is true or
’ 1

carrying out ACT in a situation where P is false. R4 says that
2

performing WHILE(P,ACT) always results in. the same event as
IF(P, (ACT; WHILE(P,ACT)),NIL), where NIL denotes the null action. In
other words, doing WHILE(P,ACT) is equivalent to doing ACT followed by
WHILE(P,ACT) if P is true, otherwise doing nothing--i.e., doimg ACT as
long as P remains true.
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To define the denotation of evemts that consist of carrying out
action sequences, we need some notation for talking about sequences of
events. First, we will let ";" be a polymorphic operator in the object

language, creating descriptions of event sequences in addition to action

sequences. Speaking informally, if E and E | are event descriptions,
1 2
then (E ; E ) names the event sequence consisting of E followed by E ,
1 2 1 2
just as (ACT ; ACT ) names the action sequence consisting of ACT
1 2 1
followed by ACT . In the metalanguage, event sequences will be
2
indicated with angle brackets, so that <:E ,:E > will mean :E followed
1 2 1
by :E . The denotations of expressions involving action and event

2

sequences are then defined by the following axioms:

R5. Ww ,t ,t ,t

1 1 2 3
(D(w ,DO(t .(t ; t ))) =D(v ,(DO(t ,t ); DO(@(D(w ,t )).t ))))
1 1 2 3 1 1 2 11 3
R6. Vw ,w ,t ,t
1 2 1 2
(RO .t ) ,w) > (D(w ,(t; t)) =<D(w,t),Dw ,t)>))
1 1 1 2 1 1 2 1 1 2 2

R5 says that the event consisting of an agent A’s performance of

the action sequence ACT followed by ACT is simply the event sequence
1 2.

that consists of A’s carrying out ACT followed by his carrying out
‘ 1
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ACT . Note that, in the description of the second event, the agent'is
2

picked out by the expression @(D(w ,A)), which guarantees that we get
1

the same agent as in the first event, in case the origirnal term picking
out the agent changes its denotation after the first event has happened.

R6 then defines the denotation of am event sequence description (E ; E )
1 2

as the sequence comprising the denotation of E in the original
1

situation followed by the denotaticn of E in the situation resulting
2

from the occurrence of E . If there is no situation that results from
1

the occurence of E , we leave the denotation of (E ; E ) undefined.
1 1 2
Finally, we need to define the accessibility relation R for event
sequences and for events in which the null actiom is carried out.
R7. Yw ,w ,e ,e
1 2 1 2
(R(<e ,e >,w ,w ) = 3w (R(e ,w ,w ) AR(e ,w ,w)))
1 2 1 2 3 1 1 3 2 3 2
.R8. ¥Yw ,a (R(:DO(a ,:NIL),w ,w ))
‘11 1 1 1
R7 says that a situation W is the result of the event sequence <E ,E »

2 1 2

occurring in W if and only if there is a situation W such that W is
1 3 3

thke result of E occurring in W , and W is +the result of E occurring
1 1 2 2

52



6
in W . We will regard NIL as 2 rigid designator in the object language
3
for the null action, so :NIL will be its metalanguage counterpart. RS8,

therefore, says that in any situation the result of doing nothing is the

same situation.
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V AN INTEGRATED THEORY OF KNOWLEDGE AND ACTION

.
13
1=
i

Dependence of Action on Knowledge

As we pointed out in the introduction, knowledge and action
interact in two principal ways: (1) knowledge is often required prior to
taking action; (2) actions can change what is known. In regard to the
first, we need to consider knowledge prerequisites as well as physical
prerequisites for actiﬁns. OQur wmain thesis is that the knowledge
prerequisites for an action can be analyzed as a2 matter of knowing what
action to take. Recall the example of trying to open a locked safe.
Why is it that, for an agent to achieve +this goal by using the plan
"Dial the combination of the safe,™ he must know the combination? The
reason is that an agent could know that dialing the combination of the
safe would result in the safe’s being open, but still not know what to
do because he does not know what the combination of the safe is. A
similar aqalysis applies to knowing a telephone number inm order to call
someone on the telephone er knowing a password in order to gain access

to a computer system.

It is important to realize that even mundane actions that are not
usually thought of as requiring any special knowledge are no different

from the examples just cited. For instance; none of the AI problem-
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solving systems that have dealt with ﬁhe blocks world have tried to take
into account.whether the robot possesses sufficient knowledge to be able
to move block A to point B. Yet, if a command were phrased as "Move my
favorite block back to its original position," the system could be just
as much in the dark as with "Dial the conbination of the safe."™ If the
system does not know what actions satisfy the description, it will not
be able to carry out the command. The only reason that the question of
knowledge seems more pertinent in the case of dialing combinations and
telephone numbers is that, 1in the contexts in which these actions
naturally arise, there is wusually no presumption that the agent knows
what action fits the deécription. An important conseqﬁence of this view
is that the specification of an action will normally not need to include
anything about knowledge prerequisites. These will be supplied by a
general theory of using actions +to achieve goals. What we will need to
specify are the conditions under which an agent knows what action is

referred to by an action description.

In our possible-world semantics for knowledge, the wusual way of
knowing what entity is referred to by a description B is by having some
description € that is a rigid designator, and by knowing that B = C.
(Note, that if B itself is a rigid designator, it can be used for C.)
In particular, knowing what action is referred to by an action
" description means having a rigid designator for the action described.
- But, if this is all the knowledge that is required for carrying out the

action, then a rigid designator for am action must be an executable
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an executable description of a computation to an interpreter for the

language in which the program is written.

Often the actions we want to +talk about are mundane general
procedures that we would be willing to assume everyone knows how to
perform. Dialing a telephone number or the combination of a safe is a
typical example. In many of these cases, if an agent knows the general
procedure and what objects the procedure is to be applied>to, then he
knows everything that is relevant to the task. In such cases, the
function that represents the geperal procedure will be a rigid fuﬁction,
so that, if the arguments of the function are rigid designators, the
term consisting of the function applied to the arguments will be a rigid
designator. Hence, knowing what objects the arguments denote will
amount to knowing what action the term refers to. We will treat dialing
the combination of a2 safe, or dialing a telephone number as being this
type of procedure. That is, we assume that anyone who knows what
combination he is to dial and what safe he is to dial it on thereby

knows what action he is to perform.

There are other procedures we might alsoc wish to assume that anyone
could perform, but that cannot be represented as rigid functions.
Suppose that, in the blocks world, we let PUTON(B,C) denote the action
of putting B on C. Even though we would not want to question anyone’s

ability to perform PUTON in general, kmnowing what objects B and C are
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also necessary., We could have a special axiom stating that knowing what
action PUTON(B,C) 1is requires knowing where B and C are, but this will
be superflucus if we simply assume that everyone knows the definition of
PUTON in terms of more primitive actions. If we define PUTON(X,Y) as
‘something like

(MOVEHAND(LOCATION(X));

GRASP;

MOVEHAND (LOCATION(TOP(Y))});
UNGRASP) ,

then we can treat MOVEHAND, GRASP, and UNGRASP as rigid functions, and
we can see that executing PUTON requires knowing where the two objects
are because their locations are mentioned in the definition. So,
although PUTON itself is not a rigid function, we can avoid having a
special axiom stating what the knowledge prerequisites of PUTON are by

defining PUTON as a sequence of actions represented by rigid functions.

To formalize this theory, we will introduce a new object language
operator CAN.- CAN(A,ACT,P) will mean that A can achieve P by performing
ACT, in the sense that A knows how to achieve P by performing ACT. We
will not give a possible-world semantics for CAN directly; instead we
will give.a definition of CAN in terms of KNOW and RES, which we can use
in reasoning about CAN to transform =2 probler into terms of possible

worlds.

In the simplest case, an agent A can achieve P by performing ACT if

he knows what action ACT is, and he knows that ‘P would be true as a
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result of his performing ACT. In the object language, we can express
this fact by
Va(3x (KNOW(a, ((x = ACT) A RES(DO(a,ACT),P)))) 2
CAN(a,ACT,P)).

We cannot strengthen this assertion to a biconditional, however, because
that would be tooc stringent a definition of CAN for complex actions. Tt
would require the agent to know from the very beginning of his action
exactly what he is going to do at every step. In carrying out a complex
action, though, an agent may take some imitial action that results in

his acquiring knowledge about what to do later.

For an agent +to be able to achieve a goal by performing a complex
action, all that is really neccessary is that he know what to do first,
and that he know that he will know what to do at each subsequent step.

So, for any action descriptions ACT and ACT , the following formula also
1

states a condition under which an agent can achieve P by performing ACT:

Va(3x (KNOW(a, ((DO(a, (x; ACT }) = DO(a,ACT)) A
1
RES(DO(a,x),CAN(a,ACT ,P))))) 3
1

CAN(a,ACT,P)).

This says that A can achieve P by doing ACT if there is an action X such

that A knows that his execution of the sequence X followed by ACT would
1

be equivalent to his doing ACT, and that his doing X would result in his

being able to achieve P by doing ACT .
1
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Finally, with the following metalanguage axiom we can state that
these are the only two conditions under which an agent can use =z
particular action to achieve a gozl:

Cl. vww ,t ,t ,t ,p

1 1 2 3 1
((t =@ ,t)))?d
2 1 1
(T(w ,CAN(t ,t ,p )) =
1 1 38 1
(T(w ,EXIST(X,KNOW(t ,AND(EQ(X,t ),RES(DO(t ,t ),p ))))) Vv
1 3 2 3 1

1 .

3t (T(w ,EXIST(X,KNOW(t ,AND(EQ(DO(t ,(X; t )),DO(t ,t)),

4 1 1 2 4 2 3
RES(DO(t ,X),

2
CAN(t ,t ,p ))))))N)N
2 4 1

Letting t =A, t =A, and t = ACT, C1 says that, for any formula P,
1 2 1 3

if A is +the standard identifier of the agent denoted by A, then A can
1

achieve P by doing ACT if ‘and only if ome of the following conditiomns is
met: (1) A knows what action ACT is and knows that P would be true as a

result of A ’s (i.e., his) doing ACT, or (2) there is an action
1

description t = ACT such that, for some action X, A knows that A 's
) 4 1 1

doing X followed by ACT is the same event as his doing ACT and knows
1

that A ’s doing X would result his being able to achieve P by doing
1 ,

ACT .
1
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As a2 simple illustration of these concepts, we will show how to
derive the fact that an agent can open a safe, given the premise that he
knows the combination. To do this, the only additional fact we need is
that, if an agent does dial the correct combination of a safe, the safe
will then be open:

Dl. vw ,a ,x

1 1 1
(:SAFE(x ) 2
1

3w (R(:DO(a ,:DIAL(:COMB(w ,x ),x )),w ,w ) A
2 1 1 1 1 2

1
:0PEN(w ,x )}))
2 1

D1 says that, for any possible world W , any agent :A, and any safe :SF,
. 1

tbere is a world W that is the result of :A’s dialing the combination
2

of :SFon :SF in W, and in which :5F is open. The important point
1

about this axiom, 1is that the function :COMB (which picks out the
combination to a safe) depends on what possible world it is evaluated
in, while :DIAL (the function that maps a combination and a safe into
the action of dialing the combination on the safe) does not. Thus we
are implicitly assuming that, given a particular safe, there may be some
doubt as to whét its combination is, but, given a combination and a
safe, there exists no possible doubt as to what action dialing the
combination on the safe is. (We also simplify matters by omitting the
possible world-argument to :SAFE, so as to avoid raising the question of

knowing whether something is a safe.) Since this axiom is asserted to
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hold for all possible worlds, we are in effect assuming that i1t is

common knowledge.

Now we show that, for any safe, 1f the agent A knows its
combination, hé can open the safe by dialing that combination; or, more
precisely, for all X, if X is a safe and there is some Y, such that A
knows that Y is the combiﬁation of X, then A can open X by dialing the

combination of X on X:

Prove: TRUE(ALL (X, IMP(AND (SAFE(X) ,EXIST(Y,KNOW(A,EQ(Y,COMB(X))))))
CAN(A,DIAL(COMB(X),X),0PEN(X))))

1. T(W, | ASS
0
AND (SAFE(@(x ),

1
EXIST(Y,KNOW(A,EQ(Y,CoMB(@(x )))IN))
1

2. :SAFE(x ) 1,L2,L9
1
3. Vvw (K(:A(W),¥W ,w ) D 1,L2,L7,K1,L11,
1 ¢ 0 1
(:C = :COMB(w ,x ))) L13,L10,L12
11 '
4. K(:A(W ), W ,% ) ASS
4 0 0 1
5. :C = :COMB(w ,x ) 3,4
1 1
6. :DIAL(:C,x ) = :DIAL(:COMB(w ,x },x ) 5
1 11 1
7. T(w , L10,L12,L12a,L13

1
EQ(@(:DIAL(:C,xI)),

DIAL(CUMB(@(xl)),@(xl))))
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10.

11.

Iw (R(:DO(:A(W ),
2 0

2,D1

:DIAL(:COMB(w ,x ),x )),
11

w ,w ) A
1 2
:0PEN(w ,x )))
2 1
T(w ,

1 .
RES(DO(@(D(W ,A)),
0

1

L11,L10,L12a,L9,R2

DIAL (COMB(@(x )),8(x ))),
1 1

UPEN(@(xl))))

T(w ,

7,9,L2

A;D(EQ(@(:DIAL(:C,x ),
: 1

DIAL(COMB(@(XI)):@(xl))).

RES(DO(&(D(¥ ,A)),
0

DIAL(COMB(€(x )),8(x ))),
1 1

OPEN(&(x )))
1

K(:A(W),¥ ,w ) D
0 0 1
T(w ,
1
AND(EQ(@(:DIAL(:C,x )}
1
DIAL(COMB(@(x )
1

RES(DO(@(D(W ,A)),
0

))

DIS(4,10)

¥

).e(x ))),
1

DIAL (COMB(@(x )),@(x )));
1 1

UPEN(@(XI)))))
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12. T(wo’ : 11,L11,K1
KNOW(ﬁﬁD(EQ(@(:DIAL(:C.x 1),
DIAL(COMB(@(il))-g(xl))),
RES(DO{8(D(¥ ,4)),
DIAL(gUMB(@(x )),@(xl))).

: 1
OPEN(@(xl))))))

13, T(¥ , , | 12,L7
E§IST(X.
KNOW(A,
AND (EQ(X,
DIAL (COMB(@(x )),
1
@(xl))),
RES(DO(8(D(W ,A)),
0
DIAL(COMB(@(x )),
1
@(xl))),
UPEN(@(XI)))))
14, T(W , 13,C1
o ‘
CAN(A,
DIAL(COMB(@(x )).&(x )),
1 1

UPEN(@(XI))))

15. T(W , DIS(1,14)
AﬁD(SAFE(@(x ), |
EXIST(Y,iNOW(A,EQ(Y,COMB(@(x NN 2
T(W , '
cgN(A,DIAL(coMB(@(xl)),@(xl)),OPEN(@(XI))))
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16. TRUE(ALL(X, . 15,L4,L8,L1
IMP (AND ( SAFE(X) ,
EXIST(Y,
KNOW(A,
EQ(Y,COMB(X))))))
CAN(A,DIAL (COMB(X) ,X),0PEN(X))))

Suppose that x is a safe and there is some C that A knows to be
1

the combination of x (Lines 1-3). Suppose w is a world that is
1 1

compatible with what A knows in the actual world, W (Line 4). Then C
0

is the combination of x in w (Line 5), so dialing C on x is the same
1 1 1

action as dialing the combination of x on x in w (Lines 6 and 7). By
1 1 1

axiom D1, A’s dialing the combination of x on x in w will result in
1 1 1

X 's being open (Lines 8 and 9). Since w was an arbitrarily chosen
1 1

world compatible with what A knows in W , it follows that in W A knows
0 0

dialing C on x to be the act of dialing the combination of x on x and
1 1 1

that his dialing the combination of x on x will result in x ’s being
1 1 1

open (Lines 10-12). Hence, A knows what action dialing the combination

of x on X 1is, and that his dialing the combination of x on x will
1 1 ' 1 1

result in x ’s being open (Line 13). Therefore A can open x by dialing
1 1

the combination of x on x , provided that x is a safe and he knows the
1 1 . 1
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combination of x (Lines 14 and 15). Finally, since x was chosen
1 1

arbitrarily, we conclude that A can open any safe by dialing the

combination, provided he knows the combination (Line 16).

B. The Effects of Action on Knowledge

In describing the effects of an action on what an agent knows, we
will distinguish actions that give the agent new information from those
that do not. Actions that provide an agent with new information will be
called informative actions. An action is informative if an agent would
know more about the siﬁuation resulting from his performing the action
after perfprming it than before performing it. In the blocks world,
looking inside a box could be an informative action, but moving a block
would probably npot, because an agent would normally know no more after
moving the block than he would before moving it. In the real world
there are probably no actions that are never informative, because all
physical processes are subject to variation and error. Nevertheless, it

seems clear that we do and should treat many actions as noninformative

from the standpoint of planning.

Even if an action is mnot informative in the sense we have just
defined, performing the action will still alter the agent’s state of
knowledge. If +the agent is aware of his action, he will know that it
has been performed. As a result, the tense and modality of many of the

things he knows will <change. For example, if before performing the
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action he knows that P is true, then after performing the action he will
know that P was true before he performed the action. Similarly, if
before performing the action he knows +that P would be true after

performing the action, then afterwards he will know that P is true.

We can represent this very elegantly in terms of possible worlds,

Suppose :A is an agent and :E an event that consists im :A’s performing
1

some noninformative action. For any possible worlds W and W such that
1 2

W is the result of :E 's happening in W , the worlds that are
2 1 1

compatible with what :A knows in W are exactly the worlds that are the
: 2

result of :E 's happening in some world that is compatible with what :A
; .

knows in W . In formal terms, this is

1

Vv ,w (R(:E,w ,w ) 2
1 2 1 2
Vw (K(:A,w ,w ) = 3w (K(:A,w ,w ) AR(CE,w ,¥)))),
3 2 3 4 1 4 4 3

which tells us exactly how what :A knows after :E happens is related to
. 1

what :A knows before :E happens.
1
We can try to get some insight inte this analysis by studying
Figure 6. Sequences of possible situations connected by events can be

thought of as possible courses of events. If W is an actual situation
1

66



Wy

FIGURE 6 THE EFFECT OF A NONINFORMATIVE ACTION ON THE AGENT'S KNOWLEDGE

in which :E occurs, thereby producing W, then W and W comprise a
1 2 1 2

subsequence of the actual course of events. Now we can ask what other

courses of events are compatible with what :A knows in W and in W .
1 2

Suppose that W and W are connected by :E in a course of events that
4 3 1

is compatible with what :A knows in W . BSince :E 1is not informative
1 1

for :A, the only sense in which his knowledge is increased by :E is
1

that he knows that :E has occurred. Since :E occurs at the
1 1

corresponding place in the course of events that includes W and W ,
4 3
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this course of events will still be compatible with everything :A knows

in W . However, the appropriate "tense shift" takes place. In W , W
2 1 4

is a possible alternative present for :A, and W is a possible
3

alternative future. In W , W is a possible alternative present for :A,
2 3
and W is a possible alternative past.

4

Next consider a different course of events that includes W and W
5 6

connected by a different event, :E . This course of events might be
2

compatible with what :A knows in W if he is not certain what he will do
- 1

next, but, after :E has happened and he knows that it has happened,
1

this course of events is no longer compatible with what he knows. Thus,

W 1is not compatible with what :A knows in W . We can see, then, that
6 2

even actions that provide the agent with no new information from the
outside world still filter out for him those courses of events in which

he would have performed actions other than those he actually did.

The idea of a filter on possible courses of events also provides a
good picture of informative actions. With these actiomns, though, the
filter is even stronger, since they mnot only filter out courses of
events that differ from the actual course of events as to what event has

just occurred, but they also filter out courses of events that are
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incompatible with the informaticn furnished by the action. Suppose :E
is an event that consists in :A’'s performing an informative action, such
that the information gained by the agent is whether the formula P is

true. For any possible worlds W and W such that W is the result of
1 2 2

:E’s happening in W , the worlds that are compatible with what :A knows
1

in W are exactly those worlds that are the result of :E’s happening in
2

some world that is compatible with what :A knows in W , and in which P
1

has the same truth-value as in W :

2
vw ,w (R(:E,w ,w )}
1 2 1 2
vw (K(:A,w ,w }) = (3w (K(:A,w ,w }) ARCE,w ,w)) A
3 2 3 4 1 4 4 3
(T(w ,P} = T(w ,P)}}))
2 3

It is +this final condition that distinguishes informative actions from

those that are not.

Figure 7 1illustrates this analysis. Suppose W and W are
1 2

connected by :E and are part of the actual course of events. Suppose,

further, that P is true in W . Let W and W also be connected by :E,
2 4 3

and let them be part of a course of events that is compatible with what

:A knows in W . If P is true in W and the only thing :A learns about
1 3

the world from :E (other than that it has occurred) is whether P is
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true, this course of events will them still be compatible with what :A

knows after :E has occurred. That is, W will be compatible with what
3

:A knows in W . Suppose, on the other hand, that W and W form part of
2 5 6

a similar course of events, except that P is false in ¥ . If :A does
6

not know in W whether P would be true after the occurrence of :E, this

1
course of events will also be compatible with what he knows in W .
1
After :E has occurred, however, he will know that P is true;

consequently, this course of events will no longer be compatible with
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what he knows. That is, W will not be compatible with what :A knows in
6

It is an advantage of this approach to describing how an action
affects what an agent knows that not only do we specify what he learns
from the action, but also ;hat he does not learn. Our analysis gives us
necessary, as well as sufficient, conditions for :A’s knowing that P is
true after event :E. In the case of an action that is not informative,
we can infer that, unless :A knows before performing the action whether
P would be true, he will not know afterwards either. In the case of an
informative -action such that what is learned is whether Q is true, he

will not know whether P is true unless he does already—-or knows of some

dependence of P on 0.

Within the context of this possible-world analysis of the effects
of action on knowledge, we can formalize the requirements for a test
that we presented 1in Section I. Suppose that TEST is the action of
testiﬁg the acidity of a particular solution with blue litmus paper, RED
is a propositional constant (a predicate of zero arguments} whose truth
depends bn the color of the litmus paper, and ACID is a propositional
constant whose truth depends on whether the solution is acidic. The
relevent fact about TEST is that the paper wiil be red after an agent A
performs the test if and only if the solution is acidic at the time the

test is performed:
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(ACID > RES{DO(A,TEST),RED)) A

(=ACID D> RES(DO(A,TEST),-RED))

In Section I we listed three conditions that ought to be sufficient
for an agent to determine, by observing the outcome of a test, whether
some unobservable precondition holds; in this case, for A to determine
whether ACID is true by observing whether RED is true after TEST is

performed:

(1) After A performs TEST, he knows whether RED is true.

(2) After A performs TEST, he knows that he has just performed
TEST.

(3) A knows that RED will be true after TEST is performed just
in case ACID was true before it was performed.

Conditions (1) and (2) will be satisfied if TEST is an informative
action, such that the knowledge provided is whether RED is true in the

resulting situation:

Tl. Yw ,w ,a
1 2 1
(R(:DO(a ,:TEST),w ,w )} 2
1 1 2
vw (K(a ,w ,w ) =
3 1 2 3
(3w (K(a ,w ,w ) A R(:DO(a ,:TEST),w ,w }) A
4 1 4 1 4 3

‘RED(w }))))
3

n ~

(:RED(w )
2

If :RED and :TEST are the metalanguage analogues of RED and TEST, T1

says that for any possible worlds W and W such that W is the result
1 2 2
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of an agent’s performing TEST in W , the worlds that are compatible with
1

what the agent knows in W are exactly those that are the result of his
2

performing TEST in some world that is compatible with what he knows in

¥ , and in which RED has the same truth-value as in W . In other words,

| 2
after performing TEST, the-agent knows that he has done so and he knows
whether RED is true in the resulting situation. As with our other
axioms, the fact that it holds for all possible worlds makes it common

knowledge.

Thus, A can use TEST to determine whether the solution is acid,
provided that (1) is also satisfied. We can state this very succinctly
if we make the further assumption that A knows that performing the test

7
does not affect the acidity of the solution. Given the axiom Tl for

test, it is possible to show that

ACID ) RES(DO(A,TEST),KNOW(A,ACID)) and
~ACID ) RES(DO(A,TEST),KNOW(A,-ACID))

are true, provided that

KNOW(A, (ACID > RES(DO(A,TEST), (ACID A RED)))) and
KNOW (A, (~ACID D RES(DO(A,TEST), (-ACID A -RED))))

are both true and A 1s a rigid designator. We will carry out the proof
in one direction, showing that, if the solution is acidic, after the

test has been conducted the agent will know that it is acidic.
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Given: TRUE(KNOW(A,IMP(ACID,RES(DO(A, TEST),AND(ACID,RED)))))

TRUE (KNOW (A, IMP (NOT (ACID) ,RES (DO(A, TEST),
AND (NOT (ACID) ,NOT(RED) ) }}))
TRUE (ACID)

Prove: TRUE(RES(DO(A,TEST),KNOW(A,ACID)))

1.

b2

3.

e

[9)]

o2

vw (K(:A,W ,w ) D - Given,L1,L4,R2,
1 0 1
(:ACID(w )} 3 L2,L9,L12,L11a

1
3w (R(:DO(:A,:TEST),% ,w ) A
2 1 2
:ACID(w } A :RED(w })))
2 2

. Vw (K(:A,W ,w ) 2 Given,L1,L4,R2,L2,
1 0 1
(-:ACID(w ) 2 L6,L9,L12,L11a
1-
3w (R(:DO(:A,:TEST),w ,w } A
2 1 2
~:ACID(w } A ~:RED(w ))))
2 2
:ACID(W ) L1,L9
0
:ACID(W )} > 1,K2
0
3w (R(:DO(:A,:TEST),¥W .w )} A
2 0 2

:ACID(w } A :RED(w })
2 2

. R(:DO(:A,:TEST),W ,W ) 3,4
1

0

1
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7. ww (K(G:AW ,w ) =
2

10.

11.

12.

13.

14.

15.

16. -

17.

18.

19.

20.

2 1
(Iw (K(:AW ,w ) A
3 0 3
R(:DO(:A,:TEST),w ,w )) A
3 2
(:RED(W ) = :RED(w ))
1 "2
K(:A W ,w )
1 2
K(:A W W)
0 3

R(:DO(:A, :TEST) ,W ,w )
3 2

:RED(W ) = :RED(w )
1 2

:RED(w )
2
~:ACID(W ) 2
3
Jw (R(:DO(:A,:TEST),W ,w ) A
4 3 4
~:ACID(w ) A ~:RED(w ))
4 4
~:ACID(W )
3

R(:DO(:A, :TEST) W W )
3 4
-~:RED(W )
4

w =¥
2 4

-~:RED{w )
2

FALSE

:ACID(W )
3

))
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13,14

13,14

15,R1

16,17

12,18

DIS(14,19)




21.  :ACID(W ) 2 : 1,9
3

3w (R(:DO(:A,:TEST),W ,w ) A
4

3 4
:ACID(w ) A :RED(w ))
4 4
22, R(:DO(:A, :TEST) ,W A 20,21
3 4
23.  :ACID(W ) . 20,21
4
24. w =W 15,22
2 4
95.  :ACID(w ) 23,24
2
26. K(:A,W ,w ) D :ACID(w ) DIS(8,25)
1 2 ' 2
27. R(:DO(:A, :TEST),¥ ,W ) A 5,26
0 1
vw (K(:A,W ,w ) D :ACID(w ))
2 1 2 P
28. TRUE(RES(DO(A, TEST) ,KNOW(A,ACID))) 27,L9,L11a,L12,

K2,R2,L1

The possible-world structure for this proof is depicted in Figure
8. Lipes 1 and 2 translate the premises into the metalanguage. Since A
knows that, if the solution is acidic, performing the test will result
in the litmus paper’s being red, it must be true in the actual world

(W ) that, if the solution is acidic, performing the test will result in
0

the litmus paper’s being red (Line 3). Suppdse that, in fact, the

solution is acidic (Line 4). Then, if W is the result of performing
1

the test in W  (Line 6), the paper will be red in W (Line 6).
0 1
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FIGURE 8 THE EFFECT OF A TEST ON THE AGENT'S KNOWLEDGE

Furthermore, the worlds that are compatible with what A knows in W are
1

those that are the result of his performing the test in some world that

is compatible with what he knows in W , and in which the paper is red if
1

and only if it is red in W (Line 7). Suppose that w is a world that
1 2

is compatible with what A knows in W (Line 8). Then there is a W that
‘ 1 3

is compatible with what A knows in W (Line 9), such that w is the
0 : 2

result of A’s performing the test in W (Line 10). The paper is red ino
3

w , if and only if it is red in W (Line 11); therefore, it is red in w
2 1 2
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(Line 12). Since A knows how the test works, if the solution were not

acidic in W , it would not be acidic, =nd the paper would not be red, in
3

w (Line 13).
2

Now, suppose the solution were mnot acid in W (Line 14). If W is
. 3 4

the result of A’s performing the test in W (Line 15), the paper would
3

not be red in W (Line 16). But w is the result of A’s performing the
4 2

test in ¥ (Line 17), so the paper would not be red in w (Line 18). We
3 : 2

know this is false (Line 19), however, so the solution must be acidic inm

W (Line 20). If the solution is acidic in W , it must also be acidic
3 3

in the situation resulting from A’s performing the test in W (Lines 21-
3

23), but this is w (Line 24). Therefore, the solution is acidic in w
2 2

(Line 25). Hence, in W , A knows that the solution is acidic (Line 26),
1

so in the situation resulting from A’s performing the test in W , he
0

knows that the solution is acidic (Line 27). In other words (Line 28),
A’s performing the test would result in his knowing that the solution is

acidic.

By an exactly parallel argument, we could show that, if the

solution were not acidic, A could also find that out by carrying out the
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test, so our analysis captures the sort of reasoning about tests that we
desecribed in Section I, based on general principles that govern the

interaction of knowledge and action.
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NDTES

1
This paper presents the analysis of knowledge and action, and the

Tepresentation of that analysis in first-order logic, that were
developed in the author’s doctoral thesis (Moore, 1980). The material

in Sections III-A and IXI-B, however, has been substantially revised.

Chapters 6 and 7 of (Moore, 1980) present a procedural
interpretation of the axioms for knowledge and action given in this
paper that seems to ‘produce reasonably efficient behavior ir an
automatic deduction system.

3
"Mary’s telephone number" would be an appropriate way of telling

someone what John’s telephone number was if he already knew Mary’s
telephone number, but this koowledge would consist in knowing what
expression of the type "321-1234" denoted Mary’s telephone npumber.
Therefore,” even in this case, using "Mary’s telephone number"™ to
identify John's telephone number would just be an indirect way of
getting to the standard indentifier.

4

This amounts to an assumption that 2ll events are deterministic,

which might seem to be an unnecessary limitation. From a pragmatic
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standpoint, however, it doesn’'t matter whether we say that a given event
is nondeterministic, or we say that it is deterministic but no omne knows
precisely what the outcome will be. If we treated events as being
nondeterministic, we could say that an agent knows exactly what
situation he is in, but, because :E is nondeterministic, he doesn’t know
what situation would result if :E occurs. It would be completely
equivalent, however, to say that :E is deterministic, and that the agent
does not know exactly what situation he is in because he doesn’t know
what the result of :E would be in that situation.
5 ‘

It would be more precise to say that DO(A,ACT)} names a type of
event rather than an individual event, since an agent can perform the
same action on different occasions. We would then say that RES and R
apply to event types. We will let the present usage stand, however,
since we have no need to distinguish event types from individual events

in this paper.

R7 guarantees that the sequences <«<E ,E >,E > and <E ,<E E »>
1 2 3 1 2 3

always define the same accessibility relation on situations; so, just as
one would expect, we can regard sequence operators as being associative.
Thus, when we have a sequence of more +than two events or actions, we
will not feel obliged to indicate a pairwise grouping.

7
We have to add this extra condition to be able to infer that the
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agent knows whether the solution is acidic, instead of merely that he
knows  whether it was acidic. The latter is a more general
characteristic of tests, since it covers destructive 2as well as
nondestructive tests. We havel not, however, introduced any temporal
operators into the object language that would allow us to make such a
statement, although there would be no difficulty in stating the relevant
conditions in the object language. Indeed, this is precisely what is

done by axioms such as T1.
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