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1. Introduction

Two artificially intelligent (Al) computer agents begin to play a game of chess, and
the following conversation ensues:

S3: Do you know the rules of chess?

Sat  Yes.

51t Then you know whether White has a forced initial win or not.
:  Upon reflection, I realize that [ must.

S1:  Then there is no reason to play.

52t No.

Both agents are state-of-the-art constructions, incorporating the latest Al research
in chess playing, natural-language understanding, planning, etc. But because of the over-
whelming combinatorics of chess, neither they nor the fastest foreseeable computers would
be able to search the entire game tree to find out whether White has a forced win. Why

then do they come to such an odd conclusion about their own knowledge of the game?

The chess scenario is an anecdotal example of the way inaccurate cognitive models
can lead to behavior that is less than intelligent in artificial agents. In this case, the agents’
model of belief is not correct. They make the assumption that an agent actually knows
all the consequences of his beliefs. Sy knows that chess is a finite game, and thus reasons
that, in principle, knowing the rules of chess is all that is required to figure out whether
White has a forced initial win. After learning that S» does indeed know the rules of chess,
he comes to the erroneous conclusion that S» also knows this particular consequence of
the rules. And S himself, reflecting on his own knowledge in the same manner, arrives at
the same conclusion, even though in actual fact he could never carry out the computations

necessary to demonstrate it.




We call the assumption that an agent knows all logical consequences of his Beliefs
consequential closure. This assumption is clearly not warranted for either mechanical or
human agents, because some consequences, although they are logically correct, may not
he computationally feasible to derive. This is in fact illustrated by the chess scenario.
Unfortunately, the best current formal models of belief on which Al systems are based
have a possible-worlds semantics, and one of the inherent properties of these models is
consequential closure. While such models are good at predicting what consequences an
agent could possibly derive from his beliefs, they are not capable of predicting what an
agent actually believes, given that the agent may have resource limitations impeding the

derivation of the consequences of his beliefs.

The chess scenario illustrates one source of logical incompleteness in belief deriva-
tion, namely, an agent may not have enough computational resources to z;ct:ually derive
some result. We will identify several others in Section 2, by presenting a problem in belief
representation that we have called the Not-So-Wise-Man Problem, a variation of the famil-
iar Wise Man Puzzle. Not surprisingly, this problem involves reasoning about beliefs an
agent does not have, even though they are logical consequences of his beliefs. The repre.
sentational problems posed by the chess scenario and the not-so-wise-man problem cannot

be solved within the framework of any model of belief that assumes consequential closure.

In this paper we introduce a new formal model of belief, called the deduction model,
for representing situations in which belief derivation is logically incomplete. Its main fea-
ture is that it is a symbol-processing model: beliefs are taken to be expressions in some
internal or “mental” language, and an agent reasons about his beliefs by manipulating these
syntactic objects. Because the derivation of consequences of beliefs is represented explicitly
as a syntactic process in this model, it is possible to take into account the fact that agents
can derive some of the logically possible consequences, but in many cases not all of them.
When the process of belief derivation is logically incomplete, the deduction model does not

have the property of consequential closure.

Symbol-processing models of belief in themselves are not mew (see, for example,
Fodor [10], Lycan [23], and Moore and Hendrix [31] for some philosophical underpinnings,
and McCarthy [26], Perlis [33], and Konolige [19] for Al approaches). The deduction model



presented here differs significantly from previous approaches, however, in two respects.
First. it is a formal model: beliefs are represented in a mathematical framework called a
deduction structure. The properties of the deduction model can be examined with some
preciseness, and we do so in Section 3. Second, we have found sound and complete logics for
the deduction model. One of these, B, is presented in Section 4, and used in the solution
of the problems in Section 5. An important property of the deductive beliel logic B is
that it can serve as a basis for building computer agents that reason about beliel. We
have been able to find a number of interesting proof methods for B that have reasonable
computational properties. Although the exposition of these methods is beyond the scope of
this paper, at the appropriate points we will show how the design of the logic was influenced

by ¢omputational considerations.

The nature of the deduction model and its logic B is further analyzed by comparing
B to modal logics based on a possible-worlds semantics in Section 6. An important result
is that the deduction mode] exhibits a correspondence property: in the [imit of logically
complete deduction, B reduces to a modal logic with possible-worlds semantics. Thus the
deduction model dominates the possible-worlds model, while retracting the assumption of

consequential closure.

_The material for this paper was abstracted from the author’s dissertation work
(Konolige [21]). Because of the limited scope of this paper, we are not able to do more
than mention in passing several interesting topics that are a part of the deduction model and
its logics. Among these are efficient proof methods, the formal semantics and completeness
proofs, extensions to B that permit quantifying-in, and introspection properties (beliefs
about one’s own beliefs). Interested readers can consult the dissertation itself for a fuller

exposition.







2. Twe Problems in the Representation of Belief

In this section we introduce three ways in which an agent may be iﬁcomp!ete in
reasoning from his beliefs: resource-limited incompleteness, fundamental logical incom-
pleteness, and relevance incompleteness. We argue that it is important for Al systems that
reason about belief to be able to represent each of these, and offer two anecdotal problems

to support this contention.

THE CHESS PROBLEM. Suppose an agent knows the rules of chess. It does
not necessarily follow that he knows whether White has a winning strategy

or not.

The chess problem, on the face of it, seems hardly to be a representational problem
at all. Certainly its statement is true: no agent, human or otherwise, can possibly follow
out all the myriad lines of chess play allowed by the rules to determine whether White has
a strategy that will always win. What kind of model of belief would lead us to expect an
agent to know whether White has a winning strategy? As we stated in the introduction,
any model that does not take resource limitations into account in representing an agent’s
reasoning ;lbout the consequences of his beliefs has this behavior., Within such a model, we
could establish the following line of argument.

Chess is a finite game,! and so it is possible, in theory, to construct a complete, finite
game tree for chess, given the rules of the game. The question of White's having
a winning strategy is a property of this finite game tree. If for every counter

Black makes, White has a move that will lead to a win, then White has a winning
strategy. Thus, White's having a winning strategy is a consequence of the rules of

! The finiteness of chess is assured by the rule that, if 50 moves occur without a pawn advance or piece
capture, the game is a draw,




chess that can be derived in a finite number of simple steps. If an agent believes
all the logical consequences of his beliefs, then an agent who knows the rules of
chess will, by the reasoning just given, also know whether White has a winning
strategy or not.

The chess problem is thus a problem in representing reasoning about beliefs in the
face of resource limitations. The inference steps themselves are almost trivial; it is a simple
matter to show that a move is legal, and hence to construct any position that follows a legal
move from a given position. But while the individual inferences are easy, the number of
them required to figure out whether White has a forced win is astronomical and beyond the
computational abilities of any agent. We call this behavior resource-limited incompleteness.
A suitable model of belief must be able to represent situations in which an agent possesses
the inferential capability to derive some consequence of his beliefs, but simply does not

have the computational resources to do so.

THE NOT-S0O-WISE-MAN PROBLEM. A king, wishing to know which of his
three advisors is the wisest, paints a white dot on each of their foreheads,
tells them there is at least one white dot, and asks them to tell him the color
of their own spots. After a while the first replies that he doesn’t know; the
second, on hearing this, also says he doesn’t know. The third then responds,
“I also don’t know the color of my spot; but if the second of us were wiser, |

would kaow it.”

The not-so-wise-man problem is a variation of the classic Wise Man Puzzle, which
McCarthy (in [24] and [25]) has used extensively as a test of models of knowledge. In the
classic version, the third wise man figures out from the replies of the other two that his
spot must be white. The “puzzle” part is to generate the reasoning employed by the third
wise man, The reasoning invoived is really quite complex and hinges on the ability of the
wise men to reason about one another’s beliefs. To convince themselves of this, readers
who have never tried before may be interested in attempting to solve it before reading the

solution below.



Solution to the Wise Man Puzzle: the third wise man reasons: “Suppose my spot
were black. Then the second of us would know that his own spot was white, since
he would kpnow that, if it were black, the first of us would have seen two black
spots and would have known his own spot’s color. Since both answered that they
had no knowledge of their own spot’s color, my spot must be white.”

The difficulty behind this puzzle seems to lie in the nature of the third wise man’s
reasoning about the first two’s beliefs. Not only must he pose a hypothetical situation
(Suppose my spot were black), but he must then reason within that situation about what
conclusions the second wise man would come to after hearing the first wise man’s response.
This in turn means that he must reason about the second wise man’s reasoning about the
first wise man’s beliefs, as revealed by his reply to the king. Reasoning about beliefs about
beliefs about beliefs... we call reasoning about iterated or nested beliefs. It can quickly
become confusing, especially when there are conditions present concerning what an agent

does not believe.

In the Wise Man Puzzle, nested belief contributes to the complexity of the reasoning
involved. The third wise man must reason about what the second wise man does not know
(the color of his own spot); in doing this, he must also reason about the second wise man’s
reasoning about what the third wise man does not know (the color of his own spot). It
is particularly annoying and troublesome to keep track of who believes what after several
occurrences of not-believing in a statement of nested belief. Because human agents find
it so difficult, the Wise Man Puzzle is thought to be a good test of the competence of
any model of belief. If one can state the solution to the puzzle within the framework of
Model X, so the reasoning goes, then Model X is at least good enough to show what might

conceivably be concluded by agents in complicated situations involving nested beliefs.

It is possible to solve the Wise Man Puzzle within the confines of belief models that
assume consequential closure (see, e.g., McCarthy [24], [25] or Sato [38]). Such models
make the assumption that every agent believes other agents’ beliefs are closed under logical
consequence, and so on to arbitrary depths of belief nesting. While this is an accurate
assumption if one is trying to model the competence of ideal agents (which is what the
Wise Man Puzzle secks to verify), it cannot represent interesting ways in which reasoning

about complicated nested beliefs might fail for a less-than-ideal agent. This is the import




of the not-so-wise-man problem. From the reply of the third wise man, it appears that
the second wise man lacks the ability to deduce all the consequences of his beliefs. The
representational problem posed is to devise interesting ways in which the second wise man
fails to be an ideal agent, and then show how the third wise man can represent this failure

and reply as he does.

The not-so-wise-man problem does not seem to fall into the category of resource-
limited incompleteness mentioned in the chess problem, since the computational require-
ments of the inferences are not particularly acute. We can identify at least two other types
of incompleteness (there may certainly be more) that are interesting here and would be
useful to represent. [n one of these, the second wise man may have incomplete inferential
procedures for reasoning about the other wise men’s beliefs, especially if tricky combina-
tions of not-believing are present. Suppose, for instance, the second wise man were to see
a black spot on the third wise man, and a white spot on the first wise man [this is the
hypothetical situation set up by the third wise man in solving the classic puzzle}. If he
were an ideal agent, he would conclude from the first wise man’s reply that his own spot
must be white (by reasoning: if qn'ne were not white, the first of us would have seen two
black spots and so claimed his own as white). But he may fail to do this because his rules
for reasoning about the beliefs of the first wise man simply are not powerful enough. For
example, he might never consider the strategy of assuming that his spot was black, and
then asking himself wh_at the first wize man would have said. In this case, the second wise
man’s inferential process, even when given adequate resources, is just not powerful emough
in terms of its ability to arrive at simple logical conclusions. To apply an analogy from
high-school algebra: a student who is confronted with the equation z + a = b and asked
to solve for = won’t be able to do so if he doesn’t know the rule that subtracting equals
from each side leaves the equation valid. It is not that the student lacks sufficient mental
resources of time or memory to soilve this problem; rather, his rules of inference for dealing
with equational theories are logically incomplete. To contrast this type of incompleteness
with the resource-limited incompleteness described in the chess problem, we call it funda-

mental logical incompleteness.

Another way in which the not-so-wise-man might fail to draw conclusions is if he

were to make an erroneous decision as to what information might be relevant to solving
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his problem. Although the Wise Man Puzzle has a fairly abstract setting, it is reasonable
to suppose that actual agents confronted with this problem would have a fair number of
extraneous beliefs that they would exclude from consideration. For example, the not-so-
wise-man might be privy to the castle rumor mill, and therefore believe that the first wise
man was scheming to marry the king’s daughter. A very large number of beliefs of this
sort have no bearing on the problem at hand, but would tend to use up valuable mental
resources if they were given any serious consideration. One can imagine an unsure agent who
could never come to any negative conclusions at all, because he would keep on considering
more and more possibilities for solving a problem. This agent’s reasoning might proceed
as follows: [ can't tell the color ‘of my spot by looking at the other wise men. But mavbe
there's a mirror that shows my face. No, there’s no mirror. But maybe my brother wrote
the color on a slip of paper and handed it to me. No, there’s no slip of paper, and my

brother’s in Babylon. But maybe ...

McCarthy (in [27]) first called attention to the problem of representing what is
not the case in solving puzzles. In the Missionaries and Cannibals Puzzle, why can’t the
missionaries simply use the bridge downstream to get across? A straightforward logical
presentation of the puzzle doesn’t explicitly exclude the existence of such a bridge. And,
if it did, we could always come up with other modes of transportation that had not been
considered beforehand and explicitly excluded. McCarthy called the general problem of
specifying what conditions do not hold in a puzzle the circumscription problem. By analogy,
we call the problem of specifying what beliefs an agent does not have, or does not use in
solving a given task, the problem of circumscriptive ignorance (see Konolige [20]). Without
a solution to this representational problem, all agents will be modeled as unsure agents -
never able to reach a conclusion about what they don’t believe, even though it is obvious

when the set of relevant beliefs is circumsecrihed.

Of course, if an agent can circumscribe his beliefs, it is possibie that he will choose
the wrong set of beliefs, and exclude some that actually are relevant. The not-so-wise-man
may decide that the beliefs of the first wise man are not germane to the problem of figuring
out his own spot’s color. Thus, even though he has all the relevant information, and even
sufficiently powerful inference rules and adequate resources, he may fail to come to a correct
conclusion because he has circtimsecribed his beliefs in the wrong way. We call this type of

incompleteness relevance incompleteness.




Within a model of belief that assumes consequential closure, it is possible to represent
circumscriptive ignorance, but only in a relatively limited fashion. If consequential closure
is assumed, ome can state that an agent is ignorant of some fact which is not a logical
consequence of his beliefs (McCarthy [25] uses this technique in his solution to the Wise
Man Puzzle). But this clearly does not capture the complete conditions of circumscriptive
ignorance, since agents are often ignorant of some of the logical consequences of their beliefs,

as in the chess scenario.

Modeling relevance incompleteness (or having the third wise man do so) is impossible
if it is assumed that the beliefs of agents are consequentially complete. One simply cannot
partition the set of beliefs into those that are either relevant or not to a given problem;
all the consequences of beliefs are believed. If we try to state the conditions of relevance
incompleteness within such a model, we can arrivé at a contradiction, where a proposition
is both believed (because of the assumption of consequential closure) and not believed

{(because of the condition of relevance incompleteness).
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3. The Deduction Model of Belief

The two belief representation problems can be solved within the framework of a
formal model of belief that we call the deduction model. In this section we define the

model; in the next we introduce a logic family B as its axiomatization.

The strategy we pursue is to first examine the way typical Al robot planning systems
(STRIPS [9], NOAH [37], WARPLAN [42], KAMP [1], etc.) represent and reason about
the world. This leads to the identification of an abstract belief subsystem as the internal
structure responsible for the beliefs of these agents. The characteristics of belief subsystems

can be summarized briefly as follows.

1. A belief subsystem contains a list of sentences in some internal (“men-
tal”) language, the base beliefs.

2.  Agents can infer consequences of their beliefs by syntactic manipula-
tion of the sentences of the belief subsystem.

3. The derivation of consequences of beliefs is logically incomplete, be-
cause of limitations of the inferential process.

Having identified a belief subsystem as that part of an agent responsible for beliefs,
our next task is to define a formal mathematical structure that models it accurately. The
decisions to be made here involve particular choices for modeling the various components
of a belief subsystem: What does the internal language lock like? What kind of inference

_process derives consequences of the base beliefs? and so on. The formal mathematical
object we construct according to these criteria is called a deduction structure. Its main
components are a set of sentences in some logical language (corresponding to the base beliefs
of a belief subsystem) and a set of deduction rules (corresponding to the belief inference

rules) that may be logically incomplete. Because we choose to model belief subsystems

11




in terms of logical (but perhaps incomplete) deduction, we call it the deduction model of

belief.

3.1. Planning and Beliefs: the Belief Subsystem Abstraction

A robot planning system, such as STRIPS, must represent knowledge about the
world in order to plan actions that affect the world. Of course it is not possible to represent
all the complexity of the real world, so the planning system uses some abstraction of
properties of the real world that are important for its task; e.g., it might assume that there
are objects that can be stacked in simple ways (the blocks world domain). The state of
the abstract world at any particular point in time has been called a situation in the A}

literature.

In general, the planning system will have only incomplete knowledge of a situation.
For instance, if it is equipped' with visual sensors, it may be able to see only some of the
objects in the world. What this means is that the system has to be able to represent and
reason about partial descriptions of situations. The process of deriving beliefs is a symbol-
manipulating or syntactic operation that takes as input sentences of the formal language,
and produces new sentences as output. Let us call any new sentences derived by inferences

the inferable sentences, and the process of deriving them belief inference.

It is helpful to view the representation and deduction of facts about the world as
a separate subsystem within the planning system; we call it the belief subsystem. In its
simplest, most abstract form, the belief subsystem comprises a list of sentences about a
situation, together with a process for deriving their consequences. It is integrated with other
processes in the planning system, especially the plan derivation process that searches for
sequences of actions to achieve a given goal. In a highly schematic form, Figure I sketches
the belief subsystem and its interaction with other processes of the planning system. The
belief system is compased of the base beliefs, together with the belief inference process.

Belief inference itself can be decomposed into a set of inference rules and a control strategy



Belief Subsystem

Inference
Rules
Control ~— Queries
Strategy ——» Answers
Base
Beliefs

Figure 1. Schematic of a Belief Subsystem

that determines how the rules are to be applied and where their outputs go when requests

are made to the belief sﬁbsystem.

A belief subsystem defines an agent’s beliefs by the action of the inference rules on
the base beliefs, under the guidance of the control strategy. Some, but not necessarily all,
of the inferable sentences will be beliefs of the agent; which inferable sentences are actually
beliefs depends on the details of the control strategy and the resources available for belief

inference.

There are two types of requests that result in some action in the belief subsystem.
A process may request the subsystem to add or de]ete_ sentences in its base beliefs; this
happens, for example, when the plan derivation process decides which sentences hold in a
new situati.on. The problem of updating and revising beliefs in the face of new information
is a complicated research issue in its own right, and we do not address it here (see Doyle
[7] for some related Al research). The second type of request is a query as to whether a
sentence is a belief or not. This query causes the control strategy to try to infer, using
the its rules, that the sentence is follows from the base beliefs. It is this process of belief

querying that we model in this paper.

The above description of the operation of a belief subsystem is meant to convey

the idea that in most formal planning systems there is a tight interaction between belief

13




subsystems and planning. Different systems may deviate from the described pattern to a
greater or lesser extent. In some systems, the representation of facts may be so limited,
and that of actions so explicit, as to almost obviate the need for belief deduction per se
(as in some versions of STRIPS). In others, deduction may be used to calculate all the
effects of an action by expanding the representation to include situations as objects (as in
WARPLAN). Here it is hard to make a clean separation between deductions performed
for the purpose of deriving consequences of beliefs and those that establish the imitial set
of facts about a new situation. However, it is still conceptually useful to regard the belief
subsystem as a separate structure and belief derivation as a separate process within the

planning system.

3.2. A Formal Model of Beliel

The formal mathematical object we use to model belief subsystems is called a deduc-
tion structure. A deduction structure is a tuple consisting of two sets and will be written
as {B,R). The set B is a set of sentences in some language L; It corresponds to the base
beliefs of a helief subsystemn and its members are referred to as the base sentences of the
deduction structure. R is a set of deduction rules for L; these correspond to the inference
rules of a belief subsystem. We demand that deduction structures satisfy the following four
conditions.

Language Property. The language of a deduction structure is a logical lan-

guage.
Deduction Property. The rules of a deduction structure are logical deduc-

tion rules. These rules are sound, effectively com-
putable, and have bounded input.

Closure Property. The belief set of a deduction structure is the least set
that includes the base sentences and is closed under
derivations by the deduction rules.

Recursion Property. The intended model of deduction structure sentences
involving belief is the belief set of another deduction
structure. '

We discuss each of these properties briefly below. For the interested reader, a more
thorough treatment of the mathematical properties of deduction structures is given in the

next subsection.
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About the only condition we require of L is that it be a logical language. Logical
languages are distinguished by having a constructable set of syntactic objects, the sentences
of the language, together with an interpretation method (a means of assigning true or faise

to every sentence with respect to a given state of affairs).

R is a set of deduction rules that operate on sentences of L. We will leave unspecified
the exact form of the deduction rules R, but we do insist that they operate in the normal
manner of deduction rules in some proof-theoretic framework. This means that there is the
concept of a derivation of a sentence, which is a structure built from effective applications
of the rules R. If p is derivable fmﬁ the set of sentences [ in this manner, we write ' § ¢ p,
where } ¢ is a derivation operator for the rules R. For example, in terms of Hilbert systems
(as defined in Kleene [18]}, R would be a set of logical axioms (zero-premise rules) together
with modus ponens (a two-premise rule). A sentence p would be derivable from the premise
sentences B = {by,b9,...} if there were a Hilbert proof of (b; Ab2A...) 2 p, using the logical

axioms and modus ponens.

A deduction structures models beliefs by its belief set, which we define as follows.

DEFINITION 3.1.
bel((B, R)} =4t {r|B Br p}

The belief set is composed of all sentences that are derivable from the base set B with
the rules R. The derivation operator § p thus corresponds to the belief inference process of

belief subsystems.

For several technical reasons, we restrict the derivation operators allowed in deduc-
tion structures to those that satisfy a deductive closure condition. One consequence of this
assumption is that the belief set itself obeys a closure property: if the sentence p can be
derived from the sentences in a belief set, then it too must be present in the belief set. By
making the assumption of deductive closure, the task of formalizing and reasoning about

deduction structures is greatly simplified.

It is important to note that deductive closure does not entail consequential closure
for belief derivation: a set of sentences closed under logically incomplete deduction rules

need not contain all 'logical consequences of the set. This is an important property of
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deduction structures, and it enables them to capture the behavior of belief subsystems

with resource-bounded control strategies.

Finally, we single out certain sentences of the deduction structure for spécia] treat-
ment, namely the ones that themselves refer to the beliefs of agents. In discussing the
not-so-wise-man problem in the previous section, we mentioned that one of the key tests of
a belief model is its ability to handle nested beliefs by assuming that agents use the model in
representing other agents’ beliefs; a beliefl model that has this characteristic is said to have
the recursion property. In terms of deduction structures, the recursion property implies
that the sentences of the internal language L that are about beliefs should have another

deduction structure as their intended interpretation.

3.3. Properties of Deduction Structures

In this subsection we treat the mathematical properties of deduction structures in
some detail, taking care to show how they can model the behavior of belief subsystems of

formal Al planning systems.

Language Property

One restriction we place on the language of deduction structures is that sentences
of the language have a well-defined (i.e., truth-theoretic) semantics. Such a requirement
seems absolutely necessary if we are going to talk about the beliefs of an agent being true
of the actual world, or, as we will want to do in discussing the rationality of agents, judge
the soundness of belief deduction rules. Such concepts make no sense in the absence of an
interpretation method - a systematic way of assigning meanings to the constructions of the
language. As Moore and Hendrix ([31], parts IV and especially V) note, the interpretation
method is not something the agent carries around in his head; a belief subsystem'is just a
collection of sentences, and computational processes manipulate the sentences themselves,
not their meanings. One simply cannot put the referent of Cicero® into a robot’s compu-
tation device, even if he (Cicero, of course) were alive. But the attribution of semanties to

sentences is necessary if an outside observer is to analyze the nature of an agent’s beliefs.
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How well do actual robot belief subsystems fit in with the assumption of a logical
language of belief? Al systems use a variety of representational technologies; chief among
these are frames, scripts, semantic nets, and the many refinements of first-order logic (FOL),
including PROLOG and the ‘procedurallyl oriented” logics of y-PLANNER, CONNIVER,
QAd4, apd the like. The representations that fall into the latter category inherit their
semantics from FOL, despite many differences in the syntactic form of their expressions.
But what can we say about the first three? In surface form they certainly do not lock
anything like conventional mathematical logics; furthermore, their designers often have
not provided anything but an informal idea of what the meanings of expressions in tbe
language are. When, after ail, is a pair of nodes connected by a directed arc true of the
world? As Hayes [11] has forcefully argued, the lack of a formal semantics is a big drawback
for these languages. Fortunately, on further examination it is often possible to provide such
a semantics, usually by transliterating the representation into a first-order language (see
Woods [44] and Schubert [39] for a reconstruction of semantic nets in FOL terms, and

Brachman [4] for a similar analysis of frames).

In discussing human belief, several philosophers of mind have argued that internal
representations that count as beliefs must have a truth-value semantics (see Fodor [10],
Field [8], and Moore and Hendrix [31] for a discussion of the many intricate arguments on
this subject, especially pp. 48fl. of Field and part V of Moore and Hendrix). However,
there almost cértainly isa iot more to human belief than can be handled adequately within
the framework of a logical language. For example, the question of membership in the belief
set of a deduction structure is strictly tW&Vﬁlued: a sentence is either a member of the
belief set of a deduction structure, or it is not. If it is, then the assumed interpretation is
that the agent believes that sentence to be true of the world. Deduction structures thus do
not support the notion of uncertain beliefs directly, as they might do if fuzzy or uncertain

membership in the belief set were an inherent part of their structure. !

One further requirement is that L contain expressions referring to the beliefs of
agents. Generally we will take this to be a belief operator whose argument is an expression
in L.

! However, uncertain beliefs could always be introduced into deduction structures in an indirect manner by
letting L contain statements about uncertainty, e.g., statements of the form P is true with probability 1/2.
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Finally, it is often the case that we will want to freeze the language of deduction
structures in order to study their properties at a finer level of detail, e.g., when looking at
‘the behavior of nested beliefs in general or when giving the particulars of the solution to
a represen tatioﬁal problem. It is convenient to think of the language as being a parameter
of the formal model. For every logical language L, there is a class of deduction structures
D(L. p) whose base sets are sentences of the language L (the parameter p will be explained

in discussing the recursion property helow).

Deduction Property

Rules for deduction structures are rules of inference with the following restrictions:

1. The rule is an effectively computable function of sentences of L.
2. 'The number of input sentences is boundedly finite.
3. ‘The conclusion is sound with respect to the semantics of L.

These restrictions are those normally associated with deduction rules for classical logic,
although, strictly speaking, deduction rules need not be sound, if one is just interested in

proof-theoretic properties of a logic without regards to semantics.

The fact that belief deduction rules are effectively computable functions means that
they can be very complicated indeed. Mathematical logicians are interested in logics with
simple deduction rules (such as Hilbert systems) because it is easy to analyze the proof-
theoretic structure of such systems. However, for the purpose of deriving proof methods
for commonsense reasoning in Al, it is often better to sacrifice simplicity for computational
efficiency. For example, Robinson’s resolution rule (36], which employs a matching process
called unification, is a complicated rule that has been widely employed in Al theorem-
proviﬁg. Another important technique is Weyhrauch’s semantic attachment [43], a general
framework for viewing the results of computation as deductions. In this paper, we will
exploit complicated rules that perform deductions that are relatively “large” with respect
to the grain size of the predicates, particularly in solving the chess problem of Section 2.
Although these “large” deductions could be broken down into smaller steps, it i3 computa-

tionally and conceptually easier to view them as single deductions.

~ We call an inference rule provincial if the number of its input sentences is boundedly

finite; deduction rules are always provincial. We thus do not allow inferences about beliefs

18



that take an infinite number of premises. For example, the following rule of Carnap’s is not
a valid rule of belief deduction: if for every individual a: F(a) is a theorem, then Vz.F(z)
is a theorem.! Provincial inference rules have the following interesting property: if a is
a consecuence of a set of sentences S by the rule, then it is also a consequence of any
larger set S’ O §. To see that this must be so, consider that, if & can be derived by the
application of provincial rules on the set of sentences S, and S’ contains §, then the same
derivation can be performed by using S'. Rules that adhere to this property are called
monotonic. Technically, monotonicity is convenient because it means we can reason about
what an agent believes on the basis of partial knowledge about his beliefs. A derivation
made using a subset of his beliefs cannot be retracted in the face of further information

about his beliefs.

Several types of nonmonotonic (and unsound) reasoning have been of interest to the

Al community, specifically

Belief revision: the beliefs of an agent are updated to be consis-
tent with new information (e.g., Doyle [7]).

Default reasoning: an agent “jumps to a conclusion® about the way
the world is (e.g., McCarthy [27], Reiter [35]).

Autoepistemic reasoning: an agent comes to a conclusion about the world
based on his knowledge of his own beliefs (e.g.,
Collins et al. [6], Moore [30}).

We are explicitly not trying to arrive at a theory of these forms of reasoning. Indeed,
it is helpful here to make the distinction that Israel (in [16]) advocates between inference
or reasoning in general (which may have nonmonotonic prop ertiés) and the straightforward
deduction of logical consequences from a éet of initial beliefs. It is the latter concept‘only

that is treated in this paper.

If we wish to accommodate some nonmonotonic theory formally within the frame-
work of the deduction model, then we can view its inferences as deduction rules operating
on deduction structure theories as a syntactic whole. MeCarthy [27] exploits this approach
to formalize a certain type of useful default inference, which he calls circumscription (see

the description of the not-so-wise-man. problem in Section 2). In defining the logic B, we

11 am indebted to David Israel for pointing out this example.
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will show how to formalize circumseriptive ignorance, a type of nonmonotonic inference, in

this manner.

Deduction rules for belief subsystems must also be sound. A sound deduction rule
is one for which, if the premises are true in an intefi)retatioﬁ, then the conclusion will be
also (see Kleene [18]). Informally, one would say that sound deduction rules never deduce
false conclusions from true premises. Modus ponené is an example of such a rule: if p and

p > q are true, then g must also be.

Soundness of inference is an important property for robot agents in deriving conse-

quences of their beliefs. We would not want a robot who believed the two sentences

All men are mortal.

3.1 N
(3.1) Socrates 1s a man.

to then deduce (and hence believe) the sentence

(3.2) Socrates is not mortal.

Soundness is not a critical assumption for the deduction model, since none of the
major Eechnical results depend on it. [n some cases we may wish to relax it, for example, in
modeling the behavior of human syllogistic reasoning, which is often unsound (see Johnson-
Laird [17]}.

"To sum up: deduction structures are restricted to using inference rules which are
proirincia_l, sound, and effectively computable. Several interesting types of reasoning, such
as reasoqing about defaults or one’s own beliefs, cannot be modeled directly as deduction
rules over sentences. However, they can be incorporated into the deduction model if the

input to the rules is taken to be the deduction structure as a whole.

Closure Property

The closure property states that the belief set of a deduction structure is closed

under derivations. Formally, this amounts to the following conditions on the belief set.

1. BCbel({B, R)).
2. M T Cbel({B,R)) and T 5 p, then p € bel({B, R}).
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Since we have defined the belief set in terms of the belief derivation operator B -
(Definition 3.1), we can reexpress these as conditions on belief derivation.

(Reflexivity) af,;) e

(Closure) BT B, 8 and 3,2 B-p(,-) a, then I', T B o) a-

Reflexivity guarantees that the base set will be included in bel, and the closure

condition establishes closure of bel under derivation.

The chief motivation for requiring derivational closure is that it simplifies the tech-
nical task of formalizing the deduction model. Consider the prﬁblem of formalizing a belief
subsystem that has a complex control strategy guiding its inferential procésé. To do this
cotrectly, one must write axioms that not only describe the agendas, proof trees, and other
data structures used by the control strategy, but also describe how the control strategy
guides inference rules operating on these structures. Reasoning about the inference process
involves using these axioms to perform deductions that simulate the belief inference process,
a hilghly inefficient procedure. By contrast, the assumption of derivational closure leads to
a simple formalization of deduction structures in a logic B that incorporates the belief in-
ference process in a direct way. We need not differentiate between a belief as a member of
the base set, or as a derived sentence. A sentence that follows from any members of the
belief set is itself a belief. The axiomatization of B is simplified, since we need only: have
an operator whose intended interpretation i3 membership in the belief set. In Section 4, we
exploit the properties of closed derivational systems to exhibit a complete axiomatization
of B, using techniques that are manner similar to the procedural attachment methods of
Weyhrauch [43].

The closure property is an extremely important one, and we should examine its
repercussions closely. A point that we have already made is that derivational ¢losure is not
the same as consequential closure. The latter refers to a property of sets of sentences based
on their semantics: every logical consequence of the set is also a member of the set. The
former refers to the syntactic process of derivability; if the rules R are not logically complete,
then a set of sentences that is derivationally closed under R need not be consequentially

closed.
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One of the key properties of belief subsystems that we wish to model is the incom-
pleteness of deriving the consequences of the base set of beliefs. We have identified three
sources of incompleteness in belief subsystems: an agent’s belief inference rules may be too
weak from a logical standpoint, or he may decide that some beliefs are irrelevant to a query,
or his control strategy may perform only a subset of the inferences possible when confronted
with resource limitations. The assumption of derivational closure for deduction structures
affects their ability to model incomplete control strategies, since closure demands that all

possible deductions be performed in deriving the belief set.

For an important class of incomplete control strategies, however, there is a cor-
responding complete control strategy operating on a different set of inference rules that
ﬁroduces the same beliefs on every base set. The criteria that defines this class is that the
control strategy use only a local cost bound in deciding to drop a particular line of infer-
ence. By “local” is meant that the control strategy will always pursue a line of inference
to a certain point, without regard to other lines of inference it may be pursuing in parallel.
Control strategies with a local cost bound are important because their inferential behavior

is predictable: all inferences of a certain sort are guaranteed to be made.

Deduction structures can accurately model the class of locally bounded incomplete
control strategies by using an appropriate set of logically incomplete deduction rules. A
good example is found in the solution to the chess problem in Section 5. The agent’s control
strategy applies general rules about chess to search the game tree to only a limited depth;
this is modeled in a deduction structure by using deduction rules that work only above a

certain depth of the game tree, and applying them exhaustively.

In belief subsystems whose control strategies have a global cost bound, the concept
of belief itself is complicated, since one must differentiate between base beliefs and beliefs
inferred with some amount of effort. Deduction structures are only an approximate model
of these subsystems, and a language with a single belief operator is no longer sufficient for

their axiomatization.

Recursion Property

If belief subsystems adhere to the recursion property, then agents view other agents

as having belief subsystems similar to their own. This still leaves a considerable degree of
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flexibility in representing nested beliefs. For example, an agent John might believe that
Sue’s internal language is L; and that she has a set of deduction rules R;, whereas Kim’s
internal language is Lo and her deduction rules are R+. In addition, John might believe
that Sue believes that Kim’s intemai [anguage is L3, and that her rules are R3. We call
the description of a belief subsystem at some level of nesting a view; formally, views are
sequences of agents’ names, so that the view John, Sue is Sue’s belie{ sﬁbsystem as John
sees it. We will often use the Greek letter v to stand for an arbitrary view, al;d lowercase
Latin letters (¢, 7, etc.) for singleton views, which are agents’ actual belief subsystems.
Since the formal objects of the deduction model are deduction structures, these will be
indexed by views when appropriate. For example, the djop, 5ue is a deduction structure

modeling the view John, Sue.

Obviously, some fairly complicated and confusing situations might be described, with
agents believing that other agents have belief subsystems of varying capabilitieé. Some of
these scenarios would be useful in representing situations that are of interest to Al systems;
e.g., an expert system tutoring a novice in some domain would need a representation of the
novice’s deductive capabilities that would initially be less powerful and complete than its

own, and could be modified as the novice learned about the domain.

We model the recursion property of belief subsystems within the framework of de-
duction structures by allowing sentences of L to refer to the beliefs of agents. A standard
construct is to have a belief operator in L: an operator whose arguments are an agent S
and a sentence P, and whose intended meaning is that S believes P. According to the
recursion property, this means that the belief operator must have a deduction structure as
its interpretation. Deduction rules that apply to belief operators will be judged sound if
they respect this interpretation. For example, suppose a deduction structure d, has a rule
stating that the sentence “John believes ¢” can be concluded from the premise sentences
“John believes p” and “John believes p = ¢”. This is a sound rule of d,, if modus ponens
is believed to be a rule of John’s belief subsystem as viewed from the view », since the
presence of p and p © ¢ in a deduction structure with modus ponens means that q will be

derived.

Several simplifying assumptions are implicit in the use of deduction structures to

mode] the nested views of belief subsystems. The language L contains a belief operator
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that denotes membership in a belief set (its intended interpretation), and so L can describe
what sentences are contained in an agent’s belief set. However, there is no provision in L
for talking‘ébout the deduction rules an agent uses. Instead, these nested-belief rules are
implicitly specified by the rules that manipulate sentences with belief operators. Consider
the example from the previous paragraph. Let us suppose that we are modeling Sue’s
belief subsystem with the deduction structure dg,.. Because Sue believes that John uses
modus ponens, a sound rule of inference for dgy, would be the one that was stated above,
namely, the sentence “John believes g could be concluded from the premise sentences
“John believes ﬁ” ‘and “John believes p = q.” All of the rules that Sue believes John uses
are modeled in this way. Similarly, if, in Sue’s opinion, John believes that Kim uses a
certain rule, tbis will be reflected in a rule of John’s deduction structure as seen by Sue,
which in turn will be modeled by a rule in dg,,. The deduction model thus assumes that
the rules for each view, though they may be different, are a fixed parameter of the model.
We introduce the function p(v) to specify deduction rule sets for each view v; thus, for
each function p and each language L, there is a class of deduction structures D(L, p) that
formalize the deduction model. If the rules p are complete with respect to the semantics of

L, then the class is said to be saturated, and is written D4 (L, p)

A final simplification that is not inherent in the deduction model, but which we
‘introduce here solely for technical convenience, is to assume that all deduction structures
in all views use the same language L. There are situations in which we might want to relax
this restriction, it makes the axiomatization less complex in dealing with the problems at
hand.
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4, The Logic Family B

We now define a family of logics B(L, p) for stating facts and reasoning about de-
duction structures. This family is parameterized in the same way as deduction structures,
namely by an agents’ language L and an ensemble of deduction structure rules p. Each

logic of the family is an axiomatization of the deduction structures D(L, p).

The language of B includes operators for stating that sentences are beliefs of an
agent, but not for describing deduction rules of agents. Thus the deduction rules are a
parameter of the logic family, and are fixed once we decide to use a particular logic of the
family. The ensemble function g picks out a set of rules for each agent. The reason we chose
to make the deduction rules a parameter of B is that it is then possible to find efficient
proof methods for B. One of the interesting features of B’s axiomatization is that agents’
rules are actually present as a subset of the rules of B; proofs about deduction structures

in B use these rules directly in their derivation.

The logic of B is framed in terms of a modified form of Gentzen systems, the block
tableau systems of Hintikka. Although they may be unfamiliar to some readers, block
tableaux are ;easy to work with and possess some natural advantages when applied to
the formalization of deduction structures. Unlike Hilbert systems, which contain complex
logical axioms and a single rule of inference in the propositional case (modus ponens), block
tableau systems have simple axioms and a rich and flexible method of specifying deduction

rules, We exploit this capability when we incorporate deduction structure rules into B.

In this section we first present a briefl overview of block tableaux. Then we give the
postulates of the family B, and a particularly simple subfamily called BK that will be used

in solving the problems. By way of example, we prove some theorems of BK.




4,1. Block Tableaux

Most of this section will comprise a review for those readers who are already familiar

with tableaux systems.

The Base Language Lq

The language of B is formed from a base language Lg that does not contain any
operators referring to beliefs. Ly is taken to be a first-order language with constant terms.
An interpretation of Lg is a truth-value assignment to all sentences (closed formulas) of
Lp; this assienment must be a first-order valuation, that ié.; it must respect the standard

interpretation of the universal and existential quantifiers as well as the Boolean connectives.

We call Ly uninterpreted if every first-order valuation is an interpretation of Lg;
partially interpreted if some proper subset of the first-order valuations are interpretations
of Lo; and fully interpreted (or simply interpreted} if there is a singleton interpretation of
L. A sentence of Ly is valid if and only if it is true in every interpretation of L.

We use lowercase Latin or Greek letters (p, g, a, etc.) as metavariables that stand
for sentences of Ly. A formula of Ly that possibly contains the free variable z will be
indicated by a(z); the formula derived by substituting the constant a everywhere for z is
denoted by c(z/a). Uppercase Greek letters (' =g {v1,72,-..}, & =gt {81, 82,...}, etec.)
stand for finite sets of sentences of Ly. By p, I’ we mean the set {p}|J . We also introduce

the abbreviation -T' =4¢ {~71,~72,--.}.

Sequents

Sequents are the main formal object of block tableaux systems.

DEFINITION 4.1. A sequent is an ordered pair of finite sets of sentences,
(T, A). This sequent will also be written as T = A, and read as “A follows
from T.”

A sequent I' = A is true in an interpretation of its component sentences iff
one of ~; is false, or one of b7 is true. A sequent is valid iff it is true under
all interpretations, and satisfiable iff it is true in at least one interpretation.
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From the definition of truth for a sequent, it should be clear that a sequent ' = A
is true in an interpretation just in case the sentence (1 Av2A...) 2 (§yvéav...) is true in
that interpretation. Thus, in a given interpretation a true sequent can be taken as asserting

that the conjunction of +’s materially implies the disjunction of the 4’s.

We allow the empty set ¢ to appear on either side of a sequent, and abbreviate
o= Aby= A, T'=¢by'=,and ¢ = ¢ by =. By the above definition, = A is true
(in an interpretation} if and only if one of 4; is true, ' = is true if and only if one of -; is

false, and = Is never true in any interpretation. ~

Block Tableaux for Ly

The proof method we adopt is similar to Gentzen’s original sequent calculus, but
simpler in form. It is called the method of block tableaux, and was orginated by Hintikka
[12]. A useful reference is Smullyar [40], in which many results in block tableaux and

similar systems are presented in a unified form.

A block tableau system consists of axioms and rules (collectively, postulates) whose
formal objects are sequents. Block tableau rules are like upside-down inference rules: the
conclusion comes first, next a horizontal line, then the premises. Block tableaux themselves
are derivations whose root is the sequent derived, whose branches are given by the rules,
and whose leaves are axioms. Block tableaux look much like upside-down Gentzen system

trees. (A more formal definition of block tableaux is given below).

We consider a system T (see Smullyan [40], pp. 105-109) that is first-order sound
and complete: its consequences are precisely the sentences true in every first-order valua-

tion.

DEFINITION 4.2. The system Tg has the following postulates.

Axioms. T,p=A,p
. . T,pag=A
C tion Rules. Cy: —————
onjunction Rules i T.pgo A
F'=A,pagq

Ca: T'=Ap I'= A,q
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Disjunction Rules.

Implication Rules.

Negation Rules.

Universal Rules.

Existential Rules.

F'=A,pvyg

I'=A,pgq
C,pvg=A

Lp=A4A T,gq=A4A

'=>4,p>9q

Ip= 4,9
Cpog= A

= A,p Fg=A

'=>A,-p.
Fp=A
I,b-p= A4
'=A,p

[,Vz.a(z) => A

[ a(zfa),Vz.a(z) = A
I = Vz.a(z), A

T = a(z/a),Vz.a(z), A’

where a has not appeared in
the tableau

= 3z.a(z), A

I' = a(z/a),3z.a(z), A
[,3z.a(z) = A

T a{zfa), Iz.a(z), = A’

where a has not appeared in
the tableau

Remarks. Note the simple form of the axioms and the symmetric nature of the inference

rules {actually, each rule is a rule schema, since T, A, p, g, and & stand for formulas and

sets of formulas of Ly). There is one rule that deletes each logical connective on either side

of the sequent. For example, the frst conjunction rule deletes a conjunction on the left

side of a sequent in favor of the two conjoined sentences; informally, it can be read as “A

follows from I and p A g if it follows from [, p, and q.” It is easily verified that each rule is

sound with respect to first-order valuations: if the premises are true in an interpretation,

then so is the conclusion.

DEFINITION 4.3. A block tableau for the sequent T = A in a system T is a
tree whose nodes are sequents, defined inductively as follows.

I. T=AIis tﬁe ro“ot of the tree.
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2. If sequent s is the parent node of daughters sy ... sy,

s .
then ——— isarule of T.
81 ...3n

A block tableau is closed if all its leaves are axioms. If there is a closed
block tableau for the sequent I' = A, then this sequent is a theorem of the
system T and we write b7 ' = A. :

A svstem T' is called a subsystem of T if every rule of T' is also a rule of
T. If some subsystem T' of T has exactly the same theorems as T, then the

rules of T not appearing in T' are said to be eliminable from T, or admissible

to T

Block tableaux are similar to the AND/OR trees commonly ercountered in Al
theorem-proving systems (see Nilsson [32]). Rules Ca, D3, and [ cause AND-splitting,

while a choice of rules to apply at a tableau node is an OR-split.

Example. Here is a block tableau for the sequent 3z. Bz A Az, ¥z.Cz > =Bz = 3z. Az A

-Cz.
Jdz. Bz A Az, ¥2.Cz 2 =Bz = 3z, AzA-Cx

EZU BeaAe,¥2.Cz > ~Bz = J2. Az A-Cz

1 BeanAe,Ced>mBe=Jz. AzA=Cz

Elc BeaAe,Ce > mBe= Ae A -Ce
I 1 Ae,Be,Ce 2 ~Be=> Aea-Ce
2 v Ae, Be,mBe = Aea=Ce c Ae, Bé = Ce, Ae A Ce

2 "A¢,Be= Be,Ac A -Ce 2 Ae,Be= Ce,~Ce  Ac, Be = Ce, Ae
x Ny Ae,Be,Ce = Ce x
x

The sequent to be proved is inserted as the root of the tree. By a series of reductions
based on the rules of Tp, the atoms of the sequent’s sentences are extracted from the scope
of quantifiers and Boolean operators. Splitting of the tree occurs at the rules I3 and Cq;
otherwise the reduction produces just a single sequent below the line. If a tree is found
where the sequents at all the leaves are axioms, then the theorem is proved. Note that
the logical inferences are from the leaves to the root of the tree, even though we work
backwards in forming the tree. At each junction of the tree, the parent sequent is true in

an interpretation if all its daughters are true in that interpretation.

An important connection between theoremhood and logical consequence for sequent

systems is the following soundness theorem for tableaux.
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TOEOREM 4.1. IfT = p is a theorem of T (where p is a single sentence of
Lg), and all the rules of T are sound, then p is a logical consequence of T.

Proof. If the rules of T are sound, then every theorem of T is valid. By
Definition 4.1, this means that in every interpretation in which all of T are
true, p must be also.§

4.2. The Language of B

The language of B is formed {rom a first-order base language Ly by adding modal
operators for belief and belief circumscription. We call this language LB. It is convenient
to use LB also as the agents’ language L, since it provides a representation for nested beliefs
as required by the recursion property. With this assumption, we can parameterize B by

the base language Lg, and write B(Lg, g) for the logic family.

To form L2 from a base language Lg, we require a countable set of agents (5o, Sy,

DEFINITION 4.4. A sentence of L2 based on Lg is defined inductively by the
following rules.

1. All formation rules of Lg are also formation rules of LB,
2. Ifpis asentence, then [S;]p is a sentence for ¢ 2 0.

3. Ifpis a sentence and T' is a finite set of sentences, then
(S; :T)p is a sentence fori 2 1.

An ordinary atom of LB is a ground atom of Ly; a belief atom is a sentence of
the form [S;]p, and a circumscriptive atom is one of the form {S; : [')p. In the belief
atom [Sy]p, p is said to be in the context of the belief operator. Note that there is nc
quantification into the contexts of belief atoms, since the argument of a belief operator i3
always a closed sentence. LB can be extended to include quantification into belief contexts;
such a language has greater representational power and its logic qB has a more complex
axiomatization. The interested reader is referred to Konolige [21] for a description of gB.

Here, the simpler B is suficient for an analysis of the problems.

We will use the abbreviation [S|U =4¢ [S]71, [S]y2, .-
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I[nterpretations

Interpretations of the language of LB are formed from interpretations of its base
language Lo, together with an interpretation of belief and circumscriptive atoms. The
intended meaning of the belief atom [S;]p is that p is in the belief subsystem of agent S;;
informally, we would say “S; believes p.” Since we are formalizing belief subsystems by
means of deduction structures, an interpretation of the beliel atoms [S;]p is given by a
deduction structure d;. [S;]p is true if p is in bel(d;), the belief set of d;; otherwise it is

false.

In addition to representing beliefs of individuals, we use belief atoms to represent
common beliefs. A common belief is one that every agent believes, and every agent believes
every other agent believes, and so on to arbitrary depths of belief nesting. We reserve the
name Sy for a fictional agent whose beliefs are taken to be common among all agents. The
belief atom [Sp]p means that p is a common belief. In terms of deduction structures, its
intended interpretation is that p and [Sp]p are in the deduction structure d; of every agent
S5;,i20.

McCarthy (see, for example, [25]) was the first to recognize the common knowledge
could be represented by the use of a fictitious agent FOOL whose knowledge “any fool”
would know. He used a possible-worlds semantics for knowledge, and so all consequences
of common knowledge were also known. The representation of common beliel presented
here uses an obviously similar approach; it differs only in that common belief rather than
common knowledge is axiomatized {common beliefs need not be true), and in having a
deduction structure semantics, so that common beliefs need not be closed under logical

consequence,

The interpretation of circumscriptive atoms is also given by the deduction structure
representing an agent’s beliefs. The intended meaning of (S; : I')p is that p is derivable
from T in the deduction structure dj, that is, T Boi) P The circumscription operator
elevates the belief derivation process to a first-class entity of the language (as opposed to
belief operators [S;], which simply state that certain sentences are in or not in the belief

set).
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While it may not be apparent at first glance, the circumscription operator is a
powerful tool for representing situations of delimited knowledge. For example, to formally
“state the condition, “the only facts that agent S knows about proposition p are F,” we

could use

(41) (S:F)p=I[Slp .

This assertion states that S believing p is equivalent to S being able to derive p from F. The
forward implication is uninteresting, since it just says that p fs derivable from F by agent
S, i.e., [S]F > [S]p. The reverse implication is more interesting, since it states p cannot be
a belief of S unless it is derivable from F. This reverse implication limits the information
S has available to derive p to the sentences F, and thus gives the circumscriptive content
of (4.1). Note that there is no way to formulate the revérse implication as a sentence of LB

using only belief operators.

The reader should note carefully that the semantics of LB differs completely from
that of most modal languages, in which the argument to the modal operator is usually
taken to denote a proposition that can take on a truth-value in a possible world. By
contrast, arguments to modal operators in the language of B denote sentences of L, namely
themselves. It is important to keep this distinction in mind when interpreting the modal

operatora of B.

4.3. A Sequent System for B

The deductive process that underlies the deduction model is characterized in very
general terms by deduction structures and their associated belief sets. Until now we have
been content with deliberate vagueness about the exact nature of deduction rules and the
derivation process. As stated in Section 3, there are five conditions that must be satisfied:
the deduction rules must be effective, provincial, and sound, and the derivations reflexive
and closed under deduction. Consider a deduction structure d; = (B, p()} for agent S;. If
we let the process of belief derivation for d be symbolized by %,() these conditions are as

follows.

(Effectiveness) The deduction rules p(s) are effectively applicable.
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(Provinciality) The number of input sentences to each rule is finite and
bounded.

(Soundness) IfT B,() @, then is a logical consequence of .
{Reflexivity) a B, o
(Closure) IfT B,y B and B,L B, then T, KB, a.

Suppose we are given beforehand a derivation operator §- o) satisfying the above
conditions, that models an agent S;’s belief subsystem. The central problem in the for-
mulation of B is to find tableau rules that correctly implement the meaning of the belief

operator [S;] and the circumseription operator {S; : '} under B o(i)-

Consider first the sequent [S;][' = [S;]e. Its intended meaning is that, if all of [" are
in S;’s belief set, then so is . The only possible way that we can guarantee this condition
is if a is derivable from T, ie, T B-p(,-) a. If this were not the case, then we could always
construct the counterexample d; =4¢ (I, p(s)} in which all of [ are in d;, but a is not. Thus
we can relate the truth of a sequent involving belief operators to derivability in an agent’s

belief subsystem. This relation is captured by the inference rule

£, [ST = [Si]e, &

A:
T @

A is called the attachment rule, because it derives results involving the belief op-
erator by attaching sentences about belief to the actual derivation process of an agent.
Remembering that the premise is the bottom sequent and the conclusion the top, we can
read A informally as follows: “If & is a deductive consequence of ' in S;’s belief subsystem,

then, whenever S; believes I, he also believes a.”

To capture the notion of common belief, we need to make a modification to the
attachment rule. The intended meaning of the common belief atom [Splg is that both g
and [Splq are in the belief subsystem of every agent. The sequent [Sp]A, [S;]T = [S;]a will
be true if whenever {Sy]A, A, and T" are in the belief set of d;, a also is. By reasoning similar
to that used in detiving the rule A, we can rephrase this in terms of belief derivation. This
vields the revised attachment rule ASE, |

ACB . T, [So]A, [S]T = [Si]a, A
[So]A A, T B ) @




In ACB. both A and [So]A can be used in the derivation of @. Note that this rule is applicable
to the fictional agent Sg. Because Sg’s beliefs are intended to be common beliefs, and hence
derivable by any agent, it should be the case that the rules p(0) are used by every agent.
We thus demand that p(0) € p(s) for every i.

We can find tableau rules for the circumscription operator in a similar manner, The
intended semantics of this operator relates directly to the belief derivation process: (S;: I')p
means that p is derivable from T' in S;’s belief subsystem, i.e., T §,;) 2. [n writing sequent
rules, there are two cases to consider, for a circumscriptive atom can appear on the right

or left side of the sequent arrow. We thus have the following two rules.

E=(S;:T)p,A
T Boy 2

Circy :

E(S;:Tp=> A
F}p(i)p

Cireg t

The second circumscription rule is the one that is used to show circumscriptive igno-
rance. It states that if p is not derivable from a set of sentences I', then the circumseriptive
atom (S; : [')p is false. Given a statement of the form 4.1, this in turn would imply that

S; was ignorant of p.

We can now give a full axiomatization of the logic family B.

DEFINITION 4.5. The system B(Lg, p) has the following postulates.

1. The first-order complete rules Tg.
2. The rules ACB, Circy, and Circs.

3. A closed derivation process } ,(;) for each agent S, such
that p(0) € p(1) for every s.

This axiomatization of B is both sound and complete with respect to its deduction
structure semantics, as proven in Konolige {21]. It is a compact formalization of the de-
duction model and useful for theoretical investigations, but we do not use it very much as
a representational formalism because of the general nature of the belief deduction process

B (), which is rather opaque to further analysis. For instance, we might wish to look at
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the subfamily of 8 in which the rules of p{s) that govern nested belief are as strong as
A. In order to explore the ﬁﬁe structure of S;'s belief deduction process, or to formalize
the problems, we need to fix the nature of B p(i) more precisely. The rich set of rules, and
the flexibility of tableau derivations, make tableau systems a natural choice here. In the
next section we define a particularization of B, the logic family BK, whose belief derivation

process is defined in block tableaux terms.

4.4. The Nonintrospective Logic Family 8K

In the logic family BK, the belief derivation operator } is defined as provability in a
tableau system.

DEFINITION 4.6. A sentence a is BK-derivable from premises I (T §+ a) if
and only if FT T = a.

We need to show that tableau system derivability as just defined satisfies the five
criteria of belief derivation: effectiveness, provinciality, soundness, reflexivity and closure.
Counsider a sequent system T made up of sound tableau rules. According to Theorem 4.1,
the theorem |7 I' = p of Timplies that p is a logical consequence of T', so we are assured
that |- satisfies the soundness criterion. Provinciality and effectiveness are also satisfied,
since the theorems of T are built by using effectively computable steps that operate on
a bounded number of sentences at each step. The observant reader might object at this
point that tableau rules may indeed refer to an unbounded number of premise sentences;
e.g., any of the rules of Tp have this property, since I' and A can stand for any set of
sentences. However, each rule of Ty is actually 2 rule schema: the capital Greek letters
are metavariables that are instantiated with a boundedly finite set of sentences to define a

rule.

The closure condition is fulfilled by a special subclass of sequent systems, namely
those for which the following rule, Cut®, is admissible:

E=a
T=3 JEi=a

Cut® :

To see how this rule guarantees closure, suppose that ' = # and 8, = a are both

theorems of a sequent system T for which Cut® is admissible. Because Cut” is admissible
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and both of its premises have closed tableaux, the conclusion I',T = o must also be a

theorem.

Finally, the derivation process will be reflexive (a |-1 o) if we include the following

axiom in the system T:
Id: L,a=aA

Thus we only allow a system T to appear in a deduction structure d{B, T} if the

system is sound, Cut® is an admissible rule of T, and Id is an axiom of T.

An interesting consequence of using tableau derivations in BK is that the attach-
ment rule A can now be expressed wholly in terms of sequents, eliminating the derivation
operator. To see how this comes about, consider first replacing the belief operator in rule
A by tableau provability, as given by Definition 4.6. This yields

L, [S,']P = [Sl']al )
Fr@yT=>a

AK':

where 7(1) is the set of tableau rules used by agent ;.

Now |.(;y I = a is true precisely if there is a closed tableau for I' = @, using the
rules r{i). Hence we should be able to eliminate the provability symbeol if we add the rules
7{r) to B for the purpose of constructing a tableau for I' => a. In order to keep the agents’
rules 7(r) from being confused with the rules of B, we add an agent index to sequents to
indicate that the tableau rules to be use are for a particular agent. The final version of the
attachment rule is

L [S]T = [Si]a, A

AR :
F=;a

Agents’ rules are expressed using the indexed sequent sign,‘e.g., if agent S; were to use Ca,
the following rule would be added to B. - ‘

I'=;A,pagq
[‘=':'A!P r:iﬁsq

Taking the recursion property of belief subsystems seriously, we can iterate the

process just described for the attachment rule. Each agent treats other agents as having
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a set of tableau rules. In formulating BK, there will be a tableau rule set associated with
each view (views are discussed in relation to the recursion property in Section 3.3). Let us

symbolize the set of tableau rules representing the view v by r(v).

A sequent ' =, A, with index v, is a statement about the belief subsystem of the
view v. For example, if v = Sue, Kim, the sequent I" =, p states that p follows from [’
in Sue's view of Kim’s belief subsystem. The deduction rules r(v) always have sequents
indexed by v in their conclusions (above the line). This assures us that they will always be

used as rules of the belief subsystem v, and of no other.

The logic BK can thus be parameterized by a set of tableau rules for each view,
and we write BK{Lg, r) to indicate this. If the sequent ' =, A is a theorem of the logic
BK(Lg.7), it asserts that the sequent I' = A is provable in the view ». We write this as
Fek(Ly,r) [ = A. If this sequent is a theorem for every parameterization of BK, we write
simply ' =, A. Note that the presence of the index on the sequent means that we do
not have to state explicitly that the set of rules used to derive the theorem were those of the
view v. Properties of the the actua] belief subsystems are always stated using unindexed
sequent; for example, to show formally that if an agent believes p, then he believes q, we

would have to prove that the sequent [S;]p = [S;]g is a theorem of BK.

Postulates of BK(Lg, 7)

This family is parameterized by a base language Lo and tableau rules r{v) for each

view v.

DEFINITION 4.7. The system BK{Lg, 1} Is given by the following postulates:

1. The first-order complete rules Tg.
2. The attachment rule

L, [So]A, [S:]T = [Si]a, A

ca,
AKTE [So]A, A, T =; a

3. A set of sound sequent rules r(v) for each view v which
contains the axiom Id, and for which the rule Cut® is
admissible. Also, r{v,0) C r{v,s} for all views v and
agents S;.
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4. The circumscription rules

S;:Dip, &
CireK| : £=(5;: D)
F=“-;p
and
S;:
CircKsy : ES%:Dp=4

FT=p

Remarks. There are three parts to the system BK(Lp, 7). The first part is a set of rules
that perform first-order deductions about the real world. These rules incorporate the

nonsubscripted sequent sign (=).

The second part is the attachment rule AK €B together with a set of rules formaliz-
ing the deductive system of each view. These rules involve the sequent sign =, since they -
talk about agents’ deductive systems. They can contain rules that have a purely nonmecdal
import (e.g., rules of Tg), as well as rules that deal with belief operators. The rule Cut*,

which implements the closure property of belief sets, must be an admissible rule of r{v).

The rules r(v) of a view v can be incomplete in several ways. They may be first-order
incomplete, in which case they cannot be used to draw all the consequences of sentences
involving nonmodal ‘operators that they otherwise might (to be first-order complete, it is
sufficient for the rules Ty to be admissible in a view). They may also be incomplete with
respect to the semantics of sentences involving belief operators. To be complete in this
respect, a sufficient rule would be AKCB, A view for which this rule is admissible is
called recursively complete. If every view of a logic BK(Ly, 7} is recursively and first-order
complete, the logic is called saturated. We will symbolize the subfamily of saturated logies
by BK,.

The rule AKB is a weak version of the attachment rule A®B in that it makes no
assumptions about the beliefs an agent may have of his own beliefs. For example, we might
argue that, if an agent S believes a proposition P, then he believes that he believes it. All
he has to do to establish this is query his belief subsystem with the question, “Do I believe
P?” If the answer comes back “yes,” then he should be able to infer that he does indeed

believe P, i.e., [S|[S]P is true if [S]P is. However, as far as rule AKCB is concerned, an
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agent’s own belief subsystem has the same status for him as does that of any other agent.
{n particular, AKCB allows an agent to have false and incomplete beliefs about his own
beliefs. Other version of AKCB with stronger assumptions about self-belief are possible

(see Section 6}.

The third part consists of the two circumseription rules. The provability operator
can be eliminated from CireKy, but not from CircKs. In ordef to show that p does not
follow from [ for S5;, we must show that there is no cldsed tableau for T =; p. One
technique that we use in solving the problems is the following. If there is no closed tableau
for a saturated logic of BK, there is no closed tableau for any logic of BK. Every theorem
of saturated BK is a theorem of the normal modal system K4 (see Section 6), which has a
decision procedure based on the methods of Sato (in [38]). Thus if a sequent is not provable

in X4, it is not provable in any logic of BK.

Some Theorems of BK

THEOREM 4.2. Let p be derivable from I' in the view i of BK(Lg, 7). Then

FeK(Lo,r) [S:IT = [Silp

Proof. In one step, using rule AX CB .
[S:T = [Si]p
F=ip
X

AKCBE

THEOREM 4.3. Let v be a recursively complete view of BK(Lg, ), and let p
be derivable from T in the view v,i. Then

FBK (Lo,r) [SiIT =v [Silp -

Proof. In one step, using rule AKCB of r{v):

[S{]P =y [S{]P
P=,:0p
X

AKCBE
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Remarks. These two theorems show that BK has a weakened analog of the necessitation
rule of modal logic (if @ is provable, so is Oa). If a nonmodal sentence « is provable in the
view  (i.e., FpK(Lo,r)=i @), then, by Theorem 4.2, [S;]e is provable in the empty view.
Since the theorems of r(f) are assumed to be sound, « is a tautology, and so must be provable
in the empty view.! Hence, for those tautologies provable in the view ¢, necessitation holds.
Theorem 4.3 establishes this result for an arbitrary view in which A4 is an admissible rule.
Depending on the exact nature of the rule sets r, necessitation will hold for some subset of

the provable sentences of a particular logic BK{Log, 7).

THEOREM 4.4. E(Silp=p

Proof. If pis a primitive sentence, then there is no applicable tableaux rule,
and hence no closed tableaux for the sequent.f

Remarks. The familiar modal logie prineiple Op > p (if p is necessary, then p is true) is

not a theorem of BK, since beliefs need not be true.

THEOREM 4.5. E [Sile = [S;][Silp
Proof. The only applicable rule is AKCB :

[\5.']P = [5;][Silp

AKCB
p=;[Silp

According to the semantics of the deduction model, the sequent p =, [S;]p
is not valid: just because a sentence p is true does not mean that an agent
S5; believes it. Hence, there eannot be any set of sound tableau rules for r{s)
that causes p =; [S;]p to close.ll

! Care must be taken in restricting @ to nonmodal sentences, since the semantics of modal aperators can
change from one view to another (see the discussion of the recursion property in Section 3.3). John may
believe perfectly well that Sue's belief subsystem can prove a certain fact, whereas in actuality her inference
rules are too weak.
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THEOREM 4.6. E —[Si]p = [S;]-[Sip

KCB

Proof. We can apply either N or A . If we apply the latter, we obtain

=[Silp = [Si]-[Silp

AKCB
=; =[S;]p

deduction model, since it would require that po agent believe any sentence.
Hence there can be no set of sound tableau rules r(f) that derives it.

If we apply Vo first, we obtain
—[Silp = [Si]-[Silp
= [Silp, [Sil-[Silp
There are now two ways to apply AKX CB | In one application, we generate

the sequent =; =[S;]p, which cannot close. In the other, we generate =; p,
which again cannot be derived by any set of sound tableau rules.g§

Remarks. These theorems show that no logic of BK sanctions inferences about self-beliefs.
If an agent believes p, it does not follow that his model of his own beliefs includes p; this
is the import of Theorem 4.5. Similarly, if he does not believe b, he also may not have

knowledge of this fact, as shown by Theorem 4.6.

THEOREM 4.7.
F [Solp = [Sol[Solp

Proof.
AgcB  [Solp = [SollSolp
[Solp, p = [Solp
x
[ |

Remarks. We have proven a simple fact about common beliefs: if p is a common belief,

it is a common belief that this is so.

For the circumseriptive ignorance part of BK, it is an interesting exercise to show
that
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(42)  (S;:D)p=[SIT > [Silp

holds, but the converse doesn’t. That is, if p follows from I' for agent S;, it must be the
case that believing T entails believing p; on the other hand, it may be that every time an
agent has [ in his base set he also has p, which would satisfy [S;|T > [S;]p without having
p derivable from .

THEOREM 4.8. F} (S;:T)p =[S = [Si]p

Proof. We have the following two tableaux for this sentence.

I (S;: D)p = [S;IT > [Silp
axcn Si:T )plSiT = [Si]p
F=;p

(S;:Dip = [S]T = {Si]p

C.fl (S : DYp[SiT = [51p
e FU=;p

Either p is derivable from I' using the rules r(s}, or it isn’t. In either case
one of these tableaux closes.}

Example. we give an example of the use of the c¢ircumscription rules to show ignorance.
Suppose the agent Sue believes only the sentences P and P > @ in a situation; we want to
show that she doesn’t believe 2. Thus we want to prove the sequent (Sue : P, P> Q)R =
[Sue] R = ~[Sue]R.

(Sue : P,P o Q)R = [Sue]R = ~[Sue]R

C} (Sue : P,P > Q)R 5 [Suc] R, |5ue]R = (Sue : P, P > Q)R = —[Sus| R
? e, BueiP PO Q)R> -[SuelR = [SuelR, “[Sus|R
2 FPPo>Q=g,, R 2 [Sue]R = [Sue]R
x

If the rules r(Sue) are sound, there is no closed tableau for P,P > Q@ =; R, and so both
branches of the tableau close. Note that only the reverse implication half of the equivalence

was needed.
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5; The Problems Revisited

Using the logic BK, we present formal solutions to the two representational problems
posed at the beginning of this section. In each case we have tried to avoid solutions that are
trivial in the sense that they solve the representational problem, but only at the expense
of excluding types of reasoning that might be expected to occur. For example, in the chess
problem it would be an adequate but unrealistic solution to credit each player with no
deduction rules at all. Instead, we try to find rules that allow a resource-limited amount

of reasoning about the game to take place.

The Chess Problem

To approach this problem, we need to represent the game in a first-order language.
Because the ontology of chess involves rather complicated objects {pieces, board positions,
moves, histories of moves) we will not give a complete formalization, but rather sketch in

outline how this might he done.

We use a multisorted first-order language L. for the base language Lg. The key sorts
will be those for players { Sy or S3), moves, and boards. The particular structure of the sort
terms is not important for the solution of this problem, but they should have the following
information. A board contains the position of all pieces, and a history of the moves that
were made to get to that position, This is important because we want to be able to find
all legal moves from a given position; to do this, we have to have the sequence of moves
leading up to the position, since legal moves can be defined only in terms of this sequence.
For example, castling can only occur once, even if a player returns to the position before
the castle; more importantly, there are no legal moves if 50 moves have been made without

a capture or pawn advancement (this is what makes chess a finite game). A move contains
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enough information so that it is possible to compute all successor boards, that is, those

resulting from legal moves.

The game tree is a useful concept in exploring game-playing strategies. This is a
finite tree (for finite games like chess) whose nodes are board positions, and whose branches
are all possible complete games. A terminal node of the tree ends in either a win for White
or Black, or a draw. The game-theoretic value of a node for a player is either 1 (a win),
0 (a draw), or -1 (a loss), based on whether that player can force a win or a draw, or
his opponent can force a win. We use the predicate M(p, b, &,/,r) to mean that board &
has value k for player p. The argument { is a depth-of-search indicator, and shows the
maximum depth of the game tree that the value ia based on. We include the argument r
so that M can represent heuristic information about the value of a node; when r = f, &
is the player’s subjective estimate of the value of the node, i.e., he has not searched to all

terminal nodes of the game tree. If r = ¢, then & is the game-theoretic value of the board.

We take the formal interpretation of boards, players, and the M predicate to be

the game of chess, so that L. is a partially interpreted language. The rules of the game -

of chess strictly specify what the game tree and its associated values will be; hence, each
predication M(p, b,&,{,t) or ita negation is a valid consequence of these interpretations.
Any agent who knows the rules of chess, and who has the concept of game trees, will
know the game-theoretic value of every node if his beliefs are consequentially closed. In
particular, he will believe either M(Sy, I,1, k,t) or =M (Sy, I,1,k,t), where I is the initial

board; and so he will know whether White has an initial forced win or not.

We represent agents’ knowledge of chess by giving tableau rules for L.. The rules

Te presented below are one possible choice,

Crhl . F:M(P!b!k9[!r)ﬂA

where 4)-b, are all the legal successor boards to b
p’s opponent is to move on b
k is the minimum of k&,
{ is 1+ the maximum of {;-/,
rist iffall of ry—ry are t
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= Mip, bkl r),A
[‘:’M(pvblsklallirl)iA Pahf(ﬂab%k%l%rl)\A e F:n[(pvbn\kmlnwrn)--’l?

where  b)-by, are all the legal successor boards to b
p is to move on b
k is the maximum of kj-k,
[is 1+ the maximum of {}-{,
ris t iffall of rj-rp are t

Cha:

Chy: I'= M(p,b,k,0,t),A, where k=1 if p has a checkmate on
his opponent on board &; £ = 0 if
board b is a draw; and & = =1 if p’s
opponent has a checkmate.

Chy: '= M(p,b,%,0,f),A, where k is any number between —1
and 1

Ch| axiomatizes nodes in the game tree where p’s opponent moves. The value of
such a node is the minimum of the values of its successor nodes. The argument { is the

maximum depth of the subtree searched. r will be t only if all the subtrees have been

searched to leaf nodes. Chs is similar to Chy, except p moves, and the maximum of the

successor values is chosen.

Chs is the rule for terminal nodes of the tree. Chy is a rule for heuristic evaluation
of any node; note that the last argument to M is f, which indicates that a terminal node
has not been reached. Each agent may have his own particular heuristics for evaluating

nonterminal nodes; we can accommodate this by changing the values for k¥ in Chy.

As an example of the use of these rules, consider the following tableau proof.

(5.1)

= M(Sw, b: 17 21 t)
= M(Sg0,b3,1,1,1) = M(Sw, b5,1,0,t)
=> M(Sw, 63,0, 0, t) = M(Sw, b4, l, 0, t) x
» x

Chy

x

Chy

This is a proof that the board & has a value 1 for White, searching to all terminal nodes.
Boards by, bo, and b3 all have value 1, so an application of rule Ch; vields that value 1 for &
(it is Black’s turn to move on b). Boards b, and &5 are terminal nodes that are checkmates
for White. There are two legal moves from board 4o; one ends in a draw (53), the other in

a win (by) for White. Since it is White’s turn to move, rule Ch applies.
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The structure of this tableau proof mimics exactly the structure of the game tree
from the board b. Indeed, for any subtree of the complete game tree of chess whose root
the board & with value & for player p, there is a corresponding proof of M({p, 4, k,{,t) using
the rules T.. In particular, if one of M(Sy,I,1,{,t}), M(Sy, 1,0,i,t}, or M(Sy,I,~1,1,t)
is true, there is a proof of this fact. Hence the rules T, are sufficient for a player to
reason whether White has a forced initial win or not, given an infinite resource bound for
derivations. If we model agents as having the rules T, so that T, C r(v) for every view
v, the conversation presented at the beginning of this paper would make sense: each agent
would believe that everyone knew whether White had a forced initial win.

A simple modification of the rules Ch; and Ch3 can restrict exploration of the entire
game tree, while still allowing agents to reason about game tree values using the heuristic
axioms Chy, or the terminal node axioms Chjy if the game subtree is small. All that is
necessary is to add the condition that no rule is applicable when the depth ! is greater than
some constant N. Sy would still be able to reason about the game to depths less than
or equal to N, but he could go no further. In this way, a deductively closed system can

represent a resource-limited derivation process. The revised rules are

Chy~ Chy, with the condition that [ < N.
Chy  Chy, with the condition that I < N.

With these rules, the proof of (5.1) would still go through for ¥ > 2, but a proof of
M(Sw, I, k,1,t) could not be found if N were low enough to stop search at a reasonable
level of the game tree.

The solution to the chess problem illustrates the ability of the deduction model to
represent resource bounds by the imposition of constraints on deduction rules. There are
other workable constraints for this problem besides depth cutoff: for example, the number
of nodes in the tree being searched could be kept below some minimum. Because the
structure of proofs mimics the game tree, any cutoff condition that is based on the game

tree could be represented by appropriate deduction rules.
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The Not-So-VWise-Man Problem

For this problem we use a base language L, containing only the three primitive
propositions Py, P2, and P3. P; expresses the proposition that wise man S5; has a white

spot on his forehead,

In the initial situation, no one has spoken except the king, who has declared that at

least one spot is white. Axioms for this situation are

(W1) PiaPaa Py
(2)  [Sol(Prv Pyv F3)

(W3) (P = [Sj]R) A [Sol(7; = [S;1R) i#7 7#0
(W4)  (=F, 2 [Sj]=R) alSol(=F; 2 [Sj]1=F),  i#5,5#0
(C1)  (S;: W24, P;, )P, =[S, 1# 7.k

W1 describes the actual placement of the dots. W2 is the result of the king's utterance: it
is a common belief that at least one spot is white. W3 and W4 are schemata expressing the
wise men's observational abilities, including the fact that everyone is aware of each other’s
capabilities, C1 is the circumscriptive ignorance axiom: the only beliefs a-wise man has
about the color of his own spot are the three axioms Wa-Wy, plus his observation of the

other two wise men’s spots.

As an exercise of the formalism, especially the circumscription rules, let us show

that all agents are ignorant of the color of their own spot in the initial situation.
{5.2)

Cy Cl = =[S;]F;
[S:]P; = (S; : W24, P, P} P; = -[Si]B;
(S;: W24, Py, Pr) P = =[S B = [S;)P;,~{S:} P
FW24, P Py = F; [S:]P; = [S:] P
X

Iz

CircK) Ny

We have omitted some irrelevant sentences from the left side of sequents in this tableau.
To show that it closes, we must be able to prove that there is no set of sound deduction
rules that will enable S; to deduce F; from W2, W3, W4, P;, and Pj. We can prove this
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for any set of sound tableau rules by showing that W2-4, P;, Py =; F; is not provable in
the normal modal logic K4 (see Section 4.4). It is possible to find a K'4-model in which
the sequent IV 2-4, P;, P, =; P; is false, using the methods of Sato [38]; hence this sequent

is not provable in any logic of BK.

After the first wise man has spoken, it becomes a common belief that he does not

know his own spot is white. The appropriate axioms are

(W3)  =[S1]P1 A[Sol-[S1]P
(C2) (S;: W15, B, PIR, = SIP, i 1.k

In this new situation, all the wise men are again ignorant of their own spot’s color; we
could prove this fact, showing that | C2 => =[5;]F;, in a manner similar to the proof in

{5.2). Sy relates his failure to the others, and the new situation has the additional axiom
(W6)  =[S2]Ps A [Sq]={S2] P2

The third wise man at this point does have sufficient cause to claim his spot is white, but
only if the second wise man is indeed wise, and the third wise man believes he is. To see
how this comes about, let us prove it in the saturated form of BK. We will take the wise
men to be powerful reasoners, and set 7(v) = Tg+AKCB + Cire Ky + CircKs, for all views
v. The sequent we wish to prove is W1-6 = [53]FP;.

(53)
o Wi-6= [Sg]Pa
. - Cy W26, P, B, B = [83]P3
L W2-6, Ph Pz: I’3v PZ > [53]P2 = [§3]P3
cy W2-6, P, P, P3, [S3]P = [S3]P3
P2=’P2 I W2—6,P1,P2,P3,[33]P2,P13[53IP1=>[S3]P3
x 2 hi=>h AgCB W26 P, P By [Sa] P2, [S3Py = [53]F3

W2-6, AivPov P, P, P =3 B
This part of the proof is mostly bookkeeping. We have used some shortcuts in the

proof, omitting some obvious steps and dropping sentences from either side of the sequent

if they are not going to be used.
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We now must show that S3’s belief subsystem can prove P; from the assumptions
1172-6 and from the belief that the other two wise men’s dots are white (note that we are

now using S3’s sequent =3).

(5.4)
c W2-6, PAvPvP, B, P =3 P
L ' Wa-e, P, P, P o [Sa]P, =3 P
- o W2-6, Py, P, [So]Py =3 Py
P =3 P L ' W26, Py, P, [S2]Py, ~P; o [Sa]~Py =3 P
x N, =3 P3,-P; N W2-6, Py, Pa, [Sa]Py, [S2]-Ps =3 P3
' "R=3h L cb W26 P P [Si]P [S2oPs =5 B, [SilPe
x W2-6, P vPv P P,-Py =32 P

Note the atom P; on the right-hand side of the top sequent; it is eguivalent to = P3
on the left-hand side, i.e., the assumption that S3’s spot is black. The sequent proof here
mimics the third wise man’s reasoning, Suppose my spot were black .... Through the
observation axiom W4, which is a common belief, this assumption means that S; believes
that S believes ~P;. At this point, S3 begins to reason about So’s beliefs. Since, by W6,
the second wise man is unaware of the color of his own spot, a contradiction will be derived

if P [ollows in S9’s belief subsystem.
(5.5)

W26, AvPv P, P,-P; =3 P

C1 W26, P, =P, -FP3 > [Sl]ﬁpa =32 P

W2-6, Py, ~P3, [S1]-P; =32 P2

Py =p B ‘1 W2-6, Py, =P, [S1|=F3, P2 2 [5)]~Fs =32 Py -
x N ZRBoh W26, Py, =B, [S1]=Py, [Si]-FP: =32 Py
1 P=n P AKC% W2-6, A1, =P, [S1]-Fs. [S1]-P =32 P, [51]P1. [Si]~F
x W28, Ppv Pav Py, oPy, =Py =331 P

Sa's reasoning (in S3’s view) takes the assumption that the third wise man’s spot is
black and asks what the effect would be on the first wise man S}. Since Sj is also ignorant
of the color of his own spot, a contradiction will ensue if the first wise man can prove that
his own spot is white, under the assumption —F3;. The remainder of the proof is conducted
in the view 321.
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(5.6)

N W2-6, Pyv Pav Py, P, =Py =301 P

Do 2 W26, Prv Pov P3, =301 P, Po, P

* P=3n PP P Py =39 P, P, P Py =301 P, P2, P
x x X

In pursuing this proof, we have assumed that the second wise man is indeed wise.
There are several places in which, with slightly less powerful deduction rules for the view
32, the proof would break down. Each of these corresponds to one of the two types of
incompleteness that we identified in the statement of the problem: relevance incompleteness

and fundamental logical incompleteness.

Consider first the notion that S; is not particularly good at reasoning about what
other agents do not believe, a case of fundamental logical incompleteness. One way to
capture this would be to weaken the rule N2 in the following manner:

[,-p =32 A

Ny
'z [ =32 9,4

, where p contains no belief operators

The modified rule ¥} would not allow deductions about what agents do not know. In
particular, it would not allow the transfer of the sentence =[S;]P; to the left-hand side of

the sequent, a crucial step in the tableau (5.5} for the view =32.

Note that the modified rule ¥} still allows deductions about what other agents do
believe. For instance, if So were asked whether S;’s believing P; followed from his believing
- Ps and ~P3, So would say “yes,” even with the logically incomplete rule Nz' (as in tableau
(5.6) abaove).

A more drastic case of logical incompleteness would result if S» simply did not reason
about the beliefs of other agents at all. In that case, one would exclude the rule 4K 8 from
S2’s deduction structure. Again, the proof would not go through, because the attachment
rule could not be applied in the tableau (5.5}

The notion of relevance incompleteness emerges if the not-so-wise-man S» does not

consider all the information he has available to answer the king. For example, he may

50



think that the observations of other agents are not relevant to the determination of his
own spot, since the results of those observations are not directly available to him. The
observational axioms W3 and W4 enter into the proof tableau {5.5) in two plaées. Both
times the rule /o is used to break statements of the form p > [S]p into their component
atoms. Preventing the decomposition of W3 and W 4 effectively prevents 53 from reasoning
about the observations of other agents. A weakened version of /5 for doing this is:

o F,p>2g =3 A
" T'=3pd Tg=324’

where p and g are both modal or
both nonmodal.

This rule is actually weaker than required for the purpose we have in mind. Consider
the observation axiom —P3 = [$)|~FP3. There are two ways Sy could use this axiom. If S»
believes = P3, he could conclude that S; does also. This is not the type of deduction we wish
to prevent, since it means that S attributes beliefs to other agents based on his own beliefs
about the world. On the other hand, the axiom =P > [S$)]~F; is used in a conceptually
different fashion. Here it is the contrapositive implication: if 5} actually does not believe
- Pz, then P» must hold. The way this shows up in the proof tableau (5.5) is that —=P;
appears as an initial assumption on the sequent W2-3, P, =FP; =32 Ps, while P» is a goal

to be proved.

To capture the notion of using an implicational sentence in one direction only, we
would have to complicate the deduction rules by introducing asymmetry between the left
- and right sides of the sequent. This is one of the major strategies used by commonsense
theorem provers of the PLANNER tradition (Hewitt [12] originated this theorem-proving
method). Rather than having implicational rules of the form /o, typical PLANNER-type
systems use something like the following rule.

L,pp2g=>4A

PI C.pgqp>g=4

The implicational sentence is used in one direction only in PI. If it is desired to make
contrapositive inferences, then the contrapositive form of the implication must be included
explicitly. The construction of PLANNER-type deduction rules within the tableau frame-
work allows a much finer degree of control over the inference process. A full exposition
of such a system is beyond the scope of this paper; the interested reader is referred to
Konolige [21].
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In sum, we have shown that it is possible for the deduction model to represent the
situation in which not-so-wise-man has less than petfect reasoning ability, preventing the
third wise man from figuring out the color of his own spot. Both relevance incompleteness

and fundamental [ogical incompleteness can be captured by using appropriate rules for
r{32).
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8. Other Formal Approaches to Belief

How does the deduction model and its logic B compare to other formal modeis and
logics of belief? We examine two alternative approaches in this section: modal logics based
on a Hintikka/Kripke possible-worlds semantics, and several different first-order formaliza-

tions that treat beliefs as sentences in an internal language.

8.1. The Possible-Worlds Model

The possible-worlds model of belief was initially developed by Hintikka in terms of
sets of sentences he called model sets. Subsequent to Kripke’s introduction of possible
worlds as a uniform semantics for various modal systems, Hintikka rephrased his work in
these terms (see Hintikka [14]). The basic idea behind this approach is that the beliefs of
an agent are modeled as a set of possible worlds, namely, those that are compatible with

his beliefs. For example, an agent who believes the sentences

Some of the artists are beekeepers.

(6.1) All of the beckeepers are chemists.

would have his beliefs represented as the set of possible worlds in which some artists are

beekeepers and all beekeepers are chemists.

Representational [ssues

In a possible world for which the sentences (6.1) are true, anything that is a valid
consequence of {6.1) must also be true. There can be no possible world in which some artists
are beekeepers, all beekeepers are chemists, and no artists are chemists; such a world is
a logical impossibility. If beliefs are compatible with a set of possible worlds (i.e., true of

each such possible world), then every valid consequence of those beliefs is also compatible
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with the set. Thus one of the properties of the possible-worlds model is that an agent
will believe all consequences of his beliefs — the model is consequentially closed. Hintikka,
recognizing this as a serious shortcoming of the model, claimed only that it represented an
idealized condition: an agent could justifiably believe any of the consequences of his beliefs,
although in any given situation he might have only enough cognitive resources to derive a

subset of them.

The assumption of consequential closure limits the ability of the possible-worlds
model to represent the cognitive state of agents. Consider, for example, the problem of
representing the mental state of agents as described by belief reports in a natural language.

Suppose the state of John’s beliefs is at least partially given by the sentence

John believes that given the rules of chess, White has a forced initial

6.2
(6.2) win.

Since the statement, given the rules of chess, White has a forced initial win is either a
tautology or inconsistent, this would be equivalent in the possible-world model to one of

the following belief reports:

a. John believest.

(6.3) b. John believes everything.

Clearly this is wrong; if it turns out that John’s belief in White’s forced initial win is
correct, John has a good deal of information about chess, and we would not want to equate
it to the tautology t. On the other hand, if John’s belief iz false and no such strategy for
White exists, it is not necessarily the case that ail of his beliefs about other aspects of the
world are incoherent. Yet there are no possible worlds compatible with a false belief, and

so every proposition about the world must be a belief.

The representational problems of the possible-worlds approach stem from its treat-
ment of belief as a relation between an agent and a propaosition (i.e., a set of possible worlds).
All logically equivalent ways of stating the same proposition, no matter how complicated,
count as a report of the same belief. By contrast, the deduction model treats belief as
a relation between an agent and the statement of a proposition, so that two functionally

different beliefs can have the same propositional content.

There is a large philosophical literature on the problems of representing propositional

attitudes using possible worlds. Perry (in [34]) gives an account of some of the more subtle
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problems inherent in equating belief states with propositions; his analysis does not depend
on consequential closure. Barwise (in [2]) critiques consequential closure in possibie-worlds
models of perception. By comparison, a good account of the relative advantages of a

symbol-processing approach to representing belief can be found in Moore and Hendrix (in

(31]).

The Correspondence Property

It is reasonable to ask how the deduction and possibie-worlds models compare in
respects other than the assumption of consequential elosure. That is, are the saturated
deduction models D,(L, p) (whose rules are consequentially complete) significantly different

from possible-worlds models for the purpose of representing belief?

The last phrase, “for the purpose of representing belief,” is important. The two
models are composed of different entities (expressions vs. propositions), so we can always
use a language that distinguishes these entities, and has statements that are valid in one
model and not the other. So the answer to this question depends on the type of language
used to talk about the models. Fortunately, the language standardly used to axiomatize
possible-worlds models is the same as that of B: a modal calculus containing atoms of the
form [S)p, in which p refers to a proposition.! Thus it is possible to compare the possible-
worlds and deduction models by comparing their axiomatizations in modal logic. We have

proven the following general property about the two approaches.

Correspondence Property. For every modal logic of belief based on Kripke possible-
worlds models, there exists a corresponding deduction model logic family with an

equivalent saturated logic.

The correspondence property simply says that possible-worlds models are-indistinguishable
from saturated deduction models from the point of view of modal logics of belief. To the
author’s knowledge, this is the first time that the symbol-processing and possible-worlds

approaches to belief have been shown to be comparable, in that the pessible-worlds model

! Historically, the axiomatization of modal systems preceded Kripke's introduction of a unifying possible-
worlds semantics.
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is equivalent to the limiting case of a symbol-processing model with logically complete

deduction.

Although space is too short here to give a full proof of this claim, we will give an
overview of the most important of the propositional modal logics with a possible-worids
semantics, and their corresponding deductive belief logics (a full exposition and proofs of

results mentioned here are in Konolige [21]).

Modal caleuli for the possible-worlds model difler, depending on the particulars of
their intended domains. For propositional modal calculi, these particulars center around
whether knowledge or belief is being axiomatized, and what assumptions are made about
self-beliefs or self-knowledge {a survey of these calculi may be found in Hughes and Cresswell
[13]). The standard propositional modal caleuli contain a single modal operator (which we
write here as [S]) and are expressed as Hilbert systems. Their rules of inference are modus
ponens {from p and p > g, infer q) and necessitation (from p, infer [S]p). Axioms are taken

from the following schemata.

M1. p, where pis a tautology
M2. [S](p=q) > ([S]p = [S]®)
M3. [Slp>p

M4. [S]p > {S][Slp

MSs. =[S|p = [S]-[S]p

M1 are the purely propositional axioms. M2, also called the distribution axioms,'allow
modus ponens to operate under the scope of the modal operator. M3 are axioms for knowl-
edge: all knowledge is true. M4 and M5 are called the positive and negative introspection
aXioms, respectively: if an agent believes p, then he believes that he believes it (M4); if he
doesn't believe p, then he believes that he doesn’t believe it (M5).

Any modal calenlus that uses modus ponens and necessitation, and includes all
tautologies and the distribution axioms, is called a normal modal calcufus. Normal modal
calculi have the following interesting property (see Boolos [3]): if p > q is a theorem, then

so is [S]p > [S]q. Interpreting the modal operator S| as belief, this asserts that whenever
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q is implied by p, an agent S who believes p will also believe q. As expected, normal modal

calculi assume consequential closure when the modal operator is interpreted as belief.

The simplest normal modal calculus is X, which contains just the schemata M1 and
M?2. To axiomatize knowledge, M3 is included to form the calculus T'. Assumptions about
sell-knowledge lead to the caleuli §4 (T + M4) and S5 (S4 + MS5). McCarthy (in [24] and
[25]) was the first to recognize the utility of modal calculi for reasoning about knowledge in
Al systems, and defined three calculi that were extensions to T', 54, and §5, allowing belief
operators for multiple agents. Sato {[38]) has a detailed analysis of these calculi as Gentzen
. systems, and calls them K3, K4, and K5, respectively. He also gives decision procedures
for these logics. R4 is the calculus used by Moore in his dissertation on the interaction of

knowledge and action ([29)).

The so-called weak analogs to S4 and S5 are formed by omitting the knowledze
axiom M3 (this terminology is introduced by Stalnaker [41]). The weak versions are ap-
propriate for axiomatizing belief rather than knowledge, since beliefs can be false. Levesque
[22] has an interesting dissertation in which he explores the question of what knowledge
a data base can have about its own information. Because he makes the assumption that
a data base has complete and accurate knowledge of its own contents, the propositional

calculus he arrives at is weak S5, with the addition of a consistency schema [S]|p > —=[5]-p.

How does the family of logics B compare with these propasitional modal caleuli?
As with the possible-worlds logics, the deductive belief logics formed from B will depend
on the assumptions that are made about self-beliefs. In this paper we have developed the
logic family BK, which assumes that an agent has no knowledge of his own beliefs. The
saturated logic BK,, restricted to a single agent, is provably equivalent to K, the weakest
of the possible-worlds belief calculi.

We have developed a theory of introspection within the deduction model framework
that accounts for varying degrees of self-knowledge about one’s own beliefs. This theory
is based on the idea that an agent’s belief subsystem can query a model of itself (an
introspective belief subsystem) to answer question of self-belief. Depending on constraints

placed on the introspective belief subsystem, it is possible to arrive at any one of eight
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different logic {amilies. Two of these, BS4 and BS5, have saturated logics that are equivalent

in the single-agent case to the modal systems weak 54 and weak S5.

While we have been interested in the concept of belief throughout this paper, it is
possible to define a deductive belief logic based on the related concept of knowledge. One
property that distinguishes knowledge from belief is that if something is known it must be
true, whereas beliefs can be false. The appropriate tableau axiom for knowledge is

g,[5]F=A

Ko: ST sr=a

Adding Ky to B forms the logic fai'nily K. Particularizations of K with varying degrees of
self-knowledge correspond to the propositional modal systems T, S4 and S5.

We summarize these results in the following table.

Normal Modal Deduction Model

Calculus Family
. K BK
Belief weak S4 BS4
weak S5 BS5
T KT
Knowledge S4 KS4
S3 KS5

8.2. Syntactic Logics for Belief

There are a number of first-order formalizations of belief or knowledge in the symbol-
processing tradition that have been proposed for Al systems. We have labeled these “syn-
tactic” logics because their common characteristic is to have terms whose intended meaning
is an expression of some object language. The object language is either a formal language
(e.g., another first-order language) or an internal mental language. The logic B is also a
syntactic logic, although it uses a modal operator; the argument of the operator denotes a

sentence in the internal language. We have chosen to use a modal language for B because
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it has a relatively simple syntax compared to first-order formalizations. It is also less ex-
pressive, in that quantification over sentences of the object language is not allowed by the

modal syntax.

McCarthy {26] has presented some incomplete work in which individual concepts are
reified in a first-order logic, Exactly what these comcepts are is left deliberately unclear,
but in one interpretation they can be taken for the internal mental language of a symbol-
processing cognitive framework. He shows how the use of such concepts can solve the
standard representational problems of knowledge and belief, e.g., distinguishing between

de dicto and de re references in belief sentences.

A system that takes seriously the idea that agent’s beliefs can be modeled as the
theory of some first-order language is proposed by Konolige [19]. A first-order metalanguage
is used to axiomatize the provability relation of the object language. To account .for nested
beliefs, the agent’s object language is itself viewed as a metalanguage for another object
language, and so on, thereby creating a hierarchy of metalanguage/object language pairs.
Perlis [33] presents a more psychologically oriented first-order theory that contains axioms

about long- and short-term memory. The ontology is that of an internal mental language.

These axiomatic approaches are marred by one or both of two defects - the lack
of a coherent formal model of belief, and computational inefficiency. Regarding the first
one: the vagueness of the intended model often makes it difficult to elaim that the given
axioms are the correct ones, since there is no formal mathematical model that is being
axiomatized. In arriving at the deduction model of belief, we have tried to be very clear
about what assumptions were being made in abstracting the model, how the model could
fail to portray belief subsystems accurately, and so on. In contrast, the restrictions these
syntactic systems place on belief subsystems are often obscure. What type of reasoning
processes operate to produce consequences of beliefs? How are these processes invoked?
What is the interaction of the belief subsystem with other parts of the cognitive model?
These types of questions are begged when one simply writes first-order axioms and then
tries to convey an intuitive idea of their intended content. (To some extent this criticism is
not applicable to the formalism of Konolige in [19], because here the intended belief model

is explicitly stated to be a first-order theory).
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A second shortcoming is that efficient means of deduction for the syntactic axioma-
tizations are not provided. As we have mentioned, a system that is actually going to rea-
son about belief by manipulating some formalization can encounter severe computational
problems. Many of the assumptions incorporated into the deduction model, especially
the closure property, were made with an eye towards deductive efficiency. The end result
is a simple rule of inference, the attachment rule A, that has computationally attractive
realizations.! On the other hand, formalizations that try to account for complex proce-
dural interactions (as in Perlis’s theory of long- and short-term memory), or that use a
metalanguage to simulate a proof procedure at the object language level (as in Konolige

[19]), have no obvious computationally efficient implementation.

! Several efficient proof methods are given in Konolige [21]: a decision procedure for propositional BK
based on the Davis-Putnam procedurs (see Chang and Lee |5}, which is sufficient to solve the Wise Man
Puzzle automatically; a resolution method for the quantifying-in form of B; and a PLANNER-type deduction
gystemn.
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7. Conclusion

We have explored a formalization of the symbol-processing paradigm of belief that
we call the deduction model. It is interesting that the methodology employed was to ex-
amine the cognitive structure of Al planning systems. This methodology, which we might
term experimental robot psychology, offers some distinct advantages over its human coun-
terpart. Because the abstract design of such systems is open and available, it is possible to
identify major cognitive structures, such as the belief subsystem, that influence behavior.
Moreover, these structures are likely to be of the simplest sort mecessary to accomplish
some task, without the synergistic complexity so frequently encountered in studies of hu-
man intelligence. The design of a robot’s belief subsystem is based on the minimum of
assumptions necessary to ensure its ability to reason about its environment in a productive
manner, namely, it incorporates a set of logical sentences about the world, and a theorem-
proving process for deriving consequences. The deduction model is derived directly from

these assumptions.

The deduction model falls within that finely bounded region between formally tract-
able but oversimplified models and more realistic but less easily axiomatized views. On
the one hand, it is a generalization of the formal possible-worlds model that does not make
the assumption of consequential elosure, and so embodies the notion that reasoning about
one’s beliefs is resource-limited. On the other hand, it possesses a conecise axiomatization
in which an agent’s belief deduction process is incorporated in a direet manner, rather than
simulated indirectly. Thus, the deduction model and its associated logic B lend themselves
to implementation in mechanical theorem-proviag processes as a means of giving Al systems

the capability of reasoning about beliefs.
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