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Abstract

We observe that, under very mild conditions, an n-dimensional space of functions
(with a finite n) admits numerically stable n-point interpolation and integration for-
mulae. The proof relies entirely on linear algebra, and is virtually independent of the
domain and of the functions to be interpolated.

Approximation of functions and construction of quadrature formulae constitute an ex-
tremely well-developed area of numerical analysis; in most situations one is likely to encounter
in practice, existing tools are satisfactory. Much of the research concentrates on obtaining
powerful results under strong assumptions — designing interpolation and quadrature for-
mulae for smooth functions on subspaces of Rn, manifolds, etc. In this note, we make a
very general observation that, given a finite set of bounded functions f1, f2, . . . , fn−1, fn

(either real- or complex-valued) defined on a set S, there exists an interpolation formula
that is exact on all linear combinations of f1, f2, . . . , fn−1, fn, is numerically stable, and is
based on n nodes in S (to be denoted x1, x2, . . . , xn−1, xn). If, in addition, S is a measure
space, and the functions f1, f2, . . . , fn−1, fn are integrable, then there exists a quadrature
formula based on the nodes x1, x2, . . . , xn−1, xn that is exact on all functions f1, f2, . . . ,
fn−1, fn, and is also numerically stable. Both of these statements are purely linear-algebraic
in nature, and do not depend on the detailed properties of S, or of the functions f1, f2, . . . ,
fn−1, fn.

It should be pointed out that all of the statements in this note follow easily from the
analysis found in [3]; moreover, Theorem 2 can be found (in a slightly different form) in [4].
While we cannot cite any earlier works where these observations are published, it seems
unlikely that they had not been made a long time ago (perhaps in contexts other than
numerical analysis).

Throughout this note, S denotes an arbitrary set, n denotes a positive integer, and f1, f2,
. . . , fn−1, fn denote bounded complex-valued functions on S (all results of this note also
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apply in the real-valued case, provided that the word “complex” is replaced with “real” ev-
erywhere). For any n points x1, x2, . . . , xn−1, xn in S, we define A = A(x1, x2, . . . , xn−1, xn)
to be the n× n matrix defined via the formula

Aj,k = fj(xk) (1)

with j, k = 1, 2, . . . , n − 1, n; we define the function gk on S to be the ratio of the
determinant of A(x1, x2, . . . , xk−2, xk−1, x, xk+1, xk+2, . . . , xn−1, xn) to the determinant
of A(x1, x2, . . . , xn−1, xn), via the formula

gk(x) =
det A(x1, x2, . . . , xk−2, xk−1, x, xk+1, xk+2, . . . , xn−1, xn)

det A(x1, x2, . . . , xn−1, xn)
(2)

(here, the numerator is the same as the denominator, but with x in place of xk). We define
D(x1, x2, . . . , xn−1, xn) to be the modulus of the determinant of A(x1, x2, . . . , xn−1, xn),
via the formula

D(x1, x2, . . . , xn−1, xn) = | det A(x1, x2, . . . , xn−1, xn) |. (3)

We define B to be the supremum of D(x1, x2, . . . , xn−1, xn) taken over all sets of n points
x1, x2, . . . , xn−1, xn in S, via the formula

B = sup
x1, x2, ..., xn−1, xn in S

D(x1, x2, . . . , xn−1, xn). (4)

For any x in S, we define u = u(x) to be the n× 1 column vector defined via the formula

uk = fk(x) (5)

with k = 1, 2, . . . , n − 1, n, and we define v = v(x) to be the n × 1 column vector defined
via the formula

vk = gk(x) (6)

with k = 1, 2, . . . , n− 1, n.
Theorem 2 below asserts the existence of numerically stable n-point interpolation formu-

lae for any set of n bounded functions; first we will need the following lemma.

Lemma 1 Suppose that n is a positive integer, S is an arbitrary set containing at least n
points, and f1, f2, . . . , fn−1, fn are complex-valued functions on S that are linearly indepen-
dent.

Then, there exist n points x1, x2, . . . , xn−1, xn in S such that the vectors u(x1), u(x2),
. . . , u(xn−1), u(xn) defined in (5) are linearly independent.

Proof. We apply the modified Gram-Schmidt process (see, for example, [2]) to the set of all
n× 1 column vectors u(x) defined in (5) for all x in S, while ensuring that all pivot vectors
are non-zero via appropriate column-pivoting. 2
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Theorem 2 Suppose that S is an arbitrary set, n is a positive integer, f1, f2, . . . , fn−1, fn

are bounded complex-valued functions on S, and ε is a positive real number such that

ε ≤ 1. (7)

Then, there exist n points x1, x2, . . . , xn−1, xn in S and n functions g1, g2, . . . , gn−1, gn

on S such that
|gk(x)| ≤ 1 + ε (8)

for all x in S and k = 1, 2, . . . , n− 1, n, and

f(x) =
n∑

k=1

f(xk) gk(x) (9)

for all x in S and any function f defined on S via the formula

f(x) =
n∑

k=1

ck fk(x), (10)

for some complex numbers c1, c2, . . . , cn−1, cn.

Proof. We assume without loss of generality that the functions f1, f2, . . . , fn−1, fn are
linearly independent.

Then, due to Lemma 1, B defined in (4) is strictly positive. Since the functions f1, f2,
. . . , fn−1, fn are bounded, D(x1, x2, . . . , xn−1, xn) (defined in (3)) is also bounded, and
hence B defined in (4) is not only strictly positive, but also finite. Therefore, there exist n
points x1, x2, . . . , xn−1, xn in S such that

B −D(x1, x2, . . . , xn−1, xn) ≤ B

2
ε (11)

and D(x1, x2, . . . , xn−1, xn) is strictly positive.
Defining g1, g2, . . . , gn−1, gn via (2), we obtain (9) from the Cramer rule applied to the

linear system
Av = u, (12)

where A = A(x1, x2, . . . , xn−1, xn) is defined in (1), v = v(x) is defined in (6), and u = u(x)
is defined in (5). Due to the combination of (11) and (7),

B

2
≤ D(x1, x2, . . . , xn−1, xn), (13)

and due to the combination of (11) and (13),

B

D(x1, x2, . . . , xn−1, xn)
− 1 ≤ ε; (14)

we also observe that, due to (4),

D(x1, x2, . . . , xk−2, xk−1, x, xk+1, xk+2, . . . , xn−1, xn) ≤ B (15)

for all x in S. Now, (8) is an immediate consequence of (2), (3), (15), (14). 2
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Remark 3 Due to (8), the interpolation formula (9) is numerically stable.

Remark 4 When calculations are performed using floating point arithmetic, it is often
desirable to “normalize” the set of functions f1, f2, . . . , fn−1, fn before applying Theorem 2,
by replacing this set with the set of functions f̃1, f̃2, . . . , f̃n−1, f̃n, where f̃k is the function
defined on S via the formula

f̃k(x) =
fk(x)∑n

j=1 |fj(x)|
, (16)

for example.

Remark 5 When S is compact and the functions f1, f2, . . . , fn−1, fn are continuous,
Theorem 2 holds with ε = 0 rather than ε > 0, since a continuous function D on a compact
space S attains its maximal value. For the same reason, Theorem 2 holds with ε = 0 when
S = R

d for some positive integer d, the functions f1, f2, . . . , fn−1, fn are continuous, and
fk(x) → 0 as |x| → ∞ for all k = 1, 2, . . . , n− 1, n.

The following theorem formalizes the obvious observation that integrating both sides
of (9) yields numerically stable quadrature formulae.

Theorem 6 Suppose that S is a measure space, w is a nonnegative real-valued integrable
function on S (that serves as the weight for integration), n is a positive integer, f1, f2, . . . ,
fn−1, fn are bounded complex-valued integrable functions on S, and ε ≤ 1 is a positive real
number.

Then, there exist n complex numbers w1, w2, . . . , wn−1, wn such that

|wk| ≤ (1 + ε)
∫

w(x) dx (17)

for all k = 1, 2, . . . , n− 1, n, and∫
f(x) w(x) dx =

n∑
k=1

wk f(xk) (18)

for any function f defined on S via (10), where x1, x2, . . . , xn−1, xn are the n points in S
chosen in Theorem 2.

Proof. For each k = 1, 2, . . . , n− 1, n, we define wk via the formula

wk =
∫

gk(x) w(x) dx, (19)

where g1, g2, . . . , gn−1, gn are defined in (2). Then, (17) is an immediate consequence of (19)
and (8). Moreover, (18) is an immediate consequence of (9) and (19). 2

Remark 7 Needless to say, the weight function w in the above theorem is superfluous; it
could be absorbed into the measure on S. However, we found the formulations of Theorems 6
and 10 involving w to be convenient in applications. While Theorems 6 and 10 require
the functions f1, f2, . . . , fn−1, fn to be bounded (perhaps after “normalizing” them as in
Remark 4 or otherwise rescaling them), these theorems do not require the weight function
w to be bounded.
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Remark 8 Theorem 6 asserts the existence under very mild conditions of numerically sta-
ble quadratures that integrate linear combinations of n functions using the values of these
linear combinations tabulated at n appropriately chosen points. In contrast, construction
of optimal “generalized Gaussian” quadratures, which tabulate the linear combinations at
fewer nodes than the number of functions, requires more subtle techniques (see, for example,
the references cited in [5]).

Remark 9 The proof of Theorem 2 does not specify a computational means for choosing the
points x1, x2, . . . , xn−1, xn so that (11) is satisfied (that is, so that the resulting interpolation
and quadrature schemes are guaranteed to be numerically stable). However, combining the
algorithms described in [1], [3] with appropriate discretizations of S yields methods for
choosing the points that are proven to work, both in theory and in practice.

Theorem 2 provides the bound (8) under the rather weak assumption that the functions
f1, f2, . . . , fn−1, fn are bounded (in fact, this assumption is necessary for (8)). The following
theorem provides a stronger bound under the additional assumption that there exists a
measure with respect to which the functions f1, f2, . . . , fn−1, fn are orthonormal.

Theorem 10 Suppose that n is a positive integer, S is a measure space containing at least
n points, w is a nonnegative real-valued integrable function on S (that serves as the weight
for integration), f1, f2, . . . , fn−1, fn are bounded complex-valued square-integrable functions
on S, and ε ≤ 1 is a positive real number. Suppose further that f1, f2, . . . , fn−1, fn are
orthonormal, that is, ∫

|fk(x)|2 w(x) dx = 1 (20)

for all k = 1, 2, . . . , n− 1, n, and∫
fj(x) fk(x) w(x) dx = 0 (21)

whenever j 6= k.
Then,

|gk(x)| ≤ (1 + ε)

√∫
w(y) dy

n∑
j=1

|fj(x)| (22)

for all x in S and k = 1, 2, . . . , n− 1, n, where g1, g2, . . . , gn−1, gn are defined in (2), with
the n points x1, x2, . . . , xn−1, xn in S chosen in Theorem 2.

Proof. In order to prove (22), for each k = 1, 2, . . . , n− 1, n, we define the function hk on
S via the formula

hk(x) =
n∑

j=1

fj(x)
∫

fj(y) gk(y) w(y) dy (23)

and demonstrate that

|hk(x)| ≤ (1 + ε)

√∫
w(y) dy

n∑
j=1

|fj(x)| (24)

5



and
hk(x) = gk(x) (25)

for all x in S and k = 1, 2, . . . , n− 1, n.
Suppose that f is defined via (10). We first show that

f(x) =
n∑

k=1

f(xk) hk(x) (26)

for all x in S. Substituting (23) into the right hand side of (26) and exchanging the orders
of summation and integration,

n∑
k=1

f(xk) hk(x) =
n∑

j=1

fj(x)
∫

fj(y)
n∑

k=1

f(xk) gk(y) w(y) dy (27)

for all x in S. Due to the combination of (27) and (9),

n∑
k=1

f(xk) hk(x) =
n∑

j=1

fj(x)
∫

fj(y) f(y) w(y) dy (28)

for all x in S. Then, (26) is an immediate consequence of applying (10), (20), and (21) to
the right hand side of (28).

We now complete the proof of (25). For any x in S, due to (26),

At = u, (29)

where A = A(x1, x2, . . . , xn−1, xn) is defined in (1), u = u(x) is defined in (5), and t = t(x)
is defined to be an n× 1 column vector via the formula

tk = hk(x) (30)

with k = 1, 2, . . . , n− 1, n; subtracting (12) from (29),

A(t− v) = 0, (31)

where v = v(x) is defined in (6). Since f1, f2, . . . , fn−1, fn are orthonormal, they are linearly
independent. Thus, due to Lemma 1, B defined in (4) is strictly positive, so that A defined
in (1) is invertible, and therefore, due to (31),

t(x) = v(x) (32)

for all x in S. Then, (25) is an immediate consequence of (32), (30), (6).
Finally, due to the Cauchy-Schwarz inequality,∣∣∣∣∫ fk(y) gk(y) w(y) dy

∣∣∣∣ ≤
√∫

|fk(y)|2 w(y) dy

√∫
|gk(y)|2 w(y) dy, (33)

and due to (8), √∫
|gk(y)|2 w(y) dy ≤ (1 + ε)

√∫
w(y) dy (34)

for all k = 1, 2, . . . , n−1, n. Then, (24) is an immediate consequence of (23), (33), (20), (34),
and then (22) is an immediate consequence of (24) and (25). 2
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Remark 11 Due to (22), the interpolation formula (9) is numerically stable. While the
numerical stability guaranteed by (8) is sufficient under most conditions, sometimes the
bound (22) is more useful.

Remark 12 Theorem 10 generalizes easily to the case when the functions f1, f2, . . . , fn−1, fn

are not precisely orthonormal, but only “close” to orthonormal, in the sense that the condi-
tion number of their Gram matrix is reasonably small.

Remark 13 One often encounters infinite-dimensional spaces of functions that are finite-
dimensional to any specified precision. A typical situation of this kind involves the range of
a compact operator, and the usual way to construct the finite-dimensional approximation is
via the Singular Value Decomposition (see, for example, [5]). When combined with this ob-
servation, the apparatus of the present note becomes applicable to many infinite-dimensional
spaces of functions.
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