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Abstract efficient Ci is excluded from the reconstruction if
I Ci I- ao/21logK, where oa is the standard devia-
tion of the noise, and K is the length of the obser-Approaches to wavelet-based denoising (or signal en- tion of the noise, and K is the length of the obser

hancement) have so far relied on the assumption of nor- vation. Krim and Pesquet [3] have used Rissanen's
mally distributed perturbations. To relax this assump- Minimum Description Length MDL) criterio [4] to-
tion, which is often violated in practice, we derive a robust er with the assumption of normally distributed

noise, and derived an identical threshold. Anotherwavelet thresholding technique based on the Minimax De-
scription Length principle. We first determine the least feature that makes this threshold compelling is that
favorable distribution in the 6-contaminated normal fam- it is asymptotically equivalent to the maximum of a
ily as the member that maximizes the entropy. We show sample of independent normally distributed variates
that this distribution and the best estimate based upon [5], suggesting the intuitively pleasing interpretation

that anything larger in magnitude is extremely un-it, namely the Maximum Likelihood Estimate, constitute that anything larger in magnitude is extremely un
a saddle point. This results in a threshold that is more likely to be pure noise and must therefore contain
resistant to heavy-tailed noise, but for which the estima-
tion error is still potentially unbounded. We address the Nevertheless, the procedure remains non-robust. Al-
practical case where the underlying signal is known to be though wavelets, thanks to their compactness and lo-
bounded, and derive a two-sided thresholding technique calization properties, do provide an unconditional ba-
that is resistant to outliers and has bounded error. We sis for a large smoothness class of signals and offer a
provide illustrative examples. simple framework for nonlinear filtering, the proce-

dures derived to date have been based upon the as-
sumption of normality of the noise, and are therefore
sensitive to outliers, i.e. to noise distributions whose

1 Introduction tails are heavier than the Gaussian distribution. In
this paper we adopt the minimax approach due to

The concept of "scale" has emerged in recent years as Huber [6] to derive a thresholding technique that is
resistant to spurious observations.an important characteristic for signal analysis, par-

ticularly with the advent of wavelet theory.

Wavelets provide a powerful tool for non-linear fil-
tering of signals contaminated by noise. Mallat and 2 Problem Statement
Hwang [1] have shown that effective noise suppres-
sion may be achieved by transforming the noisy sig- The estimation problem of interest in this paper as-
nal into the wavelet domain, and preserving only the sumes the following observation model:
local maxima of the transform. Alternatively, a re-
construction that uses only the large-magnitude co-
efficients has been shown to approximate well the un-
corrupted signal. In other words, noise suppression
is achieved by thresholding the wavelet transform of with x(t) E L2 (IR), and where s(t) is a deterministic
the contaminated signal. but unknown signal corrupted by the noise process

To choose the appropriate threshold, Donoho and n(t)
Johnstone [2] have taken a minimax approach to In nonparametric estimation, the underlying signal
characterizing the signal (rather than the distur- model is often assumed to be induced by an orthonor-
bance, which they assume to be Gaussian). They mal basis representation,
derived a threshold that is approximately minimax
(in the sense that its sample size dependence is of s(t)= _ Cii (t), (2)
the same order as that of the true minimax): a co- i



which in turn leads to the working model where 0, is the normal density with variance a2 and

Ci = Cis + C, i = 1,.. , K, (3) a is related to e by the equation

where the independent noise component has the same (
statistical properties as n(t). Our problem is to re- 2 ( (2)- (-a) = (5)
cover/reconstruct s(t) from the orthogonal transform a/a2

of the observed process of x(t). This can be achieved
by using the MDL principle to determine which co- Proof: The proof that fH maximizes the entropy is
efficients Ci contain signal information, and which similar to that of Huber for the Fisher information.
are primarily noise and can therefore be left out of It can be shown that the negentropy H(f) = E[log f]
the reconstruction. However, since MDL is the max- is a convex function of f, that Pe is a convex set, and
imum log likelihood minus a penalty term propor- that if we define fx = (1 - A)fH + Af for any f E eP,
tional to the number of parameters (i.e. the number and any A E (0,1), then
of signal-containing coefficients Ci) in the model, it is
strongly dependent on the distributional assumptions >
that characterize the noise. This paper addresses the AH(fX) IX=O > (6)
derivation of a filtering technique that is resistant to
heavy-tailed noise. establishing the desired result. A

Thus, the least favorable distribution in P, is normal

3 The Minimax Description in the center and Laplacian ("double exponential") inthe tails. The point where the density switches from
Length (MMDL) Criterion Gaussian to Laplacian is a function of the fraction

of contamination, larger fractions corresponding to
smaller switching points and vice versa.

Following Huber [6], we assume that the noise dis-
tribution f is a (possibly) scaled version of a dis- For a given distribution, the entropy is minimized
tribution belonging to the family of e-contaminated by the Maximum Likelihood Estimate (MLE): since
normal distributions P, = { (1 - e)4) + CG : G E r}, the negentropy is the expectation of the log likeli-
where 4) is the standard normal distribution, f is the hood, it follows that E[log f(C; OMLE(C))] is maxi-
set of all distribution functions, and e E (0, 1) is the mum among all functions 0 E S. Thus, we obtain:
known fraction of contamination. We cast our signal
estimation problem as one of location parameter es- Proposition 2. Huber's distribution fH, together
timation, and thus assume the estimators to be in S, with the MLE based on it, OH, result in a Minimax
the set of all integrable mappings from IR to IR. Description Length, i.e. they satisfy a saddle-point

As in [7], we use the coding length of the observation condition
in Equation 3 to determine the optimality of the sig-
nal estimate. For fixed model order, the expectation Proof: Using a theorem due to Verddi and Poor [8],
of the MDL criterion is the entropy (plus the penalty this can be shown to be equivalent to proving that
term which is independent of both the distribution
and the functional form of the estimator). In accor- (c (c))
dance with the minimax principle, we seek the least f(c;0)log A'cdc = o(A) (7)
favorable noise distribution and evaluate the MDL (c; OH ))
criterion for that distribution. In other words, we
solve a minimax problem where the entropy is simul- where 0 is the true value of the parameter and 0x is
taneously maximized over all distributions in P, and the MLE based upon fx,. Setting 90x = OH + A(A), it
minimized over all estimators in S. can be shown that

The least favorable distribution in P,, i.e. the dis-
tribution that maximizes the entropy, is precisely the f (c; O(c)) 1 + A (A))Ae (g(c )
same as that found by Huber to maximize the asymp- f (C; OH(c))
totic variance (or equivalently minimize the Fisher + o(A) (8)
information). Generalizing Huber's distribution to - H()))
perturbations from the zero-mean normal distribu-
tion with variance a2 , we get: where, since f and fH are in P7e, they can be repre-

Proposition 1. The distribution fH E Pe that max- sented as f = (1 - )X5 + eg and fH = (1 -) + egH,
imizes the entropy is respectively. Furthermore, since

fH(c) = { (1 - E)(a)e((ac+a) c < -a f<(c;O(c))= fH(c;OA(c)) + AE (g(C;&(C))1(1-e))(a)e~ (- ac+ a2) a < c (4) -9 (c;Ox(c))) (9)

2



it follows that A(A) = O(A) with probability 1, and normal and robust thresholds. The noisy signal (ap-
thus, proximately OdB SNR) in the top graph consists of

two ramps with a discontinuity between them, onto
fA(c;H x (c)) which is superimposed noise from a Gaussian mix-

log X( ( )) = o(~) (10) ture with the following components: A(O,a2) with
probability 1 - = 0.9, and JF(0, 9o2) with proba-

proving the result. · bility E = 0.1. The second graph shows a reconstruc-
tion using coefficients over 4 resolutions achieved by
the normal threshold; the third graph shows a sim-

4 Minimax Thresholding ilar reconstruction achieved by the proposed robust
threshold. The robust threshold suppresses several
instances of impulsive noise that the normal thresh-

As illustrated by Figure 1, there are two distinct old misses.
cases: the region where the exponent is linear, and
the region when the exponent is quadratic.
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Figure 1: Plot of the negative exponent vs. C, show-
ing quadratic and linear regions. 0' 100 200 00 40 0o 700 800 900 1000

2 Figure 2: Noisy ramp signal, and its classical and
Case 1 When logK > -, the coefficient estimate is robust reconstructions.
set to zero if

2 a I Ci - < logK (11)

which implies that 5 Constrained Minimax
+ Ci Io< (12)2 Thresholding

I Ci <2 + -logK (12)
The procedure outlined above is somewhat more con-

2 servative than the traditional threshold in deciding
Case 2 When log K < 2-, the coefficient estimate is whether or not a coefficient represents "primarily
set to zero if noise" and thus should be excluded from the recon-

struction. It is therefore less vulnerable to noise that
2a2 Cj2 < log K (13) is heavier-tailed than normal. However, since it is
a2L7 2 ~~~~ ~based upon thresholding from below only, it does not

which implies that result in an estimator whose error is bounded. Be-
cause the coefficients {Ci} are assumed independent,

Ci I < au21ogK (14) Ci = Ci for each Ci that exceeds the threshold, and
there is nothing to counterbalance the influence of a

This is the threshold based on the assumption of nor- single spurious data point. Thus the estimation error
mality, as proposed by [2] and [3]. can increase without bound.

A numerical example for Case 1 appears in Figure 2, In this section, we describe a method that involves
which shows a comparison of the performance of the thresholding from both above and below, resulting in
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bounded estimation error. Specifically, we use a con- 6 Conclusion
strained MLE when evaluating the MMDL criterion.

We assume that the signal (uncorrupted by noise) is We proposed a Minimax Description Length
of bounded magnitude, i.e. that there exists an a > 0 (MMDL) principle as the criterion of choice for
such that I C s Il< a for all i. Then, it can be shown thresholding wavelet coefficients. We determined the
that since fH is unimodal, the constrained MLE given least favorable distribution in the E-contaminated
by normal family, which we used to derive a robust

threshold that is resistant to outliers. We further
-a Ci < -a assumed that the true signal has bounded ampli-

C? =-- C/ -a < Ci < ca (15) tude and derived a thresholding technique from above
and below that results in bounded estimation error.

a cl a < Ci These robust thresholds yield denoising methods that
are less sensitive to heavy-tailed noise than the tradi-

(where Ci is the unconstrained MLE) maximizes the tional threshold based on the assumption of normal-
negentropy for fH subject to the signal constraint. ity.

Thus, we propose the following scheme, when log K >
a2/2a2 and ac > (a/2) + (a2 /a) log K: Acknowledgement
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