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Abstract—We consider distributed parameter systems where
the underlying dynamics are spatially periodic on the real
line. We examine the problem of exponential stability, namely
whether the semigroup e decays exponentially in time. It
is known that for distributed systems the condition that the
spectrum of A belongs to the open left-half plane is, in
general, not sufficient for exponential stability. Those systems
for which this condition is sufficient are said to satisfy the
Spectrum Determined Growth Condition (SDGC). In this work
we separateA into a spatially invariant operator and a spatially
periodic operator. We find conditions for the spatially invariant
part to satisfy the SDGC. We then show that the SDGC remains
satisfied under the addition of the spatially periodic operator, if
this operator is small enough relative to the spatially invariant
one. A similar method is used to derive conditions which
guarantee that A has left-half plane spectrum, and thus the
system is exponentially stable. The results are demonstrated
through simple illustrative examples.

I. INTRODUCTION

In this paper we will be dealing with a class gpatially
periodic systems on the real line. These are systems for
which the system-operatot4, B, and C' are spatially pe-
riodic [8] (i.e., they commute only with spatial translations
of size equal to some real scabar> 0 called the period). We
consider theA-operator as the sum of a spatially invariant
[9] operatorA° and a spatially periodic operate®, where
€ is a complex scalar. Our aim is to find conditions under
which this system is exponentially stable.

To show (i) and (ii) we take an indirect route. We first
find conditions on the spatially invariant operatdf such
that (i) and (ii) are satisfied. We then show that (i) and (ii)
will remain satisfied if the spatially periodic operatdr is
“weaker” thanA°® in a sense that we describe and i§ small
enough. The reason for this indirect approach is that (i) and
(ii) are much easier to check for a spatially invariant operator
than they are for a spatially periodic one. All conditions we

In all engineering applications, the temporal stability ofderive are in the Fourier domain and can be chegieidt-
a system is of central importance. In linear systems theor{iS€in the spatial-frequency variable< R. _ .
assessing exponential stability is of particular interest. For OUr presentation is organized as follows. We briefly review
finite-dimensional systems (systems with finite-dimensiondf’® frequency representation of spatially periodic operators
state-space), exponential decayl|ef'!|| is guaranteed if the i Sgctlon I. We de_scrlbe the proplem set up in Section .
spectrum of thed-matrix lies inside the open left-half of the S€ction IV deals with general notions of the spectrum and
complex plane (open LHP). sectorial operators. S_e_ctlon.V contains the main contributions

The situation is much more complicated in the case 4if the paper and is divided into two parts; the first part deals

infinite-dimensional systems. For example, it is possible thdfith condition (i) described above, and the second part with
the spectrum of thel-operator of such a system lies insidecond_'t'on (ii). Conclusions and futu_re dlrect|o_ns are given in
the open LHP, and yefte!| actually grows exponentially Section VI. qut proofs and technical material are relegated
[1][3]. In such cases it is said that tspectrum-determined 0 the Appendix at the end of the paper.
growth conditionis not satisfied [3]. Notation We usek € R to characterize the spatial-
Yet there exists quite a wide range of infinite-dimensiondirequency variable, also known as twave-number:(T) is
systems for which the spectrum-determined growth conditictihe spectrum of the operat®i, and>,(T') its point spectrum,
is satisfied. These include (but are not limited to) systems f@and p(T") its resolvent set. To avoid clutter, we do not
which the A-operator issectorial(also known as an operator index norms on different function/operator spaces. We use
which generates holomorphicor analytic semigroup) [4]- || - || to denote both function and (induced) operator norms
[6] or is aReisz-spectrabperator [7]. In this paper we focus on infinite-dimensional spaces, and the Euclidean norm for
on sectorial operators. finite-dimensional vectors and matrices; the difference will
Thus to establish exponential stability of a system, onbe clear from the contexC~ denotes the open left-half of
line of attack would be to show simultaneously that4ijs the complex plane, ang := \/—1. & is the closure of the
sectorialand (ii) the spectrum of4 lies in the open LHP. But set& C C. We may use the same notation for a spatially
this still does not make the problem trivial. In fact provinginvariant operator and its Fourier symbol.
that an infinite-dimensional operator is sectorial, and then

e ) i Il. PRELIMINARIES
finding its spectrum, can in general be extremely difficult.

In this section we briefly discuss the frequency domain
This work is partially supported by AFOSR Grant FA9550-04-1-0207. representation of spatially periodic operators. For a detailed
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Ill. PROBLEM SETUP

Let us now consider a system of the form

O (t,x) = Av(t,x) + Bu(t,x)
= (A° + B°e¢FC°) ¢(t,x) + Bu(t,z), (4)
y(t,x) = CyY(t, z),

wheret € [0, 00) andz € R with the following assumptions.
The (possibly unbounded) operatot8, B°, C° are spatially
invariant, and the bounded operatoBs C are spatially
periodic. F'(x) = 2L cos(Qx) with L a constant matrix, and
Fig. 1. The frequency kernel representation of a spatially periodic operat6riS @ complex scalard®, B°, C° and £ := B° I C° are all
G. defined on a dense domaizi C L?(R) and are closed,
y, andqy are the spatio-temporal input, output, and state of
the system, respectively.

Then, as shown in [8] [10] and also briefly in the previous
/G z,X) u section, the system (4) can be represented as in the Fourier
domain as follows.

related by a linear operater= Gu, we have

1)
/G (k. k) O e(t) = (AS + eBS}"Cﬁ) Yo(t) + Boug(t)
= (A§ + €&o) Yo(t) + Boug(t), (5)
whereG and( arekernel functionsn the spatial and Fourier Yo(t) = Cothy(),

domain, respectively. It is shown in [8] [10] that the most

general spatially periodic operator can be represented in tﬁe {1), where3y andCy have the form of the operator

Fourier domain as an operator with a kernel function of th&' ®) and
form A
G(k7 K’) = gl(k) 5(k — k= Ql)a (2)
ZGZZ g = Ao(en) )
where g;(k), for eachk, can in general be a matrix. Such
a kernel function can be visualized in Figure 1. [8] also
describes how (2) can be written as B3 — B0, - C°(0,) 7
Yo = Goug, 0€l0,Q),
which for any givery has a (bi-infinite) matrix representation
o0 A_1(0y
900 — Q) : a6 — Q) &= ByFCy = 1(8n) ) ) (6)
900 —9Q2) §_1(6-9Q) g_2(0—-9Q) A1(9n) 0 .

=L e a0(6) TR I B )
v+ BOTD 0ETD 200+ o with 6,, :== 6 + Qn, n € Z, and
o o Ai(+) == B°(-)LC°(- —Q), @

In this setting,Gy is diagonal forspatially invariantopera- o o
tors, and Toeplitz foperiodic pure multiplicatioroperators. Aa() = B°(+)LC°(- + Q). (8)
Example 1: A = 0, and F(z) = cos(Q2z) have the

following representations We emphasize that the convention used in the representation

of & in (6) is the same as that used in (3). For example the
' row of & is {---,0, 41(0,,),0, A_1(0,),0,--- }.
. ) Remark 1:We note that taking”(z) to be a pure cosine
Ag = 76 + O y:zl L0 1 is not restrictive. The results obtained here can be easily
1 o - extended to problems whet(x) is any periodic function
with absolutely convergent Fourier series coefficients.m
Remark 2: The system (4) can be considered as the LFT
for every § € [0,9Q), respectively. Notice that we have (linear fractional transformation [11]) of the spatially peri-
dropped thef subscript inF, as it is independent of this
variable. [ ] 1To avoid clutter, we henceforth drop thé™from all Fourier symbols.



=l

Fig. 2. The LFT of a spatially periodic syste@ and a spatially periodic
multiplication operatorF'.

eF

odic systemG,
A° | B B°
G=|Cl|0 0
c°lo o0

and the (memoryless and bounded) spatially periodic pure

multiplication operatokF'(z) = €2L cos(Qx), see Figure 2.
|

IV. SPECTRAL& STABILITY ANALYSIS

It is shown in [8] that for a general spatially periodic

operatorA we have

S(A) U =(As).

0€[0,92)

= 9)
In the case wherel is spatially invariant (and thusly =
diag {---, 4o(0n), - }), (9) further simplifies to

S(4) = | Zp(Ao(k)).
keR
Example 2:Let A —(0% + 32)2. Then Ay(k)
— (k% — »*)2, see Figure 3 (above). Sincy(-) is scalar,
Sp(Ao(k)) = Ag(k) for everyk. Itis easy to see thato(-)
takes every real negative value and thus from (#Ojhas
continuous spectrurB(A) = (—oo, 0], see Figure 3 (center).
|

Remark 3:WhenA is spatially invariant a helpful way to
think aboutX(A) in terms of its symbol4, is suggested by
the previous example. First pla, (Ao(-)) in the ‘complex-

(10)

Fig. 3. Above: Representation of the symhdbh(-) of Example 2 in
‘complex-planex spatial-frequency’ space. Centet(A) in the complex
plane. Below: For spatially invariamt, the (diagonal) elements ody are
samples of the Fourier symbelg (- ).

a detailed discussion. Supposeis densely definedp(A)
contains a sector of the complex planeg(z—a)| < 5+,
v >0, a € R, and there exits som&/ > 0 such that

I(zI—A)~1| < for |arg(z—a)| < J+7. (11)

planex spatial-frequency’ space, as in Figure 3 (above) of
Example 2. Then the orthogonal projection onto the complex
plane of this plot would giv&:(A). This can be considered as Then A generates a holomorphic semigroup and we write

|2 = o

a geometric interpretation of (10). In Example 2, singg - )

A € H(vy,a,M) [6] [4]. We say thatA is sectorial if A

is real scalar and takes only negative values, this projectidelongs to some? (v, o, M).

yields only the negative real axis. But in generaHif( - ) €
C?*4, this projection would lead tg curves in the complex
plane.

Notice also that in this setting:(.Ay) is the projection
onto the complex plane of samples B (Ao(-)) taken
atk = 0+ Qn, n € Z, in the ‘complex-planex spatial-
frequency’ space. A9 varies in[0,(2), these projections

Finally, a semigroup is called exponentially stable if there
exist positive constantd/ and o such that [7]

e < Me=¢t for t>0.

Theorem 1:Assume thatd is sectorial. Then i2(A) C

trace outX(A) in the complex plane. This can be considered . A generates an exponentially stable semigroup. m

as a geometric interpretation of (9). Figure 3 (below) shows

the said samples in the ‘complex-plarepatial-frequency’
space for a scalad. L]
We next introduce a special subclasshmlomorphic(or

analytio semigroups. The reader is referred to [4]-[6] forgenerates an exponentially stable semigroup.

Proof: If A is sectorial it defines a holomorphic
semigroup, and thust is differentiable fort > 0 [5]. Then

[3] shows that this is sufficient for the spectrum-determined
growth condition to hold. In particular, iE(A) C C~, A

[ |



V. STABILITY AND THE SPECTRUM-DETERMINED This theorem says that ifi° is sectorial, then so igl =
GROWTH CONDITION A°+e Eif E is weaker tham® in the sense of (12) and |¢|
In the literature on semigroups, there exist examples i§ Small enough. Notice that at this point, condition (12) can
which $(A) lies entirely insideC—, but ||| does not NOt be redu.c'ed to a condition in terms qf Fquner symbols
decay exponetially. See [1] and more recently [2]. In such-€- @ Condltloh t_hat can be_Checked pomt\_/wsek_)nas in
cases it is said that the semigroup does not satisfy tHeorem 2. This is becaude is not spatially mv_arlant. But
spectrum-determined growth conditi§@]. The determining ©ONce the exact form of the operatat® and C° is known,
factor in the examples presented in [1] and [2] can b&L2) canbe simplified to a condition on the symbols 4°f,
interpreted as the accumulation of the eigenvaluesdgf B° and C°. Let us clarify this statement with the aid of an
around-joo in the form of Jordan blocks of ever-increasingexample. _ o
size (i.e. as the eigenvalues tend 4goco their algebraic ~ Example 3:Consider the periodic PDE
multiplicity increases while their geometric multiplicity stays O = —(02+ 522 — ¢y + €dy cos(Qx) Y + u
equal to one). But such cases are ruled out when one
deals with holomorphic semigroups, which is the reason we Y — V-

consider these semigroups in Theorem 1. It is easy to see thatl® = —(92 + »2)2 — ¢, B° = 8, and

Our Ultimate aim in thIS SeCtion iS to Verify eXponentiaICO — 6(%) (the |dent|ty convolution operator)_ By formal
stability. By Theorem 1, in order to prove exponential stabilgjfferentiation we have

ity of a holomorphic semigroup with infinitesimal generator '

A, itis sufficient to show thaE(A) c C~. Hence, in the first Ev = 0, cos(Qz)v = —Qsin(Q) ¥ + cos(Qx) 9, .

part of this section, we give conditions under which the : the trianale inequality and !l sin(Q _

operators described by (4) do indeed generate holomorp chmg eﬁ rang d y Isin(©z)]
, ) - o Lcos(Qx)H =1 we have

semigroups. In the second part, we find sufficient condition

which guarante&(A) c C~. |E| < QL] + (|02 (13)

Once again, the setup is that of (4). In addition assume , ) ,
that Ao (k) € C%4 is diagonalizable for every € R. Thus we have effectively ‘commuted out’ the (bounded)

spatially periodic operator inZ, and are left with only
Conditions for Sectoriald spatially invariant operators on the right of (13). Hence, after
To find conditions under whichd in (4) will define a applying a Fourier transfomation to the right side of (13), a
holomorphic semigroup we again use perturbation theorgufficient condition for (12) to hold is that
We first find conditions under whicH° is sectorial. We then 2 22
show thatA = A° + ¢ E remains sectorial it is ‘weaker’ (8 + [kl < a4 b](k" = 27)" +dl, keR,
than A° in a certain sense we will describe and:ils small which can be shown to be satisfied for large enough ||

enough. andb > 0. L
In the next theorem we present a condition for a spatially Remark 4:The above example makes clear the notion of
invariant A° with symbol Ay(k) to be sectorial. E being ‘weaker’ thami® that we mentioned at the beginning

Theorem 2:Let Ay(k) be diagonalizable for every €  of this subsection. If in Example 3 we hag® = 9% and
R, and let U(k) be the transformation that diagonal-C° = 9# andv + u = 5, then E would contain a5 order

izes Ag(k), Ao(k) = U(k)A(k)U~1(k). Let (k) := derivative, whereas the highest orderdfin A° is 4. This
|U (k)| ||U~*(k)|| denote the condition number &f(k). If  would mean that (12) can not be satisfied for any choice of
supier k(k) < oo, and for everyk € R, p(Ao(k)) contains ¢ andb. "
a sector of the complex planerg(z —a) | < 5+, 7 >0 N B
anda € R both independent of, then A° is sectorial. Conditions for¥(A) c C
Proof: See Appendix. ] The final step in establishing exponential stability is to

This theorem has a particularly simple interpretation wheshow that>(A) c C~. Unfortunately it is in general difficult
Ap(-)is scalar. In this case(U(k)) = 1 forallk € R. Now to find the spectrum of an infinite-dimensional operator.
sinceAy( - ) traces a curve in the complex plane, by TheorerThus we proceed as follows. We consider the block-diagonal
(2) if this curve stays outside some sectarg(z — a)| <  operatorsA), 6 € [0,). This allows us to extend G&gorin-
5+, v >0, of the complex plane thed® is sectorial. type methods (existing for finite-dimensional matrices) to
The following theorem is from [6]. It uses the notion offind bounds on the location &i(Ay), Ay = A) + €. This
relative boundednessf one unbounded operator with respecin turn we use to find conditions under whighi{A44) C C—,
to another unbounded operator [4]. and thusX(A) c C.
Theorem 3:Suppose A° € J(v,a,M) and E = In locating the spectrum of a finite-dimensional matrix
B° F C° is relatively bounded with respect t4° so that T € C7%4, the theory of G&gorin circles [12] provides
o us with a region of the complex plane that contains the
IE] < all¥ll + b]A%%], ¥ € 2, (12) eigenvalues of". This region is composed of the union @f
with 0 < a < oo and0 < ble] < 1/(1 + M). ThenA =  disks, the centers of which are the diagonal elements,of
A° + ¢ F is a sectorial operator. m and their radii depend on the magnitude of the off-diagonal



elements [12]. This theory has also been extended to the case Im
of finite-dimensional block matrices (i.e., matrices whose
elements are themselves matrices) in [13]. Next, we further
extend this theory to include bi-infinite (block) matricds.

For everyk € R, take B, to be the set of complex
numbersz that satisfy

omin(=1 = Ao(k) < el (IA2 (B + A (R)]).  (14)

whereomin(21 — Ag(k)) denotes the smallest singular value
of the matrixzI — Ao (k).
Lemma 4:For everyf, the spectrum ofdy = AJ + ¢ &y

is contained in the set Im
A
= U -
Proof: See Appendix. [ ] ._n—o_n_uﬂ_r_uht_o—.. Re
Example 4:Let us consider the periodic PDE [8]
O = —(0%432)% — cp + ecos(Q)dp¥ + u
y = 9. (15)
Im

-

Comparing (15) and (4) we have
Ao(k) = —(k2 — 5% —¢, B°(k)=1, C°(k)=jk, e
1 ———— > T o

B(k)zla C(k)zl, L:§ ___-_________________ _______ _C

From (7)—(8),A:1 (k) = 4(k — Q), A_1(k) = 1(k+Q), and
thus [|[A_1(K)|| + A1 (k)| = 5(|k — Q| + |k + Q]). Hence Fig. 4. Above: The®, regions viewed in the ‘complex-planespatial-
(14) leads to frequency’ space (the disks are parallel to the complex plane). Center:

X (Ayp) is contained inside the union of the regioly,, . Below: The bold
line showsX(A°) and the dotted region contai¥(A), A = A° + €E.

(2 — Ao(k)) = |21 — Ao(k)) < Lk — @ + [k + )

2
{ Qle| [k <O . definition of B in (14) and we haveB; = Y (Ao(k)),
FHlel IR 227 o= e (A () + | An ()1 | .
which means that the se, is composed of the union of ~We now employ Lemma 4 to determine whethefA)
disks with centers atiy(6,,) and radii§(|9n—ﬂ|+|9n+ﬂ|). res@e_:s completely insid€~, as needed to assess system
Figure 4 (above & center) sho@, in the complex-plane.  Stability.

Spatia|_frequency space and @respective'ﬁ u Take33€ to be the C|Osed.diSk of I’adlusand center a.t the
Remark 5: The set origin, andB;, to be the region described by (14). Define the
sum of sets byl +8ls = {z | z = 21422, 21 € 1,21 € 3 }.
Ye(M) = {2 €C | omin(z] — M) < ¢} (16)  Also, for everyk € R let Amax(k) represent the eigenvalue of

={z€C|||(2I — M)y| < e for some|g| =1}  Ao(k) with the maximum real part, and letk) be defined
={2€C|zeXy(M+Z) for some|Z|| <z} ~ @Sin Theorem 2. _ . o
Theorem 5:For every k, B, is contained inside
is called thes-pseudospectrurof the matrixA/ [14]. Clearly  X,(Ao(k)) + D) With
Yo (M) C S(M) if ¢ < e and X (M) = (M)

for ¢ = 0. The pseudospectrum is composed of small r(k) = | (”A‘l(k)H+”A1(k)H)H(k)'
sets around the eigenvalues df. For instance ifM has In particular, if ¥(A°) ¢ C~ and
simple eigenvalues, then for small enough valueg dfie r(k) < |Re()\max )| 43 17)

pseudospectrum consists of disjoint compact and convex _
neighborhoods of each eigenvalue [15]. Thus for every for every k € R and some3 < 0 independent o, then
R, (14) defines a closed region @ that includes the (4) CC™.

eigenvalues ofA,(k). Moreover, comparing (16) and the Proof: See Appendix. L]
Example 5:0nce again we use the scalar system of

2We would like to point out that Figure 4 (above) is technically incorrectExample 4 (k) = 1 since Ay (k) is scalar,|Re()\max(k:)) | =
once the spatially invariant system is perturbed by a spatially periodig 2 _ %2)2 + c| and
perturbation it is no longer spatially invariant and thus can not be full '
represented by a Fourier symbol. Hence its spectrum can no longer be

demonstrated in the complex-plarespatial-frequency space. HAfl(k’)H + ||A1(k)” (|k Q| + |k + Q|)

DN =



Thus condition (17) becomes
lel
2
If this condition is satisfied for somg < 0, the dotted

region in Figure 4 (below) will remain insid€~ and thus
Y(A)cC. -

(Jk=Q+[k+ Q) < |(K* = %% +¢|+ 3.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we study the problem of exponential stabilit;Re(z)

Notice that (Al) describes circles whose radii increase like
|A\i(k)|/M, M > 1, as their centers\;(k) become distant
from the origin. Clearly a sufficient condition for these circles
to belong to some open half plage € C|Re(z) < p} for
all k € R and large enough/ is thatXp(Ao(k)), k € R,
reside outside some sectorrg(z —a) | < F 4+, v > 0, of
the complex plane.

Finally, if the circles (Al) are contained in some open
half plane{z € C|Re(z) < p} for all £ € R, then for
> u, z € p(Ao(k)) and we have

for a class of spatially periodic systems. We do this by (i)
finding conditions under which thel-operator is sectorial
(i.e., generates a holomorphic semigroup) and thus satisfies
the spectrum-determined growth condition, and (ii) deriving
conditions which guarantee that has open LHP spectrum. ang thus||z(21 — 4°)~1|| < M for Re(z) >

Future work in this direction would include extending this
procedure to larger classes of semigroups which also satis
the spectrum-determined growth condition.

) g
max SUup

keR(dist[z,Ep(Ao(k))]) =M

Lt

roof of Lemma 4

We uselly T'IIy to denote the(2N + 1) x (2N + 1)
truncation of an operatdf on ¢2, wherell y is the projection
defined by

VII. APPENDIX
Proof of Theorem 2
It is shown in [16] that a sufficient condition fot® to be

sectorial is thatp(A°) contain some right half planéz €

diag{~-~ 0,1, 7[,07...}.
C|Re(z) > u}, and v

2N+1 times

l2(z1 =A%) < M for Re(z) > p, where I is the ¢ x ¢ identity matrix. We form the finite-
for somey >0 and M > 1. dimensional matrixIy Ag HN]HN22 with pure point spec-

Now since Aq(k) € C9%? has simple eigenvalues for frum. Then using a ggnerglized form of the Qprin.Circle
every k, there exists a matriU(k) such thatA,(k) = Theorem [13] for finite-dimensional (block) matrices, we
U(k) A(k) U='(k) with A(k) a diagonal matrix with ele- conclude that
ments; (k) := X;(Ao(k)), i =1,--- ,¢q. Thus we have

ilelg (Hz(z[ — Ao(k'))71||>
< sup (U k)| U~ (k)]
keR

(= = AG) )

S(Iy Ay HN‘Hsz) -

U 3o, € [ %,

ll2(z1 = A7 < In|<N nez

whereB,_are regions ofC defined by (14). Since this holds
for all N > 0, we haveX(A4y) C Gy.

Proof of Theorem 5

2|
= k
b (“( ) dist[sz(Ao(k))]) If U(k) diagonalizesdo(k), Ao(k) = U (k) A(k) U~ (k),
|2| andx(k) = ||U(k)|| |U (k)| denotes its condition number,
< Kmax ilelg (dist[z, Ep(Ao(k))])’ then from [17] the pseudospectrum 4f (k) satisfies

Where fimax := supye (k). Sp(Ao(k)) +D: € B(Ao(k) S Tp(Ao(k)) + Derir

Let us now chooseM’ = (1 + kmax)M, M > 1, and (A2)
consider for a giverk the region of the complex plane wherefor all ¢ > 0. Thus the first statement follows immediately
from (A2) and®B), = 5. (Ao(k)) with e = |¢| ([[A_1 (k)| +
| A1(k)||). To prove the second statement, @&F denote all
complex numbers with real part less thare R. It follows
from X(A°) c C~ that (A) C C~ for everyd. If (17)
holds then

|2| /
> M.
M dist[z, Sp (Ao(k))]

This region (which contains the eigenvalukgk)) is con-
tained inside the union of the circles

7] > M, i=1

Kmax ‘Z—)\Z(k” Z
which are themselves contained inside the larger circles

o )
- M

4, %9 -

for everyn € Z, and from Lemma 4 we havwe(Ay) C Gy C
C,, for someps < 3" < 0 and everyd. ThusX(4) C C~.

|z — Xi(k)] (A1)

i=1,---,q.
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