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1 Introduction

Our goal is to map entries in a lexical database of
4076 verbs automatically to WordNet senses (Miller
and Fellbaum, 1991), (Fellbaum, 1998). The task of
mapping each entry to a set of WordNet senses in-
volves word sense disambiguation (WSD), but with
several twists that distinguish it from the standard
WSD efforts represented by, for example, SENSE-
VAL (Kilgarriff and Rosenzweig, 2000). WSD re-
search typically involves disambiguating words in
context, using either an all-words (all words in a set
of texts are to be disambiguated) or lexical-sample
(only a specific set of words from a set of corpus
instances are to be disambiguated) approach; SEN-
SEVAL takes the lexical-sample approach, in which
it is possible to take advantage of detailed knowl-
edge of specific word senses for the sample being
investigated. While an underlying assumption holds
that only one word sense is accurate for each token,
provisions are made for evaluation purposes to give
partial credit if the correct sense is included among
a digjunctive set of word senses.

In contradistinction to the circumstances of SEN-
SEVAL, the task reported here takes an all-words
approach, since the goal is to map all entries in
the database to their respective word senses. An-
other difference resides in the lack of contextual data
(i.e., corpus instances) for the words to be disam-
biguated. In place of context, information about
verb senses, encoded in terms of thematic grids and
lexical-semantic representations from (Olsen et al.,
1997), has been used. Moreover, our task differs
from that of SENSEVAL in that it involves find-
ing the single corresponding WordNet sense, as sev-
eral may be equally appropriate. WordNet has been
criticized for making distinctions that are too fine-
grained (Palmer, 2000), such that, even in context,
it may be unclear which of several WordNet senses is
invoked or even if only one sense is invoked. When
words occur out of context, it is even more likely
that more than one sense will be applicable.

One might argue that the task is more one of lez-
icon integration’ than word sense disambiguation,
since word sense distinctions are recognized in both
the lexical database and WordNet. Nevertheless, at
each turn, it really is a WSD task: For each entry

1The phrase is meant to be reminiscent of the vo-
cabulary integration efforts of the National Library of
Medicine’s Unified Medical Language System (UMLS)
project, in which 40-odd medical vocabularies have been
unified into a single “metathesaurus” (Bodenreider and
Bean, 2000), as well as of ontology integration efforts
(Hovy, 2001). See (Bean and Green, 2000) for more de-
tails.

in the lexical database, the task is to find the cor-
responding WordNet sense. As opposed to integra-
tion efforts, which are symmetric, the present task is
asymmetric: There is no attempt to map the senses
of the lexical database to WordNet or to unify the
senses of the two lexicons. Moreover, the approach
used 1s one that could be adopted as a part of an
online application, e.g., for lexical selection in ma-
chine translation—the same sort of disambiguation
is required, and has been used, for the translation of
multiply ambiguous words such as Chinese verb la
(which has several possible English translations, in-
cluding slash, cut, chat, pull, drag, transport, move,
raise, help, implicate, involve, defecate, pressgang)

(Dorr et al., 2000).

2 Semantic Resources

In text processing, WSD relies on contextual
information—yet we have no such information for
mapping the verbs into their appropriate WordNet
senses. Happily, the two semantic resources we use
for this work both record a certain amount of in-
formation about the word senses they contain. We
describe each of these resources, in turn.

Our main semantic resource 1s an existing
classification of 4076 English verbs—called here
Levin+ classes—based initially on English Verbs
Classes and Alternations (Levin, 1993) and extended
through the splitting of some classes into subclasses
and the addition of new classes (Dorr and Olsen,
1997). As verbs may be assigned to multiple classes,
the number of entries in the database is rather larger,
viz., 9611. These classes represent semantic group-
ings with largely shared syntactic behavior, captured
in both thematic roles and lexical conceptual struc-
tures (LCS) (Jackendoff, 1990; Dorr, 1993) shared
by all members of the class. We distinguish be-
tween two types of semantic classes: (1) The Levin+
Class, based on thematic roles coupled with their
verb groups organized by syntactically frame; (2)
The LCS Class, based on the fundamental LCS rep-
resentation (e.g., ACTpere, GOroc, BE1dent). There
is a one-to-many relationship between Levin+ and
LCS Classes: A Levin+4 class belongs to one LCS
Class, while an LCS class usually includes more than
one Levin4 Class.

Our second semantic resource, WordNet, asso-
ciates syntactic data with semantic information,
recorded as patterns (“frames”) (e.g., Somebody
__s something; Something ___s; Somebody ___s
somebody into V-ing something). There are 35 such
verb frames in WordNet and a synset may have only
one or as many as a half dozen or so frames assigned
to it. Further information about WordNet senses is



derived from SEMCOR, a semantic concordance incor-
porating tagging of the Brown corpus with WordNet
senses.?

Our mapping between these two resources re-
lies on an implicit relation between thematic roles
in Levin+ and verb frames in WordNet. Both
reflect how many and what kinds of arguments
a verb may take. However, they take rather
different approaches in conveying this informa-
tion. Levin+ makes use of thematic grids (hence-
forth abbreviated 6-grids), i.e., a listing of argu-
ments and their types in an integrated unit. An
example is the f#-grid _ag_th,instr(with) (i.e.,
Agent, Theme, Instrument) as in the verb stock in T
stocked the fridge with coke.® WordNet encodes this
information indirectly, listing all the frames a verb
sense may be found in. As a result, the #-grids in the
lexical database distinguish 67 individual argument
components (e.g., _ag, _th, ,instr(with)), com-
bined into 106 distinct full #-grids, while, by way
of contrast, WordNet’s smallest syntactic unit is the
frame, of which 35 are used, combined into 217 dif-
ferent ways for the verbs being examined. This sug-
gests that the integration of argument components
into full #-grids is tighter, more systematic, and more
informative than the combination of verb frames in
WordNet: A #-grid is a unified structure, but a set of
frames in WordNet is simply a disjunction of individ-
ual structures. One may also surmise that the 6-grid
assignments are more accurate, as they are based on
work in which syntactic behavior was a major focus
of research rather than a peripheral component of
the work. Despite these differences, it is reasonable
to assume there should be some correlation between
f-grids and verb frames.

3 Training Data

Our sense-linking task relies on knowledge about
correlations between information in each of our two
While parallel data are avail-
able for both, 1t 1s not clear a prior: that the corre-
lations between the two sets of data are very direct.
For example, an attempt to construct a mapping be-
tween WordNet frames and f#-grids revealed that the
underlying classifications differ in significant ways.
Training data are thus necessary.

semantic resources.

2For

further  information, see  the man-
ual page for SEMCOR, available from
http://www.cogsci.princeton.edu, under  WordNet

manuals, section 7, SEMCOR.

3Commas (,) between thematic roles indicate option-
ality; underscores (_) indicate obligatoriness. This is a
distinction WordNet can make only indirectly by assign-
ing multiple frames.

At the time this research effort was started, Word-
Net senses had been assigned manually to a signif-
icant number of the lexical database entries (Dorr
and Jones, 1996). However, some of the assignments
were in doubt, since class splitting had occurred
subsequent to those assignments, with all WordNet
senses having been carried over to all new subclasses.
New classes had also been added since the manual
tagging. Tt was determined that the tagging for only
1791 entries—including 1442 verbs in 167 classes—
could be considered stable; for these entries, 2756 as-
signments of WordNet senses had been made. Data
for these entries, taken from both WordNet and from
Levin+, constitute the training data for this study.

The following probabilities were generated from
the training data:

1. LCS probability: The probability that a Word-
Net verb sense, related to another WordNet
verb sense through a particular relationship
type, would be mapped to the same LCS
class. This probability was computed sepa-
rately for each relationship type and was lim-
ited to those relationship instances where the
WordNet senses on both sides of the relation-
ship were in the training data; the computed
values generally ranged between .3 and .35.

2. Levin+ probability: The probability that a
WordNet verb sense, related to another Word-
Net verb sense through a particular relation-
ship, would be mapped to the same Levin+
class (with the same f-grid). As above, this
probability was computed separately for each
relationship type and limited to WordNet senses
in the training data; the computed values gen-
erally ranged between .25 and .3.

3. Combination frame probability: The probabil-
ity that a verb in a class with a particular #-grid
would be mapped to a WordNet verb sense with
some specific combination of frames. Values av-
erage only .11, but in some cases the probability

1s 1.0.

4. Individual frame probability: The probability
that a verb in a class with a particular #-grid
component would be mapped to a WordNet
verb sense assigned a specific frame (possibly
among others). Values average .20, but in some
cases the probability is 1.0.

5. Prior WordNet sense probability: Probability
of a prior WordNet verb sense, based on the
tagging in SEMCOR. Values average .11, but in
some cases the probability is 1.0.



6. Semantic similarity probability: Probability
that a verb, given all the other verbs assigned
with i1t to a single class, would be mapped to
a specific WordNet sense. This represents an
implementation of a class disambiguation algo-
rithm (Resnik, 1999), modified to run against
the WordNet verb hierarchy.*

In addition, a rather powerful assumption (re-
ferred to hereafter as the same synset assumption)
was made: When a WordNet sense has been assigned
to a verb in a Levin+ class, if another verb from that
WordNet synset has been assigned to the same class,
it should have the sense corresponding to that synset
assigned for it. (Since Levin+ verbs are mapped into
WordNet senses through the synsets to which they
belong, the resulting action is more easily captured
by saying: It should also have the same synset as-
signed.)

The fact that the training data represent only 167
of the 491 Levin+4 classes makes the task especially
non-trivial, since some of the available data on the
lexical database side derives from these classes. The
need to extend data from 167 classes for the making
of assignments across 491 classes has been addressed
in several ways:

e The one-to-many relationship between LCS and
Levin+ classes opens up the possibility that
some assignments in Levin+ classes for which
no training data is available could be made on
the basis of data for Levin+ classes in the same
LCS class for which training data is available.

e Since several classes might use the same 6-grids,
training data correlating verb frames and 6-
grids (taken as wholes or as parts thereof) could
serve to map WordNet senses into new Levin+
classes.

e Class-independent data, such as the prior prob-
ability of a WordNet sense, might also warrant
the assignment of WordNet senses for verbs in
classes outside those in the training data.

4 Evaluation

It would be fruitless to undertake the mapping task
without having some way of evaluating its effective-
ness. Subsequent to the culling of the training set,

*The assumption underlying this measure is that the
appropriate word senses for a group of semantically re-
lated words should themselves be semantically related.
Given WordNet’s hierarchical structure, the semantic
similarity between two WordNet senses corresponds to
the degree of informativeness of the most specific con-
cept that subsumes them both.

several processes were undertaken that resulted in
full tagging of the lexical database. First, WordNet
assignments for verbs in classes that had been split
after manual tagging had some of their senses auto-
matically filtered out based on incompatibilities be-
tween #-grids and WordNet verb frames. Note that
this did not involve a full set of correspondences be-
tween @-grids and WordNet verb frames, but simply
a set of (fairly egregious) incompatibilities. Second,
tagging of entries for which no WordNet senses had
yet been made was accomplished through a second
manual assignment process. Thus, for a not insignifi-
cant portion of the lexical database, WordNet senses
have been assigned manually, each entry having been
considered by at least two coders.

In both manual tagging exercises, if a WordNet
sense was considered correct by any of the coders,
it was assigned. In the first round of tagging and in
the first phase of the second round of tagging, one
coder worked through the entire set of verbs under
consideration, while two other coders split responsi-
bilities for parallel tagging of the same set of verbs.
In the first of these exercises, there was a relatively
high degree of agreement: Of the senses identified as
being correct, .5465 were identified independently by
both coders; the kappa coefficient (K') of intercoder
agreement was .4668.5 The second round of manual

5The kappa statistic measures the degree to which
pairwise agreement of coders on a classification task sur-
passes what would be expected by chance; the standard
definition of this coefficient is: K = (P(A)— P(E))/(1—
P(FE)), where P(A) is the actual percentage of agree-
ment and P(FE) is the expected percentage of agree-
ment, averaged over all pairs of assignments. Several
adjustments in the computation of the kappa coefficient
were made necessary by the possible assignment of mul-
tiple senses for each verb in a Levin+ class. With-
out prior knowledge of how many senses are to be as-
signed, there is no basis on which to compute P(E).
As a first adjustment, the computation used here em-
ployed knowledge of how many senses were assigned
by each coder. P(F) was then computed as the sum
of the probability that two coders would agree on as-
signing a specific sense and the probability that two
coders would agree on not assigning a specific sense,
ie., ((A/S)(B/S)) + (S — A)/S)((S — B)/S)), where
A equals the number of senses assigned by one coder, B
equals the number of senses assigned by the other coder,
and S equals the total number of WordNet senses. As
a second adjustment, when S = 1, there is no need to
take the number of senses assigned into account (indeed,
it produces anomalous results) and P(F) was automati-
cally set at .5. As a third adjustment, since the number
of senses possible per verb in a Levin+ class varies, the
value computed for each such verb was weighted by the
number of senses possible, so that the average was com-
puted over number of senses considered rather than over
number of verbs being tagged.



tagging included verbs that had been automatically
assigned to the Levin+ classes to begin with and
was considered a harder task by the coder involved
in both tagging rounds. Here the rate of identifica-
tion by multiple coders was lower, .3589; the kappa
coefficient of intercoder agreement was .2434. (Over
the two rounds of parallel tagging, .5067 of the as-
signed senses were identified by multiple coders.) A
final independent coder tagged all entries for which
no WordNet sense had been identified by the coding
teams. Overall, 13452 WordNet sense assignments
were made.

While the full tagging of the lexical database may
make the automatic tagging task appear superflu-
ous, the low rate of agreement between coders and
the automatic nature of some of the tagging sug-
gest that there is still room for adjustment of Word-
Net sense assignments in the lexical database. On
the one hand, even the higher of the kappa coef-
ficients mentioned above is significantly lower than
the standard suggested for good reliability (K > .8)
or even the level where tentative conclusions may be
drawn (.67 < K < .8) (Carletta, 1996), (Krippen-
dorff, 1980). On the other hand, if the automatic
assignments agree with human coding at levels com-
parable to the degree of agreement among the hu-
mans, it may be used, on the one hand, to identify
assignments that are in question for review, and, on
the other hand, to suggest other assignments for fur-
ther consideration. Moreover, there are consistency
checks that can be made much more easily by the
automatic process than can be made manually. For
example, the premise that when a WordNet sense is
assigned for a verb in a Levin+ class, if another verb
from the synset also occurs in that class, it should
also have the same synset assigned is much more
easily enforced automatically than manually. When
such WordNet sense assignments are made automat-
ically on the basis of the 2756 senses in the training
set, another 967 sense assignments are generated,
only 131 of which were assigned manually. Similarly,
when such a premise is enforced on the entirety of
the lexical database of 13452 assignments, another
5059 sense assignments are generated. If the premise
is valid and if the senses assigned in the database are
accurate, then the human tagging has a recall of no
more than .7267. Alternatively, some of the senses
that have been assigned may not be valid (recall that
a sense was assigned even if only one coder felt it ap-
plied, which applies to .4535 of the senses assigned in
the first round of manual tagging and to .6411 of the
senses assigned in the second round, or .4933 of the
senses assigned in the two rounds taken together).

In a task of this sort, the typical approach would

be to set both upper bound and lower bound base-
lines, with the upper bound set by human perfor-
mance and the lower bound set by application of
the simplest algorithm, such as always assigning the
most probable word sense. For purposes of this com-
parison, it will be assumed that all senses assigned
by any coder are correct, although this is almost
certainly not the case. This would give as an upper
bound a recall ratio of .7534 against a precision ra-
tio of 1.0. (However, if only sense assignments on
which there was agreement were considered correct,
the sense assignments without agreement would be
precision failures rather than recall failures, so that
the upper bound would then be a precision ration
of .7534 at a recall ratio of 1.0). The lower bound,
based on prior probability of WordNet senses, has a
recall ratio of .3768 at a precision ratio of .6181.
Since a word sense was assigned even if only one
coder judged it to apply, all human judgments are
credited as being correct. On this basis, human cod-
ing has a precision of 1.00. However, it is reasonable
to assume that some of the solo judgments were id-
iosyncratic. To determine what proportion of such
judgments were in reality precision errors, a random
sample of 50 WordNet senses in the database that
were supported by only one of the two original judges
were investigated further by a team of three judges.
In this round, judges rated the senses for the verbs,
as assigned to a specific Levin+ class, as falling into
one of three categories: (1) definitely correct, (2)
definitely incorrect, and (3) arguable whether cor-
rect. If any one of the judges rated a sense ’definitely
correct,” another judge independently judged it like-
wise; this accounts for thirty-one instances. Thir-
teen of the instances were judged ’definitely incor-
rect’ by at least two of the judges. No consensus was
reached—other than lack of certainty!-on the remain-
ing six instances. Extrapolating from this sample to
the full set of judgments in the database supported
by only one coder leads to the assumption that ap-
proximately 1725 (26% of 6636 solo judgments) of
those senses are incorrect. This puts the precision

of the database at .8718.

5 Mapping Strategies

Recent work (Van Halteren et al.; 1998) has demon-
strated improvement in part-of-speech tagging when
the outputs of multiple taggers are combined. When
the errors of multiple classifiers are not significantly
correlated, the result of combining votes from a set
of individual classifiers often outperforms the best
result from any single classifier. Using a voting strat-
egy seems especially appropriate here: Most of the
data available for picking out WordNet senses for



entries in the lexical database function as only weak
indicators of correct senses; on average, they iden-
tify correct senses from the training data about 40%
of the time. At the same time, there is significant
variation in which senses they pick out.

The investigations undertaken here used both sim-
ple and aggregate voters, combined using various
voting strategies. The simple voters were the mea-
sures introduced above in Section 3: L.CS probabil-
ity, Levin+ probability, combination frame proba-
bility, individual frame probability (breaking off into
two measures: one, the maximum probability for any
frame associated with a WordNet sense; the other,
the average probability for all frames associated with
a sense), prior probability of a WordNet sense, and
semantic similarity measure. In addition, three ag-
gregate voters were generated: (1) the product of
the seven simple measures (smoothed so that zero
values wouldn’t totally offset all other measures); (2)
the weighted sum of the seven simple measures, with
weights representing the percentage of the training
set assignments correctly identified by the highest
score of the simple probabilities; and (3) the maxi-
mum score of the seven simple measures.

Using these data, two different sorts of voting
schemes were investigated. The two sets of schemes
differ most significantly on: (1) the circumstances
under which a voter casts its vote for a WordNet
sense, (2) the size of the vote cast by each voter,
and (3) under what circumstances a WordNet sense
was selected, i.e., was declared a “winner.” Using
their differences on this last variable to character-
ize them, we will refer to one set as Majority Voting
Schemes and to the other set as Threshold Voting
Schemes.

5.1 Majority Voting Schemes

Although we do not know in advance how many
WordNet senses should be assigned to an entry in the
lexical database, we assume that, in general, there is
at least one. In line with this intuition, one strategy
we investigated was to have both simple and aggre-
gate measures cast a vote for whichever sense(s) of
a verb in a semantic class received the highest (non-
zero) value for that measure. This general strategy
underlay several rounds of votes:

Round 1. Non-combination voting. Each simple
and aggregate measure voted on its own. The most
effective of these are:

1la Prior probability of WordNet senses
1b Semantic similarity measure

1c Product of simple measures

Round Recall Precision
1a .3768 .6181
1b 5575 .7089
lc .5092 7413
1d .5283 7675
2 .2301 7133
3 .3808 .5960
4 5769 7228
5 5197 7823
6 4422 .7406
7 .4949 1724

Table 1: Recall and precision measures (prior to im-
plementation of “same synset” assumption) for Ma-
jority Voting Schemes

1d Weighted sum of simple measures

Round 2. Majority vote of all (seven) simple vot-
ers.
Round 3. Majority vote of all (twenty-one) pairs

of simple voters, where the pair cast a vote for a
sense if, among all the senses of a verb, a specific
sense had the highest value for both measures.

Round 4. Majority vote of two (product and
weighted sum) of the aggregate voters.

Round 5. Majority vote of the three most effective
single measures (1b 4+ lc + 1d)

Round 6. Majority vote of simple voters and
(more heavily weighted) aggregate voters (2 + 4)

Round 7. Majority vote of pairs of simple voters
and (more heavily weighted) aggregate voters (3 +
)

Table 1 gives recall and precision measures for all
of these voting schemes. Table 2 gives recall and
precision measures for the same schemes, but af-
ter the “same synset” assumption has subsequently
been implemented.

In rounds 2-7, a majority vote is achieved in a
case where a sense receives half or more of all the
votes cast, where all voters cast a single vote, except
in rounds 6 and 7, where the aggregate voters’ votes
were weighted to have as much voting clout as the
whole ensemble of (pairs of ) simple voters combined.
This means the number of WordNet senses chosen
for a verb in a specific semantic class would be at
most two, which would happen only if each of the
two senses received exactly half of the votes. As this
may be too restrictive, future work with these voting
schemes will explore the use of a lower percentage of
all votes cast for the selection cutoff. So far, the best



Round Recall Precision
la 4531 .4640
1b .6001 .5509
lc 5676 .5542
1d 5791 5613
2 2957 4813
3 .4495 4349
4 .6252 .5344
5 D726 D732
6 5041 5421
7 D517 .b664

Table 2: Recall and precision measures (after imple-
mentation of “same synset” assumption) for Major-
ity Voting Schemes

voting scheme appears to be that used in Round 4,
based on the product and weighted-sum aggregate
voters.

5.2 Threshold Voting Schemes

The second voting strategy commenced by identi-
fying, for each simple and aggregate measure, the
threshold value at which the product of recall and
precision scores in the training set has the highest
value if that threshold is used to select WordNet
senses. During the voting, if a WordNet sense has
a higher score for a measure than its cut-off thresh-
old, the measure votes for the sense; otherwise, it
votes against it. The weight of the measure’s vote is
the precision-recall product at the cut-off threshold.
This voting strategy has the advantage of taking into
account each individual attribute’s strength of pre-
diction.

Five variations on this basic voting scheme were
investigated. In each, senses were selected if their
vote total exceeded a variation-specific threshold.
Table 3 summarizes recall and precision for these
variations at their optimal vote thresholds.

The first variation (Automatic Mapping and Ab-
staining Votes) implements the same synset assump-
tion (automatic mapping); it also had two of the
simple measures (LCS probability and Levin+ prob-
ability) abstain from ever voting against WordNet
senses, inasmuch as only a small percentage of the
overall set of test data had non-zero values for these
measures. The second variation (Automatic Map-
ping and Non-votes) differed from this first varia-
tion in completely disregarding the LCS and Levin+4
probabilities.

A third variation (Triples Voting) placed the sim-
ple and composite measures into three groups, the
three with the highest weights, the three with the
lowest weights, and the middle or remaining three.

Voting first occurred within the group, and the
group’s vote was brought forward with a weight
equaling the sum of the group members’ weights.
This variation also added to the vote total if the
sense had been assigned in the training data.

The fourth variation (Combination Attributes)
kept the assumptions from the third variation 3 and
altered the method of voting. Rather than using
the weights and thresholds calculated for the sin-
gle measures from the training data, this variation
calculated weights and thresholds for combinations
of two, three, four, five, six, and, seven measures.
Each combination attribute would vote either for or
against a sense based on whether the sum of the
values for the individual measures was above the
threshold for that combination. The fifth variation
(Combination Attributes with Automatic Mapping)
added implementation of the same synset assump-
tion to the previous variation.

6 Conclusions and Future Work

A practical use of these voting schemes would be
to assist in verifying the quality of WordNet assign-
ments in the current database. The following sets
might be profitably brought forward for investiga-
tion, both to determine if senses in the database are
correct and to determine if correct senses are missing
from the database:

e Word sense assignments in the lexical database
for which the same synset assumption does not
hold; that is, verbs that have a sense assigned,
when other verbs that are in that synset and
also in that Levin+4 class do not have that
sense/synset assigned.

e Word sense assignments in the lexical database
that receive substantially fewer votes than
would have been needed for selection by the vot-
ing scheme.

e Word sense assignments not in the lexical
database that receive substantially more than
the votes needed for selection by the voting
scheme.

On a more theoretical level, this research shows
that it is possible to undertake all-words word sense
disambiguation without relying on contextual data.
In place of such data we have used syntactic in-
formation, knowledge of semantic relationships, and
non-contextual corpus data (e.g., prior probability of
WordNet senses). This demonstrates that the lex-
ical resources developed within the computational
linguistics community are beginning to bear fruit in
ways not previously anticipated.



Variation

Automatic Mapping with Abstaining Votes
Automatic Mapping with Non-votes

Triples Voting
Combination Attributes

Combination Attributes with Automatic Mapping

Recall Precision
.6094 5395
.6099 5424
.6319 5185
.5263 4401
.b871 4544

Table 3: Recall and precision for Threshold Voting Schemes
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