
Model reduction using multiple time scales in stochastic gene regulatory networks

Slaven Peleš,∗ Brian Munsky,† and Mustafa Khammash‡
Deapartment of Mechanical Engineering, University of California

Santa Barbara, CA 93106-5070
(Dated: August 28, 2006)

Gene network dynamics often involves processes that take place on widely differing time scales –
from the order of nanoseconds to the order of several days. Multiple time scales in mathematical
models often lead to serious computational difficulties, such as numerical stiffness in the case of
differential equations or excessively redundant Monte Carlo simulations in the case of stochastic
processes. We present a method that takes advantage of multiple time scales and dramatically
reduces the computational time for a broad class of problems arising in stochastic gene regulatory
networks. We illustrate the efficiency of our method in two gene network examples, which describe
two substantially different biological processes – cellular heat shock response and expression of the
pap gene in Escherichia coli bacteria.

I. INTRODUCTION

Despite the great progress in biosciences in recent
years, mathematical modeling of intracellular processes
remains in its infancy. The level of complexity found in-
side the cell is such that intuition obtained from other
sciences is often insufficient to develop reliable quantita-
tive models. Many cellular processes take place far from
equilibrium and on timescales longer than the cell repli-
cation cycle, so they never reach the asymptotic state.
Hence, knowing the asymptotic solution alone may not
be sufficient to describe the system’s dynamics. Further-
more, characteristic time-scales in intracellular processes
often differ by several orders of magnitude, which creates
additional computational difficulties.

At the essence of the study of gene regulatory networks
is identifying specific regulatory mechanisms within a
complex structure. One way to do so is to carry out
a model reduction with respect to the process of interest.
In this paper we propose a model reduction method based
on singular perturbation theory that takes an advantage
of multiple time scales. It can be applied in the study of
asymptotic behavior as well as transient processes. The
method is based upon different mathematical formalism1

and in many aspects is superior to Monte Carlo based
approaches2,3,4, which are typically used to treat these
problems. The accuracy of the computation is known a
priori and can be adjusted before the bulk of calculations
is carried out.

We illustrate our method using two examples arising
from recent experiments with Escherichia coli bacteria:
we analyze the pap gene regulatory network and cellular
heat shock response. The fact that the two processes
occur in completely different biological contexts suggests
that our method is suitable to study a broad range of
problems.

The method can be used as a standalone approach,
but its applicability is significantly extended if used
in conjunction with the recently proposed Finite State
Projection1. Model reduction approaches based on sin-
gular perturbation theory have been used in various areas
of engineering and science5,6,7,8, but the overwhelming

complexity of some biological models has severely lim-
ited applicability of these approaches in some areas in
biosciences. The Finite State Projection retains an im-
portant subset of the state space and projects the re-
maining part (which can be infinite) onto a single state,
while keeping the approximation error strictly within pre-
specified accuracy. The resulting finite model is given in
an analytical form and allows us to implement further
reduction techniques, such as singular perturbation, to
a broad range of complex systems. As it reduces sys-
tems to manageable sizes at little or no cost, the Fi-
nite State Projection method, combined with other re-
duction approaches, has the potential to fundamentally
change the computational approach to stochastic biolog-
ical problems.

This paper is organized as follows: in Section II we
give a brief overview of some computational methods that
have been used to study stochastic gene network models.
In Section III we describe the mathematical details of
our method. In Section IV we provide an example of
how our method can be applied to a realistic gene net-
work problem, and in Section V we demonstrate how to
use time scale separation together with the Finite State
Projection method. Finally, in Section VI, we discuss our
results and outline prospects for further research.

II. BACKGROUND

Presently, the dominant approach to modeling gene
regulatory networks is to describe intracellular pro-
cesses by a series of chemical reactions involving pro-
teins and RNA molecules. For a system of n chem-
ical species, the state of the system inside the cell is
specified by copy numbers of each relevant molecule
X = (X1, X2, . . . , Xn). Often, these numbers are rela-
tively small and reactions take place far from the ther-
modynamic limit, so that mesoscopic effects, most no-
tably fluctuations, have to be taken into account. The
state space of the system is not continuous, but a dis-
crete lattice, where each node corresponds to a different
X. The size of the lattice is limited by the maximum pos-



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE

2006 2. REPORT TYPE
3. DATES COVERED

  00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE

Model reduction using multiple time scales in stochastic gene regulatory
networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Electrical and Computer Engineering,University of
California,Santa Barbara,CA,93106

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT

unclassified
b. ABSTRACT

unclassified
c. THIS PAGE

unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18 



2

sible populations of the n chemical species in the finite
volume cell.

At the mesoscopic scale one describes the dynamics
of the system in terms of the probability of finding the
system in a given state X, rather than in terms of tra-
jectories in the state space. The dynamics of the system
can be modeled by the master equation for a Markov pro-
cess on a lattice9. Although respectable attempts have
been made to introduce deterministic mesoscopic mod-
els for chemical reactions10, presently stochastic methods
are used almost exclusively in the study of intracellular
processes at the mesoscopic level.

The master equation describes the time evolution of
the probability of finding the system in a particular state
X. With an enumeration X → i, which maps each pos-
sible state to a single index, the master equation can be
written in a familiar gain-loss form9

dpi(t)
dt

=
∑
j �=i

[wijpj(t) − wjipi(t)] , (1)

where pi is the probability of finding the system in ith

state, while wij are propensity functions. The propen-
sity functions define the probability wijdt that the sys-
tem will transition from the jth to the ith state during
an infinitesimal time interval dt. The propensities may
be obtained from the chemical reaction rates, which of-
ten can be measured experimentally. The first term on
the right hand side of the master equation describes an
increase in the probability pi due to transitions to the
ith state from all other states j, while the second term
describes a decrease in pi due to transitions from the ith

state to other states j. If the system is initially found
in a state k, the initial condition for the chemical master
equation can be written as pi(0) = δik, where δik is the
Kronecker delta.

The solution for this problem is the probability pi(t)
that the system initially found in state k will be in state
i at the later time t. If we define Aij = wij − δij

∑
k wki,

the chemical master equation can be written in a more
compact form

ṗi(t) =
∑

j

Aij pj(t). (2)

The solution to the chemical master equation generally
can be expressed in terms of evolution operator p(t) =
A(t, 0)p(0), which in case of a finite A can be written as

p(t) = exp(At)p(0). (3)

Solving the master equation at first seems to be a rather
simple problem, as there are many efficient methods for
solving systems of linear ordinary differential equations.
However, if we consider, for example, a process involv-
ing three proteins, where each protein comes in say one
thousand copies per cell, that gives us up to a billion of
different states and a myriad of possible transitions be-
tween them. Carrying out calculations for such system

without any insight about its biological structure would
be impractical at least.

This problem may be ameliorated by using a Monte
Carlo type of computation11. The idea behind this ap-
proach is to start from some initial probability distribu-
tion pj(0) = δjk, then choose randomly which reaction
will take place next, and compute the new state j where
the system will be found at some later time t. The prob-
abilities of picking a particular reaction are given by the
propensity functions. The hope is that after sufficiently
many calculations like this the histogram containing all
outcomes will approximate well the solution of the chemi-
cal master equation p(t). The advantage of this approach
is that we do not need to calculate the whole matrix A.
Instead, we calculate on the fly only those matrix ele-
ments that are required for the computation at hand.
Furthermore, this method is broadly applicable as it re-
quires little knowledge about the details of the system
under consideration. It has been demonstrated12 that in
the limit case of infinitely many runs the Monte Carlo
solution approaches the exact solution to the chemical
master equation. Therefore the accuracy of the compu-
tation can be increased by simply generating more Monte
Carlo simulations.

On the down side Monte Carlo methods are notorious
for their slow convergence11, and the amount of compu-
tation necessary to get an accurate result may be too
large to be completed in a reasonable amount of time.
Also, computers cannot produce truly random numbers,
so one has to generate something that is as close as pos-
sible. Programs called random number generators13 cre-
ate periodic sequences of numbers with a large period,
which imitate series of random numbers. If the period
is too short, periodic patterns will create numerical arti-
facts in the calculation. On the other hand, high quality
random number generators, such as RANLUX14, take
significantly more computer processing time to execute.

Despite their shortcomings Monte Carlo methods
remain an important tool for study of intracellu-
lar processes and variety of different Monte Carlo
implementations2,3,4,12,15,16,17 have been successfully
used thus far.

An alternative approach known as the Finite State
Projection1,18,19 has been proposed recently by Munsky
and Khammash. The method is based on a simple obser-
vation that some states are more likely to be reached in
a finite time than are others. One can then aggregate all
improbable states in (2) into a single sink, and consider
all transitions to those states as an irreversible loss. This
method automatically provides a guaranteed error bound
that may be made as small as desired as it was proved in1.
With some intuition about the system’s dynamics, such
as knowing the macroscopic steady state, one can develop
an efficient system reduction scheme. It has been demon-
strated for a number of biological problems1,18 that in
this way the system (2) can be reduced to a surprisingly
small number of ordinary differential equations, thereby
dramatically reducing the computation time. The re-
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duced system can be treated analytically, and the method
does not require computationally expensive random num-
ber generation.

By discarding unlikely states in a systematic way, the
Finite State Projection method provides for a bulk sys-
tem reduction, but the original Finite State Projection
stops far short from what can be achieved. For example,
the method does not consider how transitions between
the remaining states take place. Transition rates be-
tween different states typically vary over several orders of
magnitude, and by treating them equally one may waste
considerable time performing computations to obtain a
precision that far outstrips the model’s accuracy.

The low probability transitions occur infrequently, so
the processes involving them will take place over long
time scales, while high probability transitions correspond
to fast intracellular processes. Different time scales can
pose computational problems, as the system of ordinary
differential equations (2) becomes stiff. On the other
hand, depending on the length of observation time, the
system can be further simplified. For short times slow
processes may be neglected, while for long times the ef-
fects of fast processes can be averaged.

In what follows we introduce a computational method
that addresses these shortcomings by taking advantage
of multiple time scales in the master equation to sim-
plify the system of equations and reduce the computation
time. This method is in a sense complementary to the
Finite State Projection. It can be used independently,
but significant benefits may be achieved when the two
methods are combined.

III. TIME SCALE SEPARATION

In order to define a proper chemical master equation
matrix A has to satisfy some general properties. Since by
definition propensity functions wij � 0, all off-diagonal
elements of A are nonnegative. For the same reason, all
diagonal elements of A are nonpositive.

In a closed system the probability has to be conserved,
so that

∑
i pi(t) = const. for all times. That means

d

dt

∑
i

pi(t) = 0 ⇒
∑

i

∑
j

Aijpj(t) = 0, (4)

and hence ∑
j

(∑
i

Aij

)
pj(t) = 0, (5)

for any probability distribution p(t) = (p1(t), . . . , pN (t)).
Here with N we denote the number of all possible states
where the system can be found26.

Therefore it must hold
∑

i Aij = 0, i.e. the sum of
the elements in each column of A must be zero. In other
words vector 1 = (1, 1, . . . , 1) is a left eigenvector of A
with associated eigenvalue zero:

1T A = 0. (6)

This further means that for the matrix A there exists at
least one right eigenvector v with the zero eigenvalue,

Av = 0. (7)

The eigenvector v represents the steady state probability
distribution for the system, and is the nontrivial solution
to (2). Furthermore it can be shown9 that other eigen-
values of A have negative real parts if the matrix A is
irreducible, i.e. it cannot be written in a block diagonal
form.

Note that we are interested here in the nontrivial so-
lution to (2), which exists since det A = 0. There also
exists a trivial solution p = 0, but we can discard it as
nonphysical since it does not satisfy the normalization
condition |p| = 1.

In gene networks we can often identify clusters of states
within which transitions occur quite frequently, while
transitions between the clusters are relatively rare. The
chemical master equation that corresponds to such a situ-
ation has a nearly block diagonal structure, so the matrix
A in (2) can be written in the form

A = H + εV, (8)

where H is a block diagonal matrix describing transitions
within the clusters, matrix V describes transitions from
one cluster to another, and ε > 0 is a small parameter.

In the limit case, ε → 0, the system remains in one
cluster of states for an infinitely long time, i.e. the prob-
ability for the system to be found in one of the states
within the original cluster is one. Therefore, same as
the matrix A, each block of H should define a proper
master equation. Each block of H has one zero eigen-
value with associated eigenvector vi, which describes the
steady state probability distribution in the ith cluster,
while all other eigenvalues of the block have negative real
parts.

It is relatively inexpensive to compute the full eigensys-
tems for the smaller blocks of H. From the eigenvectors
for each block one can easily construct a matrix S that
diagonalizes H:

S−1HS = Λ, Λ = diag(λ1, . . . , λN ). (9)

Matrix S has the same block diagonal structure as H.
This procedure is further simplified if some blocks of H
are identical, as is often the case. We label eigenvectors
and eigenvalues of H so that Re{λ1} � Re{λ2} . . . �
Re{λN}. The first m eigenvalues are then equal to zero
(λi�m = 0) and the rest have negative real parts.

In order to keep our presentation streamlined, we shall
assume that for all negative eigenvalues |Re{λi>m}| �
ε. This is always satisfied if it is possible to make a
clear distinction between fast and slow reactions. This
assumption can be relaxed and similar results obtained,
as we shall demonstrate later.

By applying now S−1 to both sides of (2) we obtain

ẋ =
(
Λ + εṼ

)
x, (10)
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where x = S−1p, and Ṽ = S−1V S. The equation above
can be written in the component form as

ẋi = λixi + ε

N∑
j=1

Ṽijxj . (11)

From singular perturbation theory (see Appendix) there
exists a near identity transformation

x = (I + εG)y, (12)

that removes all O(ε) terms, which depend on xi>m, from
the first m equations (i � m). In other words, equations
(11) where λi = 0 can be decoupled from the rest of the
system by a coordinate transformation (12) through the
order O(ε). In the new coordinates the first m equations
become

ẏi = ε

m∑
j=1

Ṽijyj + O(ε2). (13)

By truncating O(ε2) terms in (13) we reduce our system
of equations to an m-dimensional problem. The reduced
system is computationally less expensive to solve, while
it still approximates well the dynamics of the full system.
Because (11) has a stable fixed point solution, if initially
|x(0) − y(0)| = O(ε), then for all times t > 0 it holds
|x(t) − y(t)| = O(ε).

Note that if λi is smaller or of the same order as ε, the
near-identity transformation (12) and its inverse intro-
duce corrections to the ith equation that is only of order
O(ε2). Therefore we do not need to find the exact form of
the near-identity transformation, we can simply truncate
all terms containing xi>m from the system (11).

The first m equations can be solved now independently
of the rest of the system, and their solution can be written
as

yi(t) =
m∑

j=1

[
exp(εṼ ′t)

]
ij

yj(0), (14)

where Ṽ ′ is m × m principal submatrix of Ṽ , with ele-
ments Ṽi,j�m. In many cases of interest, solving (13) is a
manageable problem, unlike getting general solution for
the chemical master equation (2). Since in the long time
limit

lim
t→∞xi>m(t) = O(ε), (15)

as we show in the Appendix, we claim that from the
solution to the truncated system (14), we can easily con-
struct an approximation to the full solution of the chem-
ical master equation (3). To do so, we first define an
evolution operator Ṽ(t) such that Ṽij(t) = [exp(εṼ ′t)]ij
for i, j � m, and Ṽij(t) = 0 otherwise. In a block matrix
form this is

Ṽ(t) =
(

exp(εṼ ′t) 0
0 0

)
. (16)

The price we pay for simplicity here is that Ṽ(0) is not an
identity matrix, so the initial condition yi>m(0) also gets
truncated, and that truncation error is generally larger
than O(ε). The transient time T (ε), after which the solu-
tion of the truncated system is O(ε) close to the solution
of the full system, can be estimated from the leading
nonzero eigenvalue as

T (ε) ∼ ln ε/λm+1. (17)

If the time scale separation in (8) is done accurately, this
transient is negligible for all practical purposes. However,
time scale separation in a large system is not always ob-
vious, and may be error prone. We shall further discuss
this issue in Section III A.

Finally, by performing the inverse S transformation on
Ṽ(t), we obtain

V(t) = SṼ(t)S−1, (18)

which leads to the O(ε) approximation to the solution of
the chemical master equation (2), that is

|p(t) − V(t)p(0)| = O(ε), (19)

for all times t > T (ε).
Note that neither Ṽ nor Ṽ ′ are generators for the evo-

lution operator Ṽ, so their eigenvectors cannot be used
directly to compute the steady state probability distri-
bution for p(t).

A. Computational algorithm

One should note that due to the truncation of Ṽ only
contributions of the first m columns of S and m rows
of S−1 affect the approximate solution. As a result the
computation can be greatly simplified – instead of cal-
culating full eigensystems for each block Hi, it suffices
to find only the eigenvectors vi associated with the zero
eigenvalues. Instead of S we use the N × m matrix SR,
whose columns are made up of the right eigenvectors of
H, while instead of S−1 we use the m × N matrix SL,
whose rows are made up of the left eigenvectors of H.
Note that the left eigenvectors are always 1T

i , provided
all |vi| = 1, so the matrix SL is obtained at no compu-
tational cost. The accuracy of the calculation is known
a priori to be O(ε) for all t > T (ε).

To improve the reliability and robustness of our calcu-
lation, we can optionally add a transient time check to
our algorithm. To do so we first need to find eigenval-
ues for all blocks Hi. This comes at a relatively small
computational cost, and can be performed before all the
other calculations. The transient time needed to obtain
the desired accuracy is estimated from the leading nega-
tive eigenvalue λm+1 according to (17). If the transient
is too long, that can be remedied by expanding matri-
ces SR and SL to include the right and left eigenvec-
tors corresponding to λm+1, respectively. The transient
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time is then governed by next negative eigenvalue λm+2.
This procedure can be repeated until the desired accu-
racy is achieved, thereby sacrificing computational time
for precision. Note that in this case the right eigenvectors
corresponding to nonzero eigenvalues cannot be obtained
trivially.

By performing this test, we also ensure that condition
|λi>m| � ε is satisfied. Eigenvalues of H that are O(ε) or
smaller will result in long transient times. By expanding
transformation S to include eigenvectors corresponding
to these eigenvalues, we essentially treat them as if they
were part of Ṽ . This procedure adds robustness to the
method with respect to separating fast and slow reactions
in (8).

Let us summarize how to implement our method:

1. Specify problem parameters. If necessary apply a
finite projection to the full state space. Use propen-
sity functions and/or physical intuition to separate
H and V.

2. Find the eigenvalues of the uncoupled system, and
identify “slow” ones with respect to a preset tran-
sient time T (ε).

3. Find right and left eigenvectors corresponding to
the slow eigenvalues and construct rectangular ma-
trices SR and SL.

4. Calculate k × k matrix Ṽ ′ = SLV SR, where k is
the number of slow eigenvalues.

5. Compute k × k matrix exp(εṼ ′t).

6. Perform the inverse transformation

SR exp(εṼ ′t) SL = V(t)

in order to obtain the approximation to exp(At) for
all times t > T (ε).

B. Example

Let us illustrate this technique with a simple example.
We assume two weakly interacting systems that can be
found in three different states each. We choose matrices
H and V in an arbitrary way, with the only constraint
that they define a master equation. In our example

H =
(

H1 0
0 H2

)
(20)

is a block diagonal matrix with blocks

H1 =

⎛
⎝ −4 2 4

1 −2 0
3 0 −4

⎞
⎠ and H2 =

⎛
⎝ −6 3 2

2 −3 0
4 0 −2

⎞
⎠ .

(21)
We find that blocks H1 and H2 have one zero eigenvalue
each, with corresponding right eigenvectors v1 = (4, 2, 3)
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FIG. 1: Comparison of the approximate and the exact so-
lution to the master equation in Section III B. The initial
probability distribution is pi(0) = δ2i. The transient time is
estimated to be T (ε) = ln ε/λ3 = 1.96 for ε = 0.01, and is
denoted by the vertical line on the graph.
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FIG. 2: 1-norm error in probability distribution for the trun-
cated solution versus ε. For each value of ε we have randomly
generated 50 matrices H and V , so that every H + εV defines
a proper master equation. Each matrix H has between 2 and
6 blocks and each block has size between 2 and 21. The el-
ements of H and V are randomly generated from a uniform
distribution between 0 and 1. The probability distributions
were calculated after time t = 2T (ε) = 2 ln ε/λm+1.
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and v2 = (3, 2, 6). From these eigenvectors, we assemble
the matrix SR,

SR =

⎛
⎜⎜⎜⎜⎜⎝

4/9 0
2/9 0
3/9 0
0 3/11
0 2/11
0 6/11

⎞
⎟⎟⎟⎟⎟⎠ . (22)

The matrix composed of left eigenvectors of H1 and H2

is similarly used to form SL,

SL =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
. (23)

In our example the coupling matrix is

V =

⎛
⎜⎜⎜⎜⎜⎝

−8 0 0 5 3 2
0 −5 0 2 3 1
0 0 −12 4 6 2
4 2 3 −11 0 0
1 2 5 0 −12 0
3 1 4 0 0 −5

⎞
⎟⎟⎟⎟⎟⎠ . (24)

To get the equations for the slowly changing variables
(13), we calculate

Ṽ ′ = SLV SR =
( −87/11 78/11

29/3 −26/3

)
. (25)

Next, we calculate the evolution operator for the trun-
cated system, exp(εṼ ′t), and perform the inverse S-
transformation to obtain

V(t) = SR exp(εṼ ′t)SL. (26)

Finally, we obtain the approximate solution as

p(t) = V(t)p(0). (27)

As an illustration, in Figure 1 we show components p1(t)
and p2(t) of the solution above for the initial condition
pi(0) = δ2i, and ε = 0.01. We can see that after the tran-
sient time (17) has elapsed we obtain a good agreement
between the exact and the approximate solution to this
example problem.

To further support our results, we randomly generate a
large number of master equations with similar near block-
diagonal structure and compare their exact solutions to
the approximate solutions obtained using our approach.
The numerical results presented in Figure 2 show that the
approximation error is controlled by the small parameter
ε.

IV. PAP SWITCH

Pili are small hair-like structures that enable bacte-
ria to bind to epithelial cells and thereby significantly

FIG. 3: Schematic of the pap operon (top), key regulatory
components of the Pap switch (middle) and diagram of the
operon in its on state (bottom).

increase the bacteria’s ability to infect host organisms.
However, pili expression comes at cost to the bacteria, as
the production of pili requires a large portion of the cel-
lular energy. Whether or not E. coli are piliated depends
upon the regulation of genes such as the pyelonephritis-
associated pili (pap) genes. Here we study a simplified
version of the PAP switch model18, which analyzes the
regulatory network responsible for controlling one type
of pili.

Recent experiments20,21 have identified two transcrip-
tion factors that affect expression of the pap gene, and six
binding sites for the two. The transcription factors are
DNA adenine methylase (Dam) and leucine responsive
regulatory protein (Lrp). Dam binds and applies methyl
groups to GATC sites at 2 and 5, as shown in Figure
3. This Dam methylation is an irreversible and relatively
slow process. On the other hand, Lrp binds cooperatively
to three adjacent sites at a time, either 1-2-3 or 4-5-6
(Figure 3). These reactions are fast and reversible. Lrp
binding also inhibits Dam methylation. Altogether this
makes 16 possible states in which the PAP switch can be
found. These are schematically described by the network
model shown in Figure 4. In this model pap transcription
occurs only in the state 11 when Lrp is bound to sites
1-2-3 and site 5 is methylated. We assume that cell repli-
cation always resets the system to state 1. A solution to
the chemical master equation for this problem gives the
time evolution of the probability of finding the system
in each state including state 11, which is proportional to
the probability of pap gene expression.

Since the two transcription factors bind at significantly
different rates, a smart bookkeeping practice would be
to record Lrp binding propensities in the matrix H and
methylation propensities in V as defined in (8). With a
convenient labeling scheme, as shown in Figure 4, we can
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FIG. 4: PAP switch schematic diagram.

express H in a simple block diagonal form,

H =

⎛
⎜⎝

H1 0 0 0
0 H2 0 0
0 0 H3 0
0 0 0 H4

⎞
⎟⎠ . (28)

Recent experimental data21 reveals that the propensi-
ties of Lrp binding at sites 4-5-6 depend strongly on the
methylation pattern of site 5, while propensities of Lrp at
sites 1-2-3 do not significantly depend upon the methy-
lation pattern of site 2. Thus we find that there are only
two distinct blocks as

H1 = H3 =

⎛
⎜⎝

−9500 6.8 0.09 0
9270 −18.4 0 0.09
230 0 −463.29 6.79
0 11.6 463.2 −6.88

⎞
⎟⎠ (29)

and

H2 = H4 =

⎛
⎜⎝

−9500 62 0.09 0
9270 −73 0 0.09
230 0 −463.29 61.76
0 11 463.2 −61.85

⎞
⎟⎠ . (30)

Leading eigenvalues for both, H1 and H2, are zero, while
the next largest eigenvalue is of order λ5 ∼ −10. On the
other hand we estimate that all methylation propensities
have the same value ε = 0.17. Following our labeling
scheme (Figure 4) the nonzero entries of matrix V are
then: V1,1 = −2, V2,2 = V3,3 = V5,5 = V7,7 = V9,9 =
V10,10 = −1, and V5,1 = V9,1 = V6,2 = V11,3 = V13,5 =
V13,9 = V14,10 = V15,7 = 1. Therefore, all we need to con-
struct the matrix SR are the right eigenvectors v1 and
v2 that correspond to the zero eigenvalues of H1 and H2,
respectively. Following the footsteps outlined in Section
III we reduce the PAP switch model to a 4-dimensional
system and carry out calculation for the probability p11,
which is proportional to the PAP transcription probabil-
ity.

The PAP switch model we presented here is simple
enough to be integrated directly so we can compare re-
sults for the full system and the reduced system. As we

0 1000 2000 3000
t

0

0.002

0.004

0.006

P
11

Approximate Solution
Exact Solution

FIG. 5: Time evolution of pap gene expression probability.
Initially no transcription factors are bound the pap operon, so
the initial condition is p1(0) = 1 and pi�=1 = 0. The transient
time 17 is less than 1 in our time units.

show in the Figure 5, all the important information about
the system’s behavior is preserved in the reduced model.

This model predicts a short time lag between repli-
cation and Pap production, since methylation of site 2
must occur before pap expression. Further, since Dam
methylation at 5 prohibits expression, if the cell waits
too long to decide to switch “on”, it will most probably
miss its chance and remain “off”. Thus, a newly created
E. coli cell will most likely express the pap gene at some
point shortly after replication. Probability of expressing
pili drops significantly at later times and cell resources
are used for other functions, such as initiating the next
replication cycle.

V. HEAT SHOCK SYSTEM

Through evolution all living organisms have developed
mechanisms for dealing with environmental stress. One
such mechanism is cellular heat shock response. In-
creased temperature causes proteins inside the cell to
misfold and thereby loose their functionality. In re-
sponse, the cell produces heat shock proteins, most no-
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s1

s3

s1

s3

FIG. 6: (a) Two dimensional lattice representing possible
states and transitions in the heat shock model. Here s1 and
s3 are populations of σ32-DnaK and σ32-RNAP compounds,
respectively, while s2 is the population of free σ32 molecules.
Reactions s1 � s2, are represented by bidirectional horizontal
arrows and reactions s2 → s3 is represented with vertical
arrows. The total number of σ32 is constant (in this example
s1 + s2 + s3 = 5), so the chemical state of the system is
uniquely defined by s1 and s3 alone. (b) The same lattice
after applying the Finite State Projection. Unlikely states
have been aggregated into a single sink state.

tably molecular chaperones and proteases. Molecular
chaperones help refold deformed proteins and restore
their original function. Proteases, on the other hand,
help degrade damaged proteins, hopefully before they
trigger unwanted chemical reactions in the cell. At the
crux of the heat shock response mechanism in E. coli is
the synthesis of σ32-RNAP complex22. Here we study a
simplified model for σ32-RNAP synthesis using our time
scale separation method in conjunction with a Finite
State Projection. The analysis of the entire heat shock
response mechanism in E. coli is rather complicated, and
is beyond the scope of this paper.

At normal physiological temperatures σ32 protein is
found almost exclusively in a complex σ32-DnaK. As the
temperature increases this complex becomes less stable

0 100 200 300 400 500
t

0.4

0.6

0.8

1

P(
s 3=

0)

Full system
Finite state projection
Timescale separation

FIG. 7: Probability that no σ32-RNAP molecule has been
sythesized in the heat shock toy model.

and there is a non-negligible probability of finding free
σ32 inside the cell. The free σ32 then can combine with
RNA polymerase through what can be considered an irre-
versible reaction to form a σ32-RNAP complex. In turn,
σ32-RNAP initiates transcription of genes encoding heat
shock proteins. This regulatory mechanism can be sum-
marized in a simple set of reactions,

s1 � s2 → s3, (31)

where s1, s2 and s3 correspond to the σ32-DnaK complex,
the σ32 heat shock regulator and the σ32-RNAP complex,
respectively. This model of the heat shock subsystem
has been analyzed before using various computational
methods including Monte Carlo implementations3,23.

In the biological system, the relative rates of the reac-
tions are such that the reaction from s2 to s1 is by far
the fastest, and σ32 molecules infrequently escape from
DnaK long enough to form the σ32-RNAP complex. The
purpose of this mechanism is to strike a balance between
fixing the damage produced by heat and saving the cell’s
resources, as a significant portion of cell energy is con-
sumed when producing heat shock proteins. The optimal
response to the heat shock is not massive, but measured
production of heat shock proteins, which leaves sufficient
resources for other cellular functions. We use the follow-
ing set of parameters values for the reaction rates3,23:

c1 = 10, c2 = 4 × 104, c3 = 2. (32)

For simplicity, in our model we assume that the total
number of σ32 – free or in compounds – is constant, so
that s1 +s2 +s3 = const. With this constraint the reach-
able states of this three species problem can be repre-
sented on a two dimensional lattice.

For illustrative purposes, Figure 6a, shows one such
lattice for an initial condition of s1 = 5 and s2 = s3 = 0.
Here, the total population is fixed at five, and there is a
total of 21 reachable states.

We first apply the Finite State Projection. We esti-
mate that all states where s2 > 2 or s3 > 2 are unlikely
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to be reached in a short time, so we aggregate them into
a sink node as shown in Figure 6b, thereby reducing this
to a ten state problem. From the transitions to the ag-
gregated state, we find a strict upper bound on the error
introduced by such an approximation. For our set of pa-
rameters the approximation the error is guaranteed to be
below 8% for any time t � 500.

Next, we further reduce this system by applying time
scale separation. Elements of the matrix AFSP , which
defines the master equation for the system obtained after
the Finite State Projection, can be read off of Figure 6b.
In accordance with our bookkeeping practice we write
AFSP = H + V and record all reversible reactions s1 �
s2 in the matrix H, and all other reactions, including
s2 → s3 and transitions to the aggregated state, in the
matrix V . By doing so we ensure that all fast reactions
are contained in H. Note that there is no unique way to
separate fast and slow reactions and we chose this one for

its simplicity. Matrix H has a block diagonal structure

H =

⎛
⎜⎝

H3

H2

H1

0

⎞
⎟⎠ , (33)

where each block

Hk =

⎛
⎝ −(k + 2)c1 c2 0

(k + 2)c1 −(k + 1)c1 − c2 2c2

0 (k + 1)c1 −2c2

⎞
⎠ (34)

corresponds to a row of states in Figure 6b. The zero in
the last row is just a scalar, and it corresponds to the ag-
gregated state. The matrix εV is made up of irreversible
reactions (vertical transitions in Figure 6b) and therefore
has a lower triangular form:

εV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 −c3

0 0 −3c1 − 2c3

0 c3 0 0
0 0 2c3 0 −c3

0 0 0 0 0 −2c1 − 2c3

0 0 0 0 c3 0 0
0 0 0 0 0 2c3 0 −c3

0 0 0 0 0 0 0 0 −c1 − 2c3

0 0 3c1 0 0 2c1 0 c3 c1 + 2c3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the reaction rates above, the first four eigenvalues
of H are zero, and the rest have negative real parts each
with magnitude of order 104 or larger, suggesting that the
truncation in (16) is indeed valid for this problem. There-
fore the dynamics of 9-dimensional system obtained by
the Finite State Projection can be well approximated by
a system of only four linear ordinary differential equa-
tions. By applying algorithm from Section III A we find
that the time scale separation introduces error of order
10−3 with respect to the solution obtained by Finite State
Projection alone. The transient time (17) is estimated to
be 2×10−4, and is negligible considering the time interval
of interest.

In Figure 7 we compare results obtained by solving the
full system directly, using Finite State Projection alone
and using Finite State Projection and time scale sepa-
ration combined. The figure shows how probability of
having no σ32-RNAP complex in the cell decreases with
time. All three results are in a good agreement as our
calculations predicted. Note that the Finite State Pro-
jection error in this example is much smaller than the
estimated upper bound.

The advantage of combining the Finite State Projec-

tion and time scale separation becomes obvious if we con-
sider a more realistic and much larger problem with the
same reactions but with initial conditions s1 = 2000 and
s2 = s3 = 0. In this case there are 2,001,000 reach-
able states, and the full chemical master equation is too
large to be tackled directly. However, by applying the Fi-
nite State Projection we find that truncating every state
where s3 � 340 and s2 � 15 introduces 1-norm error that
is less than 10−3 for times t � 300s. The resulting matrix
A is of size 5457×5457, and has near block diagonal form
(8) similar to the example in Figure 6. Its block diago-
nal part H contains 341 irreducible blocks each with 16
rows and columns. Same as in the previous example the
leading nonzero eigenvalue of H has a negative real part
of magnitude 104, so the system can be reduced to a 342
state model using the time scale separation algorithm.
Should we apply time scale separation directly to the full
system, not only the amount of the computation would
be significantly larger, but there would be no simple way
to obtain the near block diagonal structure as it was the
case in the previous example.

The solution to this problem shows how the number
of compounds σ32-RNAP grows in time if the temper-
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FIG. 8: Probability distribution for s3 calculated at three
different times. The truncated solution (dots) approximates
well the solution to the full system (solid lines).

ature is constant and slightly above normal physiologi-
cal level. This number is proportional to the number of
heat shock proteins produced in the cell. With the Finite
State Projection solution, we have computed the proba-
bility distribution for s3 at three times t = 100, 200, and
300. Figure 8 illustrates the probability distribution of
species σ32-RNAP (s3) at these instances in time. The
Finite State Projection solution, shown with solid lines,
takes approximately 220 seconds to compute. The dots
represent the probability distribution of s3 as computed
using our time scale separation method applied atop of
the Finite State Projection. The difference between the
two results is indistinguishable, but the total computa-
tional effort for the reduced, 342 state model is 200-fold
less; the truncated model takes only about a second to
solve the problem.

VI. CONCLUSION

Until recently, it was thought that the chemical master
equation could not be analytically solved except for the
most trivial systems. Previous work on the Finite State
Projection demonstrated that for many biological sys-
tems, bulk system reductions could bring models closer
into the fold of solvable problems. Here we have shown
that the Finite State Projection method can be further
enhanced when solving the chemical master equation for
systems involving multiple time scales. In combination
with Finite State Projection method, we have shown that
our algorithm, based upon singular perturbation theory,
provides a powerful computational tool for studying in-
tracelular processes and gene regulatory networks.

Similar problems were studied earlier with specially
designed Monte Carlo implementations2,3 or hybrid
methods4. In contrast to these, our method does not
require random number generation, and its accuracy is
given a priori. A further advantage of our method is its
ease of implementation and the speed of computations.

The proposed algorithm is particularly fast when imple-
mented on systems for which there are strict means of
separating slow and fast reactions.

The Finite State Projection and our time scale sepa-
ration approach also provide valuable insight as to how
one may further deal with the bewildering complexity
that intracellular processes exhibit. First, cellular pro-
cesses are limited by cell size and available energy. It
is then plausible that the main features of intracellular
dynamics can be captured in a relatively small subset of
the state space, as the results obtained by Finite State
Projection suggest. Another typical feature of intracellu-
lar processes is that they are composed of reactions that
take place on different timescales. Depending on the ob-
servation time of interest, some of these reactions can be
neglected, while some will contribute only through their
averages. Preliminary success with our approach gives
us a hope that relatively simple models for intracellular
processes can be tailored when a region in the state space
and observation time of interest are known.

Of course, one can easily envision that additional
model reductions may be possible to even further en-
hance the power of both the Finite State Projection and
the time scale separation approach. Indeed some reduc-
tions based upon control theory19 are already becoming
apparent. Also, in our computations we have used off the
shelf numerical routines for eigensystem calculations and
matrix exponentiation. Further improvements in compu-
tational speed can be achieved if these routines are op-
timized for matrices which define master equations and
their special properties. We intend to investigate these
possibilities in the future.
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APPENDIX

Singular perturbation theory has been extensively
studied in various literature. However, most of the litera-
ture in this area is of wide scope and often very technical.
In order to spare the reader some time, here we present a
heuristic argument, which provides a mathematical jus-
tification for our method, while keeping technicalities at
minimum. For rigorous proofs interested reader may
want to consult for example24,25.

Consider a weakly perturbed linear N -dimensional sys-
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tem described by (11)

ẋi = λixi + ε

N∑
j=1

Vijxj , (A.1)

where λi = 0 for i � m, and λi has negative real part for
i > m. We want to find a near identity coordinate trans-
formation (12) that would remove as many O(ε) terms
as possible from (A.1) and “push” them to higher orders
in ε. After substituting x = (I + εG)y in (A.1) we get

ẏi = λiyi + ε

N∑
j=1

Ṽijyj − ε

N∑
j=1

Gijλjyj (A.2)

+ελi

N∑
j=1

Gijyj + O(ε2)

By equating all O(ε) terms to zero we find

N∑
j=1

(Vij − Gijλj + λiGij) yj = 0, (A.3)

and by solving for Gij we obtain

Gij =
Vij

λj − λi
. (A.4)

Therefore, we can always find Gij except when λi = λj .
In other words, all nonresonant terms can be removed
through O(ε) from (A.1) by a near identity transforma-
tion (12). In our method we are interested in separating
slow and fast processes in the system, so we shall define
matrix G in (12) as follows:

Gij =

⎧⎨
⎩

Vij

λj − λi
i � m < j

0 otherwise
(A.5)

By substituting this expression for G in (A.2) we find
that

ẏi = ε

m∑
j=1

Vijyj + O(ε2) i � m

ẏi = λiyi + ε

N∑
j=1

Vijyj + O(ε2) i > m

We observe that first m equations decouple from the rest
of the system through O(ε), and can be solved indepen-
dently after truncating higher order terms. Furthermore,
the near identity transformation (12) does not introduce
any new O(ε) terms to the first m equations, so it is es-
sentially just a truncation of all xi>m terms from (A.1).
We do not need to calculate G and perform transforma-
tion (12) as such transformation is guaranteed to exist.

It remains to show that the solution to truncated sys-
tem (13) will be O(ε) close to solution to (A.1) on a time

interval of interest. These equations are linear and hence
can be solved analytically, but let us take an extra step
here and expand the solution to (A.1) in powers of ε

xi(t) = x
(0)
i (t) + εx

(1)
i (t) + ε2x

(2)
i (t) + . . . (A.6)

By substituting this expression into (A.1) and grouping
same orders in ε we get series of equations

ε0 : ẋ
(0)
i (t) = λix

(0)
i (t)

ε1 : ẋ
(1)
i (t) = λix

(1)
i (t) +

N∑
j=1

Vijx
(0)
i (t)

ε2 : ẋ
(2)
i (t) = λix

(2)
i (t) +

N∑
j=1

Vijx
(1)
i (t)

. . . . . .

which we can solve in a straightforward way to obtain

x
(0)
i (t) = eλitx

(0)
i (0)

x
(1)
i (t) = eλitx

(1)
i (0) + eλit

N∑
j=1

Vijx
(0)
i (0)

∫ t

0

e(λj−λi)sds

. . .

Let us first consider equations i � m. The solution to
(A.1) through O(ε) then can be written as

xi(t) = xi(0) + ε

m∑
j=1

Vijxj(0)t

+ε

N∑
j=m+1

eλjt − 1
λj

Vijxj(0) + O(ε2),

where we substituted xi(0) = x
(0)
i (0) + εx

(1)
i (0) + O(ε2)

and λi = 0. Since the system has one stable steady state
solution the series above must converge for all times. The
first two terms in the expansion above are equal to the
first two terms in the expansion of the solution (14) for
the truncated system. Therefore, for yi(0) = xi(0) it is

|xi(t) − yi(t)| = ε

∣∣∣∣∣∣
N∑

j=m+1

eλjt − 1
λj

Vijx
(0)
j (0)

∣∣∣∣∣∣+ O(ε2).

In the expression above all λj < 0, therefore |xi(t) −
yi(t)| = O(ε) holds for all t > 0. Since the expression for
xi(t) is convergent series and xi(0) are linearly indepen-
dent, we conclude that yi(t) must also have a fixed point
solution, which is O(ε) close to the solution of the full
system.

Next we consider equations in (A.1) where i > m. The
solution to these can be expanded in terms of ε as

xi(t) = eλitxi(0) + ε
eλit − 1

λi

m∑
j=1

Vijxj(0)

+εteλit
N∑

j=m+1

Vijxj(0) + O(ε2)
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Our truncation algorithm (Sec. III A) sets all yi(t) ≡
0, so initially the difference between full and truncated
solution is whatever the initial condition xi(0) is, and it
can be larger than O(ε). However, in the limit case

lim
t→∞ |xi(t)| = ε

∣∣∣∣∣∣
1
λi

m∑
j=1

Vijx
(0)
j (0)

∣∣∣∣∣∣+ O(ε2) (A.7)

That means the truncation introduces O(ε) error to the
asymptotic solution. Larger errors may occur only during
the finite transient time 0 < t < T (ε), where T (ε) is given
in (17). One can verify this by substituting right hand
side of (17) for time in the solution xi>m(t) above.
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