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Abstract—The Nyquist stability criterion is extended to a Our presentation is organized as follows: Section Il gives
class of spatially periodic systems with spatially distributed g short overview of the frequency-domain representation
inputs and outputs. It is demonstrated that the exponential of periodic operators. We lay out the problem setup in
stability of this class of systems can be guaranteed by checking . . o .
the Nyquist stability criterion for a family of finite-dimensional Sec'[_'on I ar_‘d (_jescr'be the_ general Cond't'ons_ for Stab”'ty_ of
systems. In order to show this result, a new version of the Spatially-periodic systems in Section IV. Section V contains
argument principle is derived that is applicable to systems with the main contributions of the paper, where the Nyquist
infinite-dimensional input/output spaces and unbounded system  stability criterion is developed for spatially-periodic systems.
operators. We apply the theory to a simple example in Section VI,

I. INTRODUCTION and finish with some conclusions and directions for future

. . . research in Section VII. All proofs and technical details have
Of the frequency-domain methods of stability analysis, thBeen placed in the Appendix

Nyquist criterion is of particular interest as it offers a simple ) . ]
visual test to determine the stability of a closed-loop system Notation k € R denotes the spatial-frequency variable,
for a family of feedback gains [1]. also knowp as the wave-numbei(T") is the spectrum of

Extensions of the Nyquist stability criterion exist for 1> Zp(T) its pﬁ'”t. spectrum, ang(T') its resolvent set.
certain classes of time periodic [2] and distributed systenf&: (1) is the n' smgular—valléle ofT". %(¢?) denotes the
[1], where by distributed it is meant that the state-spac%ounded operators off, %((*) the compact operators on
of the system is infinite-dimensional. Time-delay (retarded) » @nd #1(£%) the nuclear Operators Off, i.e. ope2rators
systems and systems governed by partial differential equ —th";‘t have th property =, on(T) < oo; H1(L7) C
tions (spatially extended systems) are examples of distributéfo (") C #(€°). tr[T] denotes the trace df and det[T]
systems. But to the authors’ best knowledge, the existirfp determinantC* andC™ denote the closed right-half and
literature on the Nyquist stability criterion for distributede open left-half of the complex plane, respectively, and
systems deals only with those systms that have finité- ‘= V=L C(z0;%) is the number of counter-clockwise
dimensional input and output spaces. An example of sugficirclements of the point, € C by the closed patf3.

a system would be one described by a partial differential [I. PRELIMINARIES
equation withpointwisesensing angointwiseactuation.

In contrast, in the present work we aim to extend th%i
Nyquist stability criterion to a class of spatially periodic sys
tems that possesspatio-temporal(i.e. infinite-dimensional)
i(?;?;r;t?)r:g output spaces, and possikigboundedsystem equation on the real lind,s — 92, = € R.

e . . Now for those systems wherg is a spatially invariant
Some of the difficulties in the application of the Nyquist y P y

terion to the ol f svst d ved ab includ @gerator (i.e., the action ol on« can be represented by a
criterion 1o the class or systéms described above include nvolution), Fourier methods can significantly simplify the
the concept of theharacteristic functionand its zeros are

. X Problem. For example in the heat equation introduced above,
not immediately extendable to unbounded system operatolss o o spatially invariant operator oh%(R), and thus the

and (b) due to the infinite dimensionality of the input/outpug;stem can be rewritten in the spatial-frequency domain as

spaces one has to locate iafinite number of eigenloci. 01 — —k20. Hered(t, k) is the spatial Fourier transform
Hence the main contributions of this paper are to (a) deriv((;.f b(t,7) A(k) _ (jk)’g — _k2 is the Fourier symbol of

a version of the argument principle that lends itself to Ung e spatial operatop?, andk € R is the spatial-frequency
bounded system operators, and (b) show that one can alw iable ©

truncate the infinite-dimensional system operators so that the, | general if an LTI system is composed of only spatially

ert)beem fcan bfe re_lduceo:r t(')t cQgckmg the; Ny?u'St stability, ariant operators then as illustrated above, the spatial

criterion for (a family of) finite-dimensional systems. Fourier transform ‘diagonalizes’ all such operators (i.e., turns
This work is supported in part by AFOSR grant FA9550-04-1-0207 an§€M into multiplication by a function of). Therefore the

NSF grant ECS-0323814. Fourier-transformed system collapses to a ‘continuum’ of
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Let us consider a linear time invariant (LTI) spatially
stributed system of the formd,yp = Ay, where A is a
'spatial operator or.?(R) and v (t,z) is a spatio-temporal
function. An example of such a system would be the heat
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But in this paper we will be dealing with the broader class where f; are the Fourier series coefficients Bfx),

of spatially periodicsystems, i.e., systems of the fofin) = i.e. F(z) = Y2 fi /"2, Notice thatF is inde-

Ay where A is a spatially periodic operator ab?(R). An pendent off.

example of such a system would bg) = 93¢ + cos(z). Remark 1:If A is a bounded operator of%(R), then
In light of the previous discussion, the difficulty facedsupkEIR |/1(k)| < M for someM > 0, and thusA, is a

in the analysis of spatially periodic systems becomes clefounded operator of? for everyd ¢ [0,9)]. -

For the Fourier methods described above to simplify the

representation of a spatially periodic system, the Fourier Ill. PROBLEM SETUP

transform has teimultaneouslyiagonalize the spatially in-  Consider the spatially-invariant systesf'
variantand spatially periodic operators present in the system.

But this is not possible since these two classes of operators,  (3:%)(t,x) = (Ay)(t,z) + (Bu)(t, z),
in general, do not commuteFor example take the two y(t,z) = (C¥)(t, ), (1)
spatial operatord),, and cos(x). Clearly cos(z) 9, ¥(x) # _
8, cos(z) ¥(x) = —sin(z) ¥(z) + cos(z) dy (), for a wheret € [0,00), z € R, A, B, andC, which we call the
general nonzero differentiable functiaf(z). Thus cos(z), system operatorsare spatially invariant and are all def!ned
viewed as a spatially periodic pure multiplication operatoion @ dense domaif C L*(R). u, y and are the spatio-
does not commute with the spatially invariant differentiatiof€mpPoral input, output and state of the system, respectively.
operatord, . Clearly, for any given time, (¢, - ) is a spatial function on
Yet this does not mean that Fourier methods are ndt (R). and thus (1) is an infinite-dimensional linear system.
applicable or are not useful in the analysis of periodic 'N€Xt, we place the spatially-invariant systefl in feed-
systems. Quite to the contrary, analysis of periodic systen®@CcK With a spatially-periodic operatda(x),. [1E(2)] = 1,
in the Fourier (frequency) domain often leads to numerical € C: t0 form the closed-loop systeBf' as in Figure 1. It
tractability and valuable insight. is our aim here to Qeterr_nlnt_e the stability propertiesSef
In [3] and [4] it is demonstrated that a general spatiallf*S € feedback gain varies inC.
periodic operator on L?(R) with spatial-periodX = 27/
can be represented in the Fourier domain byamily of G
operators orf?. These operators can be written as bi-infinite 2
matrices.4, parametrized by a variable € [0,Q]. In this

paper we only give thedy representation of certain special Ma
subclasses of spatially periodic operators, namely spatially
invariant operators and spatially periodic pure multiplication Fig. 1. The closed-loop systeSf'.

operators, with the additional note that any spatially periodic
operator can be written as the summation and/or multiplica- For simplicity, in this paper we assume that all operators

tion of a countable number of such operators. A, B, C and F are scalar. We also make the following
1) A spatially-invariant operator A has the diagonal ~assumptions oi$°.
representation Assumption (i) A is such thaRe(A(k)) < 3 for |k| >

Ky, and |[A(k)| > al|k|'*" for |k| > K, for some
6<0,a>0,7n7>0, K1 >0andK; > 0,

Ag = A0 + Qn) ) Assumption (ij) B andC are bounded operators.

[3] and [4] show how (1) can also be represented as

where A( -) is the Fourier symbol ofd, and for every (Oee)(t) = (Apwe)(t) + (Boug)(t),
given d € [0,9] the diagonal elements oy are the yo(t) = (Covo) (1), 2)
equally-spaced sampl€si(6 + nQ)} ez of A(-).
2) A spatially-periodic pure multiplicatiomperatorF has ~ With ¢ € [0, ], with Ay, By, andCy being the bi-infinite ma-
the Toeplitzrepresentation trices introduced previously. (2) describes the open-loop sys-
tem sg' with temporal impulse respongh (t) := Cy et By,
and transfer function

fo  fo1 fo gg(s) = Cy (SZ— Ag)_l By
f1 fo fo1 . = dlag{ , C(9+QLFL)B(9+QTL)7} (3)
s — A0+ Qn)
Finally, using the same bi-infinite representation for the pe-
riodic operatoryF'(z) to getyF, and placing it in feedback
1T = ST is a necessary and sufficient condition frand § to be ~ With S§', we obtain the close-loop syste8f in Figure 2
simultaneously diagonalizable by a transformatién with A-operatorAg' = Ay — By yF Cp.

fa f1 fo
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Fig. 2. The closed-loop systesfé'. 5
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IV. STABILITY OF LINEAR SPATIALLY-PERIODIC
SYSTEMS

A semigroupet* on a Hilbert space is called exponentially

stable if there exist constant®/ > 1 and @ > 0 such Fig. 3. The closed contoud? traversed in the clockwise direction taken
At ot . as the Nyquist path a8 — oo. The indentations are arbitrarily made to

that |.|€ || < Me™ er t >0 Itis well-known [5] [6]  avoid open-loop modes on the imaginary axis.
that if A is an ifinite-dimensional operator, then in general
¥(A) c C~ is not sufficient for the exponential decay of
le]l. In this paper we focus on systems whidb satisfy  the plot ofdet[Z + W}'Qe)(s)HSe@ to the unstable modes of
the so-calledspectrum-determined growth conditiaomamely the open-loop and closed-loop systems. But first it has to be
systems for whictE(A) € C~ implies exponential decay of clarified what is meant bylet|Z +~vFGy(s)] for the infinite-
the semigroup. Examples of such semigroups are numeradisnensional operataf + vFGy(s). We need the following

-r

and include analytic semigroups [7] [8]. lemma.
In [3] it is shown that for a general spatially periodic Lemma 1:FGy(s) € %, (¢?) for all s € p(Ayp).
operatorA we have Proof: See Appendix. ]
Since FGy(s) € %1(£?), one can now define [9] [10
$(A) = U E(Ag). (4) o(s) 1(6%) N [9] [10]
0€[0,0] det[Z + vFGp(s)] := H (L+0(s)),
Thus to proveX(A%) c C~, as needed to guarantee the n=—oo

exponential stability o8¢, it is necessary and sufficient to
show thatAY = Ay — By~yF Cy has spectrum insid€~
for all § € [0,9]. In the next section we aim to develop a
graphical method of checking whether or fotAS) c C—.
Also, henceforth in this paper wherever we use the term
stability we mean exponential stability. C(O; det[Z + yj:gg(s)”ge@g) =

V. THE NYQUIST STABILITY CRITERION FORSPATIALLY 1 o1 1 -1
PERIODIC SYSTEMS tr[%j/ge(sz—fte) ds|—tr %/@9(81—«49) ds| =

A. The Determinant Method — (number of eigenvalues ofS in C*) +

To motivate the development in this section, let us first (number of eigenvalues ofly in CT),

consider a finite-dimensional (multi-input multi-output) LTI 0 ) o
systemG(s) placed in feedback with a constant gajd. where®" is the Nyquist path shown in Figure 3 that does

In analyzing the closed-loop stability of such a system, wBOt Pass through any eigenvalues4, and encloses a finite
are concerned with the eigenvaluesdn of the closed-loop Number Of them. _
A-matrix A%. If s is an eigenvalue of4%, then it satisfies Proof: See Appendix. .

det[s] — A% = 0. Now to check whether the equation Remark 2:P = ~ 377 Joo (5T — Ag)~'ds is the group-
det[s] — A9 = 0 has solutions insid€*, one can apply projection [11] [10] corresponding to the eigenvaluesAyf

where M (s), n € Z, are the eigenvalues dfy(s). We

are now ready to state a generalized form of the argument
principle applicable to systems with unboundéeperators.
Theorem 2:If det[Z + vFGy(s)] # 0 for all s € DY,

; 9 . .
the argument principle tdet[I +~G(s)] ass traverses some inside®", andtr[P] gives the total number of such eigen-
inaC+ i - values [12]. Similarlytr[— 5% [, (sZ —.AY)~'ds] gives the
curve® enclosingC™. More precisely, since 2rj JDo 0
| total number of eigenvalues of§ in ©°. Thus Theorem 2
det[s] — A% ; i l
det[I +7G(s)] = ———"—, allows us to determine the number®f eigenvalues of4J
det[s] — A] from knowledge of the number of* eigenvalues ofA,
if one knows the number of unstable open-loop poles, theand the number of encirclements of the origin by the plot
one can determine the number of unstable closed-loop pole det[Z + 7FGy(s)] as s traversesD’. Notice that since
by looking at the plot oflet[I +vG(s)]|, - Ap = diag{ -, A(0 + Qn),--- }, the eigenvalues ofd
But in the case of spatially-distributeé systems the operare known and we havEp(A4y) = {A(6 + Qn),n € Z}. m
loop and closed-loopl-operatorsd, and.AS' are, in general, Remark 3:1t now becomes clear why we have used the
unbounded. Hence it does not make sense to talk about tHg representation of the operater; in this representation
characteristic functiondet[sZ — Ay] anddet[sZ — AS], and and under the assumptions of Section Ill, the open- and
one has to resort to operator theoretic arguments to relatkwsed-loopA-operators enjoy the property of having discrete



(pure point) spectrum. This allows for an extension of théose nothing by considering only the firdf. eigenvalues.
argument principle to be invoked. m There still remain some minor technicalities.

Remark 4:SinceAy has discrete spectrum, it has no finite First, let D. denote the disks| < e in the complex
accumulation points in the complex plane [12]. In particularplane. Then said truncation may result in some eigenloci
the eigenvalues ofdy can not converge to any finite point (part of which resides insid®,.) not forming closed loops.
jwo of the imaginary axis. Yet this does not rule out theBut notice that these can be arbitrarily closed insldle as
possibility of the eigenvalues accumulating #&afoc. But  this does not affect the encirclements [2].

Assumption (i) guards against this by requiring tbiﬂc) be The second issue is that for some valuessoE DY,
bounded away from the imaginary axis @$ — oco. Thus FGy(s) may have multiple eigenvalues, and hence there
the Nyquist path can be taken to run to infinity along thés ambiguity in how the eigenloci of the Nyquist diagram
imaginary axis without any technical difficulties. m should be indexed. But this poses no problem as far as
As a direct consequence of Theorem 2 we have counting the encirclements is concerned, and it is always

Theorem 3:Assumepi denotes the number of eigenval-possible to find such an indexing; for a detailed treatment
ues ofAy insideC*. For®" taken as above,(AY) c C~  see [1].

iff Let us denote by\? the indexed eigenloci that make up
(@) det[Z +~FGy(s)] #0, VseD?, the generalized Nyquist diagram. From (6) and the above
and discussion it follows that

. — 0 1
(B) € (0:detlZ +77Go(5)]| o0 ) =1l C(0;4et]T +9FGo(3)]| 00 ) = > C(— 2320
Finally, the closed-loop systetii® is exponentially stable iff In|<N. v

| —

Zp(Af) < C forall 0 € [0, 2]. ®  which together with Theorem 3 gives

B. The Eigenloci Method Theorem 5:Assumepﬁ denotes the number of eigenval-

) . . . f Ay insideCt. For®? and N, defined iously,
The setback with the method described in the prewou%e? deé |(r(1:s_| fi)r I <orl iff an as defined previously
p (4 €

paragraph is that to shod,(AS) C C—, A = Ay — 1

By FCy, for different values ofy, one has to plotlet[Z + (a) —— ¢ ()\fl)anN ,

w’fge(s)]\sege for each~. This also includes having to gnq " -

calculate the determinant of an infinite dimensional matrix(b) > C( 1 /\9(8)) —pf

This motivates the following eigenloci approach to Nyquist In|<Ne A +

stability analysis, which is very similar to that performed inFinally, the closed-loop systefi® is exponentially stable iff

[2] for the case of time-periodic systems. Yp(AY) € €~ for all 6 € [0, Q. [ |
0 i ;
ThI:ﬁ]t An(s), n € Z, constitute the eigenvalues GfGy(s). C. Finite Truncations of System Operators

oo The above development means that for a given0, the
Z det[T + 7 FGo(s)] = £ H (14 2(s)). (5) eigenloci that fall within the diskD. = {s s.t.|s| < ¢} play
no role in the Nyquist stability analysis and can be ignored
as long ag>| > e
This suggests that one coutduncate 7Gy, or equaiva-
lently truncateAdy, By, Co, and F, and effectively treat the
stability problem as one for a family of (finite-dimentional)
multivariable systems parameterized by the varigble
The complication here is that although a truncation re-
moves the infinite number of eigenloci that shrink to zero,

n=—oo

But recall from Lemma 1 thafGy(s) € %, (¢?) for every
s € p(Ap). This, in particular, means thafFGy(s) is a
compact operator and thus its eigenvalugsés) accumulate
at the origin agn| — oo [13]. As a matter of fact one can
make a much stronger statement.

Lemma 4:The eigenvalues\’ (s) converge to the origin

uniformly on o7 _ it also affectsall other eigenloci, no matter how large the
Proof: See Appendix. . ®  {runcation is taken to be. Nevertheless, it can be shown that
Takge the positive integeN, to be such that); (s)| <€, py increasing the size of the truncation, the eigenlocFa§
s € @Y, for all |n| > N.. Let us rewrite (5) as can be recovered to any accuracy.
£ det|T +~7FGo(s)] = LetIly bezthe projection on the fir&V+1 standard ba_13|s
elements of?, {e_n, -+ ,eq, - ,en}. ThusIIyFGypIly is
ZI] +9280)) + 2 J] (1 +M0s) = the (2N + 1) x (2N + 1) truncation of 7Gy. We have
|n|<N. |n|>N. Lemma 6:If C S p(HNfQQHN) and
DL HNs) + DL (1 FN(). 6 1FGe — v FGoTly || [|(C — Iy FGolly) | < 1,
In|<N. In|>N. then¢ € p(7Gy).
It is clear that if|y| < I then for|n| > N, [yX%(s)| < Proof: This is a direct consequence of Theorem 3.17,
1, and 1 + v\Y(s) can never circle the origin as travels Chap IV of [12]. ]

around®’. Thus for|y| < % the final sum in (6) will not The decay of the diagonal elements@f, and the decay
contribute to the encirclements of the origin, and hence waith increasing! of the f; elements ofF, can be used to



show that| Gy —I1y FGeIl || can be made arbitrarily small

for large enoughV.? Hence, by Lemma 6 the eigenloci of @) £
I FGyll Ny approximate those aFGy arbitrarily well asN
grows.
M 1 e

D. Regularity in thed Parameter

Regarding Theorems 3 and 5, one would hope for some
kind of ‘regularity’ with respect to the variablé. More
precisely, in practice one would like to plot the eigenloci
and check the Nyquist stability criterion for a finite number (b)
of §;, say#,,---,0r, and be able to conclude stability for
all ¢ € [0, Q)] if the §; are chosen close enough to each other. . _ ‘
It is possible to show that under certain mild conditions -'__“\/‘-’:.
on A, B andC, all points of the plotlet[Z+~FGy(s)]|, _pe 1 N \
change continuously with. Moreover we can show that the \ /)'\
eigenloci\? of FGy(s) change continuously witd. We do : <N
not present the details here. A o

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we will consider the example of an open-
loop system governed by

op(t,x) = 02t x) + o(t,x) + ult,x), -
y(t,.]?) = w(tax)v o2 ™ x‘ —

™~
put in feedback withy F'(x) = ~y cos(x). HereQ = 1, and B, ° = > =M
C are the identity operator. The representation of the system .// S _
in the frequency domain 9y (t) = (Ag — YF)Ye(t), - - ‘ .
where 4y = diag{---,—(0 +n)> +1,---} for every ¢ € o
[0,1], and F has the form shown at the end of Section I - .
with f{ = f.1 =1 and f; = 0, ¢ # +1. Notice that the erms w2 e 0w e e
open-loop system is unstable. (d - — —
Recall that to test the stability of the closed-loop system, . TN o
one has to apply the Nyquist criterion for evetye [0, 1]. ~ \V4
We take Nyquist path®? of the form shown in Figure 4(a) * T
with » = 20. The indentation is chosen appropriately as to . I %ﬁ
avoid the eigenvalues od, at the origin. Let us take a look |
at the Nyquist plots for two particular values @f ,
=0 : X = 0,0,1 are the eigenvalues afl; inside o _ S _
DY, hencepy = 3, and we need three counter-clockwise o T e
encirclements of-1/~ to achieve closed-loop stability. As
can be seen in Figure 4(b) and its blown-up version (c), M e o e wm e
one possible choice would be to takel/y to be purely Fig. 4. (a) The Nyquist pati?; (b) Nyquist plot ford = 0; (c) Blown-up
imaginary and—0.25 < —1/vy < 0.2j. Clearly such—1/~  version of plot in (b); (d) Nyquist plot fof = 0.5.
is encircled three times by the eigenloci.
=05 : X = 0.75,0.75 are the eigenvalues afl 5
inside D03, hencep‘jr-"’ — 2. and we need two counter- VIlI. CONCLUSIONS ANDFUTURE WORK
clockwise encirclements of-1/v to achieve closed-loop
stability. Again, from Figure 4(d), if—1/~ is taken to be
purely imaginary and-0.2j < —1/y < 0.24, then—1/~ is
encircled twice by the eigenloci.

02| T | T~

We develop a generalized Nyquist stability criterion that
is applicable to a class of spatially-distributed systems with
infinite-dimensional input/output spaces and unbounded sys-
tem operators.

As a matter of fact, it can be shown tha6.2j < —1/y < Future work in this direction would include considering
0.2; stabilizes the closed-loop system for all valuesfaf 5 yiger class of spatially-distributed systems, for example
[0, 1]. those for which the Fourier symbol of is itself a matrix

i.e., the state has Euclidean dimension larger than one).
2This is also a direct consequence of the fact thgly € %1 (£2) is a ( 9 )

compact operator and can therefore be approximated arbitrarily well by/A!SO, the "f‘ﬁe_Ct on stability of different basic frequencies _
sequence of finite-dimensional operators [13]. of the periodic feedback, and the occurrence of parametric



resonance, can be investigated in this framework. It would tlerom [12], the left side of (Al) is equal to the number of
of interest to compare such results to those already obtainemjenvalues of4, in C*t minus the number of eigenvalues
using norm and spectral analysis [4] [14]. of Ag' in C™.

On the other hand, let the pattf be that traversed by

VIl A PPENDIX det[Z + vFGy(s)] as s travels once aroun®? (where®’

Proof of Lemma 1Sinces € p(Ajy), thens # A(f +Qn)

lies entirely inp(Ay)). By Lemma Al,det[Z +~vFGy(s)] is

for anyn € Z, which together with (3) and the boundednesginalytic ins, and if det[Z + vFGy(s)] # 0 on ®¢ we have

of B and C implies that all diagonal elements 6§(s) are
finite. Let 0,,(Go(s)), n=1,2,---, be a reordering of these
elements such thab: (Go(s))| > |o2(Go(s))| = -+ > 0.
Then clearly o, (Go(s)) l0n(Go(s))|. But from
Assumption (i) it follows tha "> | 0., (Go(s)) < oo. Hence
Go(s) € #,(¢%), and sinceF € B((?), FGy(s) € 51 ((?)
[10]. ]

To prove Theorem 2 we need the following lemma.

1 dz
O(0:detlZ + 77600 ean) = 55 .,
4 det[T

T 21 Joo  det[T + vFGo(s)]

Using [10, p163] and the assumptidat[Z +~FGy(s)] # 0,
s € DY, we arrive at

L det[T + 7 FGa(s)]

Lemma Al:For s € p(Ap), det[Z +~vFGy(s)] is analytic
in both~ ands.
Proof: For s € p(Ag), 7FGy(s) € %1(¢?) by Lemma
1. AlsovFGy(s) = vFCo(sT — Ag)~'By is clearly analytic
in both v and s for s € p(Ap). Then it follows from [10,
p163] thatdet[Z +vFGy(s)] too is analytic in bothy and s
for s € p(Ap). [ |

Proof of Theorem 2Since ®’ does not pass through
any eigenvalues ofdy, s € p(Ay) and thusyFCy(sZ —
Ag)~'By € %, (¢?) from Lemma 1. Then from [9](Z +
yFCy(sT — Ag)—lBg)_l exists and belongs te#(¢?) iff
det[Z + yFCo(sT — Ag)~'By] # 0, which is satisfied
by assumption. Applying the matrix inversion lemma to [2]
(I+’7]:C9(SI—A9)7189)71, we conclude that € p(A%)
and(sZ — Agl)_l = (sT —Ap+ BQ'}/FCQ)_l € %(KQ).

(1]

3]
Now since (sZ — AY)~!, By, Cp, and F all belong
to B(¢?), and (sZ — Ap)~' € %,(¢?), we have(sZ —
AT By FCo(sT — Ag)~" € #1(£%) [10]. Thus, from the )
identity
(ST — AN — (sT — Ap) ' = [5]
— (sT — AY) "' BoyFCy(sT — Ag) ", [6]
it follows that (sZ — AS)~t € % (¢2). In particular(sZ —  [7]
Ag)~! and (sZ — AS)~! are both in%,(¢?), which means o
that 4, and.AS both have discrete spectrum [12] and in 8]
[0
1 Cph s - CA-lgs —
o] QQ(SI Ag) " ds o] @e(SI Ag)~ds = 0]
— [ (5T — A 1By FCy(sT — Ag)ds [11]

" 2mj )0
L L . N
each term on the left side is a finite-dimensional prOJect|o['| ]

[10, p11, p15]. Taking the trace of both sides and changings3]
the order of integration and trace on the rigtte have (14]

e oaeh=1g ] L/ RN
tr[%rj/@a(sI Ag) ds} tr[Qﬂ-j @e(sI Ag) ds} =
tr[(sZ — AY) " By FCo(sT — Ag) " ]ds. (AL)

B 27Tj Do

3Since(sZ — AY) 1By FCo(sT — Ag) ™! € B1(£?), its trace is well-
defined and finite.

det[Z + vFGy(s)]

= tr{(I + nge(S))_ld%W’er(S)
= —tr[(sZ — A§) " BeyFCo(sT — Ag) ')

This, together with (A2) and (Al) gives the required remlt.

Proof of Lemma 4 For s € p(Ap), det[Z + vFGo(s)]
is analytic in bothy and s by Lemma Al. The proof now
proceeds exactly as in [2, p140] and is omitted.
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