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Abstract— The Nyquist stability criterion is extended to a
class of spatially periodic systems with spatially distributed
inputs and outputs. It is demonstrated that the exponential
stability of this class of systems can be guaranteed by checking
the Nyquist stability criterion for a family of finite-dimensional
systems. In order to show this result, a new version of the
argument principle is derived that is applicable to systems with
infinite-dimensional input/output spaces and unbounded system
operators.

I. I NTRODUCTION

Of the frequency-domain methods of stability analysis, the
Nyquist criterion is of particular interest as it offers a simple
visual test to determine the stability of a closed-loop system
for a family of feedback gains [1].

Extensions of the Nyquist stability criterion exist for
certain classes of time periodic [2] and distributed systems
[1], where by distributed it is meant that the state-space
of the system is infinite-dimensional. Time-delay (retarded)
systems and systems governed by partial differential equa-
tions (spatially extended systems) are examples of distributed
systems. But to the authors’ best knowledge, the existing
literature on the Nyquist stability criterion for distributed
systems deals only with those systms that have finite-
dimensional input and output spaces. An example of such
a system would be one described by a partial differential
equation withpointwisesensing andpointwiseactuation.

In contrast, in the present work we aim to extend the
Nyquist stability criterion to a class of spatially periodic sys-
tems that possessspatio-temporal(i.e. infinite-dimensional)
input and output spaces, and possiblyunboundedsystem
operators.

Some of the difficulties in the application of the Nyquist
criterion to the class of systems described above include (a)
the concept of thecharacteristic functionand its zeros are
not immediately extendable to unbounded system operators,
and (b) due to the infinite dimensionality of the input/output
spaces one has to locate aninfinite number of eigenloci.

Hence the main contributions of this paper are to (a) derive
a version of the argument principle that lends itself to un-
bounded system operators, and (b) show that one can always
truncate the infinite-dimensional system operators so that the
problem can be reduced to checking the Nyquist stability
criterion for (a family of) finite-dimensional systems.
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Our presentation is organized as follows: Section II gives
a short overview of the frequency-domain representation
of periodic operators. We lay out the problem setup in
Section III and describe the general conditions for stability of
spatially-periodic systems in Section IV. Section V contains
the main contributions of the paper, where the Nyquist
stability criterion is developed for spatially-periodic systems.
We apply the theory to a simple example in Section VI,
and finish with some conclusions and directions for future
research in Section VII. All proofs and technical details have
been placed in the Appendix.

Notation: k ∈ R denotes the spatial-frequency variable,
also known as the wave-number.Σ(T ) is the spectrum of
T , Σp(T ) its point spectrum, andρ(T ) its resolvent set.
σn(T ) is the nth singular-value ofT . B(`2) denotes the
bounded operators oǹ2, B0(`2) the compact operators on
`2, and B1(`2) the nuclear operators oǹ2, i.e. operators
T that have the property

∑∞
n=1 σn(T ) < ∞; B1(`2) ⊂

B0(`2) ⊂ B(`2). tr[T ] denotes the trace ofT and det[T ]
its determinant.C+ andC− denote the closed right-half and
the open left-half of the complex plane, respectively, and
j :=

√
−1. C(z0;P) is the number of counter-clockwise

encirclements of the pointz0 ∈ C by the closed pathP.

II. PRELIMINARIES

Let us consider a linear time invariant (LTI) spatially
distributed system of the form∂tψ = Aψ, whereA is a
spatial operator onL2(R) andψ(t, x) is a spatio-temporal
function. An example of such a system would be the heat
equation on the real line∂tψ = ∂2

xψ, x ∈ R.
Now for those systems whereA is a spatially invariant

operator (i.e., the action ofA on ψ can be represented by a
convolution), Fourier methods can significantly simplify the
problem. For example in the heat equation introduced above,
∂2

x is a spatially invariant operator onL2(R), and thus the
system can be rewritten in the spatial-frequency domain as
∂tψ̂ = −k2ψ̂. Here ψ̂(t, k) is the spatial Fourier transform
of ψ(t, x), Â(k) = (jk)2 = −k2 is the Fourier symbol of
the spatial operator∂2

x, andk ∈ R is the spatial-frequency
variable.

In general if an LTI system is composed of only spatially
invariant operators then as illustrated above, the spatial
Fourier transform ‘diagonalizes’ all such operators (i.e., turns
them into multiplication by a function ofk). Therefore the
Fourier-transformed system collapses to a ‘continuum’ of
finite-dimensional LTI systems parameterized byk. This
means that the original infinite-dimensional problem has
been effectively ‘decoupled’ in the spatial-frequency domain.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2005 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2005 to 00-00-2005  

4. TITLE AND SUBTITLE 
The Nyquist Stability Criterion for a Class of Spatially Periodic Systems 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Department of Electrical and Computer Engineering,University of
California,Santa Barbara,CA,93106 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

6 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



But in this paper we will be dealing with the broader class
of spatially periodicsystems, i.e., systems of the form∂tψ =
Aψ whereA is a spatially periodic operator onL2(R). An
example of such a system would be∂tψ = ∂2

xψ + cos(x)ψ.
In light of the previous discussion, the difficulty faced

in the analysis of spatially periodic systems becomes clear.
For the Fourier methods described above to simplify the
representation of a spatially periodic system, the Fourier
transform has tosimultaneouslydiagonalize the spatially in-
variantandspatially periodic operators present in the system.
But this is not possible since these two classes of operators,
in general, do not commute.1 For example take the two
spatial operators∂x and cos(x). Clearly cos(x) ∂x ψ(x) 6=
∂x cos(x) ψ(x) = − sin(x) ψ(x) + cos(x) ∂x ψ(x), for a
general nonzero differentiable functionψ(x). Thus cos(x),
viewed as a spatially periodic pure multiplication operator,
does not commute with the spatially invariant differentiation
operator∂x.

Yet this does not mean that Fourier methods are not
applicable or are not useful in the analysis of periodic
systems. Quite to the contrary, analysis of periodic systems
in the Fourier (frequency) domain often leads to numerical
tractability and valuable insight.

In [3] and [4] it is demonstrated that a general spatially
periodic operatorA onL2(R) with spatial-periodX = 2π/Ω
can be represented in the Fourier domain by afamily of
operators oǹ2. These operators can be written as bi-infinite
matricesAθ parametrized by a variableθ ∈ [0,Ω]. In this
paper we only give theAθ representation of certain special
subclasses of spatially periodic operators, namely spatially
invariant operators and spatially periodic pure multiplication
operators, with the additional note that any spatially periodic
operator can be written as the summation and/or multiplica-
tion of a countable number of such operators.

1) A spatially-invariant operator A has the diagonal
representation

Aθ =


. . .

Â(θ + Ωn)
. . .

,
whereÂ( · ) is the Fourier symbol ofA, and for every
given θ ∈ [0,Ω] the diagonal elements ofAθ are the
equally-spaced samples{Â(θ + nΩ)}n∈Z of Â( · ).

2) A spatially-periodic pure multiplicationoperatorF has
the Toeplitzrepresentation

F =



.
.
.

.
.
.

.
.
.

.
.
.

.
.
. f0 f−1 f−2

.
.
. f1 f0 f−1

.
.
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f2 f1 f0

.
.
.

.
.
.

.
.
.
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.


,

1TS = ST is a necessary and sufficient condition forT and S to be
simultaneously diagonalizable by a transformationU .

where fl are the Fourier series coefficients ofF (x),
i.e. F (x) =

∑∞
l=−∞ fl e

jlΩx. Notice thatF is inde-
pendent ofθ.

Remark 1: If A is a bounded operator onL2(R), then
supk∈R |Â(k)| ≤ M for someM > 0, and thusAθ is a
bounded operator oǹ2 for everyθ ∈ [0,Ω].

III. PROBLEM SETUP

Consider the spatially-invariant systemSol(
∂tψ

)
(t, x) =

(
Aψ

)
(t, x) +

(
Bu

)
(t, x),

y(t, x) =
(
Cψ

)
(t, x), (1)

wheret ∈ [0,∞), x ∈ R, A, B, andC, which we call the
system operators, are spatially invariant and are all defined
on a dense domainD ⊂ L2(R). u, y andψ are the spatio-
temporal input, output and state of the system, respectively.
Clearly, for any given timet, ψ(t, · ) is a spatial function on
L2(R), and thus (1) is an infinite-dimensional linear system.

Next, we place the spatially-invariant systemSol in feed-
back with a spatially-periodic operatorγF (x), ‖F (x)‖ = 1,
γ ∈ C, to form the closed-loop systemScl as in Figure 1. It
is our aim here to determine the stability properties ofScl

as the feedback gainγ varies inC.

Fig. 1. The closed-loop systemScl.

For simplicity, in this paper we assume that all operators
A, B, C and F are scalar. We also make the following
assumptions onSol.

Assumption (i): A is such thatRe
(
Â(k)

)
≤ β for |k| >

K1, and |Â(k)| ≥ a |k|1+η for |k| > K2, for some
β < 0, a > 0, η > 0, K1 > 0 andK2 > 0,

Assumption (ii): B andC are bounded operators.

[3] and [4] show how (1) can also be represented as(
∂tψθ

)
(t) =

(
Aθψθ

)
(t) +

(
Bθuθ

)
(t),

yθ(t) =
(
Cθψθ

)
(t), (2)

with θ ∈ [0,Ω], withAθ, Bθ, andCθ being the bi-infinite ma-
trices introduced previously. (2) describes the open-loop sys-
temSol

θ with temporal impulse responseGθ(t) := Cθ e
Aθt Bθ,

and transfer function

Gθ(s) := Cθ (sI − Aθ)−1 Bθ

= diag
{
· · · , Ĉ(θ + Ωn)B̂(θ + Ωn)

s− Â(θ + Ωn)
, · · ·

}
. (3)

Finally, using the same bi-infinite representation for the pe-
riodic operatorγF (x) to getγF , and placing it in feedback
with Sol

θ , we obtain the close-loop systemScl
θ in Figure 2

with A-operatorAcl
θ := Aθ − Bθ γF Cθ.



Fig. 2. The closed-loop systemScl
θ .

IV. STABILITY OF L INEAR SPATIALLY -PERIODIC

SYSTEMS

A semigroupeAt on a Hilbert space is called exponentially
stable if there exist constantsM ≥ 1 and α > 0 such
that ‖eAt‖ ≤ Me−αt for t ≥ 0. It is well-known [5] [6]
that if A is an ifinite-dimensional operator, then in general
Σ(A) ⊂ C− is not sufficient for the exponential decay of
‖eAt‖. In this paper we focus on systems whichdo satisfy
the so-calledspectrum-determined growth condition, namely
systems for whichΣ(A) ⊂ C− implies exponential decay of
the semigroup. Examples of such semigroups are numerous
and include analytic semigroups [7] [8].

In [3] it is shown that for a general spatially periodic
operatorA we have

Σ(A) =
⋃

θ∈[0,Ω]

Σ(Aθ). (4)

Thus to proveΣ(Acl) ⊂ C−, as needed to guarantee the
exponential stability ofScl, it is necessary and sufficient to
show thatAcl

θ = Aθ − Bθ γF Cθ has spectrum insideC−
for all θ ∈ [0,Ω]. In the next section we aim to develop a
graphical method of checking whether or notΣ(Acl

θ ) ⊂ C−.
Also, henceforth in this paper wherever we use the term
stability we mean exponential stability.

V. THE NYQUIST STABILITY CRITERION FORSPATIALLY

PERIODIC SYSTEMS

A. The Determinant Method

To motivate the development in this section, let us first
consider a finite-dimensional (multi-input multi-output) LTI
systemG(s) placed in feedback with a constant gainγI.
In analyzing the closed-loop stability of such a system, we
are concerned with the eigenvalues inC+ of the closed-loop
A-matrix Acl. If s is an eigenvalue ofAcl, then it satisfies
det[sI − Acl] = 0. Now to check whether the equation
det[sI − Acl] = 0 has solutions insideC+, one can apply
the argument principle todet[I+γG(s)] ass traverses some
curveD enclosingC+. More precisely, since

det[I + γG(s)] =
det[sI −Acl]
det[sI −A]

,

if one knows the number of unstable open-loop poles, then
one can determine the number of unstable closed-loop poles
by looking at the plot ofdet[I + γG(s)]

∣∣
s∈D

.
But in the case of spatially-distributed systems the open-

loop and closed-loopA-operatorsAθ andAcl
θ are, in general,

unbounded. Hence it does not make sense to talk about the
characteristic functionsdet[sI −Aθ] anddet[sI −Acl

θ ], and
one has to resort to operator theoretic arguments to relate

Fig. 3. The closed contourDθ traversed in the clockwise direction taken
as the Nyquist path asr → ∞. The indentations are arbitrarily made to
avoid open-loop modes on the imaginary axis.

the plot ofdet[I + γFGθ(s)]
∣∣
s∈D

to the unstable modes of
the open-loop and closed-loop systems. But first it has to be
clarified what is meant bydet[I+γFGθ(s)] for the infinite-
dimensional operatorI + γFGθ(s). We need the following
lemma.

Lemma 1:FGθ(s) ∈ B1(`2) for all s ∈ ρ(Aθ).
Proof: See Appendix.

SinceFGθ(s) ∈ B1(`2), one can now define [9] [10]

det[I + γFGθ(s)] :=
∞∏

n=−∞

(
1 + γλθ

n(s)
)
,

where λθ
n(s), n ∈ Z, are the eigenvalues ofGθ(s). We

are now ready to state a generalized form of the argument
principle applicable to systems with unboundedA-operators.

Theorem 2:If det[I + γFGθ(s)] 6= 0 for all s ∈ Dθ,

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

tr
[

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds

]
− tr

[
1

2πj

∫
Dθ

(sI − Aθ)−1ds

]
=

− (number of eigenvalues ofAcl
θ in C+) +

(number of eigenvalues ofAθ in C+),

whereDθ is the Nyquist path shown in Figure 3 that does
not pass through any eigenvalues ofAθ, and encloses a finite
number of them.

Proof: See Appendix.
Remark 2:P = − 1

2πj

∫
Dθ (sI − Aθ)−1ds is the group-

projection [11] [10] corresponding to the eigenvalues ofAθ

inside Dθ, and tr[P] gives the total number of such eigen-
values [12]. Similarlytr[− 1

2πj

∫
Dθ (sI−Acl

θ )−1ds] gives the
total number of eigenvalues ofAcl

θ in Dθ. Thus Theorem 2
allows us to determine the number ofC+ eigenvalues ofAcl

θ

from knowledge of the number ofC+ eigenvalues ofAθ

and the number of encirclements of the origin by the plot
of det[I + γFGθ(s)] as s traversesDθ. Notice that since
Aθ = diag

{
· · · , Â(θ + Ωn), · · ·

}
, the eigenvalues ofAθ

are known and we haveΣp(Aθ) =
{
Â(θ + Ωn), n ∈ Z

}
.

Remark 3: It now becomes clear why we have used the
Aθ representation of the operatorA; in this representation
and under the assumptions of Section III, the open- and
closed-loopA-operators enjoy the property of having discrete



(pure point) spectrum. This allows for an extension of the
argument principle to be invoked.

Remark 4:SinceAθ has discrete spectrum, it has no finite
accumulation points in the complex plane [12]. In particular,
the eigenvalues ofAθ can not converge to any finite point
jω0 of the imaginary axis. Yet this does not rule out the
possibility of the eigenvalues accumulating at±j∞. But
Assumption (i) guards against this by requiring thatÂ(k) be
bounded away from the imaginary axis as|k| → ∞. Thus
the Nyquist path can be taken to run to infinity along the
imaginary axis without any technical difficulties.
As a direct consequence of Theorem 2 we have

Theorem 3:Assumepθ
+ denotes the number of eigenval-

ues ofAθ insideC+. ForDθ taken as above,Σp(Acl
θ ) ⊂ C−

iff

(a) det[I + γFGθ(s)] 6= 0, ∀ s ∈ Dθ,
and
(b) C

(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
= pθ

+.

Finally, the closed-loop systemGcl is exponentially stable iff
Σp(Acl

θ ) ⊂ C− for all θ ∈ [0,Ω].

B. The Eigenloci Method

The setback with the method described in the previous
paragraph is that to showΣp(Acl

θ ) ⊂ C−, Acl
θ = Aθ −

BθγFCθ, for different values ofγ, one has to plotdet[I +
γFGθ(s)]

∣∣
s∈Dθ for each γ. This also includes having to

calculate the determinant of an infinite dimensional matrix.
This motivates the following eigenloci approach to Nyquist
stability analysis, which is very similar to that performed in
[2] for the case of time-periodic systems.

Let λθ
n(s), n ∈ Z, constitute the eigenvalues ofFGθ(s).

Then

∠ det[I + γFGθ(s)] = ∠
∞∏

n=−∞

(
1 + γλθ

n(s)
)
. (5)

But recall from Lemma 1 thatFGθ(s) ∈ B1(`2) for every
s ∈ ρ(Aθ). This, in particular, means thatFGθ(s) is a
compact operator and thus its eigenvaluesλθ

n(s) accumulate
at the origin as|n| → ∞ [13]. As a matter of fact one can
make a much stronger statement.

Lemma 4:The eigenvaluesλθ
n(s) converge to the origin

uniformly on Dθ.
Proof: See Appendix.

Take the positive integerNε to be such that|λθ
n(s)| < ε,

s ∈ Dθ, for all |n| > Nε. Let us rewrite (5) as

∠ det[I + γFGθ(s)] =

∠
∏

|n|≤Nε

(
1 + γλθ

n(s)
)

+ ∠
∏

|n|>Nε

(
1 + γλθ

n(s)
)

=

∑
|n|≤Nε

∠
(
1 + γλθ

n(s)
)

+
∑
|n|>Nε

∠
(
1 + γλθ

n(s)
)
. (6)

It is clear that if |γ| < 1
ε then for |n| > Nε, |γλθ

n(s)| <
1, and 1 + γλθ

n(s) can never circle the origin ass travels
aroundDθ. Thus for |γ| < 1

ε the final sum in (6) will not
contribute to the encirclements of the origin, and hence we

lose nothing by considering only the firstNε eigenvalues.
There still remain some minor technicalities.

First, let Dε denote the disk|s| < ε in the complex
plane. Then said truncation may result in some eigenloci
(part of which resides insideDε) not forming closed loops.
But notice that these can be arbitrarily closed insideDε, as
this does not affect the encirclements [2].

The second issue is that for some values ofs ∈ Dθ,
FGθ(s) may have multiple eigenvalues, and hence there
is ambiguity in how the eigenloci of the Nyquist diagram
should be indexed. But this poses no problem as far as
counting the encirclements is concerned, and it is always
possible to find such an indexing; for a detailed treatment
see [1].

Let us denote byλθ
n the indexed eigenloci that make up

the generalized Nyquist diagram. From (6) and the above
discussion it follows that

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

∑
|n|≤Nε

C
(
− 1
γ

;λθ
n

)
which together with Theorem 3 gives

Theorem 5:Assumepθ
+ denotes the number of eigenval-

ues ofAθ insideC+. For Dθ andNε as defined previously,
Σp(Acl

θ ) ⊂ C− for |γ| < 1
ε iff

(a) − 1
γ
/∈

(
λθ

n

)
|n|≤Nε

,

and
(b)

∑
|n|≤Nε

C
(
− 1
γ
, λθ

n(s)
)

= pθ
+.

Finally, the closed-loop systemGcl is exponentially stable iff
Σp(Acl

θ ) ⊂ C− for all θ ∈ [0,Ω].

C. Finite Truncations of System Operators

The above development means that for a givenε > 0, the
eigenloci that fall within the diskDε = {s s.t. |s| < ε} play
no role in the Nyquist stability analysis and can be ignored
as long as| 1γ | > ε.

This suggests that one couldtruncateFGθ, or equaiva-
lently truncateAθ, Bθ, Cθ, andF , and effectively treat the
stability problem as one for a family of (finite-dimentional)
multivariable systems parameterized by the variableθ.

The complication here is that although a truncation re-
moves the infinite number of eigenloci that shrink to zero,
it also affectsall other eigenloci, no matter how large the
truncation is taken to be. Nevertheless, it can be shown that
by increasing the size of the truncation, the eigenloci ofFGθ

can be recovered to any accuracy.
Let ΠN be the projection on the first2N+1 standard basis

elements of̀ 2, {e−N , · · · , e0, · · · , eN}. ThusΠNFGθΠN is
the (2N + 1)× (2N + 1) truncation ofFGθ. We have

Lemma 6: If ζ ∈ ρ(ΠNFGθΠN ) and

‖FGθ −ΠNFGθΠN‖ ‖(ζ −ΠNFGθΠN )−1‖ < 1,

thenζ ∈ ρ(FGθ).
Proof: This is a direct consequence of Theorem 3.17,

Chap IV of [12].
The decay of the diagonal elements ofGθ, and the decay

with increasingl of the fl elements ofF , can be used to



show that‖FGθ−ΠNFGθΠN‖ can be made arbitrarily small
for large enoughN .2 Hence, by Lemma 6 the eigenloci of
ΠNFGθΠN approximate those ofFGθ arbitrarily well asN
grows.

D. Regularity in theθ Parameter

Regarding Theorems 3 and 5, one would hope for some
kind of ‘regularity’ with respect to the variableθ. More
precisely, in practice one would like to plot the eigenloci
and check the Nyquist stability criterion for a finite number
of θl, say θ1, · · · , θL, and be able to conclude stability for
all θ ∈ [0,Ω] if the θl are chosen close enough to each other.

It is possible to show that under certain mild conditions
onA, B andC, all points of the plotdet[I+γFGθ(s)]

∣∣
s∈Dθ

change continuously withθ. Moreover we can show that the
eigenlociλθ

n of FGθ(s) change continuously withθ. We do
not present the details here.

VI. A N ILLUSTRATIVE EXAMPLE

In this section, we will consider the example of an open-
loop system governed by

∂tψ(t, x) = ∂2
xψ(t, x) + ψ(t, x) + u(t, x),

y(t, x) = ψ(t, x),

put in feedback withγF (x) = γ cos(x). HereΩ = 1, andB,
C are the identity operator. The representation of the system
in the frequency domain is∂tψθ(t) = (Aθ − γF)ψθ(t),
whereAθ = diag{· · · ,−(θ + n)2 + 1, · · · } for every θ ∈
[0, 1], andF has the form shown at the end of Section II
with f1 = f−1 = 1 and fi = 0, i 6= ±1. Notice that the
open-loop system is unstable.

Recall that to test the stability of the closed-loop system,
one has to apply the Nyquist criterion for everyθ ∈ [0, 1].
We take Nyquist pathsDθ of the form shown in Figure 4(a)
with r = 20. The indentation is chosen appropriately as to
avoid the eigenvalues ofAθ at the origin. Let us take a look
at the Nyquist plots for two particular values ofθ:
θ = 0 : λ = 0, 0, 1 are the eigenvalues ofA0 inside

D0, hencep0
+ = 3, and we need three counter-clockwise

encirclements of−1/γ to achieve closed-loop stability. As
can be seen in Figure 4(b) and its blown-up version (c),
one possible choice would be to take−1/γ to be purely
imaginary and−0.2j ≤ −1/γ ≤ 0.2j. Clearly such−1/γ
is encircled three times by the eigenloci.
θ = 0.5 : λ = 0.75, 0.75 are the eigenvalues ofA0.5

inside D0.5, hencep0.5
+ = 2, and we need two counter-

clockwise encirclements of−1/γ to achieve closed-loop
stability. Again, from Figure 4(d), if−1/γ is taken to be
purely imaginary and−0.2j ≤ −1/γ ≤ 0.2j, then−1/γ is
encircled twice by the eigenloci.

As a matter of fact, it can be shown that−0.2j ≤ −1/γ ≤
0.2j stabilizes the closed-loop system for all values ofθ ∈
[0, 1].

2This is also a direct consequence of the fact thatFGθ ∈ B1(`2) is a
compact operator and can therefore be approximated arbitrarily well by a
sequence of finite-dimensional operators [13].

(a)

(b)

(c)

(d)

Fig. 4. (a) The Nyquist pathDθ ; (b) Nyquist plot forθ = 0; (c) Blown-up
version of plot in (b); (d) Nyquist plot forθ = 0.5.

VII. C ONCLUSIONS ANDFUTURE WORK

We develop a generalized Nyquist stability criterion that
is applicable to a class of spatially-distributed systems with
infinite-dimensional input/output spaces and unbounded sys-
tem operators.

Future work in this direction would include considering
a wider class of spatially-distributed systems, for example
those for which the Fourier symbol ofA is itself a matrix
(i.e., the state has Euclidean dimension larger than one).
Also, the affect on stability of different basic frequenciesΩ
of the periodic feedback, and the occurrence of parametric



resonance, can be investigated in this framework. It would be
of interest to compare such results to those already obtained
using norm and spectral analysis [4] [14].

VIII. A PPENDIX

Proof of Lemma 1: Sinces ∈ ρ(Aθ), thens 6= Â(θ+Ωn)
for anyn ∈ Z, which together with (3) and the boundedness
of B andC implies that all diagonal elements ofGθ(s) are
finite. Let %n

(
Gθ(s)

)
, n = 1, 2, · · · , be a reordering of these

elements such that|%1

(
Gθ(s)

)
| ≥ |%2

(
Gθ(s)

)
| ≥ · · · ≥ 0.

Then clearly σn

(
Gθ(s)

)
= |%n

(
Gθ(s)

)
|. But from

Assumption (i) it follows that
∑∞

n=1 σn

(
Gθ(s)

)
<∞. Hence

Gθ(s) ∈ B1(`2), and sinceF ∈ B(`2), FGθ(s) ∈ B1(`2)
[10].

To prove Theorem 2 we need the following lemma.
Lemma A1:For s ∈ ρ(Aθ), det[I + γFGθ(s)] is analytic

in both γ ands.
Proof: For s ∈ ρ(Aθ), γFGθ(s) ∈ B1(`2) by Lemma

1. Also γFGθ(s) = γFCθ(sI −Aθ)−1Bθ is clearly analytic
in both γ and s for s ∈ ρ(Aθ). Then it follows from [10,
p163] thatdet[I + γFGθ(s)] too is analytic in bothγ ands
for s ∈ ρ(Aθ).

Proof of Theorem 2: Since Dθ does not pass through
any eigenvalues ofAθ, s ∈ ρ(Aθ) and thusγFCθ(sI −
Aθ)−1Bθ ∈ B1(`2) from Lemma 1. Then from [9],

(
I +

γFCθ(sI − Aθ)−1Bθ

)−1
exists and belongs toB(`2) iff

det[I + γFCθ(sI − Aθ)−1Bθ] 6= 0, which is satisfied
by assumption. Applying the matrix inversion lemma to(
I+γFCθ(sI −Aθ)−1Bθ

)−1
, we conclude thats ∈ ρ(Acl

θ )
and (sI − Acl

θ )−1 = (sI − Aθ + BθγFCθ)−1 ∈ B(`2).
Now since (sI − Acl

θ )−1, Bθ, Cθ, and F all belong
to B(`2), and (sI − Aθ)−1 ∈ B1(`2), we have(sI −
Acl

θ )−1BθγFCθ(sI −Aθ)−1 ∈ B1(`2) [10]. Thus, from the
identity

(sI − Acl
θ )−1 − (sI − Aθ)−1 =

− (sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1,

it follows that (sI − Acl
θ )−1 ∈ B1(`2). In particular(sI −

Aθ)−1 and (sI − Acl
θ )−1 are both inB0(`2), which means

thatAθ andAcl
θ both have discrete spectrum [12] and in

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds− 1

2πj

∫
Dθ

(sI − Aθ)−1ds =

− 1
2πj

∫
Dθ

(sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1ds

each term on the left side is a finite-dimensional projection
[10, p11, p15]. Taking the trace of both sides and changing
the order of integration and trace on the right3 we have

tr
[

1
2πj

∫
Dθ

(sI − Acl
θ )−1ds

]
− tr

[
1

2πj

∫
Dθ

(sI − Aθ)−1ds

]
=

− 1
2πj

∫
Dθ

tr[(sI − Acl
θ )−1BθγFCθ(sI − Aθ)−1]ds. (A1)

3Since(sI−Acl
θ )−1BθγFCθ(sI−Aθ)−1 ∈ B1(`2), its trace is well-

defined and finite.

From [12], the left side of (A1) is equal to the number of
eigenvalues ofAθ in C+ minus the number of eigenvalues
of Acl

θ in C+.
On the other hand, let the pathCθ be that traversed by

det[I + γFGθ(s)] as s travels once aroundDθ (whereDθ

lies entirely inρ(Aθ)). By Lemma A1,det[I+ γFGθ(s)] is
analytic ins, and if det[I + γFGθ(s)] 6= 0 on Dθ we have

C
(
0; det[I + γFGθ(s)]

∣∣
s∈Dθ

)
=

1
2πj

∫
Cθ

dz

z

=
1

2πj

∫
Dθ

d
ds det[I + γFGθ(s)]
det[I + γFGθ(s)]

ds. (A2)

Using [10, p163] and the assumptiondet[I+γFGθ(s)] 6= 0,
s ∈ Dθ, we arrive at
d
ds det[I + γFGθ(s)]
det[I + γFGθ(s)]

= tr
[(
I + γFGθ(s)

)−1 d

ds
γFGθ(s)

]
= −tr[(sI − Acl

θ )−1BθγFCθ(sI − Aθ)−1].

This, together with (A2) and (A1) gives the required result.

Proof of Lemma 4: For s ∈ ρ(Aθ), det[I + γFGθ(s)]
is analytic in bothγ and s by Lemma A1. The proof now
proceeds exactly as in [2, p140] and is omitted.
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