nternationsal

A Common Knowledge Representation for Plan
Generation and Reactive Execution

Technical Note No. 532

June 9, 1993

By: David E. Wilkins, Sr. Computer Scientist
Artificial Intelligence Center
Computing and Engineering Sciences Division

Submitted for publication to the journal Computational Intelligence -

" This 'work was suﬁported in part by the Defense Advanced Research Projécts Agency under the
DARPA/Rome Laboratory Planning Initiative under Contracts No. F30602-91-C-0039 and F30602-90-C-
0086. : : L :

The views, opinions and/or conclusions contained in this note are those of the author and should not
be interpreted as representative of the official positions, decisions, or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, Rome Laboratory, or the United States
Government. -) :

333 Ravenswood Avenue = Menlo Park, CA94025-3483 » (415) 326-6200 » FAX: (415) 326-5512 e Telex: 334486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
09 JUN 1993 2 REPORTTYPE 00-06-1993 to 00-06-1993
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
A Com_mon Knowledge Representation for Plan Generation and Reactive | . .\t NUMBER
Execution
5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES
14. ABSTRACT
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 50
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

This paper describes the ACT formalism, which is designed to encode
the knowledge required to support both the generation of complex plans
and reactive execution of those plans in dynamic environments. ACT is an
heuristically adequate representation that is useful in practical applications,
and serves as an interlingua for Artificial Intelligence (Al) technologies in
planning and reactive control. The design of the formalism is discussed and
example uses from practical applications are presented. These applications
show that the ACT representational constructs have reasonable computa-

tional properties as well as being adequately expressive.

Contents
1 Introduction

2 Planning and Execution Technologies
2.1 SIPE-2 . . L e e e
2.2 PRS ... e

3 Developing a Common Representation

4 The ACT Formalism
41 ACTSlots i i it e e e e e e e e e e
4.2 Plots e e e
4,3 Metapredicates L Lo
44 Using ACTs oo
45 ACT-Editor i i it e e e e e e e

46 Translators
5 Conclusion
A Syntax for ACT Metapredicates

B Creating ACTs Programmatically

i1

10

14

17
18
23
25
30
34
37

38

42

45

List of Figures

W o0 =1 & v B O D

— e
T N L

Sipe Operator for Deploying an Air Force

Sipe Deductive Rule for Removing Located Facts

Structure of the Procedural Reasoning System 10
Portion of a KA for Deploying an Air Force 12
Portion of a KA for Leak Isolation 13
ACT Slots . . . o o o e e e e e e e e 17
ACT Metapredicates o v vt i it e 19
SOCAP Deploy Airforce Operator as an ACT 22
ACT with Graphical Display of Plot L. .24
Plot of Deploy Airforce ACT 25
An ACT for Establishing a Lookout 32
An ACT for Deducing Locations 34

Plot of Deploy Airforce ACT o oL 35

1i1

1 Introduction

QOur research is developing software to take appropriate actions in a dynamic and un-
certain environment. The dynamic environment requires that the execution system be
able to respond to stimuli and make decisions in “real time.” Furthermore, we are inter-
ested in applications complex enough that the ability to synthesize plans and use these
plans to guide the execution system is critical. We have developed a representation,
called the ACT formalism, for representing the knowledge necessary to both generate
plans and execute them while responding to external events. This paper describes the

ACT formalism and an implementation of it.

Two features distinguish our approach: (1) the development of an heuristically ad-
equate system that will be useful in practical applications, and (2) the need to generate
complex plans with parallel actions of multiple agents. To achieve these requirements,
we started with artificial intelligencé technologies in planning and reactive control {de-
scribed in Section 2) that had already been implemented and shown to be useful in
practical applications. However, these technologies did different types of reasoning us-
ing difterent knowledge representations — Sections 3 and 4.3 describe the difficulties
in using a common representation for these tasks. In this paper, we describe the ACT
formalism, which is a common representation that planning and reactive control sys-
tems can use for representing and reasoning about plans and the knowledge necessary
to generate and execute them. The planning and execution technologies were extended

and merged to fully implement the ACT formalism.

Developing an interlingua so that different reasoning systems can cooperate on
different aspects of the same problem is a central challenge for the field of artificial
intelligence. This paper presents an attempt to do this for a narrowly focused problem,
namely getting planning and execution systems to use a common language. We view
this narrow focus as critical to achieving success, since a common representation that
tries to cover too broad an area runs into serious problems that have been described

elsewhere [7].

Our integration of planning and control focuses on domains with the following

properties (among others):

¢ Reactive response is required.
¢ Plans must be generated to achieve acceptable performance.
¢ The system must be able to act without a plan.

¢ Complex plans (e.g., including parallel actions) must be supported in both plan-

ning and execution.

We give two examples of domains that meet these requirements. Our software has
been used to do planning and reactive execution in both. The first domain is con-
trolling an indoor mobile robot. A reactive control system is necessary to respond to
people and obstacles that may suddenly and unexpectedly appear in the robot’s path.
Deliberative planning is necessary so that the robot can achieve purposeful behavior,
such as retrieving a book from the library and bringing it to someone’s office. The
second domain is military operations planning. Certainly one would not engage in an a
operation like Desert Storm without first doing deliberative planning to achieve the
requirements of the mission. Reactive response is also necessary because execution of
military plans is often interrupted by unexpected equipment failures, weather condi-

tions, and enemy actions. Application of our systems to this domain was done as part

of the ARPA-Rome Laboratory Planning Initiative (DRPI) [17].

An important design goal of our research is to develop an heuristically adequate
system that will be useful in practical applications, thus the need to generate complex
plans with parallel actions that are interrelated. For example, in military operations
planning, many actions are being executed simultaneously, and changes in the way one
action is accomplished may affect the execution of other parallel actions. Because of
the complexity of the plans, a graphical user interface is required to understand the

plans and system behavior.

The complexity of the plans is what differentiates our approach from previous ap-
proaches to the integration of planning and execution. Lyons and Hendricks [11] de-

scribe an approach in which the planner monitors the execution of the reactive system

2

and specifies adaptations to the reactive system that will improve its performance rel-
ative to achievement of the given goals. They require these incremental adaptations to
improve system performance before they are added to the reactor. The RAP system [4]
also uses simple plans to modify the reactive control of a robot. Such approaches work
in the robot problem, where plans are relatively simple, but in the military planning
problem, the planner must exercise more control over the execution system. In our
system, the planner produces much more complex plans than in either of the above
systems, and does not modify the reactor to improve its performance — rather, the
planner generates a plan that will be the principal guidance for the reactor. The re-
actor will generally have no idea how to accomplish the top-level goals appropriately
until the planner has generated a plan. The reactor will implement appropriate lower-
level behaviors while it is waiting for a plan, and may pose additional problems to the

planner during execution.

The development of the ACT formalism is similar in motivation to the development
of the KRSL language [10] that is being done as part of the DRPI. However, the ACT
formalism is more focused, trying only to get planning and execution systems to spea,k.
a common language, while the KRSL effort is more ambitious, trying to develop a
common language for many types of systems, including systems for planning, execution,
scheduling, simulation, temporal reasoning, database management, and other tasks.
The ACT formalism has been one of the formalisms driving the design of the KRSL

specification for plans.

The purpose of this paper is to describe the ACT formalism and the design de-
cisions behind it. There are many different ways in which planning and execution
systems can interact, but an analysis of such alternatives is beyond the scope of this
paper. Although we mention how this interaction takes place in our implementation
(Section 4.4), this is still an area of ongoing research. A complete description of the
applications of the ACT formalism to the robot and military problems is also beyond
the scope of this paper, although we do give some examples. The application of the
planner to these domains has been described elsewhere [13, 17], and the translation

from its representation to ACT is described in this paper.

2 Planning and Execution Technologies

To achieve an heuristically adequate system that will be useful in practical applications,
we started with Al technologies in planning and reactive control that had already been
implemented and shown to have these properties. In particular, the basis for our system
is the SIPE~2 (System for Interactive Planning and Execution) planning system and the
Procedural Reasoning System (PRS).? Before the research reported in this paper, these
two systems did different types of reasoning using different knowledge representations.
The ACT formalism is a common representation that both systems can now use for
representing and reasoning about plans and the knowledge necessary to generate and

execute them.

The development of PRS and SIPE-2 has been driven by their applications to nu-
merous problem domains. Similarly, the development of the ACT formalism has been
driven by the representations of these two systems and by the military operations plan-
ning domain. The complete inputs for both SIPE-2 and PRS can be specified in the
ACT formalism. Since we have implemented translators from the ACT formalism to
both SIPE-2 and PRS, as described in Section 4.6, it is now the recommended language

for encoding knowledge in both systems.

Because both SIPE-2 and PRS have been applied to several different domains of
practical interest, the ACT formalism is sufficient for a wide range of interesting prob-
lems. However, the ACT formalism should not be considered a fixed representation
that has been designed to cover every anticipated need. We expect extensions to be
made to it as new domains require new features. This is consistent with our goal of
handling practical applications, and has the advantage that our representational con-
structs have their properties tested in real domains as they are added to the formalism.
By so doing, we avoid the problem of developing extremely expressive representations

that have poor computational properties.

Before describing the ACT formalism, we briefly describe the two systems for which

it provides a common representation. More detailed descriptions can be found else-

1GIPE-2 and PRS are trademarks of SRI International.

where [5, 13, 14, 16].

2.1 SIPE-2

SIPE-2 is a partial-order Al planning system that supports planning at multiple levels
of abstraction. It provides a formalism for describing actions as operators and utilizes
knowledge encoded in this formalism, together with heuristics for reducing the compu-
tational complexity of the problem, to generate plans for achieving given goals. Given
an arbitrary initial situation, the system either automatically or under interactive con-
trol combines operators to generate plans, possibly containing conditionals, to achieve
the prescribed goals. SIPE-2 is capable of generating a novel sequence of actions that
responds precisely to the situation at hand. The generated plans include information so
that during plan execution the system can accept descriptions of arbitrary unexpected

occurrences and modify its plans to take these into account.

Because this technology is generic, domain-independent, and heuristically adequate,
it has the potential to impact a large variety of problems. Example applications include
planning the actions of a mobile robot, planning the movement of aircraft on a carrier
deck, travel planning, construction tasks, the problem of producing products from raw
materials on process lines under production and resource constraints, and joint military
operations planning [14, 17]. SIPE-2 provides a powerful graphical user interface to aid
in generating plans, viewing complex plans and other information as graphs on the

screen, and following and controlling the planning process [17].

SIPE-2’s formalism allows reasoning about resources, the posting and use of con-
straints on planning variables, and the description of a deductive causal theory to
represent and reason about the effects of actions in different world states. In contrast
to most Al planning research, heuristic adequacy (efficiency) has been one of the pri-
mary goals in the design of SIPE-2. Techniques have been developed for efficiently

implementing each of the features mentioned above.

Examples in this paper are drawn primarily from the domain of military operations

planning which was implemented as part of the DRPI [17]. SIPE-2 is the core reasoning

engine in SRI's SOCAP system (System for Operations Crisis Action Planning) [17],
which was used for the second Integrated Feasibility Demonstration of DRPI. This sys-
tem successfully generated employment plans for dealing with specific enemy courses
of action, and expanded deployment plans for getting the relevant combat forces, sup-
porting forces, and their equipment and supplies to their destinations in time for the
successful completion of their mission. Input to the system includes threat assess-
ments, terrain analysis, apportioned forces, transport capabilities, planning goals, key

assumptions, and operational constraints.

A brief description of how SIPE-2 represents operators will help to explain the
central ideas of the ACT formalism and the translation process from SIPE-2 to ACT
and back. Operators represent the actions, at different levels of abstraction, that the
system may perform in the given domain. The primary representational task of an
operator is to describe how the world changes after the action it represents is executed.
SIPE-2 makes the assumption that the world stays the same except for the effects

explicitly listed with each action in its representation of the plan.

Many of the effects explicitly listed in the plan are not explicitly listed in the oper-
ators from which the plan was produced, since they are deduced by the system during
generation of the plan from the deductive causal theory of the domain. Operators
must explicitly list only effects that are required to trigger all the necessary deduced
effects. Since the causal theory will deduce different effects depending on the situaton,
the operators can be applied in any situation. Without such an ability, a huge number
of operators may be needed since there must be a different operator (with different

effects) for every different situation in which an action might be performed.

In addition to effects, operators contain information about the objects that partic-
ipate in the actions, the constraints that must be placed on them, the goals that the
actions are attempting to achieve, the way actions in this operator relate to more or
less abstract descriptions of the same action, and the conditions necessary before the
actions can be performed (the action’s preconditions). These features will be presented
by discussing the SIPE-2 operator in Figure 1 for deploying an air force in the military

domain. The ACT translation of this operator will be given in Section 4.

Operator: Deploy-airforce
Arguments: airforcel,airfield2,end-timel,
locationl,airfield1,cargobyairl,cargobyseal,
seaportl,seaport2,sea-locl,air-locl;
Purpose: (deployed airforcel airfield2 end-timel)
Precondition: (located airforcel locationl)
(near airfieldl locationl) (near seaportl locationl)
(partition-force airforcel cargobyairl cargobyseal)
(transit-approval airfield2)(transit-approval seaport2)
(near seaport2 airfield2)
(route-aloc airfieldl airfield2 air-locl)
(route-sloc seaportl seaport2 sea-locl)
Plot:
Process
Action: mobilize
Arguments: airforcel,locationl;
Effects: (mobilized airforcel locationl)
Parallel
Branch 1:
Goal: (located cargobyairl airfieldl)
Goal: (located cargobyairl airfield2)
Branch 2:
Goal: (located cargobyseal seaportl)
Goal: (located cargobyseal seaport2)
Goal: (located cargobyseal airfield2)
End Parallel ‘
Process
Action: join-aggregate
Arguments: airforcel,airfield2,cargobyairl,cargobyseal;
Effects: (located airforcel airfield2)
(not (located cargobyairl airfield2))
(not (located cargobyseal airfield2))
End Plot End Operator

Figure 1: Sipe Operator for Deploying an Air Force

The purpose of an operator determines which goals the operator can solve — in this
case, to deploy an air force to a particular air field by a certain time. The precondition
must be true in the world state before the operator can be applied. The precondition in
Figure 1 requires the initial position of the air force to be known, and finds intermediate
seaports and airports that are on known routes to the destination and which have
transit approval. The arguments of an operator are templates for creating planning
variables and adding constraints to them. In Figure 1, airforcel and airfieldl, for
example, are variables that are constrained (by virtue of their names) to be in the
classes airforce and airfield respectively. The operator’s preconditions and purpose are
both encoded as first-order predicates on the arguments of the operator, which can be

variables or objects in the domain.

Applying an operator involves interpreting its plot as a subplan for achieving its
purpose. The plot of an operator provides a partially ordered sequence of actions
and goals for performing the higher-level action represented by the operator. When
expanding a plan to a lower level of detail, the planner uses the plot as a template for
generating nodes to insert in the plan. The plot may be at the same level of abstraction
as the purpose of the operator (e.g., in the standard blocks world the level of description
never changes), or it may use a lower level of abstraction. In Figure 1, the plot consists
of mobilizing the air force, then getting the subparts of the air force to travel in parallel
by air and by sea via different locations to the destination, and finally aggregating the
subparts together when they have all reached the destination.

The plot of an operator can be described in terms of goal nodes, which require
a certain predicate to be achieved, choiceprocess nodes, which require that one of a
given set of operators be applied to solve a certain predicate, and process nodes, which
require a specific operator or primitive action to be applied. In the example operator,
the plot uses process nodes for mobilizing and aggregating the air force, and uses goal

nodes to achieve changes in location of the subparts.

Many previous domain-independent planners required add and delete lists to be
provided in operators. In SIPE-2, this is not necessary because the deductive causal

theory deduces most of the effects of the nodes in a plan. In the example operator, all

Causal-Rule: Remove-located

Arguments: unitl, location2, locationl is not location2
Trigger: (located unitl location2)

Precondition: (located unitl locationl)

Effects: (not (located unitl locationl))

Figure 2: Sipe Deductive Rule for Removing Located Facts

the effects of moving a subpart to a new location are deduced from the located goal
predicate. In particular, the deduced effects will include the fact that the unit is not

at its previous location and its location at other abstraction levels has changed.

The deductive rules for specifying the causal theory also use the above operator
syntax. Instead of having a plot to direct plan expansion, they have an effects slot that
specifies the deduced predicates to be added to the effects of an action. The rule for
deducing that a unit is not at its previous location is shown in Figure 2. Deductive
operators allow expression of domain constraints within a world state, as well as permit
access to the previous world state. Rules that allow the former are called state rules,
while rules that allow the latter (such as the rule in Figure 2) are called causal rules. By
accessing both the current and previous world states, the system can react to changes
between two states, thus permitting effects concerning what happened during an action

to be deduced even though these effects might not be implied by the final world state.

To access both the previous and current world states, causal rules have both a
precondition and a condition. When deducing the effects of an action, the condition
is matched in the world state after the action, while the precondition is matched in
the world state before the action. Thus, state rules may have a condition but not
a precondition, while causal rules may have both. Two other slots are needed on a
deductive operator, {rigger and effects. A deductive rule is applied whenever an action
being inserted in a plan has an effect that matches the predicate given as the rule’s
trigger. The addition of deduced effects to an action also triggers deductive rules. If
the precondition and condition of a triggered rule are both true, then the effects of the

rule are added as deduced effects of the action.

DATA
™ INPUT MONITOR
DATABASE KA LIBRARY
(Beliefs) (Plans)
~ P SENSORS |-
SYSTEM INTERPRETER
INTERFACES (Reasoner) ENVIRONMENT
P N EFFECTORS
INTENTION 1
GOALS STRUCTURE
| Dpata | [commann
OUTPUT GENERATOR
Figure 3: Structure of the Procedural Reasoning System
2.2 PRS

PRS [5] is a reactive system for reasoning about and performing complex tasks in
dynamic environments. This powerful and theoretically sound scheme for representing

and reasoning about actions and procedures is shown in Figure 3.

PRS consists of (1) a database containing current beliefs or facts about the world;
(2) a set of current goals to be realized; (3) a set of plans (called Knowledge Areas
or KAs) describing how certain sequences of actions and tests may be performed to
achieve given goals or to react to particular situations; and (4) an iniention structure
containing all KAs that have been chosen for [eventual] execution. An interpreter (or
inference mechanism) manipulates these components, selecting appropriate plans based
on the system’s beliefs and goals, placing those selected on the intention structure, and

executing them.

The system interacts with its environment, including other systems, through its

10

database (which acquires new beliefs in response to changes in the environment) and
through the actions that it performs as it carries out its intentions. The PRS archi-
tecture provides a framework to define reactive systems. While executing plans, PRS
constantly monitors incoming database changes. This provides rapid respond to events
in the world since the inference mechanism used guarantees that any new fact in the

database is noticed in a bounded time.

A brief description of how PRS represents KAs will help explain the central ideas of
the ACT formalism and the translation process from ACT to PRS. Knowledge about
how to accomplish given goals or react to certain situations is represented in PRS by
declarative procedure specifications called Knowledge Areas (KAs). Each KA consists
of a body, which describes the steps of the procedure, and an invocation condition, which
specifies under what situations the KA is useful. Together, the invocation condition
and body of a KA express a declarative fact about the results and utility of performing
certain sequences of actions under certain conditions [6]. The body and invocation
condition will be presented by discussing the KA in Figure 4 for deploying an air force-
in the military domain. The ACT translation of this KA will be given in Section 4;

the SIPE-2 representation of this knowledge was shown in Figure 1.

The invocation condition has two components: an invocation part and a context
part. Both must be satisfied for the KA to be invoked. The invocation is a logical
expression describing the events that must occur for the KA to be executed. Usually,
these consist of some change in system goals (in which case, the KA is invoked in a goal-
directed fashion) or system beliefs (resulting in data-directed or reactive invocation),
and may involve both. In Figure 4, the invocation specifies that this KA will be

considered when PRS acquires the goal to achieve the deployment of an air force to an
air field.

The context of a KA is a logical expression specifying those conditions that must be
true of the current state for the KA to be executed. The context in Figure 4 requires
the initial position of the air force to be known, and finds intermediate seaports and
airports that are on known routes to the destination and which have transit approval.

Matching the context will bind the variables in it to specific objects.

11

DEPLOY-AIRFORCE

INYOCATI @

(*GOAL (l (DEPLOYED $AIR SAIRFIELDZ $SEND-TIME}}) ‘
€] (HOSILIZED $IIR $LOCATION)

CONTEXT :
(HHD (tFRCT LOCATER SAIR $LOCATIDN)) ‘
aFACT (HEAR $BIRFIEL51 SLDCRTION)
*#FACT (HEAR $SEAPORT) SLDC OH)
(zFACT (PRARI1TION-FORCE SRIR
GDB?HIR
REOBYEEA ;
(*FACT TRHHSIT-ﬂPPROURL SHIQFIELDZ
(*FACT {TRANSIT-APPROVAL $SEAPORTZ2
{*FACT {HNERR SSERPBRTZ SﬂIRFIELHZ}
{sFACT (ROUTE-ALOC $RIRFIELDL
$A I IELDE

$a1
aFACT (™~ {EQUAL SHIRFIELBl %HIRFIEL52)2>
aFACT {ROUFE-ELOC % 1 $SEAPORT2 $SEA-LOCY)
IFRCT (EDUHL s EﬂPBRTl sssa?anr m
*FACT {TYPE AIRFIELD
TFRCT TYPE HIRFIELD HIR
(*FACT CRRGO-BY~AIR SCHRGBB?RIR;;
(+FACT rvps CRRGO-BY-GER $CARGOBYSER
(2FACT (TYPE SERPORT $SERPQ
(#FACT {TYPE SEAPORT SEEHPDRTZ H

?DHL RCHIEVER?:
EFFECTS:
HIL

PROPERTI
((RUTHDRIHC—SVBTEH SIPE-2) (CLASS OPERATOR))

DOCUHENTATION:

Figure 4: Portion of a KA for Deploying an Air Force

The KA body describes what to do if the KA is chosen for execution. The body is
represented as a graphic network in which execution begins at the start node in the
network, and proceeds by following arcs through the network. Execution completes if
an end node (with no outgoing arcs) is reached. Each arc of the network is labeled
with a goal to be achieved by the system. To traverse an arc, the system must either
(1) determine from the database that the goal has already been achieved or (2) find,
and successfully execute, a KA that achieves the goal labeling that arc. If the system
fails to achieve the goals on all of the arcs emanating from a double-border node, or at

least one of the goals on arcs emanating from a single-border node, then the KA as a
whole will fail.

In Figure 4, the first arc of the body is labeled with the goal of achieving the
mobilization of the air force. Following arcs are labeled with goals to move the subparts
of the air force, and the last arc in the body is labeled with a goal to post certain facts

in the database about the air force and its subparts.

There are some properties of KAs that are crucial for the correct functioning of

the system. The goal-achiever slot, for example, is a Boolean value telling whether or

12

Leak Isolation

THVOCATIGH
(£GORL (1 (LEHK ~-ISOLRTED $P-5YS5)))
CONTEXT:
(RHD {*FRCT {MAHIFOLD-1 $P-5YS $MAHF1
tFACT {HMANIFOLD-Z2 $P-SYS $HANFZ2
sFACT (HANIFOLD-3 $P-5YS SHANF3 {1 (EECURED $P-5Y5))
¥FACT (MAMEFOLD-4 $P-5YS $HANF4
aFACT (HANIFOLD-S $P-5YS SHANFS
*FACT TYPE HE-TENK $HE~TK})
:Fgg; T\'PE PRDPELEHET‘?ENLK%F)’RDP ~TK))
tFACT (PART~DF $P-GYS $PROP~TK))} (7 (PRESSURE-H RE-CHAMGE BT 4P) SDELTR-FLY)
*FACT CUMNECTS $Ul $PROP-TK $12~TANK-LEG))
*FRCT ECTS $U2 $12-TANK-LEG $HANF1))

aFACT CDM{ECTB SUB $PROP-TK $345-TANK=-LEG))
*FACT (COHNECTS $U4 $345-TANK-LEG SHANFI))
*FACT {CONNECTS $V5S $HE-LEG $PROP-TK)}}

?BHL ACHIEVER?:

{7 (b €~ (DECRERSIMG S$DOLTA-PL)) (>= $P1 190.3))

€T (V (DECREAS NG $DELTA-31) (¢ 4PL 193002

ﬁf{EcTﬁ 1 (PRESSIRE-RHI-PRESSIREJCNIKE SHNF2Z 302 TDELTR-P
r{iI!EPERTIES: (7 (PRESSURE-AHD-PRESSIRE-THIHEE $HAF2 £92 SDELTA-PD))
IIII]I:UHE!ITHTIIJ!I.

is KA iz vsed to detect the location of a
:sten lesk. The systen {s f{rst secured. One
then tricas to {ealate the leak by testing for LT (V[(DECREASING $DELTR-ED (¢ BP2 10.)))
either very Jou or decreasing pressures,
(7 o+ (PECREASIHG SDCLTA-P2

{7 (& (7 (DECRERSTHG $DELTA-P

€1 CPRINT-LIST {FORAAT HIL("Lesk in manifold " $HAF1)))

E (=> (STATUS $12-FA
{43 {STATUS [$rvrel LERD)

Figure 5: Portion of a KA for Leak Isolation

not successful execution of the KA (i.e., reaching an end-node) achieves the goal that
triggered the KA. In Figure 4, this slot is T, since the KA does deploy the air force.
Similarly, KA properties that are not essential to the functioning of the interpreter but
which may be required by application-specific metalevel KAs can be placed in a special
property slot of a KA. Such properties, for example, might include information on the

likelihood of success of the KA or its average execution time.

While the KA for deploying an air force is useful for comparisons to SIPE-2 and
will be shown later as an ACT, it was written as a high-level planning operator and is
not the type of knowledge that would typically be encoded for execution by PRS. A
more typical PRS KA would be the KA in Figure 5. It describes a procedure to isolate
a leak in a reaction control system (RCS) of the space shuttle. The invocation of this
KA triggers when the system acquires the goal to isolate a leak in an RCS ($p-sys),

provided the various type and structural facts given in the context are true.

The KA body in Figure 5 is typical of many PRS KAs; there are several condi-

13

tional branches, and the arcs are labeled with low-level conditions that are close to the
primitive execution level. In this body, whenever more than one arc emanates from a
given node, only one of the arcs emanating from that node needs to be traversed (and
PRS can choose any one). For example, to traverse the arc emanating from the start
node requires either that the system be already secured or that some KA for securing
the RCS be found and successfully executed. Similarly, to transit the next arc requires
that some KA be found for determining the pressure change $delta-p1 in the manifold
$manfi. If the system fails to traverse an arc emanating from some node, other arcs
emanating from that node are tried. Since only one arc emanates from the start node
in Figure 5, if all attempts to secure the RCS fail, this procedure for isolating a leak

in the system will also fail. The full KA for this procedure consists of over 45 nodes.

In addition to KAs that express knowledge directly about the world, the set of KAs
also includes metalevel KAs. Metalevel KAs encode knowledge about the manipulation
of the beliefs, goals, and intentions of PRS itself. For example, typical metalevel
K As encode various methods for choosing among multiple applicable KAs, determining
how to achieve a conjunction or disjunction of goals, and computing the amount of
additional reasoning that can be undertaken, given the reactive constraints of the

problem domain.

3 Developing a Common Representation

In order to combine the capabilities of plan generation and reactive control systems,
we have designed a uniform representation for domain knowledge and plans. Our
uniform representation refers to knowledge provided by the user, e.g., plan fragments
and standard operating procedures (SOPs), as ACTs. ACTs are used by both the
planning and execution systems. This allows both systems to cooperate on the same
problem, and allows sofware tools for graphically editing and creating ACT's to enhance .

both systems simultaneously and uniformly.

In our implementation, ACTs represent operators in SIPE-2, and KAs in PRS,

and are the recommended method for encoding knowledge. We have implemented

14

translators from the ACT formalism to the internal representations of both SIPE-2 and
PRS, as described in Section 4.6. The plans generated by the planner are translated
to instantiated ACTs. The execution system uses procedures encoded as ACTs to
respond to minor problems during execution, and may also reinvoke the planner when
appropriate. We have implemented an ACT-Editor, described in Section 4.5, that
supports graphical input and modification of ACTs.

Obviously, the new representation must be capable of supporting the types of rea-
soning done by both planning systems and reactive control systems. This is no small
task, since each system stresses a different type of knowledge and reasoning process.
For example, PRS frequently uses conditionals and loops in its procedures, and can
monitor the world to determine what is true. Before extensions were made to support
ACTs, PRS did not support parallel execution of separate actions. SIPE-2, on the
other hand, stresses parallel actions and uses the planner’s reasoning to predict what
is true (since sensors cannot sense future states). The ACT representation supports all
these types of reasoning, and PRS and SIPE-2 have been extended to support certain

aspects of the ACT formalism. These extensions are described in detail elsewhere [15].

A central issue in designing the ACT formalism is the difference between planning
and execution. While executing a plan and generating a plan require much of the same
knowledge, there are still some important differences between the two activities. The
planner is attempting to look ahead to the future consequences of particular courses
of action, while the execution system is sensing the world and reacting to incoming
information. This difference manifests itself in several ways, including system response
to violations of requirements, the triggering of ACTs, and the representation of knowl-
edge about the world. These manifestations result in different interpretations of the
ACT formalism during planning and execution. How these differing interpretations are

implemented in SIPE-2 and PRS is described in Section 4.3.

One important difference is that the planner can permit requirements to be vio-
lated, because its plan-critic algorithms can then be used to patch the plan to prevent
the violations from occurring. The execution system, however, must fail as soon as

a requirement is violated since the world is actually in a state that violates the re-

15

quirement. It is generally difficult to determine the most appropriate response to an
execution failure; thus, the execution system will need knowledge, unnecessary to the

planner, about how to respond to failures.

In order to be reactive, the execution system must have ACTs that are both goal-
driven and event-driven. In addition to trying to achieve system goals, it must respond
appropriately to events that take place in the world. The planner, in contrast, need
respond only to its own goals since it is reasoning about hypothetical future states.
Ideally, the planner would modify partially generated plans to react to changes in the
world during the planning process, although current Al planning systems have only
minimal capabilities in this area. The requirement for PRS to be event-driven results

in distinguishing between goal predicates and fact predicates in the ACT formalism.

Representation of the world state is generally different in planning and execution
systems. For example, to be efficient enough to be reactive, PRS maintains only one
world model that reflects the current state of the world. By contrast, SIPE-2 must be
able to reason about the world in many different future states, which necessarily adds
overhead to the representation and reasoning. Most planning systems, including SIPE-
2, encode a new world state by recording changes since a prior world state. Thus, the
planner requires knowledge, unnecessary to the execution system, relating to modeling
how the world state changes as actions are taken. Another aspect of this difference is
that the execution system can use the world as an information source and use sensors
to query some property in the world. Because the planner reasons about world states
that may exist in the future, it must model every proposition in which it is interested,

again requiring knowledge that may be unnecessary to the execution system.

A final issue of practical importance is that the ACT representation must be clear
enough to enable users to understand plans and SOPs represented in it, and to allow
knowledge engineers to encode domain knowledge as ACTs. Thus, it was necessary to
balance the power of the representation with its perspicuity. Section 4 describes the |

decisions we made in this regard.

16

NAME = unique Identifier

CUE: (facts and/or goals)
used to efficlently retrieve this act

PRECONDITION: {facts and/or goals)
gate conditions on applicability of this act

SETTING: (facts)
querles world to establish variable bindings

RESOURCES = resource constraints

TIME CONSTRAINTS = arbltrary temporal
constraints relating plot nodes

PROPERTIES = user defined attributes,
including knowledge about certainty

COMMENT = documentation

PLOT=

Figure 6: ACT Slots

4 The ACT Formalism

other forms.

Each ACT represents a plan or a piece of domain knowledge about an action or set
of actions that can be taken. Each ACT consists of a number of predefined slots
and a set of nodes representing actions. Each slot and node uses a combination of a
set of predefined metapredicates and logical formulae to represent its knowledge. The
predefined slots occur in every ACT, and are shown in Figure 6, which describes briefly
the idea behind each. The slots Cue, Precondition, and Sefting have as values logical

formulae describing goals and/or facts, while the other slots represent information in

Each ACT also has a Plot which is a directed graph of nodes representing actions

17

and arcs representing a partial temporal order for execution. The nodes in such a
graph are referred to as plot nodes. A plot has one and only one start node, but may
have multiple terminal nodes. A terminal node is a node with no outgoing arcs. Loops
can be specified by connecting the outgoing arc of one node to an ancestor node in the
graph. The actions represented by each plot node are specified by metapredicates and

logical formulae described below.

While the metapredicates that may appear on the plot nodes and slots are described
in detail in Section 4.3, a brief summary of the metapredicates, listed in Figure 7, is
necessary before explaining the slots. The Test metapredicate is used to determine
whether a formula is true in the database or world without taking actions to achieve
it. The Use-Resource metapredicate makes a declaration of resources that will be used
by the ACT. Three metapredicates can be thought of as specifying actions: Achieve,
Achieve-By, and Wait-Until. Achieve directs the system to accomplish a goal by any
means possible, Achieve-by is similar but directs the system on how to accomplish
the goal, and Wait-Until directs the system to wait until some other process, agent,
or action has achieved a particular condition. The Reguire-Until metapreciicate sets
up conditions that must be maintained over a specified interval, and the Conclude
metapredicate specifies any effects that are accomplished by an action (in addition to

the predicates mentioned in the action-metapredicate specifying the action).

4.1 ACT Slots

The Cue, Precondition, and Setting slots, as well as plot nodes, are filled in with logical
formulae. Each slot can have an entry for zero or more metapredicates. The formulae
used as the values for each metapredicate are built from predicates specified in first-
order logic, connectives, and the names of ACTs. The metapredicates recognized in
the ACT formalism are shown in Figure 7, which hints at the syntax accepted by each
where P stands for a formula composed of first-order predicates and connectives. The
syntax for metapredicates is described fully in Appendix A. The predicates will have
three truth values: true, false, and unknown. Predicate names can be declared as open

or closed, to instruct the system as to whether the closed world assumption applies.

18

NAME
Metapredicates:

CUE
PRECONDITION ACHIEVE: P
SETTING
RESOURCES ACHIEVE-BY: (P (ACT...))
PROPERTIES
TIME-CONSTRAINTS TEST: P
COMMENT
PLOT: CONCLUDE: P
O WAIT-UNTIL: P

REQUIRE-UNTIL: (P1 P:)
USE-RESOURCE: Ob]
COMMENT: string

Figure 7: ACT Metapredicates

In our implementation, PRS currently restricts the use of unknown truth values to
open predicates, while SIPE-2 implements it for all predicates. If necessary, PRS could

be extended to handle unknown truth values in all cases.

Static information represented as binary predicates can be stored in a sort hierarchy,
and the variables in our formalism are typed, with the types corresponding to classes in
the sort hierarchy.? The sort hierarchy should be used whenever possible for efficiency
[13].

All plot nodes and all slots except Name allow arbitrary user properties (which can
be used by users and their programs but are ignored by the system) and the Comment
metapredicate. Table 1 lists the metapredicates the system recognizes for each slot.

The slots with no metapredicates require further explanation. Name is a symbol that

2SIPE-2 has such a sort hierarchy implemented and this is currently used in both PRS and SIPE-2.

This may someday be replaced by a more expressive frame system, e.g., LOOM [12).

19

Slot Metapredicates

Cue Achieve, Test

Preconditions Achieve, Test
Setting Test

Resources Use-resource
Time-constraints none
Properties none
Comment none
Name none

Table 1: Metapredicates Allowed on Slots

names the ACT, and Comment provides documentation (generally, just a string). Plot

is a set of plot nodes, and all metapredicates are valid for a plot node.

Properties is a user-defined property list (e.g., author, priority). While Properties
does not necessarily expect any properties, some are recognized by the system and are

recommended. Recommended properties are Authoring-System and Author.

In our ACT implementation, SIPE-2 recognizes the properties Class and Variables.
Class denotes the type of operator to which this ACT should be converted. Allowable
values for Class are: state-rule, causal-rule, init-operator, operator, and both.operator.
SIPE-2 will also check the Variables property for declarations about variables. The
value of variables should be a list of quantifier-pairs. Each quantifier-pair whose first
element is existential or universal will be processed, and its second element should

be a list of variable names.

The Cue is used to index and retrieve an ACT for possible execution. Cue specifi-
cations should be short so that the system can rapidly identify a subset of potentially
executable ACTs. This is important in PRS to maintain real-time response. Compli-
cated conditions should be put in the Precondition or Setting. Restrictions on the use

of metapredicates in the Cue are given in Section 4.3. Generally, a Test metapredicate

20

in the Cue indicates an event-driven ACT that responds to some new fact becoming
true, while an Achieve metapredicate indicates a goal-driven ACT that will be used to
solve system goals. The Cue corresponds to the “purpose” in a SIPE-2 operator, the
“trigger” in a deductive operator, and the “invocation condition” in a PRS Knowledge

Area.

The Precondition specifies the gate conditions (in addition to the Cue) on applica-
bility of the ACT. The ACT is not invoked unless its Cue and Precondition are true.
The Setting specifies conditions that are expected to be true in the world, and is used
to instantiate variables; O-Plan refers to such conditions as “query conditions” [3].
Although both are gating conditions, the Setting is separated from the Precondition to
make the ACT more easily understood. Generally, the Precondition and Setting will

consist of a Test metapredicate (see Section 4.3).

The Time-Constraints slot is used to specify time constraints between plot nodes
that cannot be represented by ordering arcs. Many dependencies between different
military actions require such constraints. For instance, cargo offload teams should
arrive at the same time as the first air transport arrives at the airport. The ACT

syntax for time-constraints allows specification of any of the 13 Allen relations [1].

The syntax does not use the metapredicates; instead, there are two types of con-
straints that can be represented: time windows on nodes and inter-node constraints.
A time window for a node specifies its earliest and latest allowable start times, ear-
liest and latest finish times, and minimum and maximum durations. An inter-node
constraint represents a constraint between the endpoints of a pair of events or plan
nodes. It is represented as an 8-tuple composed of the minimum and maximum dis-
tance between the start of the first event and the start of the second event, and likewise
the minimum and maximum start-finish, finish-start, and finish-finish distances. The

syntax for specifying time constraints is documented in Appendix A.

In our ACT implementation, the temporal constraints in the Time-Constraints slot
are translated for processing by General Electric’s Tachyon system. Tachyon [2] was
chosen as the external software module for propagating the temporal constraints be-

cause it had the required capabilities, was readily available, and was known fo be

21

SIPE-2 ' ACT-Edilo Grasper 1

WINDOW
GRAPH DEPLOY-AIRFORCE
ACT
COMPONENT
Cue:
SELECT {AGHIEVE {DEPLOYED AIR,1 AIRFELD,2 END-TIME 13} ey
CREATE)
) ACHIEVE (LDCATED GARDODYAIR,1
DESTROY Precenditiona: 0318 ¢ d AIRFIELD. 1))
(TEBT (AND (LOCATED AIRL.1 LOGATION.1}
i NEAR ANTELD. 1 IoCATION T aoaMzen am.+ Locaion.t) -
corY CTRANSIT -APEROV AL MAFELDYS) (HDBILIZEY)) po221: -
{TRANSIT=APPROVAL SEAPORT.2) (ACHIEVE (LOCATED CARGOBYSEA1 [
BaCKUF BT A i
REVERT ABAELD.2
(ROUTE-BLOE, BEAPORT.4
EXAMINE SEAPOAT.2
SEA-LOC. 13
PRINT-DRAW
NEW VIEW Setting:
IEDIAW | ST g ot g o -
RESCALE (PARTITION-FORGE AR, .
FLIP-ROTATE CARGOBYAIR.1
CARGOBYBEA. 130} .
VERIFY Aesources:)
BIMPLIFY B
- no entry -
-> BIPE
=» PRS
Properties:
((AUTHORING-5 YSTEM SIPE-2} {CLASS CPERATOR))

Yex, boas?

3 XITLCRTL YWilkins>prasper.praph. nevest DEPLOY-~RIRFORCE ACF-Editor -= Uasublished Copyright 1991-1993, SRI Int

I 5 e S D T T A T S T T TR O T R T ST TN R R ATRTS W

Figure 8: SOCAP Deploy Airforce Operator as an ACT

efficient. Tachyon is an efficient implementation of a constraint-based model for rep-
resenting and maintaining qualitative and quantitative temporal information. SIPE-2
calls Tachyon, which propagates these constraints and combines them with the “com-
monsense” constraints that it represents internally, returning an updated set of time
windows on the plan nodes which are inserted into the plan. The temporal constraints

are currently ignored by PRS, although PRS could be extended to support them.

Figure 8 is an example ACT (not all of it fits on the screen) taken from the screen
of the ACT-Editor, a systemn we implemented for viewing and editing ACTs that is
briefly described in Section 4.5. It is an ACT that was originally written as a SIPE-2
operator in the military operations domain and was translated by our ACT-to-Sipe

translator. The slots are displayed on the left side of the screen and the first few plot

22

nodes are on the right. This ACT is a planning action designed to deploy an air force
to a particular location. The Cue is used to invoke the ACT when the system has the
goal of achieving such a deployment. The Preconditions enforcé various constraints on
the intermediate locations to be used in the deployment. The Setting essentially looks
up the cargo that must go by air and sea for this deployment. The plot is described in
Section 4.2.

ACTs slots support the representational requirements for the applicability condi-
tions of both SIPE-2 operators and PRS KAs. For example, when translating an opera-
tor to an ACT, the purpose becomes a Cue composed of goal formulas, the trigger of a
deductive operator becomes a Cue composed of fact formulas, the precondition becomes
fact formulas in both the Precondition and the Setting, and constraints on variables
become fact formulas in the Setting. The SIPE-2 “instantiate” slot corresponds to an
entry by that name on the properties of an ACT. SIPE-2 could be extended to sup-
port goal formulas in the preconditions and settings to provide additional power for
interacting with parallel goals. PRS KAs can be translated to ACTs as follows: the
“goal achiever” can be ignored, the “invocation condition” becomes both fact and goal
formulas in the Cue, the “context” becomes both fact and goal formulas in both the

Precondition and the Setting, and the “effects” will be encoded in the plot.

4.2 Plots

The plot of an ACT specifies an action network that is to be executed or used for plan
elaboration. Each node in the network has its own set of metapredicates for specifying
its action, as described below. The arcs coming into a node are said to be disjunctive
when the node can be executed if only one of its incoming arcs is activated. Incoming
arcs are conjunctive when all of them must be active before the node can be executed.
Similarly, outgoing arcs are disjunctive if the system needs to execute only one of them,

and are conjunctive if all of them must be executed.

We investigated several alternative representations for plots that combine the con-

ditionals and loops typically used in execution systems with the parallel actions typical

23

0
condition conditon
1 2
A 2
parallel1 |:¢ar¢;\lle|2
A 3 A 5

Figure 9: ACT with Graphical Display of Plot

of planning systems. The problem with most alternatives is that the complexity of the
representations makes them hard to understand when nodes have various combinations
of disjunctive and conjunctive arcs either incoming or outgoing. Our solution, which is
reasonably perspicuous and still general, is to define two types of nodes, conditional (or
disjunctive) and parallel (or conjunctive). All arcs coming into and going out of a con-
ditional node (drawn as a single-border rectangle) are disjunctive, while all arcs coming
into and going out of a parallel node (drawn as a double-border oval) are conjunctive.

This is depicted in Figure 9.

Two consequences of this handling of multiple edges are important: (1) If a node .
has zero or one incoming edges and zero or one outgoing edges, it is irrelevant whether
it is a conditional or a parallel node — they are equivalent. (2) If one action is to

be activated by only one of its incoming edges and must activate all of its outgoing

24

PD219: P0OZ20: P0224:
{ACHIEVE | (ACHIEVE (?&I:’Gumi:
(LOCATED = (LOCATED . A LATED
POZ16: CARGOBYAIR. 1 CARGOBYAIR.1 Lo
ARFIELD.1)) ARFLELD.2)) AR lELD 2
(ACHIEVE-BY RRIELD.
((HOBILIZED (LDCATED
‘ CARGDBYAIR.1
LOCATION, 1) AIRFIELD,
(HOBILIZE))) Pozz1: rozz2: Prove. LY || oy LR
(ACRIEVE w | (ABHIEVE ACHIEVE
{LOCATED 7| (LOCATED - ((LI:IE:J\TED AIRFIELDL2))))
CAROQORYSEA.1 CARODBYSEA CARGOBYSEA.1
SEAPONT.1)) SEAPGRT.Z)) AIRFIELD.2))

Figure 10: Plot of Deploy Airforce ACT

edges, then it must be represented by a conditional node that collects the incoming
edges followed by a parallel node that collects the outgoing edges. The metapredicates
may occur on either of these two nodes, while the other node need not have any

metapredicates.

Figure 10 shows the plot of the Deploy Airforce ACT previously discussed. The
first plot node specifies that the air force is to be mobilized. It is a parallel node, so its
successors will be invoked in either order or at the same time. The successors specify
that the air cargo will be moved to the final destination in parallel with moving the
sea cargo to two intermediate ports and finally to the final destination. The final node
joins the parallel actions and posts conclusions about the locations of the air force and

its subparts.

4.3 Metapredicates

While executing a plan and generating a plan require much of the same knowledge,
there are still some important differences between the two activities, as discussed pre-
viously. These differences result in different interpretations of the ACT metapredicates
in the planning and execution systems. Our implementation of ACT metapredicates
in SIPE-2 and PRS, as described below, specifies how the metapredicates should be in-
terpreted given the constraints imposed by the planning and execution environments.
However, it is possible that small advantageous changes in this interpretation could

be made based on special properties or features of the particular planning and exe-

25

Metapredicate group Metapredicates
Environment Test, Use-Resource
Action Achieve, Achieve-By, Wait-Until
Effects Require-Until, Conclude

Table 2: Metapredicate Grouping for Execution in Plot

cution systems being used. For example, planning systems with powerful temporal
reasoning capabilities may handle the Time-constraints slot differently, and execution
systems with architectures different from PRS may handle failures of Require-Until

metapredicates differently.

Figure T lists the metapredicates that may appear on each plot node. For purposes
of ordering their execution, these metapredicates are partitioned into three groups,
as shown in Table 2. The environment-metapredicates, Test and Use-Resource, are
executed first by the execution system. During planning, Use-Resource makes a dec-
laration that will be used by the planner (in SIPE-2, the plan critic algorithms satisfy
resource requirements), and a Test is generally ignored while expanding a plan with an
ACT except in Cues and Preconditions. The action-metapredicates, Achieve, Achieve-
By, and Wait-Until, are executed next, and there should be only one of these on a
node. The effects-metapredicates, Require-Until and Conclude, are executed last by
the execution system. During planning, Require-Until sets up a protection interval
that the planner must maintain, and Conclude specifies any effects that are additional

to the predicates mentioned in the action-metapredicate of the node.

The meanings of the ACT metapredicates are described below. As described above,
the ACT metapredicates sometimes have different semantics in the planning and exe-
cution systems. When the term “the system” is used below, it refers to the behavior of
both the planning and execution systems. The syntax of ACT metapredicates is fully
described in Appendix A, which also mentions the parts of the syntax not accepted by
SIPE-2 and/or PRS.

26

ACHIEVE: This metapredicate is primarily used on plot nodes, where it specifies a
set of goals the ACT would like to achieve at that point in the partial plan. In the
Cue, an Achieve metapredicate indicates a goal-driven ACT and tells the system
what goals the ACT should be used to achieve. Thus in planning, Achieve in the
Cue is used for expanding a plan and is not used for deduction. Similarly, a Test
in the Cue is used during deduction and is ignored during plan expansion. (The
class property on the Properties slot can be used to direct the planner’s use of
an ACT for deduction or plan expansion.) The execution system allows the Cue
to have both a Test and an Achieve. While rarely used, such a construct would
trigger an event-driven ACT only when the system had posted the given goals to

achieve.

In the Precondition and Setting slots, the planner ignores an Achieve since it
achieves goals in the plan, not during matching of these conditions. While not
recommended, an Achieve can be used in the Precondition or Setting of an ACT
executed by the execution system. However, in PRS, this will match only if
PRS has posted a matching goal during the current execution cycle. This is not
recommended and should be done only by users who understand PRS’s main

control loop.

TEST: This metapredicate specifies facts (formulae containing predicates) that can be
queried in the database and/or, for the execution system, by sensing the world.
When a Test is in the Precondition or Setting slots, it is used to determine if
the ACT should be executed after it becomes relevant. A Test in a Cue is used
to determine whether the ACT is eligible for execution, and indicates an event-
driven ACT that responds to some new fact becoming true. During planning,
this is used to trigger deductive operators to deduce context-dependent effects of
an action (a Test in the Cue of a nondeductive operator will be ignored). During
execution, if one or more of the specified facts in the Cue has just been posted
in the database and the remaining facts are true in the database, then the ACT

will be considered relevant but not yet ready for execution.

27

A Test in a plot node is also handled differently by the two systems. During
execution, a Test in a plot node is used to determine whether the specified facts
already exist in the database, and if not, it is used to determine which ACTs
should be executed to determine if the specified facts are true in the world. During
planning, a Test in a plot node can occur only after a conditional branching and
is interpreted as a run-time test to determine which conditional plan to execute.

Any other Test in a plot node is ignored.

CONCLUDE: This metapredicate appears only in plot nodes, and specifies the facts
(predicates) to be concluded in addition to the predicates mentioned in the action-
metapredicate of the node. Disjunctions are not allowed. During planning, Con-
clude is used to reason about a different possible future world, and during ex-
ecution, Conclude formulas are posted to the database, possibly triggering the

execution of event-driven ACTs.

WAIT-UNTIL: This metapredicate appears only in plot nodes, and specifies that
execution of the ACT is to be suspended until the indicated event occurs. This is
identical to PRS’s wait-until construct. The planner implements this metapredi-
cate by ordering the Wait-Until node after some action that achieves the required
condition. In SIPE-2, this is accomplished by using the external condition

construct.

ACHIEVE-BY: This metapredicate appears only in plot nodes, and specifies the
goals to be achieved as well as a restricted set of ACTs, one of which must be
used to achieve the goals. This provides a means for guiding the system on how
to achieve a goal. In SIPE-2, this is translated to a process node for singleton

ACTs and a choiceprocess node when more that one ACT is given.

REQUIRE-UNTIL: This metapredicate appears only in plot nodes, and specifies
a condition to be maintained until another indicated condition for terminating
this requirement occurs (i.e., a protection interval). The accepted syntax for
Require-Until has two options. The general one is (req-wff term-wff). Here,

req-wff is a formula to be maintained until the termination condition term-wff

28

becomes satisfied. The shorter option is simply term-wff, where the req-wff is
assumed to be the goal formula specified for either the Achieve or Achieve-By
metapredicate in the same node. An error arises if no such goal can be identified.
In SIPE-2, a Require-Until is specified by the protect-until construct, and the
plan critics will modify any partial plan that violates a Require-Until so that the
final plan will satisfy all Require-Untils. |

Require-Until is more difficult to implement in execution systems, since it is not
clear what to do upon failure. QOur implementation in PRS attempts to handle
failures as well as the constraints of execution and PRS’s architecture allow. In
PRS, Require-Untils are directly mapped onto a require-until operator that was
recently added. A PRS require-until fails when either req-wff is unsatisfied at
the point when term-wff becomes satisfied, or req-wff is unsatisfied and there
is no means to repair it (see below). A PRS require-until succeeds when either:
req-wif is satisfied when term-wff becomes satisfied, or the KA containing the

require-until terminates without the goal having failed.

While one could imagine having required formulas that are to be protected beyond
the scope of the ACT that posted them, this is problematical in PRS for two
reasons: (1) the system architecture would have to be changed to allow ACTs
to post goals that would remain for processing after the ACT posting the goal
had succeeded, and (2) there is no reasonable action to take after a failure when
the posting ACT no longer exists. Should the req-wff become unsatisfied before
term-wff occurs, the Require-Until does not necessarily fail; rather, it is said
to be violated. PRS will post a goal to repair the violation, and the user can
provide domain-dependent ACTs to perform the repairs. If no ACTs respond
to the require-until violation, then PRS will fail from the ACT containing the
Require-Until.

COMMENT: This metapredicate can appear in any node or slot. It provides a means

for associating some documentation with the node or slot and is usually a string.

USE-RESOURCE: This metapredicate in the Resources slot means each of its ar-

29

guments is a resource throughout the plot. Our interpretaton of Use-Resource is
based on the resource reasoning abilities of SIPE-2 and PRS. This interpretation is
an obvious place for extending the ACT formalism when more powerful resource
reasoning capabilites are available. On a plot node, PRS ignores Use-Resource
while SIPE-2 indicates the Use-Resource arguments will be resources only at that
node (assuming they are not mentioned in the Resources slot). Currently, these
are reusable resources (i.e., they are not consumed), and the system will pre-
vent other simultaneous actions from using the same resource. SIPE-2 translates
Use-Resource directly into its resource construct. PRS handles the Resources
slot by requiring that the specified resources be available before the ACT can be
executed. PRS actually translates the Resources slot into appropriate predicates
that are appended to the Test metapredicate of the Setting slot. The resources
are allocated when the ACT is intended for execution and are released when the

ACT either succeeds or fails.

4.4 Using ACTs

To show how the various constructs in the ACT formalism are used to represent plan
generation and execution knowledge, we will look at three example ACTs from the
military domain. A description of this domain can be found elsewhere [17], but the
ACTs shown are self-explanatory. By using ACTs, we have demonstrated SIPE-2 and
PRS cooperating on the same problem for the first time. SIPE-2 generates large military
operations plans while PRS responds to events, executes the plans produced, and

performs lower-level actions that have not been planned.

First, we briefly describe how the interaction between SIPE-2 and PRS currently
takes place in our implementation, although this interaction is still an area of ongoing
research. While both the planning and execution systems can use ACTs at all levels
of detail, it is necessary in realistic domains to fix a level of detail below which the
planner will not plan. Planning to the lowest level of detail is often not desirable, and
the combinatorics can be overwhelming. For example, it is not desirable to plan large

military operations down to the minutest detail. Similarly, it is often not desirable

30

for the execution system to respond to certain high-level goals without a plan. For
example, a reactive system should not start executing a Desert Storm-sized operation
without first having a plan. ACTs at interim levels of detail may be advantageously

used by both planning and execution systems.

In the military domain, we fixed a level of detaill to which SIPE-2 will plan. The
more detailed actions are left to PRS. This is accomplished by using the class property
to specify which ACTs are to used by SIPE-2 and/or PRS. SIPE-2 produces complex
plans at this level that are translated to one large instantiated ACT for execution by
PRS. (We are developing techniques for splitting such an ACT into a set of smaller
ACTs.) This ACT will be the only one that responds to the top-level goal (in the
military domain), so that PRS will simply react to events until the planner generates a
plan and the top-level goal is posted in PRS. This plan will be the principal guidance
for the reactor. The reactor will implement appropriate lower-level behaviors while it is

waiting for a plan, and may pose additional problems to the planner during execution.

The execution system will use ACT's to respond to minor problems during execution,
and to initiate detailed actions. We are currently investigating the research issues
involved in having PRS invoke SIPE-2 to replan. This replanning can be triggered
either by PRS directly when PRS considers it appropriate as a response to failure, or
by actions embedded in the original plan. One obvious alternative is to using ACTs for
communicating replanning information from the reactor to the planner. For efficiency,
we are also considering the solution of the reactor communicating individual goals and
changing a common database so that the planner can immediately begin replanning

without a translation process.

We will consider two ACTs that operate in this context. Figures 8 and 10 showed
the ACT for deploying an air force that encodes the same knowledge as the SIPE-2
operator shown in Figure 1 and the PRS KA shown in Figure 4.

The Cue tells the system to use this ACT to achieve a goal of deploying an air
force to a particular air field by a certain time. The Precondition and Setting must
be true in the world state before the operator can be applied. The Precondition in

Figure 8 requires the initial position of the air force to be known, and finds intermediate

31

LOOKOUT-RED

Cue!

{ACHIEYE (LOOKOUT UNIT.1 LAND-SECTOR. 12}

N79886:

" (ACHIEVE (LOCATED TFIGHTER.1
Preconditions: AIR=-SECTOR.1))

{TEST {CODE-AED LAND-SECTOR.13}

Settlng: N7869:
{TEST (AND {(VANTAQE-POINT SITE.1 LAND-SECTOR.1) ({AGHIEVE
{ABOVE AIA-SECTOR.1 LAND-SECTOR. 1}}} (AIR-COVER TFIGHTER.1

UHIT.1

LARD-SECTOR.1))
(REQUIRE=-UNTIL
(LODKDUT UHIT.1 LAND-SECTOR.1)))

Resources:

{USE-RESOURCE TAGHTER.1)

N798BD:
Properties:

{{AGHIEVE {LOCATED UNIT.1 5ITE.1))
{{ARGUMENTS (UNIT.1 LAND-5ECTOR.1)) {CONCLUDE
{(AUTHORING-SYSTEM ACT-EDITOR) {LODKQUT UNIT.1 LAND-SECTOR.1)))
{CLASS NONPRIMITIVE-EXECUTION-ACTION)}

Comment:

INSTALL A LOOKOUT USING AR COVER

Figure 11: An ACT for Establishing a Lookout

seaports and airports that are on known routes to the destination and which have
transit approval. The Setting constrains the two airports and seaports to be different
and partitions the air force into two subparts (by matching a predicate in the database).
Planning variables are constrained to be in a certain class based on their name; for
example, seaport]l and airfield]l are variables that are constrained to be in the classes

seaport and airfield respectively.

The Plot, shown in Figure 10, is used either to expand a plan by inserting the plot
as a subplan or to begin execution of deployment. The Plot begins with a parallel
node that uses an Achieve-By metapredicate to force the mobilization of the air force
by using the Mobilize ACT. The nodes following this can then be executed in any
order or simultaneously. These nodes begin two sequences of conditional nodes that us

Achieve metapredicates to get the subparts of the air force to travel in parallel by air

32

and by sea via different locations to the destination. Finally, there is a parallel node,
which joins these two parallel threads and aggregates the subparts together when they

have all reached the destination.

Figure 11 shows the Lookout-Red ACT for establishing lookouts. In our current
implementation of the military domain, the planner does not plan down to the level
of establishing lookouts, so this ACT is only used by PRS during execution, although
it could be used by SIPE-2 if the planning was extended to a lower level of detail.
Lookout-Red is one alternative way to achieve a lookout, and the Precondition specifies
it should only be used when the terrain is dangerous (represented here by the code-red
predicate). The Setting finds the correct site for the lookout and the correct sector for
the supporting air cover. There is a Use-Resource metapredicate in the Resources slot

which requires that a tfighter resource be available before this ACT can be executed.

The plot of Lookout-Red first uses an Achieve metapredicate to get the fighters to
the correct location. The second node in the plot achieves an air cover of a certain
land sector and uses a Require-Until metapredicate to specify that this air cover must
be maintained until the lookout has been achieved. Thus, if the air cover is terminated
for some reason before the lookout is established, PRS will post a violation and use
appropriate ACTs to respond to this situation. SIPE-2 would modify a plan being
generated to avoid such a violation. Finally the plot uses an Achieve metapredicate to
get the lookout unit to the correct location, and a Conclude metapredicate to note that

the lookout has now been established (which terminates the require-until condition).

Another type of knowledge used by some plan generation and execution systems
is knowledge for deducing the context-dependent effects of actions. Such a capability
greatly enhances the expressive power of a planning system, and is a feature of SIPE-2.
The ACT formalism supports this type of knowledge. For example, the Located-sector-
up ACT in Figure 12 is used to deduce the new region in which a movable object is
located after that object has just moved to a new sector (a region is at a higher level
of abstraction and may contain several sectors). This ACT is used by both SIPE-2 and
PRS to update the world model whenever an object is moved. The Cue of Located-

sector-up specifies an event-driven ACT that responds to new facts about the location

33

LOCATED-SECTOR-UP

Cue:

(TEST (LOCATED MOYABLE,1 SECTOR. 1)

Preconditions:

- no enatry —
Settlng:
(TEST (LOCATED-WITHIN SECTOR.1 REGION.1}) H8143:
{CONCLUNE {LOCATEO HOVABLE.
REGION.1Y)
Resources:
= no entry -
Properties:

({YARIABLES (NOCONSTRAIN (REGION.1}})
(AUTHORING~SYSTEM SIPE-2)
{CLABS STATE-RULE)

Figure 12: An ACT for Deducing Locations

of an object in a sector. The Setting instantiates region.l to be the region of the new
sector, and the single plot node uses the Conclude metapredicate to specify that the
object is now located at region.l. Similar rules deduce that the object is no longer

located at its previous sector or region.

These three ACTs show how ACT constructs are used to represent knowledge that
is typical of plan generation and execution. They show event-driven and goal-driven
ACTs, applicability conditions, resources, specification of conditions to be maintained
over an interval, parallel plan fragments, and deduction. In particular, the ACT for-
malism supports the knowledge necessary to implement the deductive causal theories
used by SIPE-2 for deducing context-dependent effects of actions. It is easy to create
and modify ACTs using the ACT-Editor described in the next section.

4.5 ACT-Editor

In our domains, the complexity of the plans requires a graphical user interface to

input ACTs, understand generated plans, and monitor system behavior. We have

34

SIPE-2 ' ACT-£dilo Grasper 11

WINDOW
GRAPH
ACT
COMPONENT)
FIND POZ1B: PO220:
CREATE (ACHIEVE Je-| (ACHIEVE
DESTROY Poz1e: (LOCATED CARGDAYAIR.1 (LOCATED CAROOBYAIR.1 -
; AIRFIELD.1)) AIRFIELD.2)) \ .
(ACHIEVE-BY
RENAME ((HOBILIZED AlfiA PO221: POZ22: POZZ3: -
COPY LOCATION. 1} — |
CHANGE-TYPE {MOBILIZEY)) (ACHIEVE |—m=| {ACHIEVE | tACHIEVE
(LOCATED CARGOHYSEA$ {LDCATED CAROOBYSEA. 1 {LOCATED CARGOBYEEA.1
SEAFORT. 1)) SEAPOAT.2)) ARFIELD.23)
ANCESTORS
DESCENDANTS
UNRELATED ‘
Parglliel plot congpopent: PO2LE
MOVE fchieve: 77
ALIGN Achieve-By: ((HOBILIZED RIR.1 LOCATION.1) (HOBILIZE))
Teat: 77
Conclude: 77
Retract: 77
Halt-Until: 77
Require-tntil: 77
Use=Resource: 77
Connentt 77
Save Value 1] Abort E]

Yes, ho=as?

o5t DEPLOY-AIRFORCE itor == Unpub)ished Copyr-ight 1991-1%93, SRI Int

B B R B B A R R PO AR R AR A R

2 NITLCATL :YHIlRkinsyprasper.prag

L G e e VT

Figure 13: Plot of Deploy Airforce ACT

implemented an ACT-Editor for displaying, editing, and inputing ACTs. It effectively
provides a graphical knowledge-editor for both SIPE-2 and PRS.

The user interface for SIPE-2, PRS, and the ACT-Editor is based on another proven
and extensively used system, Grasper.? Grasper [9, 8] is a programming-language
extension to Lisp that introduces graphs — arbitrarily connected networks — as a
primitive data type. It includes procedures for graph construction, modification, and
queries as well as a menu-driven, interactive display package that allows graphs to be

constructed, modified, and viewed through direct pictorial manipulation.

The ACT-Editor displays ACTs graphically as shown in Figures 8 and 13. Grasper
allows great flexibility for the user to customize the display of ACTs. As with SIPE-2

3Grasper is a trademark of SRI International.

35

and PRS interfaces, noun/verb menus are used for interaction. Figure 8 showed the
commands available for acting on a whole ACT. The Examine command was used to
change the print width of the ACT to produce the drawing of the plot in Figure 10.
At the bottom of the command menu are two commands to translate this ACT to
either SIPE-2 or PRS. Figure 13 shows the commands available for acting on individual
slots and plot nodes. In this figure, the user has clicked the Examine command and
then clicked the first node of the plot. The resulting pop-up window allows the user
to edit any of the metapredicates on that node — currently Achieve-By is the only
metapredicate on node P0216.

A user can input ACTs graphically using the menu-based interface. A user can
create or modify an ACT by selecting the appropriate actions from the menu; the
ACT-Editor will prompt for all necessary information. For example, in Figure 13
the pop-up window allows editing of the metapredicates, e.g., additional effects of the
mobilize action could be added under the Conclude metapredicate. A user who has
finished creating or modifying an ACT can use the Verify command to invoke the

ACT-Verifier to check the syntax and topology.

ACTs produced by the Sipe-to-ACT translator can often be quite complex. This is
certainly the case when plans generated by SIPE-2 for nontrivial problems are converted
into ACTs; for example, a typical plan in the military domain produces an ACT with
over 200 plot nodes in it. User-generated ACTs can also be complicated, especially if
the user is inexperienced. Two capabilities were added to the ACT-Editor with the
purpose of reducing the complexity of manipulating and viewing ACTs: a simplifier

and the New View command.

The simplifier is used to streamline the logical structure of an ACT. The simpli-
fier will eliminate both unnecessary plot nodes and redundant ordering links. These
simplifications produce ACTs that are semantically equivalent but often noticeably
more compact. The compactness is of benefit primarily for viewing purposes, making
the intent of an ACT more apparent to a user. In addition, simplification can lead
to improved plan execution performance when unnecessary components of ACTs are

elirninated.

36

The New View command does not modify the structure of an ACT but rather
modifies its presentation on the screen. While the underlying ACT remains unchanged,
a user can vary the amount of detail to be presented on ea,chAplot node. Having the
ability to modify the display characteristics in this manner is of value most notably
when examining ACTs generated by SIPE-2 for complex problems, since their size can

render them unwieldy.

4.6 Translators

SIPE-2 and PRS run their own internal representations for efficiency reasons. Thus,
it is necessary to translate ACTs into these representations and back. Section 4.3

described some of the details of translating metapredicates.

The Sipe-to-ACT translator can translates all SIPE-2 operators to the ACT for-
malism, as well as translating fully instantiated plans. Thus, all SOCAP operators
originally written for SIPE-2 can be viewed and modified with the ACT-Editor (as
shown by the examples in Figures 8 and 13), and new operators can be created using
the ACT-Editor. The system cannot yet translate a partial plan with uninstantiated
variables into ACT, since not all possible constraints on variables generated by SIPE-2
have a corresponding formulation in ACT. This could be handled by using the Proper-
ties slot to store an internal SIPE-2 representation, but we have not found it necessary

to translate partially developed plans.

The ACT-to-Sipe translator translates all ACTs into either SIPE-2 operators or
plans. This enables SIPE-2 to plan with ACTs that have been input by the user in the
ACT-Editor. The temporal constraints in the Time-Constraints slot are translated for
processing by Tachyon. The ACT-to-PRS translator converts ACTs into a representa-
tion that can be interpreted and executed in real time under the control of PRS. This
makes all SIPE-2 operators accessible to PRS by running Sipe-to-ACT and ACT-to-
PRS. Section 4.3 described this process. The constraints in the Time-Constraints slot
are currently ignored when translating to PRS, although it is clear that PRS could be

extended to support them.

37

We have not implemented a PRS-to-ACT translator, as PRS does not have struc-
tures that will be passed to SIPE-2. We are currently investigating the research issues
involved in having PRS invoke SIPE-2 to replan; one solution is for PRS to communicate

individual goals and change a common database rather than communicate complete

ACTs.

5 Conclusion

The ACT formalism encodes knowledge necessary for the generation and execution of
complex plans, with reactive response to a changing environment. ACT is an heuris-
tically adequate representation that is useful in practical applications and serves as
an interlingua for AJ technologies in planning and reactive control. The development
of the ACT formalism is similar in motivation to the development of the KRSL lan-
guage [10] that is being done as part of the DRPI. However, the ACT formalism is
more focused, trying to get practical planning and execution systems to use a common

language.

The use of ACT by SIPE-2 and PRS in a praética.l application has been demon-
strated. The development of PRS and SIPE-2 have been driven by the applications
to numerous problem domains. Similarly, the development of the ACT formalism has
been driven by the representations of these two systems and by the military operations
planning domain. (We view the ACT formalism as an evolving entity that will have
extensions made as driving domains require new features.) The ACT formalism has
been used in this domain to represent both knowledge about actions and generated

plans containing several hundred nodes.

ACTs have enabled SIPE-2 and PRS to cooperate on the same problem for the
first time — SIPE-2 generating plans while PRS responds to events, executes the plans
produced, and controls the execution of the lower-level actions that have not been
planned. The ACT-Editor provides a graphical knowledge-editor for both SIPE-2 and
PRS, since ACT's can be translated into either system.

38

The integrated planning and execution we have demonstrated in this problem shows
that ACT representational constructs have reasonable computational properties as - well
as being expressive enough for this domain. The ability to represent all the constructs in
PRS and SIPE-2 implies the ACT formalism is sufficient for a wide range of interesting

problems, since both these systems have been applied to several practical domains.

Acknowledgments

The research described in this paper was supported by the DARPA /Rome Laboratory
Planning Initiative under Contracts F30602-91-C-0039 and F30602-90-C-0086. The
people who designed and implemented the ACT formalism are John Lowrance, Leonard
Wesley, Janet Lee, Karen Myers, and Peter Karp. Thanks to Karen Myers for many

excellent suggestions on the presentation in this paper.

39

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the Association for Computing Machinery, 26(11):832-843, 1983.

[2] Richard Arthur and Jonathan Stillman. Tachyon: A model and environment for

temporal reasoning. Technical report, GE Corporate Research and Development
Center, 1992.

[3] K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intel-
ligence, 52(1):49-86, 1991.

[4] R. J. Firby. An investigation into reactive planning in complex domains. In
Proceedings of the 1987 National Conference on Artificial Intelligence, pages 202—
206, American Association for Artificial Intelligence, Menlo Park, CA, 1987.

[5] Michael P. Georgeff and Frangois Félix Ingrand. Decision-making in an embed-
ded reasoning system. In Proceedings of the 1989 International Joint Conference

on Artificial Intelligence, American Association for Artificial Intelligence, Menlo
Park, CA, August 1989.

[6] Michael P. Georgeff and Amy L. Lansky. A procedural logic. In Proceedings
of the 1985 International Joint Conference on Artificial Intelligence, American
Association for Artificial Intelligence, Menlo Park, CA, August 1985.

[7] M. L. Ginsberg. Knowledge interchange format: The KIF of death. Al Magazine,
12(3):57-63, 1991.

[8] P.D. Karp, J.D. Lowrance, T.M. Strat, and D.E. Wilkins. The Grasper-CL graph
management system. Technical Report 521, SRI International Artificial Intelli-
gence Center, Menlo Park, CA, 1992.

[9] Peter D. Karp, John D. Lowrance, and Thomas M. Strat. The Grasper-CL Doc-
umentation. SRI International Artificial Intelligence Center, Menlo Park, CA,
1992.

[10] Nancy Lehrer. KRSL specification language. Technical Report 2.0.2, ISX Corpo-
ration, 1993.

[11] D. M. Lyons and A. J. Hendricks. A practical approach to integrating reaction and
deliberation. In First International Conference on Artificial Inielligence Planning
Systems, pages 153-162, College Park, Maryland, 1992.

[12] R. MacGregor and M. H. Burstein. Using a Description Classifier to Enhance
Knowledge Representation, June 1991.

40

[13] David E. Wilkins. Practical Planning: FEztending the Classical AI Planning
Paradigm. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[14] David E. Wilkins. Can AI planners solve practical problems? Computational
Intelligence, 6(4):232-246, 1990.

[15] David E. Wilkins. Planning in dynamic and uncertain environments. Annual re-
port, SRI International Artificial Intelligence Center, Menlo Park, CA, September
1992.

[16] David E. Wilkins. Using the SIPE Planning System: A Manuel SRI International
Artificial Intelligence Center, Menlo Park, CA, 1992.

[17] David E. Wilkins and Roberto V. Desimone. Applying an Al planner to military
operations planning. In M. Fox and M. Zweben, editors, Intelligent Scheduling.
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1993.

41

A Syntax for ACT Metapredicates

The following Backus-Naur Form (BNF) documents the syntax for ACT metapredi-
cates. For those unfamiliar with BNF, the form on the left of the : := symbol should be
written using the form on the right. Items in the typewriter font (e.g., item) represent
the exact characters to use. The | symbol represents “or”, the * represents any number
of repetitions including zero, and the ** represents any number of repetitions, but there

must be at least one occurrence. The braces {} designate optional elements.

The right-hand side of the first group of rules is an English description of the

lowest-level placeholders.

pred-name ::= the name of a predicate

pred-arg : := the name of a variable, a function, or an object
act : 1= the name of an ACT

prop ::= any s-expression

val : 1= any s-expression

plotnode : := the name of a plot node (a symbol)

integer = any integer

pv-pair = (prop val)

pred : := (pred-name {pred-arg}*) | (not (pred-name {pred-arg}*)) |
(unknown (pred-name {pred-arg}*))

conj-wif ::=pred | (and {conj-wif}**)

disj-wif ::= pred | (or {disj-wif}**)

wit = conj-wif | disj-wif

wil-pair ::= (wif wif)

wi-list pa= ({wif}*=)

time-constraint : = (allen node node {{integer}-{integer}}) |
(qual-relation (point node) (point node))

allen ::= starts | overlaps | before | meets | during |
finish | finishes | equals

qual-relation ::=1later | later-eq | earlier | earlier-eq | equals

point ::= start | end

node : := pred-name{.integer} | act{.integer} | plotnode

42

Wait-Until o= wif | wif-list

Conclude : := conj-wif

Achieve-By 2= {(wif ({act}*™N)}*
Require-Until ::= wiff | wif-pair
Use-Resource : := pred-arg | ({pred-arg}**)
Comment :i=val

Property : 1= pv-pair | ({pv-pair}**)
Time-constraints ::= {time-constraint}*
Achieve s 2= wif | wil-list

Test s 2= wif | wif-list

On a Cue slot:

Achieve ci= wit | disj-wif

Test o= wif | disj-wif

While the above syntax is accepted by the ACT-Editor and ACT-Verifier, PRS
and SIPE-2 restrict the forms they can handle. These restrictions are mentioned here.
Currently, PRS ignores the temporal constraints in the Time-Constraints slot. In both
systems, an or is equivalent to the first disjunct that succeeds {as in Lisp). Thus, it
is not a logical disjunction that will consider instantiations from all disjuncts. PRS
currently restricts use of unknown truth values to open predicates. The definition of
wff allows arbitrarily deep nesting of and and or. This is not in general supported by

SIPE-2.

The following are additional properties recognized by SIPE-2:

o The system will use only ACTs whose Class property in Properties
is one of: state-rule, causal-rule, init-operator, init.operator,

operator, both.operator.

e The system will use a Variables property in the Properties slot whose value is a
list of quantifier-pairs. Each quantifier-pair whose first element is existential

or universal will be processed.

43

The following are restrictions placed on the ACT formalism by SIPE-2 (a warning

message is printed whenever something is ignored):

o In the Precondition slot, Achieve is ignored.

o In the Cue slot, Achieve is ignored in a deductive ACT, and Test is ignored in a
nondeductive ACT.

e An and should not be nested inside an or.

o Predicates that will be translated to SIPE-2 constraints should not be inside an

or. These predicatesare = <class in—range > < <= >=.
e An or is allowed only in a Test metapredicate,

o For deductive operators, there must be a Test in the Cue slot, all plot nodes
except the start node are ignored, and all metapredicates except Conclude on

that plot node are ignored.

44

B Creating ACTs Programmatically

Normally, ACTs are created interactively with the ACT-Editor. Sometimes it is de-
sirable to create ACTs programmatically, e.g., when writing a translator from some
langauge to ACT. This appendix documents the functions of the ACT-Editor that can
be used for that purpose

The ACT metapredicates can be thought of as properties of a plot node or slot. For
each slot that can have a metapredicate, there is a function named CREATE-ACT-slot
that creates the corresponding slot. The metapredicates are implemented as properties

in the Grasper representation.

create-act-cue act &key achieve test comment tuples append? [Function]

create-act-precondition act &key achieve test comment tuples append? [Function]

create-act-setting act &key test comment tuples append? [Function)
create-act-resources act &key use-resource comment tuples append? [Function]
create-act-property act &key comment tuples append? [Function]
create-act-properties act &key comment tuples append? [Function]
create-act-comment act &key comment tuples append? [Function)

The plural names are synonyms for the singular names. The first argument of each
function is the name of the ACT, and the allowed metapredicates are given as keywords.
In addition, the keywords :tuples and :append? are accepted. :Tuples accepts the
syntax for arbitrary properties, and can be used as an alternative means to specify
metapredicates by using the metapredicate name as the property name. :Append? is
a Boolean value that when true specifies that values for a given property are to be
appended to any values already present. The default is that the most recent property-
value pair would override any existing value for that property. Below are some example
calls to these functions.

(create-act-cue ’ACT1 :achieve ’(P1 Al B1))
(create-act-property ’actl :tuples ’((act::authoring-system act::sipe-2)
(act::class operator)))

(create-act-cue "ACT1 :tuples ’((ACHIEVE (P1 A1)) (ACHIEVE (Pn An)))
:append? t)

45

Plots are networks of plot nodes that are ordered by edges. Plot nodes are either
parallel or conditional nodes. A parallel node cannot be activated unless all incoming
edges are active, and it activates all outgoing edges. A conditional node may be
activated when only one of its incoming edges is active, and it in turn can succeed if

only one of its outgoing edges is successfully activated.

create-parallel-node name act &key location achieve achieve-by test conclude
retract wait-until require-until use-resource comment tuples append? [Function]

This creates a parallel node with the given name in the given act. Metapredicates
are specified by keywords, with :tuples and :append? also accepted. The keyword
:location is also accepted. Its value should be a list of numbers of length two that

specify the X and Y coordinates of the node.

create-conditional-node name act &key location achieve achieve-by test conclude
retract wait-until require-until use-resource comment tuples append? [Function]

This creates a conditional node with the given name in the given act. The keywords

are the same as for create-parallel-node.

create-ordering-edge source-node destination-node act Ekey location [Function]

This creates an ordering edge from source-node to destination-node in the given act.

:Location is a list of (x y) locations that specify knots along the edge.

Below are some example calls to these functions.

(create-parallel-node ’'foo ’actl :conclude (predlist->act (effects opr))

:location (1ist start-x start-y))
(create-parallel-node ’baz ’actl :location (list (+ 200 start-x) start-y))
(create-ordering-edge ’foo ’baz ’actl)

46

