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COHERENCE ESTIMATION OF SHALLOW WATER ACOUSTIC
NARROWBAND CW PULSED SIGNALS

1.0 INTRODUCTION AND BACKGROUND

A fundamental underlying assumption in the processing of underwater acoustic
signals by sonar arrays, is that the signal is coherent across the spatial aperture of the
array, and over the time duration of the processing. By summing the responses from
an array of hydrophones when receiving and processing a signal, a sonar system can
provide higher signal-to-noise levels than do individual hydrophones. Coherent signals
add while incoherent signals cancel, conversely, array gain degrades when unwanted
signals are coherent. In general, fluctuations in the ocean medium can act to
decorrelate desired signals and increase correlation in unwanted signals, thus reducing
array gain. Accordingly, the evaluation of the coherence of acoustic signals is important
to predicting sonar performance.

The variability of signal coherence is of particular importance in minehunting
and mine classification sonars that are required to detect and classify small objects.
These sonars are often characterized by their small angular beamwidths (<3 degrees)
and fine range resolution (<1.5 m). In order to achieve such capabilities, high
frequencies (>20 kHz) are normally used over relatively short ranges (<1500 m).
Minehunting typically occurs in a complex and dynamic shallow water environment.
This environment can change significantly over short distances or over small time
periods. Storms, tides, currents, and seasonal variations create significant environmental
changes in time frames ranging from hourly to seasonally and in spatial frames ranging
from a few tens of meters to several miles. An acoustic signal becomes "distorted" as
it propagates in the medium due to multipath interference and scattering from the
boundaries and from inhomogeneities in the medium. Most often the sound speed
varies with depth resulting in sound speed gradients that cause the acoustic ray to
refract or bend in the direction of decreasing sound speed. All of the aforementioned
factors affect signal characteristics including amplitude, frequency, phase, duration,
directivity, etc. The coherence of a signal provides a good overall measure of the net
effect all of these pertubating factors, and how it will affect sonar performance.

In this paper we evaluate different methods for deriving a quantitative measure
of signal coherence from underwater acoustic data taken in shallow water. Specifically
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this study details methods to estimate coherence from narrow-band, high-frequency,

short pulse length, CW signals that typify the signals used by minehunting sonars in

shallow water environments.

Coherence is a statistic that is classically used as a measure of the linearity of a

system, and relates two random processes, one an input process, the other an output.

Using the notation from Bendat and Piersol [1], coherence is defined as follows:

= S.60 S w O (1)

where

00

SfC = fR.(T)e-dr (2)

00

coSY =jf'R3 3,(r)e 2 d- (3)
__00

are the respective autospectral density functions, and

T

Rx =-fx(tf(t+xAdt (4)

Rx, = Xy WY (t + 'r ft (5)

are the autocorrelation functions. Similarly, the cross spectral density function is given by:

co

S@, = rR, r1 e j2"rfdr (6)
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where

T

R9, fx(t)Y(t +wt (7)

is the cross correlation of the two processes being evaluated.

In an ideal linear system, the coherence will be equal to unity. Coherence will
be less than unity when any one of the following four conditions exist:

1. Extraneous noise is present in the measurements.

2. Resolution bias errors are present in the spectral measurements.
3. The system relating input to output is not linear.
4. The output is dependent on more that just a single input.

In the case of underwater acoustic signals, factors 1, 3, and 4 above can be affected by
the medium, as previously discussed. As the coherence falls below unity, sonar
performance will be degraded.

We examine four methods to estimate coherence, each method differs in the
technique used to evaluate the spectral terms of Eq. 1 that are given by expressions 2,
3 and 6. In the first method we used classical spectral estimation based on Fourier
transform methodology. We found that due to the limited observation time of the
received pulses, the spectral frequency resolution was poor. This limitation motivated
us to seek alternate schemes for the spectral estimation, and led us to try using the
other techniques. In the second method, we implemented a parametric model of the
received signals (Auto Regressive model). The third method used a recently developed
tool for signal analysis known as the wavelet transform to extract time-frequency
information from each pulse, and develop a statistic akin to coherence from the derived
wavelet transform coefficients. The last method involves concatenation of successive
pulses to increase the record length in order to increase spectral resolution.

2.0 DATA DESCRIPTION

The data set used in this study was collected as part of high frequency acoustic
experiments conducted in shallow water. In the experiments, short duration pulsed
sinusoids are transmitted from a projector to a receiving array, where the data is band
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shifted to 5 kHz, low pass filtered, quadrature sampled, and stored for post processing.

For acoustic measurements done in shallow water, short duration pulses are required so

that the direct path contribution may be identified and separated in time of arrival from

other components of the signal that are due to surface and bottom reflections, and

reverberation.

A train of pulses were transmitted at a specific frequency, pulse length, and

repetition rate for a set number of 150 pulses. Although the frequency of the actual

transmitted tones varied from run to run, in all cases the received signals were

modulated so that the center frequency was 5 kHz prior to being sampled at a 20 kHz

rate. The data selected for our study consisted of 150 pulses; each pulse was a gated

sinusoid at a frequency of 150 kHz, with a pulse width of 1 millisecond.

3.0 EVALUATION OF COHERENCE

To evaluate the variations in coherence, the sequence of pulses provides a train

of input data that can be compared over time and space, with each pulsed sinusoid

being evaluated to create the terms of Eq. 1. If we let:

St,,= The autospectral density of Pref

where Pref is a reference pulse,

Syy = The autospectral density of Pi

where Pi is a pulse indexed by i, and

Sy = The cross spectral density of Pref with P4

we have a method that lets us measure the linear relationship between different

received pulses. In the case of evaluating temporal coherence, the reference pulse, Pref

is typically selected as the first pulse in a given run. The coherence as a function of

time is then determined by considering each subsequent pulse in the train (indexed by

i) as an output of a system driven by the reference pulse. Although not done in our

study, spatial coherence may also be evaluated using a similar method, where a

reference hydrophone may be defined in the receiving array, and the received outputs

from other hydrophones within the array can be treated as system outputs.
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3.1 Evaluation of Coherence Based on Fourier Spectral Estimates

The key to determining coherence comes in the evaluation of the spectral

densities, expressions 2, 3 and 6, through periodogram estimation. The best known

classical method is implemented by taking the Fourier transform of the correlations, or

of the original time history records. The correlations were used to facilitate estimating

cross-spectrums using the auto-regressive model discussed in section 3.2. They are used

with the other methods to be consistent. Typically the Fourier transform is executed

through the use of the Fast Fourier Transform (FFT) algorithm, the squared magnitudes

of the resulting complex numbers are used to generate the power spectral density

function estimate. By taking the Fourier transform of the correlation function, which is

always an even function, the resulting power spectrum is always real. Note that when

dealing with a sampled data set such as this, the power spectrum estimates appear as

discrete frequency components separated in frequency by

1
e T ~~~~~~~~~~~(8)

where T equals the record length. In section 3.4, concatenation of successive pulses is

used to increase T. Once the auto and cross spectral densities are estimated, coherence

is calculated by substituting the terms into Eq. 1.

As a demonstration of the utility of this method for determining coherence, this

technique was used on a run of data acquired in a shallow water acoustic experiment

conducted in Kiel, Germany. As previously stated, the particular run used in our

analysis consisted of 150 pulses transmitted at a 1 Hz repetition rate. Each pulse was a

1 millisecond sinusoid CW signal at a frequency of 150 kHz (Kiel data, channel 30 of

run #333). Recall that even though the actual transmission frequency is 150 kHz, the

signal was band shifted to a center frequency of 5 kHz. Figure 1 illustrates a typical

received pulse taken from this run, with only the direct path portion of the signal

shown.

To obtain estimates of the auto and cross spectral densities, the Welch procedure

of windowing and averaging was used [2]. In this procedure, the original data is

divided into a integral number of segments, possibly overlapping. A window is applied
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to these segments and the resulting modified periodograms are averaged to obtain an

estimate of the power spectral density.

In our analysis, some choices were required in order to obtain the spectral

estimates. To form a coherence estimate, we have two prime considerations, spectral

averaging (needed for coherence estimate) and spectral bin width. To get a large

number of averages and good resolution we need lots of sample points, but high

resolution sonars require short pulse lengths to get good temporal resolution so we

don't have many samples to begin with, plus we have to reduce the ones we have to do

the spectral averaging needed for a statistical coherence estimates. If the ocean

medium is stationary and ergodic then we can ensemble average spectrums over

successive pings. This is not applicable in this data because we want to investigate

how coherence changes temporally (from ping to ping as described above) over the

time it might take to form a synthetic aperture. Our choices for parameters used in the

spectral estimation are given as follows:

Window length: This factor determines the Fourier transform length and

correspondingly, the resulting bandwidth of each spectral bin per Eq. (8). Since

the direct path portion of our pulse consists of only about 32 points, we tried

window lengths of 8 and 16. Such short time windows result in extremely broad

spectral bins, but give us a sufficient number of windows so that an estimate can

be achieved by averaging spectrums from a single ping.

Window type: The selection of the window type was not critical in our case,

and was a bit arbitrary. A Hanning window was used.

Amount of overlap between windows: A 50% overlap was used (i.e. 4 points of

overlap when an 8-point window was used, and 8 points of overlap when a

16-point window was used). Overlap processing allows ensemble averaging of

spectral estimates, which reduces the variance on each spectral level estimate at

the cost of increased computational load due to computing multiple FFTs.

Using the above choices for spectral estimation parameters, the auto spectral

density estimates for the pulse in Figure 1 are illustrated in Figure 2 where the results

using an 8-point FFT window and a 16-point FFT window are shown. This results in

spectral frequency bin widths of 2500 Hz and 1250 Hz respectively. The bandwidth

of the original CW pulse is on the order of 10 Hz. For CW signals with a high
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signal-to-noise ratio, the spectral level is 3-6 dB higher for the signal frequency bin
than for the neighboring bins and can be easily resolved. For lower SNR signals this
will not be the case, resulting in larger fluctuations in spectral levels and thus more
severe fluctuations in coherence. In addition, active sonar systems are often
reverberation limited rather than ambient noise limited and reverberant returns tend to
be more coherent than ambient noise. Accordingly, spectral estimates for short

narrowband CW pulses are more difficult to estimate. This results in spectral
frequency bins much larger than the original signal bandwidth, thus reducing signal-to-
noise of the coherence estimate.

After obtaining the auto and cross spectral densities, the coherence as a function

of frequency was derived from Eq. 1. Figure 3 displays the coherence of pulse number
150 taken from our dataset, using pulse number 1 as the reference pulse. Because of
the spectral estimation problems, the resulting coherence estimate varies by less than
10% over a large frequency span. SNR is sufficient to resolve the coherence peak, but
the relative difference in coherence between the peak and adjacent coherence bins is
less than 3%. By repeatedly calculating the coherence at the signal frequency for each
pulse in the experiment run, using pulse number 1 as Pref, the temporal coherence over
the duration of the run can be evaluated. Figure 4 illustrates the variability of
coherence over the 150 second run period. Plots are shown for the center frequency
bin (at the signal center frequency) and the two adjacent frequency bins. The signal
bandwidth is 200 Hz; the spectral binwidth is 1250 Hz for the 16-point FFT and
2500 Hz for the 8-point FFT. Notice the high coherence in both adjacent frequency bins
where no signal exists. This indicates a coherent background and the long term trends
are significantly different for the two adjacent bins.

How much variability in the temporal coherence is due to spectral estimations
problems and how much is due to the ocean medium? Some component of the high
frequency oscillations are related to spectral estimation problems of a narrow band
signal in wideband coherent noise. Some component may be associated with wind and
wave motion with periods less than a few seconds, and perhaps, turbulence. Longer
term trends in Fig. 4 are more closely associated with ocean tidal and swell motions
with periods of a few seconds. Very long term trends on the order of minutes may be
related to non-dispersive internal waves. Note that the coherence of the adjacent
frequency bins show only slightly lower coherence values but larger high frequency
oscillations over the 150 seconds, thus lending some credence to the hypothesis that the
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high frequency variability is related to a narrow band signal in wideband coherent

noise.

3.2 Evaluation of Coherence Using an Auto Regressive Parametric Model

Parametric model based power spectral estimators overcome the limitation on

spectral resolution bandwidth by extrapolating the signal outside of the analysis

window, effectively providing a longer record length for analysis (T, in Eq. 8). Several

good references are available that provide a detailed description of the underlying

mathematics that surround these methods [2, 3, 4], only a brief overview is given here.

Parametric methods fall into three subgroups: autoregressive (AR), moving

average (MA), and autoregressive moving average (ARMA). All three methods model

the original signal by estimating its poles and zeros, whose numbers also define the

transfer-function model's order. For instance, an AR model of order N means its

transfer-function is modeled by N poles; similarly, an MA model of order N is modeled

by N zeros. Using the standard z-transform notation common for sampled data

systems, the general system transfer function equation for an ARMA model is given by:

b(O) + b(l)z' +b(2)z-2... b(q)z k
a(0) + a(l)z1' + a(2)z_2...a(p)zik

In our study, we restricted ourselves to using the Maximum Entropy Spectral modeling

method developed by Burg [5] to derive the polynomial coefficients a(0) through a(p)

in the denominator of Eq. (9). Since we used an all pole AR model, we set b(0)=l,

and b(l) = b(2) =... = b(q) = 0.

To obtain the autospectral density and the cross spectral density estimates

necessary for estimating coherence, we followed the method of first determining the

autocorrelation and the cross correlation sequences from the raw data and then using

these correlation values as inputs into the Burg modeling algorithm to derive the AR

coefficients. The frequency response spectrums for the all pole models were then used

as estimates for the auto and the cross spectrums respectively.

The power spectrum derived by the AR model is shown in Figure 5. In this

case, a model order of 3 was used, and a data set size of 128 was specified, resulting
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in spectral bins that are 156.25 Hz wide. Note that the source peak at 5000 Hz is

much narrower with respect to the earlier FFT based spectral estimate (Fig. 2).

Problems occurred when coherence was calculated based on the AR spectral

estimates. As was done for the Fourier methods, a plot of coherence vs. frequency for

pulse number 150 referenced to pulse number 1, is shown in Figure 6. In a paper by

Makhoul [6], it is shown that as the model order is increased, a signal's spectrum can

be approximated arbitrarily close by an all pole model. In our case, we found that

using model orders greater than 3 resulted in ill-conditioned matrices. The ill-condition

occurrence at such a low model order is most likely due to the large dynamic range of

the signal being modeled, and the limited samples available for generating the

correlation matrix necessary to derive the AR coefficients. This limitation on our

model order, results in large errors in the absolute magnitudes of the spectral density

estimates used in our calculation of coherence. Thus the coherence formula (Eq. 1),

results in values for coherence that are greater than 1. This makes interpretation

difficult and accordingly, may be of no use as a "true" measure of coherence.

However, if we consider this AR model based statistic as a new measure of "likeness,"

similar to coherence, it may be possible to characterize how it changes as a function of

phase, amplitude, and frequency, and find some utility for it's use in predicting sonar

performance. The signal coherence at 5000 Hz is more clearly resolved than the FFT

estimate of coherence and the level of the adjacent bins drastically reduced. This has

the potential for estimating our signal coherence more accurately. If a method could be

found to raise the model order without resulting in an ill-conditioned correlation matrix,

then perhaps this method would give better results.

As it is, Figure 7 shows the AR estimated temporal coherence for the same

150 pulses computed by classical methods shown in Figure 4. Note that both the

structure and trends of the AR based coherence are different than from the FFT based

computation shown in Figure 4.

3.3 Evaluation of Coherence Using the Discrete Wavelet Transform

Here we explore the use of wavelet theory as a method for determining

coherence. Briefly, the wavelet transform is similar to the Fourier transform

methodology in that it expands a function using a family of basis functions. A signal

is decomposed into a set of component parts, that when summed together reconstruct
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the signal. It differs, however, in two aspects from the Fourier transform: 1) the basis
functions may be either finite or infinite in length, 2) all of the basis functions are time
shifted as well as time compressed or time dilated versions of a single analyzing base
wavelet function. The theory behind wavelets is complicated, and it is not the
objective of this paper to describe wavelets in depth. Many references are
available [7, 8, 9] that provide a good introduction to wavelet theory and their
applications in engineering and science.

Using the notation from Newland [7], the goal of the wavelet transform is to
decompose an arbitrary signal f(x) into an infinite summation of wavelets at different
scales according to the expansion

co 00 

f (X) = > zcfkW(2jx - k). (10)
j =k =

The analyzing base wavelet is W(x), and each of the terms within the double
summation of Eq. 10 represent time scaled (either compressed or stretched) and time
translated versions of W(x). The index j is an integer commonly referred to as the
wavelet "level" and can roughly be thought of as being analogous to frequency. With
each ascending value of j, the wavelet becomes contracted in time by a factor of 2.
The contraction in the time domain results is a doubling of the frequency bandwidth,
and thus a constant time-bandwidth product for all wavelet levels is achieved, a
universal characteristic of wavelet functions. The index k in Eq. 10 represents a time
translation of a wavelet within the analysis interval for a particular level.

It can be shown that for j<0, W(2j-k) can always be expressed as a sum of terms
like O(x-k), which is termed a scaling function. Eq. (10) can then be expressed in the
alternative form as:

f(X) = W Ck (X-k) + E CIkW(2jx-k). (11)
k=-co ~~~j=O k=-co

At a given wavelet level j, 2i wavelets are required to span the record length under
analysis. At wavelet level 0, a single analyzing wavelet spans the entire analysis range,
at level 1, two wavelets are required, at level 2, four, and so on. By convention a
wavelet level of -1 is used to account for the contribution from the scaling function,
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and for our application this contribution reduces to the DC component (mean value) of

a signal.

Wavelets have proven extremely useful in time-frequency analysis of non-

stationary signals such as speech. The advantage of wavelets over Fourier methods is

that it provides a means to localize frequency characteristics to specific time frames.

An algorithm for computing the wavelet transform when the signal f(x) is sampled at

equally spaced intervals over 0<x<.1, is the Discrete Wavelet Transform (DWT). This

algorithm developed by Mallat [10], is similar to the Discrete Fourier Transform in that

it assumes that the signal f(x) is one period of a periodic signal. The algorithm

computes the coefficients cj;k from Eq. 10. For a sampled dataset of length N, the

number of wavelet levels provided by the DWT will be log2 N. As an example, a data

set of length 64 will generate 6 wavelet levels, 0 through 5, not including the -1 level

needed for the DC component. Assuming that the data are generated from sampling a

continuous time process using a sample rate of 20 kHz, Table 1 summarizes the

number of wavelets needed to span the record length at each level, and also specifies

the corresponding spectral center frequency for the wavelets at a given level.

Table 1: Wavelet Levels

Level Number of wavelets Wavelet Center
j needed to span analysis Frequency (Hz)

interval

-1 0 DC

0 1 312.5

1 2 625

2 4 1,250

3 8 2,500

4 16 5,000

5 32 10,000

A common means of displaying information from the wavelet transform is to plot the

squared coefficient values on a two dimensional grid base, where one dimension is

wavelet level (index j, which is akin to frequency), and the other dimension being

wavelet position (index k), a measure of time, in this manner a time-frequency map is
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formed. Details about how to form the map are explained in [7], but the positions of

the coefficients are adjusted to allow for the differing lengths of the wavelets they

define within each level. An important feature of this mapping is that the mean-

square value of a signal is given by the volume under the two-dimensional wavelet

surface of the square values of the wavelet coefficients over the time-frequency plane.

The resulting mapping is termed the "mean-square map" of the signal.

As an illustration of how the mean-square map is used for displaying time-

frequency information, two examples are given. Figure 8 presents a frequency

modulated chirp in the time domain and the corresponding contour plot of the mean-

square map on the two dimensional time-frequency grid. The signal shown here
represents a linear frequency shift that is changing in frequency at the rate of 200 Hz/

second. The interval under analysis is 1 second of data sampled at 1024 Hz. Note

that the wavelet levels run from -1 through 9, consistent with that expected for 1024
data points. The signal energy is clearly defined by map contours and shifts upward in
level as the frequency rises. Similarly, a mean-square map for the received acoustic
pulse from Figure 1 is shown in Figure 9. This map was derived by windowing 64
points around the direct path portion of the signal, resulting in 5 wavelet levels. Note

thatihe signal energy is concentrated at wavelet level 4, this level corresponds to the
octave of frequencies centered about 5 kHz as would be expected (see Table 1), and

near the center of the wavelet position. Most of the energy is contained in the single
wavelet level. Only the wavelet levels adjacent to this level exhibit any other energy,
and the lower levels exhibit no energy. At both ends of the wavelet position axis, the
energy is reduced due to the samples kept prior to and after the actual pulse. The

steepness of the contours indicate the high signal-to-noise ratio of the pulse. This is
what a very narrowband, noiseless pulse looks like in the wavelet domain.

The wavelet transform used to generate the mean-square maps of Figs. 8 and 9,
used a wavelet basis from a family of infinite length wavelet functions that were

developed by Newland [7], and have the characteristic that each wavelet level
represents a component from an octave band of frequencies. The wavelets are known
as harmonic wavelets, are defined in the frequency domain by

W(O)=(1/2 2Z)2&ieI(k 2 j for 2p2i < w <4p2l (12)

= 0 elsewhere
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where j is the wavelet level. The Fourier transform of the wavelet has the

characteristic of being of constant magnitude within an octave band of frequencies, and

being 0 outside of this band. The magnitude is set to normalize the enclosed area to
unity. By calculating the inverse Fourier transform of W(CO), we find the corresponding

complex wavelet is of the form

w(2'x X k) - e i4~r(2Jx-kii2z(2Jx-k) (13)

An efficient DWT algorithm using this wavelet basis was developed by Newland [7],

and when it is applied to a set of real sampled data, the coefficients generated are

complex conjugate pairs. The squared magnitudes used for the coefficients are

determined by multiplying each coefficient with its complex conjugate.

Figure 10 illustrates the magnitude of w(x) defined by Eq. 12 for the case where

j=1. Note from the shape of the function that the magnitude of the wavelet

coefficients (cj;k) derived by taking the inner product of the real and imaginary parts of

this wavelet with the signal under analysis, will get their largest contribution from that

portion of the signal localized around t=0 with respect to the wavelet function. In the

case of these harmonic wavelets, the rate of decay in the time domain is inversely

proportional to x, thus providing a time localization depending on where the particular

wavelet is centered.

We have used the harmonic wavelet family and the resulting information

provided in the mean-square maps, to calculate a numerical analog of coherence using

the calculated wavelet coefficients. Whereas a signal's mean-square (power) can be

determined by the area under its power spectral density curve derived from the Fourier

transform, in wavelet analysis, the mean-square value of a signal is given by the

volume under the two-dimensional wavelet surface of the square values of the wavelet

coefficients over the time-frequency plane. Using this analog relationship of the

wavelet transform derived mean-square maps, with the Fourier transform derived power
spectrums, we form a statistic equivalent to that given in Eq. 1, except we substitute

wavelet transform derived power terms for the auto power spectrums (denominator

factors) and the cross power spectrum (numerator).

To get our coherence estimate from the wavelet coefficients, we first take

autocorrelation functions (Eqs. 4 & 5) and the crosscorrelation function (Eq. 7) of two
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pulses, a reference pulse, and a pulse indexed by i as previously described. The DWT

is then applied to each of the correlations, and the mean-square maps for each of the

correlation functions are derived from the coefficients. We select the wavelet level

where the signal power is predominant, level 4 in this case, where the 5 kHz frequency

is centered. The array of mean-square map coefficients from level 4 of the cross

correlation function map is then divided, element by element, by the element by

element product of square valued level 4 wavelet coefficients derived from the two

autocorrelation functions. To be more explicit in how the wavelet coherence is

developed, we make the following definitions:

i) Let C,,,j (k) be the array of squared wavelet coefficients at level j derived from

applying the DWT to the autocorrelation of discrete time process x(n).

ii) Let Cyj(k) be the array of squared wavelet coefficients at level j derived from

applying the DWT to the autocorrelation of discrete time process y(n).

iii) Finally, let C-yj(k) be the array of squared wavelet coefficients at level j derived

from applying the DWT to the cross correlation of discrete time process x(n) with y(n).

Now perform the following element by element operations on the arrays to create a

new array of wavelet coherence values that are indexed by k, wavelet position.

2 /7\ j1 (k)r
YwavY(k (k) = C k C k for all k at level j (14)

IC.,j (k) I,j (k I 

The number of elements contained in the array generated by Eq. 14 depends on the

original data set size under analysis, and the level j for which the calculation is being

made. As previously shown in the Table 1, when a 64-point dataset is used, we get

wavelet levels running from -1 to 5. Our wavelet level of interest is level 4, which has

16 wavelets equally spaced across the analysis interval, thus each wavelet coherence

array will have 16 elements.

Now turning our attention back to the acoustic data, we can generate a wavelet

coherence array for each pulse of the 150 ping run from which the data was acquired.

For each ping an array of 16 elements is created. Each array element is a calculated

wavelet coherence centered at a particular lag or time position within the correlation

functions. The indices of the array are represented by the variable k, and. run from
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1 to 16. The lowest lag value is indexed as k=1, and the highest lag value is indexed

at k=16. If we form a 2 dimensional plane with one axis being lag value (position k),

and the other axis being time (ping number), we can sequentially plot the wavelet

coherence arrays for each ping of the run to form a surface over the plane that

represents the temporal wavelet coherence over the duration of the run. Figure 11

illustrates such a surface plot for the same run of pings where we had previously

shown the temporal coherence for in Fig. 4.

What does the plot of Figure 11 tell us about coherence? Additional information

on coherence as a function of time spanning the record length ( not the 150 pulse data

set) is gained by using wavelets. Coherence is now a function of wavelet position, k,

corresponding to the record length as well as a function of pulse number. Here we see

that the coherence has relative maxima near wavelet positions 4,5 and at 15 as well as

relative minima near wavelet positions 10,11. They appear consistent throughout the

data set. How much of this curvature is related to environmental changes in the

medium, or processing parameters, or equipment fidelity is not known at this time, but

it is new information. By examining the temporal wavelet coherence at a position near

the center of the pulse (at elements k=8 and k=9), we get a plot that looks very similar

to the temporal coherence derived using the Fourier methods. Figure 12 illustrates the

temporal wavelet coherence with a position value of k=8. Note that the basic shape

and structure of the wavelet coherence is much like that seen in Fig. 4, but the higher

frequency oscillations are more severe. This indicates that similar results can be

obtained with this wavelet transform as are derived with the Fourier methods. The

constant time-bandwidth product characteristic of the wavelet transform, however, again

prevents a narrow band analysis at the signal frequency, and thus suffers from the same

SNR limitations seen when we used Fourier methods.

Other wavelet bases can be used besides the harmonic wavelet chosen for this

work. The most efficient recursive algorithms for wavelet transforms require orthogonal

wavelets, although wavelets do not necessarily have to be orthogonal. Orthogonality is

not easily accomplished while maintaining compact support in both temporal and

spectral domains and it is for this reason the harmonic wavelet was initially selected.

The design of wavelets with specific properties is beyond the scope of this paper,

however, future work may investigate coherence results using other wavelet basis and

the feasibility of designing a wavelet specifically for coherence estimation.
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3.4 Evaluation of Coherence Using Concatenation of Successive Pulses

As a final method for estimating coherence we examined pulse concatenation.

Concatenation of successive pulses can be used to achieve higher spectral resolutions at

the expense of reducing the ensemble of pulses. Concatenation presents unique

difficulties, but since our interest is in a single frequency, and since the signal is very

narrow band, the effect of concatenation on only one frequency need be considered.

The sample length for each pulse in the concatenation group can be pre-

determined by requiring an integer number of cycles. Since this data was digitized at

20 kHz and the frequency of interest is 5 kHz, after modulation, the sample length

should be 20/5 = 4 cycles, which corresponds to 1 millisecond, or 20 samples. Fifteen

successive pulses were concatenated for each group, yielding ten groups spanning the

150 seconds of the entire data set. Each group of concatenated pulses was processed

for coherence using the Fourier spectral estimates identical to that in Section 3.1. For

comparison, the concatenated pulses were processed using 128, 64, and 16 pt FFTs.

Often the resulting power spectrum from each group of concatenated pulses was

poor, the spectrum were noisy with several high sidelobe levels. The spectrum levels

and structure are very dependent on the starting sample and the total number of

samples chosen for concatenation. By extensive trial and error the samples that best

maximized coherence level were determined. For the 128-point FFT coherence

estimation, 19 samples per group maximized the coherence level, for the 64-point FFT

estimate 16 samples per group were best. The 16-point FFT estimate was not so

sensitive to the group size or starting sample and the same values as for the 64-point

FFT were used.

The more pulses used in the concatenation, the better frequency resolution in

both the spectral levels and coherence estimates, however that leaves fewer groups and

less temporal resolution over the total 150 second time span of the data set. Also, the

more concatenation, the higher potential for errors due to possible relative phase

differences in the individual pulse alignments.

The coherence estimate was obtained based on Fourier spectral estimates as

previously described using the Welch procedure of windowing and averaging FFTs.

Figure 13 shows a typical spectra for a single concatenation of 15 pulses using three

different size FFTs. Concatenation allows a larger size FFT which enhances spectral
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resolution. However, with this data, other peaks occur at frequencies that do not exist

in the data and must be an artifact of the concatenation. They are probably due to

relative phase errors in aligning two pulses. The spectral resolution is much improved,

the binsize for the 128-point FFT is now on the order of the signal's bandwidth.

Figure 14 shows the coherence over the 150 second long data set using ten

groups of 15 concatenated pulses. The coherence estimate was highly sensitive on the

samples used. Sensitivity was most pronounced for the highest FFT size and varied by

as much as 0.4. The long term trend in these coherence estimates compares favorably

with that shown in Fig 4 using the standard FFT estimate, however, the coherence

levels are much reduced and the structure is totally missing. This is the expense of

reducing the ensemble of pulses in order to concatenate. Concatenation can be useful

for short monochromatic pulses at the expense of reducing the ensemble of pulses. The

effect of possible mismatched phases between concatenated pulses is the principal

drawback. Manual alignment of each pair of pulses may be needed and can be tedious.

By using a slightly different number of samples for each individual pulse, the phase

errors may be reduced.

4.0 CONCLUSION AND SUMMARY

Linear coherence has many applications: as a measure of an input/output

system's linearity, as a prediction for system output, and as a measure of common

spectral density between two signals. We have looked at four different methods for

determining coherence. As previously discussed, frequency resolution is constrained to

the inverse of the limited observation time, and for the short duration pulsed sinusoids

examined in this study, this results in poor frequency resolution. Application of

classical Fourier based spectral estimation techniques for generating a periodogram

result in very broad frequency bins deemed unacceptable for such short duration pulses.

Fourier Transform methods still provide the best method for computing linear coherence

for an input/output system. Averaging overlapped and windowed FFTs always

improves the coherence estimate, however, the sampling requirements for adequate

frequency resolution cannot always be optimally satisfied.

The frequency resolution is much improved using AR methods, however, the

spectral magnitude errors imposed by the low model order results in large errors in the
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spectral magnitudes, and yields coherence results that are difficult to interpret. AR
coherence is not useful for array performance prediction or for predicting system output
based on the input and the coherence function. It is also not a measure of nonlinearity
of the system. Comparing the AR coherence from one system with another system is
difficult if not futile. However, the AR coherence can be used in a limited sense as a
relative measure of the commonality or 'sameness' between two signals or as a measure
of commonality between outputs of a single system. The AR method also has potential

for yielding better results if higher model orders could be achieved without incurring an
ill-conditioning of the correlation matrix. For the data described herein, the AR
coherence offers a large advantage in frequency resolution that more accurately reflects
the relative coherence between the signal frequency and other non-signal frequencies
than does the FFT based coherence as demonstrated in Figures 3 and 6.

Using orthogonal wavelets, the discrete wavelet transform provides a new
method to estimate coherence, and a temporal coherence map can be easily generated
that displays the value for the wavelet estimate of coherence in a two dimensional
form. This maps the coherence of both the signal frequency band(s) and the non-signal
frequency bands as a function of time. The wavelet coherence estimate matches well
with both the overall trend and structure of the Fourier transform based coherence
estimate as shown in Figure 4, although the actual levels are slightly different. The
wavelet position gives additional insight into coherence over time scales on the order of
the record length. The constant time-bandwidth characteristic of wavelet decomposition
prevents a narrow band analysis at our signal frequency. The big advantage of the
wavelet coherence estimate will be for broad band and chirp signals where the signal
frequency spans several wavelet levels over time spans less than the sampling period.

Both the AR coherence estimate and the wavelet coherence estimate over the
150 seconds show more severe oscillations than the Fourier transform based coherence
estimate. For the AR estimate this is most likely due to the errors imposed by using
such a low model order for modeling the signal. Why this is so for the wavelet
estimate may be in part due not to the wavelet estimate but to the broadness of the
FFT spectral estimate (due to the small number of samples) resulting in a smoothed
coherence estimate.

Concatenation improved spectral resolution and coherence as a function of
frequency estimates at the expense of coherence as a function of pulse number. Only
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the general, overall trend was preserved. Because this is real data, not computer
synthesized, it is difficult to know which method gives the most correct value for
coherence, but all four methods have something unique to offer. Separating out
numerical effects, averaging effects, and signal propagation effects is difficult. Although
the estimated values of coherence may be different, the tends and structure can be
similar.
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Figure 1: Typical narrowband, CW pulse signal received at 150 kHz, modulated to 5 kHz, and

sampled at 20 kHz.
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Typical Power Spectrum of Received Pulse
107

<D 1 04:1- 1

U) ... .--.--..- ,.--.-- ..- --...... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......... 1___=-,_..__. _._............ ......... ....... . . . ...... . ... ................................ .

... . _.._. .... ............. ....... ...... .______ .. .. . . __ ....... . .. _.__ . ........... .:_ . ___._ ............... _. :_.. ... _........\...._. .. _. . .............. _. ... ..

103.~\

1__. ..___ _ _ _ _ _ - -. _- -.. ___---
.... .. _ .. ............... . . ....... .. _. .............. .. ... . .... . .... . ..... ... ......... ..... . .. . .......... ..... =. A............... ...... ... . _ ........... ..... ............... ....... _._

....... . .. .
10 __ _ .___ ._ ____ .. _ .__ .... _ . _ ...... __ ......__ 1 ____________w___ 1..... __. ......... .__ .... ___ ....... _.__. ..._ __ ............___ ..._)

i~~~~~ O 
0 2000 4000 6000 8000 10000

Frequency Hz

Figure 2: Power spectral density of received pulsed CW sinusoid using both 8-point and
16-point FFT sizes, 50% overlap, and a Hanning window.
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Figure 3: Coherence of pulse 150 with the reference pulse 1, both 8-point and 16-point
FFT sizes for spectral estimation.
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Figure 4: Coherence as a function of pulse number using pulse 1 as reference. Since the

pulse repetition rate is 1 pulse per second, there is a 1-to-1 correspondence of pulse number

with time in seconds.
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Figure 5: Power spectral density of received pulsed CW sinusoid using AR model for the

autocorrelation of the received signal. Notice the increase in spectral resolution over that of

Figure 2.
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AR model (order 3) derived coherence Ping 1 to Ping 150
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Figure 6: Coherence of pulse 150 witn the rererence pulse 1 using AR spectrum estimation.

Notice the increase in spectral resolution over that of Figure 3.
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Figure 7: Coherence as a function of pulse number using pulse 1 as reference and AR spectrum

estimation. Pulse repetition rate is 1 pulse per second. Compare to Figure 4.
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Figure 8: Synthesized frequency modulated chirp time series and contour plot of the

resulting wavelet mean-square- energy map displaying wavelet position (time) and wavelet

level (frequency) information. This purely illustrative example demonstrates the usefulness

of wavelet processing for broadband signals.
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Figure 9: Time series and contour plot of the resulting wavelet mean-square-energy map

displaying wavelet position (time) and wavelet level (frequency) information for the reference

pulse, pulse number 1.
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Magnitude of Harmonic Wavelet Fynction

x

Figure 10: Magnitude of the complex harmonic wavelet developed by Newland and used to
generate the wavelet coefficients used for computing the mean-square-energy maps.
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Temporal Wavelet Coherence Mesh Plot
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Figure 1 l: Three-dimension coherence surface from the wavelet mean-square-energy map for

wavelet level four as a function of wavelet position and pulse number.
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Temporal Wavelet Coherence at position 8, level 4
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Figure 12: Coherence as a function of pulse number for wavelet level 4 and wavelet position 8.

This is one slice of the surface in Figure 11. Compare to Figures 4 and 7.
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Power Spectrum from one group of 15 concatenated pulses108
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Figure 13: Power spectral density for the first group of 15 concatenated pulses using
128-point, 64-point, and 16-point FFT sizes, with 50% overlap, and a Hanning window.
Compare to Figure 2.
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Temporal Coherence using groups of concatenated pulses
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Figure 14: Coherence as a function of pulse number using 10 groups of 15 concatenated
pulses. The pulse repetition rate is 1 pulse per second. Compare to Figures 4, 7, and 12.
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