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OBJECTIVES

To carry out fundamental and wide ranging research investigations involving the nonlinear

wave propagation that arise in physically significant systems. Applications include modelling

and computational studies of wave phenomena in nonlinear optics, solutions of physically

significant nonlinear equations, direct and inverse scattering, and the development of new

computational methods for investigation of physical systems.

STATUS OF EFFORT

The research program of the PI in the field of nonlinear wave propagation is broad based

and very active. There have been a number of important research contributions carried

out as part of the effort funded by the Air Force. During the period 1 July 2003 – 30

June 2006, 8 papers were published or accepted for publication in refereed journals, 2 book

chapters/conference proceedings were published and 19 invited lectures were given. The key

results and research directions are described below in the section on accomplishments/new

findings. Full details can be found in our research papers which are also given at the end

of this report. Specific research investigations carried out by the PI and colleagues included

the following studies.
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The dynamics and properties of mode locked lasers that produce ultrashort pulses were

investigated. Titanium:sapphire (Ti:sapphire or Ti:s) lasers are often used to produce ul-

trashort pulses, typically on the order of a few femtoseconds. There are other mode locked

lasers which produce ultrashort pulses, such as Sr-Forsterite and fiber lasers, but Ti:s lasers

have better stability characteristics. These mode-locked lasers generate a regularly spaced

train of ultrashort pulses separated by one cavity round-trip time. A Ti:s laser consists

of a Ti:sapphire crystal which exhibits a nonlinear Kerr response and has a large normal

group-velocity dispersion (GVD). The Ti:s laser systems also have a set of prisms and/or

mirrors specially designed to have large anomalous GVD in order to largely compensate for

the normal GVD of the crystal. Recent experiments conducted at the University of Col-

orado, in collaboration with our group demonstrated that such lasers are well approximated

by dispersion managed (DM) systems and the intra-cavity pulse was found to be described

by a dispersion managed soliton. An important characteristic of short pulse lasers analyzed

in our work is the carrier-envelope phase (CEP) slip. The CEP slip is the change of the phase

offset between carrier and envelope from pulse to pulse in the pulse train. This slip is equal

to the phase slip that the intra-cavity pulse accumulates over one cavity round-trip before

being emitted from the output coupler. The intra-cavity slip is induced by the nonlinearity

and dispersion of the cavity. Control of the phase slip allows researchers to stabilize trains

of ultrashort pulses which are very useful in applications. Noise effects due to spontaneous

emission were also studied. Improved understanding of the phase slip and noise character-

istics will help experimentalists improve the characterisitcs/stabilization of the pulse train.

Applications of Ti:sapphire laser systems include new and enhanced methods for optical

signal processing and greatly improved timing and measuring devices.

Investigations of pulse propagation in photonic lattices were carried out. In recent years

there has been important experimental research on discrete optical wave-guides and the prop-

agation of their nonlinear modes. Nonlinear waves in waveguide arrays have attracted special
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attention due to their experimental realizability. Early experimental observation of nonlin-

ear lattice modes in optical waveguide arrays demonstrated that at sufficiently high power,

a laser beam could be self-trapped inside the waveguide. This demonstrated the formation

of a lattice soliton. Importantly, these waveguides can be constructed on extremely small

scales. Experimentalists now have been able to construct one and two dimensional lattices

by interference of laser beams. This is a significant advantage since the background lattice

structure does not need to be mechanically fabricated. Lattice nonlinear Schrodinger equa-

tions provide excellent models. We developed new asymptotic and computational methods

which describe observed phenomena and found localized pulse solutions to two-dimensional

optical lattices with both regular and irregular lattice backgrounds. Applications of pho-

tonic lattices include all-optical switching, steering, blocking and routing of lattice-discrete

solitons in two-dimensional networks.

Research involving quadratic, or so-called χ(2), nonlinear optical materials has led to new

asymptotic systems of equations. Detailed calculations indicate that in certain parameter

regimes there are stable localized pulse solutions and in other cases the equations have

unstable and singular solutions. The possibility of such singular solutions indicates situations

when extreme damage to the underlying optical crystal is possible.

New numerical schemes to compute localized states, or solitary waves to a broad class

of nonlinear systems have been developed. The essential steps involve renormalizing the

unknown variables, transforming the underlying nonlinear equation into Fourier space and

determining nonlinear algebraic equations which couple to the nonlocal integral equation in

Fourier space. The coupling prevents the numerical scheme from diverging. The nonlinear

mode is determined from a convergent fixed point iteration scheme. The computational

methods allow us to find mutidimensional localized pulse solutions to the governing systems.
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ACCOMPLISHMENTS/NEW FINDINGS

Dynamics of ultra-short laser pulses and frequency combs

Research breakthroughs over the past few years with mode locked lasers, such as Ti:sapphire

lasers, have enabled scientists to generate regularly spaced trains of ultrashort pulses, sep-

arated by one cavity round-trip time. Fig. 1 below shows a schematic of a mode locked

Ti:sapphire laser and the emitted pulse train. Typical values for a Ti:sapphire mode locked

laser are pulse width: τ = 10 fs = 10−14 sec and repetition time: Trep = 10 ns = 10−8 sec.

pump

pulse train

prism pair

2mm

Ti:sapphire crystal

repT

t

τ
pulse train

Figure 1: Ti:sapphire laser (left) and the emitted pulse train (right).
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Figure 2: Schematic of a pulse train (left) and its spectrum –frequency comb (right).

Associated with the spectrum of the pulse train is a frequency comb, whose frequencies

are separated by the laser’s repetition frequency frep = 1
Trep

= 100 MHz; ωrep = 2πfrep; see

Figure 2 above. In this figure Tn, φn are the center time and phase of the nth pulse. In the

absence of noise, the pulse’s spectrum determines the bandwidth, while the repetition-time,
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Trep = Tn+1 − Tn, and overall phase slip, ∆φ = φn+1 − φn, determine the comb function

in frequency space. The frequency of the k’th comb line (enumerated around the center

frequency) is ωk = kωrep + ωo, where ωrep = 2π/Trep and ωo = ∆φωrep/2π are the repetition

and offset frequencies which are indepicted in Fig. 2. The linewidth (ω1/2 in the inset) is

the FWHM (full width half maximum) of the comb function around each comb frequency.

In the deterministic case, for a large number of pulses N >> 1, the linewidth can estimated

to be ω1/2 = O( 1
NTrep

). Additional noise leads to jitter in the center time Tn, and phase φn,

which in turn, broadens the FWHM of the comb lines.

As indicated above, modelocked lasers such as Ti:sapphire (Ti:s) laser systems (see Fig. 1)

generate trains of optical pulses, whose spectrum consists of frequency comb lines (see Fig. 2).

Important progress in the development of extremely stable optical oscillators has been made

possible by the use of controlled femtosecond frequency combs. To date the most stable

frequency combs have been generated by Ti:s laser systems, but other less expensive lasers

such as Sr:Forsterite lasers are also being intensively studied. We have been working with

faculty in the Department of Physics at the University of Colorado on this research.

i) Carrier-envelope phase slip

Ti:s lasers produce pulses as short as a few femtoseconds; typically 10 fs. These mode-

locked lasers generate a regularly spaced train of ultrashort pulses separated by one cavity

round-trip time The phase slip is the change of the phase offset between carrier and enve-

lope from pulse to pulse in the pulse train which accumulates over one cavity round-trip,

before being emitted from the output coupler. Fig. 3 depicts the physical origin of the

carrier envelope phase (CEP) shift. The intra-cavity slip is induced by the nonlinearity and

dispersion of the cavity.

A typical Ti:s laser, such as the one depicted in Fig. 1, consists of a Ti:sapphire crystal

that has a nonlinear Kerr response as well as large normal group-velocity dispersion (GVD),
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Figure 3: The carrier-envelope phase, ∆φCE ≡ ∆φ, changes during propagation, because

the envelope propagates at the group velocity while the carrier wave propagates at the phase

velocity.

and a set of prisms and mirrors specially designed to have large anomalous GVD. The pump

laser excites the Ti:Sapphire crystal, causing it to lase and the pulse undergoes large changes

inside the Ti:sapphire cavity . The combined contributions to the phase slip depends on the

nonlinear phase and nonlinear dispersion in the cavity.

This crystal induces a nonlinear effect as well as large normal GVD. On the other hand,

the mirror and prisms induce large anomalous GVD that nearly balances the normal GVD

of crystal. Therefore, the cavity has a small net-GVD (average dispersion) over one round-

trip. The pulse bounces between the mirrors and output coupler and is “sampled” every

round-trip at the output coupler (which transmits only 6% of the energy). When the laser is

mode-locked a regularly-spaced ultrashort pulse train is emitted from the cavity. To model

the intra-cavity pulse dynamics we employed the following perturbed NLS equation (after

non-dimensionalization) for the pulse-envelopes u(z, t):

iuz +
D(ζ)

2
utt + g(ζ)|u|2u = −iεg(ζ)(|u|2u)t (1)

where the normalized linear dispersion coefficient is given by D(z) =< D > +l−1
c ∆(z/lc),

with ζ = z/lc, < D > the average dispersion (net GVD), ∆ the deviation from the average,
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and lc the laser-design map length. Typically for mode-locked Ti:Sapphire lasers lc � 1.

Nonlinearity-management means that g = 1 inside the Ti:sapphire crystal and g = 0 outside

the crystal, i.e., we have linear propagation inside the prisms and mirrors. It is useful to

define the map strength s = ∆1/4 (for a symmetric map), where ∆1 is the GVD of the crystal

after subtracting the net GVD. This map strength thus measures the variation of the intra-

cavity GVD. The term on the right-hand side, often called the “shock” term, corresponds

to small nonlinear dispersion arising form the Kerr effect. We focus on the shock term,

first because it is particularly important for shorter pulses. In addition, the shock term

induces a nonlinear change in the phase slip, an intriguing phenomenon that is consistent

with observed experimental dependence of the slip on pulse energy (pump power).

The nonlinear contribution to the phase slip is the difference between the nonlinear phase

and timing shifts accumulated over one cavity round-trip. We found the nonlinear slip, i.e.,

the slip induced by nonlinear phase and nonlinear dispersion effects, to be well-approximated

by

δNL ≈ 3k̄′′L/τ 2
0 s,

where k̄′′ is average-cavity GVD and L is the optical cavity length. This result shows that

the phase slip that is induced by nonlinear-dispersion reduces to zero with strong dispersion-

management, which is consistent with the insensitivity of the slip to pulse energy with strong

dispersion management. We also considered additional effects on the slip such as third-order

dispersion (TOD), which can be modeled by adding [ik̄′′′/(6γP ∗τ 3
0 )]uttt (normalized) to the

right-hand side of Eq. (1), where k̄′′′ is the average TOD coefficient, i.e., the net TOD per

round-trip of the cavity. For TOD we found that δTOD ≈ −ωk̄′′′L/τ 2
0 s.

Thus the laser cavity is modeled by a dispersion and nonlinearity managed nonlinear

Schrödinger equation (perturbed NLS), that takes nonlinear phase (self-phase modulation)

and small nonlinear dispersion into account. In our paper: “Carrier-envelope phase slip of

ultra-short dispersion managed solitons”, M.J. Ablowitz, B. Ilan and S. Cundiff, Optics Let-
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ters, 29 (2004) 1808, we developed a detailed asymptotic theory which gave analytic results

that described the carrier-envelope phase shift in this dispersion-managed NLS equation.

Control of the carrier envelope phase shift is important in applications. It is a key aspect

to obtain highly stable optical oscillators.

ii) Comparison of theory with recent experiments

Motivated by the theory we developed, experiments were performed in the Dept. of

Physics at the University of Colorado. It was found that the theory agrees with experiments

remarkably well. In Fig. 4 the full width half maximum (FWHM) is plotted vs. the average

pulse energy for various values of the net group delay dispersion (GDD). The dashed lines are

the theoretical values. This experimental research validates the model we have introduced

and demonstrates that dispersion management concepts are broadly applicable. The above

work was published in: “Dynamics of Nonlinear and Dispersion managed Solitons” , Q.

Quraishi, S. Cundiff, B. Ilan and M.J. Ablowitz, Physical Review Letters 94 (2005), 243904.
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Figure 4: Fundamental pulse parameters in a modelocked Titanium:sapphire laser. The

points are the measured temporal FWHM at four values of the average cavity GDD. The

curves are the solutions of the Dispersion Managed NLS equation. The legend states the

GDD values in fs2. The errors for the GDD are approximately 1% and the errors for the τ

values are negligible on the scale shown. Inset shows the breathing dynamics of a dispersion

managed soliton |u|2 as it propagates along z.
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iii) Noise induced linewidth in frequency combs

As mentioned earlier, modelocked Ti:s lasers generate trains of optical pulses, whose

spectrum consists of frequency comb lines. These combs are represented by evenly-spaced

frequencies and an offset frequency that is proportional to the carrier envelope phase (see

Fig. 2). The conversion between optical and microwave frequencies requires stabilization of

the carrier envelope phase slip which is usually carried out by a feedback mechanism. We

investigated the effect of random processes on these frequency combs.

Random physical effects can induce a linewidth, or uncertainty, in a comb line frequency.

Some random effects, such as thermal fluctuations, can, in principle, be minimized. However,

as far back as 1958 Schawlow and Townes discovered that the linewidth, or monochromaticity,

of a single-mode continuous-wave (cw) laser is fundamentally limited by the random process

of amplified spontaneous emission (ASE) in the lasing medium. We studied the limits

of frequency combs associated with modelocked lasers in the presence of ASE noise and

obtained a remarkable scaling law result. In particular, we analyzed the frequency combs

generated by trains of pulses emitted from mode-locked lasers when the center-time and

phase of the pulses undergo noise-induced random walk, which in turn broadens the comb

lines. Detailed asymptotic analysis and computation of the ensemble-averaged spectrum

has revealed a time-frequency duality, whereby the increase of the standard deviation of the

center-time with pulse number, and the increase of the linewidth with frequency, occur with

inversely proportional exponents. More precisely, when the standard deviation of the center-

time jitter of the n’th pulse scales as np/2, where p is a jitter-exponent, the linewidth of the

k’th comb line scales as k2/p. The linear-dispersionless system (p = 1) and pure nonlinear

soliton (p = 3) dynamics in lasers are found as special cases of this time-frequency duality

relation. This work was published in: “Noise induced linewidth in frequency combs”, M.J.

Ablowitz, B. Ilan and S. Cundiff, Optics Letters 31 (2006) 1875.

Although this result was derived for mode locked lasers, the general nature of the result
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indicates that it can be applied to the stochastic dynamics associated with other frequency

combs as well.

Nonlinear Optics in Waveguide arrays and photonic lattices

Nonlinear light wave propagation in photonic lattices, or periodic optical waveguides,

is an active and interesting area of research. This is due, in part, to the realization that

photonic lattices can be constructed on extremely small scales of only a few microns in size.

Hence they allow the possibility of manipulation and navigation of lightwaves on small scales.

Localized nonlinear optical pulses which occur on one and two dimensional backgrounds have

been investigated. These backgrounds can be either fabricated mechanically such as those

comprised of AlGaAs materials or all-optically using photo-refractive materials where the

photonic structures are constructed via interference of two or more plane waves.

An array of coupled optical waveguides is a setting that is a convenient laboratory for

experimental observations. Such a system, as depicted in Figure 5, is typically composed

of three layers of AlGaAs material: a substrate with refractive index n0, a core with higher

index (n1) and surface with index n0. By etching the surface of the waveguide, one forms

a periodic structure which is called a waveguide array. Self-trapping of light in the “y”(i.e.,

vertical) direction is due to total internal reflection. On the other hand, the beam will diffract

in the lateral “x” direction unless it is balanced by nonlinearity. Typically, such a waveguide

array is composed of 40-60 single-mode individual waveguides each being 4-5 microns in

width and 4-6 millimeters in length. Such small scale structures could be embedded in a

large scale environment and can be used to guide light in a controllable manner.
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Figure 5: One-dimensional AlGaAs waveguide structure. It is composed of three layers of

AlGaAs material: a substrate with refractive index n0, a core with higher index (n1) and

surface with index n0. By etching the surface of the waveguide, one forms a periodic structure

which is called a waveguide array.
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Motivated by these experiments we undertook wide ranging studies of discrete scalar and

vector nonlinear Schrodinger (NLS) systems. From first principles, employing asymptotic

analysis, new equations governing discrete systems in nonlinear optical arrays as well as dis-

crete diffraction managed systems have been derived. In particular we derived the following

vector diffraction-managed discrete NLS equation

i
∂An

∂z
+ D(z)(An+1 + An−1) + (|An|

2 + b|Bn|
2)An + cB2

nA∗

n = 0

i
∂Bn

∂z
+ D(z)(Bn+1 + Bn−1) + (b|An|

2 + |Bn|
2)Bn + cA2

nB
∗

n = 0 (2)

where An, Bn are the slowly varying envelopes of the two underlying polarization fields at

site n; b, c are cross-phase and four-wave-mixing coefficients respectively and D(z) is the

varying diffraction term in the array. The, concept of diffraction management means that

the waveguide array is alternately directed “positively” and “negatively” as a function of

waveguide number over the propagation distance of the fiber.

In general, it is difficult to find solutions to discrete equations. New and effective methods

have been developed in the Fourier domain to find localized and stationary and travelling

wave pulse solutions to the governing both continuous and discrete equations. These meth-

ods are described in detail later in this report. The methods are robust and apply to a variety

of equations; there is no need for the equations to be integrable. Travelling wave solutions

pose certain difficulties in discrete problems. Unlike continuous equations, in general one

does not expect to be able to find “uniformly” travelling soliton wave solutions to discrete

equations. But over short scales we find that approximate travelling optical pulses can be

obtained; they persist and are stable over the experimental regime. We have applied the

above analysis to a waveguide array which is a discrete diffraction managed system. Us-

ing discrete Fourier methods we have obtained a nonlocal integral equation which governs

the wave propagation in the discrete system and have found a class of discrete diffraction

managed solitons as special solutions of this system. The theory has also been extended to
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include vector discrete systems and the interaction effects of travelling discrete solitons have

been analyzed. We have found that discrete constant and diffraction managed NLS equa-

tions and their vector analogues exhibit novel soliton propagation and interaction properties.

By appropriately modifying the waveguide properties, one can change the control properties

of soliton interactions and switching characteristics. This work was pulished in: “Discrete

spatial solitons in a diffraction managed nonlinear waveguide array: a unified approach”,

M.J. Ablowitz and Z. Musslimani, Physica D, 184, (2003) 276; “Discrete scalar and vector

diffraction-managed nonlinear Schrödinger equations”, M. J. Ablowitz, Z. Musslimani, Non-

linear Physics: Theory and Experiment. II, Eds. M.J. Ablowitz, M. Boiti, F. Pempinelli and

B. Prinari, 319, World Scientific, Singapore, 2003 and “Nonlinear waves and (interesting)

applications”, M.J. Ablowitz, T.Hirooka, and Z. Musslimani, Nonlinear dynamics from lasers

to butterflies, Eds. R. Ball and N. Akhmediev, World Scientific, 2003.

When the lattice system varies slowly in the transverse direction (y, below), we have

derived new asymptotic multidimensional systems from Maxwell’s equations. When the

wavelength of the transverse modulation is much larger than the period of the longitudinal

grating, the dynamics of wave propagating in such media was found to be governed by a

semi-continuous NLS equation with the addition of an anomalous/normal bulk diffraction

term and an external “optical trapping potential”. The equation is given by

i
∂An

∂z
+ D(An+1 + An−1) + γ

∂2An

∂y2
+ Vn(y)An + a|An|

2An = 0 (3)

where An is the slowly varying envelope of the electromagnetic field fields at site n, D is

the diffraction coefficient, γ is constant, Vn(y) is related to the varying transverse index of

refraction and a is the self-phase coefficient. Equation (3) describes wave propagation in

a multidimensional transversely modulated optically induced waveguide array. Using our

new numerical techniques (described later in this report) we find localized modes and we

established that they are stable. This work was published in: “Wave dynamics in optically

modulated waveguide arrays”, M.J. Ablowitz, K. Julien, Z. Musslimani and M. Weinstein,
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Physical Review E 71 (2005), 055602.

In two-dimensional photonic lattice applications, a nonlinear Schrödinger equation with

an external potential, derivable from Maxwell’s equations, is the governing equation. Re-

cently we have begun a collaboration with faculty in the Electrical Engineering Department

at the University of Colorado. They have been constructing defect and dislocated photonic

lattice systems in the laboratory. By a defect we mean that only one or two lattice sites

are affected by either removing a small number of sites or enhancing the amplitude of these

sites. On the other hand a dislocated photonic lattice system has one line of sites merging

with another (see e.g. Fig. 6 -left) or a row pinching off etc. These dislocation structures

are typical of what is often seen in nature. Remarkably, using our newly developed numer-

ical methods we can find localized modes to the underlying nonlinear systems. It strongly

suggests that localized pulses can propagate in complex lattice environments.

Figure 6: Left: contour plot of a dislocated two-dimensional lattice: the center vertical array

of lattice cells splits into two separate arrays (“edge dislocation”). Right: contours of a

soltion solution on this dislocated lattice.

In our recent work: “Solitons in two-dimensional lattices possessing defects, dislocations

and quasicrystal structures”, M. J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, 2006,
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which was recently accepted by Physical Review E, Rapid Communications, we constructed

by computational means, nonlinear localized pulses for a range of photonic lattices. The

contours of a typical soliton solution on a dislocated lattice is depicted in Fig. 6 -right. To

date most investigators have considered regular lattices. In our research we have considered

irregular background lattices which have localized defects, edge dislocations such as the one

mentioned above where two sequences of lattice maximum merge into one, and quasi-crystal

lattice backgrounds. Our calculations show that we can obtain localized modes in all these

cases. Potential applications involve beam management, pulse shaping, optical switching

and the development of logic devices.

Nonlinear optics: multi-dimensional pulse propagation in χ(2) optical materials

In many applications the leading nonlinear polarization effect in an optical material is

quadratic; they are referred to as “χ(2)” materials. We have found that in multidimensional

nonresonant χ(2) materials, the nonlinear equation governing the slowly varying envelope of

quasi-monochromatic wave trains is not the NLS equation but rather a coupled nonlinear

system involving both the optical field and mean terms. We call these equations NLSM

systems (M stands for the mean contribution). In water waves similar scalar systems were

derived in 1969 by Benney and Roskes. A few years later, a special case of this system was

found to be integrable. The latter system is frequently referred to as the Davey-Stewartson

(DS) system.

In χ(2) optical materials, we derived both scalar and a vector NLSM systems directly

from Maxwell’s equations. The vector NLSM systems generalize to multidimensions the

well known 1+1 vector NLS equations. Such vector multidimensional systems are new in

mathematical physics; there is no analog in water waves. Investigations of the scalar NLSM

system has shown that localized optical pulse solutions can be constructed. These localized

pulses are induced by their interaction with mean terms that have nontrivial boundary

values. Hence the localized pulses are boundary induced. Such solutions are similar to the

16



ones that are known to exist for the Davey-Stewartson system; however in the optics problem

the system is not integrable. These findings suggest that stable localized multidimensional

pulses are a reproducible feature of these NLSM systems. In the future we will extend

our analysis to spatial nonlinear optics where the boundary behavior can be more readily

controlled. Potential applications using such pulses include beam steering, pulse shaping,

terrahertz imaging and spatio-temporal light bullets.

In our recent published research,“Wave collapse in nonlocal nonlinear Schrödinger sys-

tems”, M.J. Ablowitz, I. Bakirtas, and B. Ilan, Physica D 207 (2005), 230, we found that

the χ(2) optical system could admit wave collapse for a suitable ranges of parameter and ini-

tial data. This indicates that intense optical pulses can occur in these systems. We believe

that experimentalists will be able to observe this phenomena since the analagous situation

was recently observed in cubic nonlinear media. These theoretical results indicate that in

this range of parameters researchers must be careful in their experiments not to damage the

underlying optical crystal.

The NLSM system of equations possesses nonlocal-nonlinear coupling between a dynamic

field that is associated with the first harmonic (with a “cascaded” effect from the second har-

monic), and a static field that is associated with the mean term (i.e., the zero’th harmonic).

The general NLSM system that we analyzed can be written in the following non-dimensional

form,

iuz +
1

2
(σ1uxx + uyy) + σ2u|u|

2 − ρuφx = 0, (4)

φxx + νφyy = (|u|2)x ,

where u(x, y, z) corresponds to the field associated with the first-harmonic, φ(x, y, z) corre-

sponds to the mean field, σ1 and σ2 are ±1, and ν and ρ are real constants that depend on

the physical parameters. It can be proven that the system (4) can admit collapse of localized

waves when σ1 = σ2 = 1 and ν > 0. In that case, the above governing equations reduce to
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iuz +
1

2
∆u + |u|2u − ρuφx = 0 , (5a)

φxx + νφyy = (|u|2)x , (5b)

where ν > 0 and ρ is real, and the initial conditions are u(x, y, 0) = u0(x, y), φ(x, y, 0) =

φ0(x, y), such that equation (5b) is satisfied at z = 0, i.e., φ0,xx + νφ0,yy = (|u0|
2)x.

It is important to note that our numerical solutions indicate that the solution tends to the

steady state mode found from the above NLSM system (5). The steady solution is obtained

by assuming a solution of the form u(x, y, z) = F (x, y)eiλz and φ(x, y, z) = G(x, y), where

F and G are real functions and λ is a positive real number. Substituting this ansatz into

equations (5) gives

−λF +
1

2
∆F + F 3 − ρFGx = 0 , (6a)

Gxx + νGyy = (F 2)x . (6b)

We are currently investigating whether localized optical pulses can be obtained when we

have an underlying optical lattice. We are also investigating the possibility of light navigation

and optical switching.

New numerical methods to find localized solutions to nonlinear equations

Localized states, or solitary waves, in nonlinear media are of considerable interest to the

scientific community and are especially important in optical sciences and fluid mechanics.

They have been demonstrated to exist in a wide range of physical systems both in continuous

and discrete setting. Such nonlinear modes usually form due to balance between diffraction or

dispersion and nonlinearity. A central issue for these types of nonlinear guided waves is how

to compute the localized states which generally involve solving nonlinear partial differential

or difference equations.

To date, various techniques have been used such as shooting and relaxation techniques

and methods to find nonlinear modes (fundamental and higher order excited states) which
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utilize the concept: a solitary wave forms when the optical field induces a waveguide structure

or self-induced potential well via the nonlinearity and “self-traps”.

Another method, introduced by Petviashvili in 1976, constructs localized solutions to

nonlinear systems by transforming to Fourier space and determining a “convergence factor”

based upon the homogeneity of the nonlinearity. It was first used to find solutions of the two-

dimensional Korteweg-deVries equation (usually referred to as the Kadomtsev-Petviashvili

equation). Recently we have significantly extended this method to find localized solutions

in a wide variety of interesting systems – e.g. dispersion managed and diffraction managed

discrete systems (see discussion earlier in this report and “Discrete spatial solitons in a

diffraction managed nonlinear waveguide array: a unified approach”, M.J. Ablowitz and

Z. Musslimani, Physica D, 184, (2003) 276-303). However, Petviashvili’s method usually

converges only when underlying equation has a fixed power nonlinearity; i.e. when it has a

fixed homogeneity. But, many problems involve nonlinearities with different homogeneities,

such as for example, saturable nonlinearity in nonlinear Schrödinger type systems or many

types of coupled nonlinear systems.

In recent work we have developed a new numerical scheme to compute localized states,

or solitons, in nonlinear waveguides for more general systems than those with a single fixed

nonlinear term. The idea behind the method is to transform the underlying equation gov-

erning the soliton, such as a nonlinear Schrödinger-type equation, into Fourier space and

determine a nonlinear nonlocal integral equation coupled to an algebraic equation. The al-

gebraic equation is solved by numerical nonlinear equation root finding techniques and the

integral equation is solved iteratively. The coupling prevents the numerical scheme from

diverging. The nonlinear guided mode is then determined from a convergent fixed point

iteration scheme. The method works when we have relatively simple nonlinearities as in the

NLS equation and more difficult systems where the nonlinearity arises in a complex man-

ner. We have considered numerous cases such as the defect and dislocated photonic lattices
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and optically modulated wave guide arrays mentioned above. The method has proven to

be extremely powerful. This work was published in: “A spectral renormalization method

to compute nonlinear self-localized solutions to nonlinear systems”, M.J. Ablowitz and Z.

Musslimani, Optics Letters 30 (2005), 2140.

The essence of the method is to: i) transform the underlying equation governing the soli-

ton into Fourier space (this part is the same as Petviashvili (1976); ii) re-normalize variables

and iii) determine an algebraic system which is coupled to a nonlinear integral equation. This

leads to a nonlinear nonlocal integral equation (or system of integral equations) coupled to

an algebraic equation (or system). The coupling is found to prevent the numerical scheme

from diverging. We have found the method of coupling to be effective and straight forward

to implement. The localized pulse is determined from a convergent fixed point iteration

scheme.

We describe the method using the following scalar nonlinear Schrödinger like equation

i
∂U

∂z
+ ∇2U + V (x)U + N

(
|U |2, a(x)

)
U = 0, (7)

where z is the propagation direction; N is the nonlinearity that can depend on both intensity

and inhomogenieties a(x) and V (x) models an optical lattice. Here, ∇2 = ∂2

∂x2 + ∂2

∂y2 . A

special class of soliton solution can be constructed by assuming U(x, z) = u(x; µ)eiµz where

µ is the propagation constant or the soliton eigenvalue. Substituting the above ansatz into

equation (7) we get

−µu + ∇2u + V (x)u + N
(
|u|2, a(x)

)
u = 0 . (8)

This is a nonlinear eigenvalue problem for u and µ which is suplemented with the following

boundary conditions:

u −→ 0 as |r| −→ +∞

where r2 = x2+y2. The spectral renormalization (SPRZ) scheme is based on Fourier analysis

which transforms equation (8) into nonlocal equation which is solved using an iteration
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scheme. First we define the Fourier transform F and its inverse F−1

û(k) = F [u(x)]

=

∫ +∞

−∞

∫ +∞

−∞

u(x)e−i(kxx+kyy)dx , (9)

u(x) = F−1[û(k)]

=
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

û(k)e+i(kxx+kyy)dk , (10)

where dx = dxdy and dk = dkxdky. Applying the Fourier transform on equation (8) leads

to

û(k) =
F [V u] + F [N(|u|2, a(x))u]

µ + |k|2
. (11)

The idea underlying this method is to construct a condition which limits the amplitude

under iteration from either growing without bound or tending to zero. This is accomplished

by introducing a new field variable (i.e. renormalizing the field variable)

u(x) = λw(x) , û(k) = λŵ(k) , (12)

where λ �= 0 is a constant to be determined. Then function ŵ satisfies

ŵ(k) =
1

λ

F [λV w] + F [N(λ2|w|2, a(x))w]

µ + |k|2
≡ Qλ[ŵ(k)] . (13)

Multiplying equation (13) by ŵ∗(k) and integrating over the entire (kx, ky) space we find the

relation ∫ +∞

−∞

|ŵ(k)|2dk =

∫ +∞

−∞

ŵ∗(k)Qλ[ŵ(k)]dk . (14)

Equation (14) provides an algebraic condition on the constant λ which, in general we denote

by

G(λ) = 0 . (15)

To obtain the desired solution, we iterate Eqs. (13) and (15) as follows:

ŵm+1(k) =
1

λm

F [λmV wm] + F [N(λ2
m|wm|

2, a(x))λmwm]

µ + |k|2
, (16)
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G(λm) = 0 , (17)

where a localized initial function w0(x) begins the iteration procedure. The scheme is rela-

tively insensitive to the initial function.

Note that it is possible that the algebraic equation (17) can admit more than one “root”

or even complex solutions. In that case, one might need to exclude some solutions depending

upon the physics at hand. Knowing the weakly nonlinear limit is very useful in this regard.

Thus the idea behind the method is to transform the underlying equation governing the

localized mode, such as a nonlinear Scrödinger-type equation, into Fourier space, renormalize

variables and then determine a nonlinear nonlocal integral equation coupled to an algebraic

equation. The coupling is found to prevent the numerical scheme from diverging. The

nonlinear guided mode is then obtained from a convergent fixed point iteration scheme.

This method has already found wide applications in nonlinear optics, water waves, internal

waves and related fields such as Bose-Einstein condensation.
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Discrete spatial solitons in a diffraction-managed nonlinear
waveguide array: a unified approach

Mark J. Ablowitz∗, Ziad H. Musslimani
Department of Applied Mathematics, University of Colorado at Boulder, Campus Box 526, Boulder, CO 80309-0526, USA

Abstract

Localized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics. They
are found in both continuous and discrete media. In this paper, a unified method is presented which is used to describe the
propagation of linearly polarized light as well as two polarization modes in a diffraction-managed nonlinear waveguide array.
In the regime of normal diffraction, both stationary and moving discrete solitons are analyzed using the Fourier transform
method. The numerical results based on a modified Neumann iteration scheme as well as renormalization techniques, indicate
that traveling wave solutions are unlikely to exist. An asymptotic equation is derived from first principles which governs the
propagation of electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This
is termed diffraction management. The theory is then extended to the vector case of coupled polarization modes.
© 2003 Elsevier B.V. All rights reserved.

Keywords: Nonlinear waves; Discrete spatial soliton; Diffraction

1. Introduction

Dynamics of discrete nonlinear systems dates back to the mid-fifties when Fermi, Pasta and Ulam (FPU) studied
dynamics of nonlinear springs [1]. Apart from the fact that the work of FPU motivated the discovery of solitons,
it also stimulated considerable interest in the study of discrete nonlinear media which possesses self-confined
structures (discrete solitary waves). Such waves are localized modes of nonlinear lattices that form when “discrete
diffraction” is balanced by nonlinearity. In physics a soliton usually denotes a stable localized wave structure, i.e.,
solitary wave. We shall use the term soliton in this broader sense (i.e., they do not necessarily interact elastically).
Discrete solitons have been demonstrated to exist in a wide range of physical systems [2–5]. For example, atomic
chains [6,7] (discrete lattices) with an on-site cubic nonlinearities, molecular crystals [8], biophysical systems [9],
electrical lattices [10], and recently in arrays of coupled nonlinear optical waveguides [11,12]. An array of coupled
optical waveguides is a setting that represents a convenient laboratory for experimental observations.

The first theoretical prediction of discrete solitons in an optical waveguide array was reported by Christodoulides
and Joseph [13]. Later, many theoretical studies of discrete solitons in a waveguide array reported switching, steering
and other collision properties of these solitons [14–19] (see also the review papers [20,21]). In all the above cases, the
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localized modes are solutions of the well known discrete nonlinear Schrödinger (DNLS) equation which describes
beam propagation in Kerr nonlinear media (according to coupled mode theory). Discrete bright and dark solitons
have also been found in quadratic media [22], in some cases, their properties differ from their Kerr counterparts
[23].

In fact, the DNLS equation (and its “cousins” such as diffraction-managed discrete nonlinear Schrödinger
(DM-DNLS) or DNLS with a potential such as discrete BEC) is “asymptotically universal”. Namely it is the
discrete equation which emerges from either a weakly nonlinear Helmholtz equation with a suitable “potential” or
a weakly nonlinear continuous NLS equation with a suitable potential where the following terms are in balance:

(i) Slow variation in either distance (waveguide array) or time (for BEC);
(ii) linear terms induced by a potential which can be viewed as asymptotically separated localized potentials

(sometimes called the “tight binding approximation”);
(iii) nonlinearity.

It took almost a decade until self-trapping of light in discrete nonlinear waveguide array was experimentally
observed [11,12]. When a low intensity beam is injected into one or a few waveguides, the propagating field spreads
over the adjacent waveguides hence experiencing discrete diffraction. However, at sufficiently high power, the beam
self-traps to form a localized state (a soliton) in the center waveguides. Subsequently, many interesting properties
of nonlinear lattices and discrete solitons were reported. For example, the experimental observation of linear and
nonlinear Bloch oscillations in: AlGaAs waveguides [24], polymer waveguides [25] and in an array of curved
optical waveguides [26]. Discrete systems have unique properties that are absent in continuous media such as the
possibility of producing anomalous diffraction [27]. Hence, self-focusing and defocusing processes can be achieved
in the same medium (structure) and wavelength. This also leads to the possibility of observing discrete dark solitons
in self-focusing Kerr media [28]. The recent experimental observations of discrete solitons [11] and diffraction
management [27] have motivated further interests in discrete solitons in nonlinear lattices. This includes the newly
proposed model of discrete diffraction-managed nonlinear Schrödinger equation [29,30] whose width and peak
amplitude vary periodically, optical spatial solitons in nonlinear photonic crystals [31–33] and the possibility of
creating discrete solitons in Bose–Einstein condensation [34]. Also, recently, it was shown that discrete solitons in
two-dimensional networks of nonlinear waveguides can be used to realize intelligent functional operations such as
blocking, routing, logic functions and time gating [35–38]. In addition, spatiotemporal discrete solitons have been
recently suggested in nonlinear chains of coupled microcavities embedded in photonic crystal structures [39].

In this paper, we introduce the Fourier transform method to analyze both stationary and moving solitons in
nonlinear lattices. The essence of the method is to transform the DNLS equation governing the solitary wave into
Fourier space, where the wave function is smooth, and then deal with a nonlinear nonlocal integral equation for which
we employ a rapidly convergent numerical scheme to find solutions. A key advantage of the method is to transform a
differential-delay equation into an integral equation for which computational methods are effective. Mathematically,
the method also provides a foundation upon which an analytic theory describing solitons in nonlinear lattices can
be constructed. We shall consider in this paper two important models: the DNLS equation and the DM-DNLS
equation. Applying this method to the first model, shows that approximate traveling solitons possess a nontrivial
nonlinear “chirp”. Moreover, our results (both numerical and analytical) indicate that, unlike the integrable case
[40], a continuous exact traveling wave (TW) solution is unlikely to exist [41]. In the limit of small velocity,
we develop a fully discrete perturbation theory and show that slowly but not uniformly moving discrete solitons
are indeed “chirped”. An asymptotic equation is derived from first principles which governs the propagation of
electromagnetic waves in a waveguide array in the presence of both normal and anomalous diffraction. This is
related to the second model of DM-DNLS equation. The theory is then extended to the vector case of coupled
polarization modes.



278 M.J. Ablowitz, Z.H. Musslimani / Physica D 184 (2003) 276–303

The new results of this paper can be summarized as follows:

• The derivation of the DNLS equation based on asymptotic multiple scale theory starting, e.g., from the Helmholtz
equation.

• The derivation of the scalar DM-DNLS equation from first principles. Using multiple scale asymptotic theory it
is found that the most general equation that governs the dynamics of light propagating in a diffraction-managed
waveguide array is

i
∂En

∂z
+ C(z)En+1 + C∗(z)En−1 + ν|En|2En = 0,

where En is the slowly varying envelope of the electric field at site n, ν a constant that measures the nonlinear
refractive index, C(z) a complex periodic function and ∗ the complex conjugate.

• The derivation from first principles of the vector DM-DNLS equation which includes self and cross-phase
modulation as well as four-wave mixing (FWM) terms:

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (|An|2 + b1|Bn|2)An + η1B

2
nA

∗
n = 0,

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (|Bn|2 + b2|An|2)Bn + η2A

2
nB

∗
n = 0,

where An, Bn are the slowly varying envelopes of the two polarization fields at site n, b the cross-phase modulation
coefficient and η the strength of FWM term. We note that even the derivation of the constant diffraction case is
new.

• A numerical scheme based on renormalization of suitable norms to solve the nonlinear integral equation governing
solitons is proposed.

• Based on asymptotic and numerical evidence, we conclude that it is unlikely that a uniformly moving TW exists
for the DNLS equation.

• The derivation of a new discrete nonlinear Schrödinger type equation.

The paper is organized as follows. In Section 2 we formulate the basic physical model and describe the asymptotic
analysis that leads to the DNLS equation. Linear propagation is discussed in both normal and anomalous regimes.
In Section 3 we introduce the discrete Fourier transform method to find soliton solutions and show how one can
obtain approximate TW solutions. Two numerical schemes are introduced. The first is based on modified Neumann
iteration and the second on renormalization. Analytical analysis of TWs based on asymptotic theory is provided in
Section 4 which further support our conjecture that exact TWs may not exist. Next, we set up in Section 5 a physical
model that describes the propagation of two interacting optical fields in a nonlinear waveguide array with varying
diffraction. Moreover, the general scalar as well as vector equation governing diffraction management is derived
from first principles based on asymptotic theory.

2. Waveguide array

As mentioned above, an array of coupled optical waveguides is a setting that represents a convenient laboratory
for experimental observations and theoretical predictions. Such system (see Fig. 1) is typically composed of three
layers of AlGaAs material: a substrate with refractive index n0, a core with higher index (n1) and surface with
index n0. By etching the surface of the waveguide, one forms a periodic structure which is called a waveguide
array. Self-trapping of light in the “y” (i.e., vertical) direction is possible (even in the linear regime) by virtue of
the principle of total internal reflection. On the other hand, the beam will diffract in the “x”-direction unless it is
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n

Z d

Fig. 1. AlGaAs waveguide structure. It is composed of three layers of AlGaAs material: a substrate with refractive index n0, a core with higher
index (n1) and surface with index n0. By etching the surface of the waveguide, one forms a periodic structure which is called a waveguide array.

balanced by nonlinearity. In the following we describe the propagation of light in such a periodic structure both in
the linear and nonlinear regimes.

2.1. Linear and nonlinear propagation

If the full width at half maximum (FWHM), τ, of the optical field is small compared to the distance, d, between
adjacent waveguides, then the propagating beams across each single waveguide do not “feel” each other. Therefore,
the amplitude of each beam evolves independently according to the linear wave equation:

d2ψ0

dx2
+ [k2

0f
2
0 (x) − λ2

0]ψ0 = 0, (2.1)

where k0 is the wavenumber of the optical field in vacuum, f 2
0 the refractive index of a single waveguide and

λ0 the lowest eigenvalue (propagation constant) that corresponds to the ground state ψ0 (a bell shape eigenfunc-
tion). In this respect we have assumed that a single waveguide supports only a single mode. The more intricate
situation of multimode waveguide is also possible in which case λ0 → λj and ψ0 → ψj where j is the number
of modes occupied by a single waveguide. On the other hand when τ is on the order of d or larger, then there
is a significant overlap between modes of adjacent waveguide (see Fig. 2). In either case, the beam’s amplitude
is not constant in z anymore. Moreover, when the intensity of the incident beam is sufficiently high then the
refractive index of the medium will depend on the intensity which for Kerr media is proportional to the inten-
sity. In this case, the evolution of the total field’s amplitude � follows from Maxwell equations (see details in
Section 5.3):(

∂2

∂z2
+ ∂2

∂x2

)
� + (k2

0f
2(x) + δ|�|2)� = 0, (2.2)

where f 2(x) represents the refractive index of the entire structure and δ a small parameter to be determined later.
If the overlap between adjacent modes is “small”, which is valid in the regime µ ≡ τ/d � 1, we expect the
power exchange to be slow. By introducing a slow scale Z = εz (ε is a small parameter to be determined later) we
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No Overlap

En En+1En-1

With Overlap

En En+1En-1

Fig. 2. Cross-section of the waveguide array and mode overlap.

approximate the solution to Eq. (2.2) as a multiscale perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(x) exp(−iλ0z). (2.3)

In this notation, ψm(x) = ψ0(x − md) and f 2
m(x) = f 2

0 (x − md). Substituting the ansatz (2.3) into Eq. (2.2), we
find

+∞∑
m=−∞

⎡⎣ − 2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2
+

(
d2ψm

dx2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ δ
∑

m′,m′′
EmEm′E∗

m′′ψmψm′ψ∗
m′′

⎤⎦ e−iλ0z = 0. (2.4)

Using Eq. (2.1) in the above equation, multiplying Eq. (2.4) by ψ∗
n exp(iλ0z) and integrating over x yields the

following:

+∞∑
m=−∞

⎡⎣ (
−2iελ0

∂Em

∂Z
+ ε2 ∂2Em

∂Z2

) ∫ +∞

−∞
dx ψmψ∗

n + k2
0Em

∫ +∞

−∞
dx 	f 2

mψmψ∗
n

+ δ
∑

m′,m′′
EmEm′E∗

m′′

∫ +∞

−∞
dx ψ∗

nψmψm′ψ∗
m′′

⎤⎦ = 0. (2.5)

Here, 	f 2
m ≡ f 2 − f 2

m which measures the deviation of the total refractive index from each individual waveguide.
As mentioned earlier, the overlap integral between adjacent waveguides is an important measure in determining the
dynamic evolution of the modes. With this in mind we shall assume that the overlap integrals appearing in Eq. (2.5)
can be approximated by∫

dx ψmψ∗
m+N = aNεN,

∫
dx 	f 2

m|ψm|2 = c0ε,

∫
dx 	f 2

mψ∗
mψm±1 = c1ε. (2.6)

In order to understand the idea behind this scaling, we will assume that the mode at waveguide m can be modeled
by

ψm(x) = sech κ(x − md ), (2.7)
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where κ = 1/τ and τ is the FWHM. The reason for this choice is only to simplify the analysis. In fact, the real
modes of a step index waveguide has exponential behavior which is close to a sech-like mode. Other choices of
eigenfunctions with different exponential decays are possible, e.g., ψm(x) = exp[−(x − md)2/τ2] but the basic
ordering mechanism remains the same. A straightforward calculation shows that∫ +∞

−∞
dx ψmψ∗

n = c e−|n−m|/µ (2.8)

with c being a constant of order 1. Since µ � 1, then the choice ε = exp(−1/µ) provides a measure for the order of
magnitude for the overlap integral. Restricting the sum in Eq. (2.5) to nearest neighbors, i.e., m = n, n ± 1 (which
contribute to the order ε equation) and assuming that the only order 1 contribution comes from the nonlinear term
is when m = n = m′ = m′′ and that∫ +∞

−∞
dx |ψn|4 = gnl,

we find that to O(ε) the nonlinear evolution of En is given by

−2iλ0a0
∂En

∂Z
+ k2

0c0En + k2
0c1(En+1 + En−1) + gnl|En|2En = 0, (2.9)

where we have taken δ = ε to ensure maximal balance. By defining a new variables z̃ = Z/(2λ0a0), k2
0c1 = C,

En = Ẽ∗
n exp(−ik2

0c0z̃) we find that Ẽn satisfies (dropping the tilde)

i
∂En

∂z
+ C(En+1 + En−1) + gnl|En|2En = 0. (2.10)

To put the DNLS equation in dimensionless form, we define

En =
√

P∗φn exp(2iCz), z′ = z

znl
(2.11)

with P∗ and znl being the characteristic power and znl the nonlinear length scale. Then φn satisfies

i
dφn

dz
+ 1

h2
(φn+1 + φn−1 − 2φn) + |φn|2φn = 0 (2.12)

with znlC = 1/h2 and znl = 1/(gnlP∗). In the DNLS equation there are two important length scales: the diffrac-
tion and nonlinear length scales, respectively, defined by LD ∼ 1/C and znl = 1/(gnlP∗). Solitons which are
self-confined and invariant structures are expected to form when LD ∼ znl.

2.2. New discrete nonlinear Schrödinger type equation

We begin as before with the nonlinear Helmholtz equation with modulated Kerr coefficient:(
∂2

∂z2
+ ∂2

∂x2

)
� + (k2

0f
2(x) + δ(x)|�|2)� = 0, (2.13)

where f 2(x) is defined before, and δ(x) measures the local change of nonlinear refractive index along the transverse
direction. Importantly, note that as compared to Eq. (2.2), we now assume the nonlinear coefficient to be a spatially
dependent function. Moreover, we shall assume here, that the nonlinear index change δ(x) is an odd function
relative to each waveguide (i.e., δ(x) → δ(x − nd) = −δ(−x + nd )). Following the reasoning outlined before, we
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approximate the solution to Eq. (2.13) via a multiscale perturbation series given in Eq. (2.3). In this case, the linear
part remains the same but the nonlinear contribution changes to

N =
+∞∑

m=−∞

∑
m′,m′′

EmEm′E∗
m′′δ(x)ψmψm′ψ∗

m′′ e−iλ0z. (2.14)

Multiplying Eq. (2.14) by ψ∗
n exp(iλ0z) and integrating over x yields the following:

I =
∫ +∞

−∞
dxNψ∗

n exp(iλ0z) =
+∞∑

m=−∞

∑
m′,m′′

EmEm′E∗
m′′

∫ +∞

−∞
dx δ(x)ψ∗

nψmψm′ψ∗
m′′ . (2.15)

Since δ(x) is an odd function then there is no on-site contribution, i.e.:

Im=m′=m′′=n = |En|2En

∫ +∞

−∞
dx δ(x)|ψn|4 = 0.

Therefore, the leading order contribution comes by setting m = n ± 1, m′ = m′′ = n; m = m′′ = n, m′ = n ± 1;
m = m′ = n, m′′ = n ± 1. The nonlinearity in each of the cases is

Im=n±1,m′=m′′=n = Im=m′′=n,m′=n±1 = ±|En|2En±1

∫ +∞

−∞
dx δ(x)ψ∗

n|ψn|2ψn±1,

Im=m′=n,m′′=n±1 = ±E2
nE

∗
n±1

∫ +∞

−∞
dx δ(x)|ψn|2ψnψ

∗
n±1.

The linear portion follows the same derivation as in Section 2.1 and we shall assume that the waveguide function
f 2(x) is O(ε), and Z = ε2z, δ(x) = O(ε). Combining all the linear and nonlinear terms, we find

−2iλ0a0ε
2 ∂En

∂Z
+ k2

0c0εEn + k2
0c1ε

2(En+1 + En−1) + 2Q1ε
2|En|2(En+1 − En−1)

+ Q2ε
2E2

n(E
∗
n+1 − E∗

n−1) = 0, (2.16)

where

a0 =
∫ +∞

−∞
dx |ψn(x)|2, c0ε =

∫ +∞

−∞
dx (f 2 − f 2

n )|ψn(x)|2,

c1ε
2 =

∫ +∞

−∞
dx (f 2 − f 2

n+1)ψn(x)ψn+1(x), Q1ε
2 =

∫ +∞

−∞
dx δ(x)|ψn(x)|2ψ∗

n(x)ψn+1(x),

Q2ε
2 =

∫ +∞

−∞
dx δ(x)|ψn(x)|2ψn(x)ψ∗

n+1(x).

By defining new variables z̃ = Z/(2λ0a0), k2
0c1 = C, En = Ẽ∗

n exp(−ik2
0c0z̃/ε), we find that Ẽn satisfies

i
∂Ẽn

∂z
+ C(Ẽn+1 + Ẽn−1) + 2Q1|Ẽn|2(Ẽn+1 − Ẽn−1) + Q2Ẽ

2
n(Ẽ

∗
n+1 − Ẽ∗

n−1) = 0. (2.17)

2.3. Diffraction properties of a waveguide array

In this section we consider the basic properties of discrete diffraction of a linear array of waveguides emphasizing
the recent discovery of anomalous diffraction [11]. However, we consider first propagation of light in bulk linear
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and homogeneous media which is governed by the linear Helmholtz equation:

∇2E + k2E = 0, ∇2 = ∂2

∂x2
+ ∂2

∂z2
, (2.18)

where E is the amplitude of the electric field. If we assume a solution of the form E = a exp[i(kzz + kxx)] then
we find kz = √

k2 − k2
x . In the paraxial approximation (kx/k � 1), the diffraction relation reads kz ≈ k − k2

x/2k.
Then the group velocity is defined by ∂kz/∂kx ≈ −kx/k which says that each transverse component kx travels at
different rates hence beam will diffract. A measure for the rate of diffraction is ∂2kz/∂k

2
x which for plane waves

is ≈−1/k < 0. Since all plane waves have this definite negative sign for diffraction, it is referred to as normal
diffraction regime. Note that this is exactly the opposite from dispersion in which the normal regime is positive.
Next, we discuss linear propagation of light in a waveguide array. As mentioned in Section 2.1, the dynamics of
the beam’s amplitude En(z) at waveguide number n follows Eq. (2.10). In this case, when an extended state or cw
mode of the form

En(z) = A exp[i(kzz − nkxd)] (2.19)

is inserted into Eq. (2.10) it yields the following diffraction relation:

kz = 2C cos (kxd). (2.20)

In close analogy to the definition of dispersion, discrete diffraction is given by k′′
z = −2Cd2 cos (kxd). Since

the diffraction relation is periodic in Fourier space, we shall restrict the discussion for wavenumbers in the in-
terval |kxd| ≤ π. In that region, the diffraction is normal for wavenumbers kx satisfying −π/2 < kxd ≤
π/2 (k′′

z < 0) and is anomalous in the range π/2 < |kxd| ≤ π. Moreover, contrary to the bulk case, diffrac-
tion can even vanish when kxd = ±π/2. In practice, the sign and value of the diffraction can be controlled and
manipulated by launching light at a particular angle γ or equivalently by tilting the waveguide array. The rela-
tion between kx, kz and the tilt angle is given by sin γ = kx/k. This in turn allows the possibility of achieving
a “self-defocusing” (with positive Kerr coefficient) regime which leads to the formation of discrete dark soli-
tons [28]. To understand more about diffraction management we consider three typical cases for which light
enters the central waveguide array at different angles, say, kxd = 0, π/2 and π. When kxd = 0 then light tun-
nels between adjacent waveguides giving rise to discrete diffraction. The phase front in this case has a concave
(negative) curvature. On the other hand, if kxd = π, then diffusion of light still occurs but this time the phase
front has convex (positive) curvature. Finally, at kxd = π/2 the diffraction vanishes (even though light can cou-
ple to different waveguides) and in the absence of any higher order diffraction the phase front looks almost flat
(see Fig. 3).

3. Stationary and moving solitons: Fourier transform method

In this section, we introduce a new method to obtain both stationary and moving solitons for the DNLS equation.
The essence of the method is to transform the DNLS equation governing the solitary wave into Fourier space, where
the wave function is smooth, and then deal with a nonlinear nonlocal integral equation for which we employ a rapidly
convergent numerical scheme to find solutions. A key advantage of the method is to transform a differential-delay
equation into an integral equation for which computational methods are effective (see also Refs. [42,43]). Math-
ematically, the method also provides a foundation upon which an analytic theory describing solitons in nonlinear
lattices can be constructed. Moreover, the method is applicable to continuous problems.
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Fig. 3. Diffraction relation (top left) showing three typical examples of diffraction scenarios: (A) Normal in which the phase front is concave;
(B) vanishing diffraction in which the phase front is almost flat; (C) anomalous diffraction with convex phase front.

3.1. Stationary solutions

We look for a stationary solution to Eq. (2.12) in the form

φn = Fn exp(iωz) (3.1)

with Fn being real valued function and ω a real eigenvalue. Then Fn satisfies

−ωFn + 1

h2
(Fn+1 + Fn−1 − 2Fn) + F3

n = 0. (3.2)

Eq. (3.2) can be solved using Newton iteration scheme by which one gives initial values for F0 and F1 and then
iterate. However, our aim here is to provide a different approach based on the Fourier transform method in which a
discrete equation is transformed into an integral equation. To this end, we use the transform defined by

û(w, t) =
+∞∑

n=−∞
unw

−n (3.3)

with the inverse transform given as

un(t) = 1

2πi

∮
C0

û(w, t)wn−1 dw, (3.4)

where w is a complex number and C0 the unit circle. If we let w = eiqh then Eq. (3.4) coincides with the discrete
Fourier transform

û(q) =
+∞∑

m=−∞
um e−iqmh, um = h

2π

∫ π/h

−π/h

û(q) eiqmh dq. (3.5)

Applying the discrete Fourier transform in Eq. (3.2) leads to the following nonlinear integral equation:

F̂ (q) = h2

4π2Ω(q)

∫∫
D2

dq1 dq2F̂ (q1)F̂ (q2)F̂ (q − q1 − q2) ≡ Kω[F̂ (q)], (3.6)
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where D
2 = D × D and D = [−π/h, π/h]. Here, Ω(q) = ω + 2(1 − cos (hq))/h2 corresponds to the fre-

quency of the linear excitations. The important conclusion is that the soliton can be viewed as a fixed point of an
infinite-dimensional nonlinear functional. To numerically find the fixed point, one might start with an initial guess
for F̂ (q) and iterate Eq. (3.6) using

F̂n+1(q) = Kω[F̂n(q)], n ≥ 0. (3.7)

However, if the norm of F̂ (q) is “large” then the iteration based on Eq. (3.7) will diverge while it will converge
to zero for small norm. This is because the right hand side of Eq. (3.7) has degree 3 whereas the left hand side is
suggested of degree 1. To overcome this difficulty, we employ instead, a modified Neumann iteration scheme and
consider a new equation

F̂n+1(q) =
(

〈F̂n, F̂n〉
〈F̂n,Kω〉

)3/2

Kω[F̂n(q)], n ≥ 0, (3.8)

where the inner product 〈·〉 is defined by

〈f̂ , ĝ〉 ≡
∫
D

f̂ (q)ĝ(q) dq. (3.9)

The factor 3/2 is chosen to make the right hand side of Eq. (3.8) of degree 0 which yields convergence of the scheme
[42,43]. When Fm is real and even, it implies that F̂ (q) is also real. Clearly when F̂n(q) → F̂s(q) as n → ∞ then
〈F̂n, F̂n〉/〈F̂n,Kω〉 → 1 and in turn F̂s(q) will be the solution to Eq. (3.6). Fig. 4 shows a typical solution to (3.6)
both in the Fourier domain (Fig. 4a) and in physical space (Fig. 4b) for different values of lattice spacing h. The
proposed scheme converges linearly as can be seen in Fig. 5 where the relative error between successive iterations
EF

n defined by

EF
n = log |En − En−1| (3.10)

is plotted for different values of lattice spacing h and typical parameter value ω = 1. In order to shed more light on
the property of the solution, we will consider for comparison the IDNLS given by [40]

i
∂un

∂t
+ 1

h2
(un+1 + un−1 − 2un) + |un|2(un+1 + un−1) = 0, (3.11)
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Fig. 4. Mode profiles obtained with ω = 1 in Fourier space (a), for h = 0.5 (solid), h = 1 (dashed) and h = 1 (dashed-dotted) for the integrable
case. (b) Soliton shape in physical space for h = 0.5 (solid), h = 1 (dashed) and for the integrable case at h = 1 (dashed-dotted).
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Fig. 5. Plot of the relative error EF
n between successive iterations for h = 0.5 (solid) and h = 1 (dashed) with ω = 1.

which possesses an exact TW solution of the form

un(t) = sin (h)

h
sech(nh − Vt) exp[−i(βnh − ωt)], (3.12)

ω = 2

h2
[ cos (βh) cos (h) − 1], V = − 2

h2
sin (βh) sin (h). (3.13)

Consider first the case when the soliton is stationary (V = 0). The method of discrete Fourier transform rapidly
converges when applied to Eq. (3.11) and agrees with Eq. (3.12) (see Fig. 4). What is also remarkable about
the solution (3.12) is that it forms a continuous function, i.e., the solution is not only defined at the grid pints
n = 0, ±1, ±2, . . . but also it can be defined off the grid points (e.g., n = 1.234). This suggests that Eq. (3.11)
can be embedded in a larger class of differential-delay equations in which the discrete variable n can be consid-
ered as a continuous variable without affecting the solution. With this extension in mind, we could search for a
stationary solutions for Eq. (3.11) (with n ≡ ξ being a continuous variable) by applying the continuous Fourier
transform:

û(q) =
∫ +∞

−∞
u(ξ) e−iqξ dξ, u(ξ) = 1

2π

∫ +∞

−∞
û(q) eiqξ dq, (3.14)

which can be obtained from Eq. (3.5) by taking the limit h → 0 with fixed nh = ξ. The important question we ask
is: does a continuous stationary solution exist for the DNLS equation as well? To partially answer this question we
applied the continuous Fourier transform in Eq. (3.2) (to find stationary solution). The only change from Eq. (3.6)
is that D

2 → R
2. We found that the numerical scheme based on (3.8) does not converge which indicates that a

continuous stationary localized solution to the DNLS may not exist. On the other hand we did find numerically that
a continuous Fourier transform solution to Eq. (3.11) converged rapidly. As we will see later, this will have a direct
impact on the TW problem.

3.2. Remarks

Below we make some comments on the proposed scheme for discrete systems outlining its usefulness.

• The numerical scheme based on Eq. (3.8) can be replaced by one in which the convergent factors belong to L1:

‖F̂‖1 ≡
∫
D

F̂ (q) dq. (3.15)
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In this case, the iteration scheme takes the form

F̂n+1(q) =
(

‖F̂n‖1

‖Kω‖1

)3/2

Kω[F̂n(q)], n ≥ 0. (3.16)

• Finding stationary solutions for multidimensional continuous partial differential equations (PDEs) using the
above scheme is straightforward.

• Applying the Fourier transform technique to higher order continuous or discrete systems only results in a modi-
fication of the linear dispersion relation from, e.g., cos (qh) → cos (qh) + cos (2qh).

• The proposed technique is natural for diffraction-managed systems in which an infinite-dimensional nonlinear
integral equation must be solved. Applying direct methods such as Newton iteration would be difficult on such
diffraction-managed equations.

3.3. Numerical iteration based on energy renormalization

We next highlight a different approach based on energy renormalization to solve Eq. (3.6). As we have seen
before, one reason why simple iteration scheme does not converge is because the right and left hand side of (3.6)
have different homogeneity. An alternative method is to renormalize the wave function F̂ (q) at each iteration stage
by its L∞ (maximum) or L2 norm, respectively, defined by

‖F̂‖∞ ≡ max
q∈D

|F̂ (q)|, (3.17)

‖F̂‖2 ≡
(∫
D

|F̂ (q)|2 dq

)1/2

. (3.18)

In this case the beam amplitude remains always finite. For discrete problems, the choice of the maximum norm is
particularly natural since the problem is restricted to a finite domain in q space. To implement this scheme, we start
with a localized guess, F̂0(q) and compute its norm ‖F̂0‖ (by ‖ · ‖ we mean either ‖ · ‖∞ or ‖ · ‖2). We then define
the renormalized function F̂0(q) = F̂0(q)/‖F̂0‖. Then from Eq. (3.6) we compute F̂1(q) and, in general, the mth
iteration takes the form

F̂m+1(q) = h2

4π2Ω(q)

∫∫
D2

dq1 dq2F̂m(q1)F̂m(q2)F̂m(q − q1 − q2), (3.19)

F̂m(q) = F̂m(q)

‖F̂m‖
. (3.20)

Note that as m → ∞ the scheme based on Eq. (3.20) converges, i.e.:

lim
m→∞ ‖F̂m − F̂s‖ = 0, (3.21)

where F̂s and F̂s = ‖F̂s‖F̂s is the exact solution to Eq. (3.20). Importantly, Eq. (3.6) admits the following scaling
property: if F̂ (q) = κF̂ ′(q) then F̂ ′(q) = κ

2Kω[F̂ ′(q)] is also a solution. In light of this scaling property we find
that F̂s and F̂s are also solutions to Eq. (3.6). We have compared the solution obtained by this method with the
previous technique and with the IDNLS solution and found excellent agreement.

3.4. Do discrete TWs exist or not?

Finding analytical TW solutions for a continuous PDE and for differential-delay equations in particular, is a
challenging problem. For some PDEs, TWs can be readily obtained by making use of either Galilean or Lorentz
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invariance. However, for general discrete systems, such a symmetry does not exist. An additional source of difficulty
that arises when dealing with differential-delay systems is the lack of quadrature. In this section, we describe a
method to obtain TW solutions for discrete systems which is applicable to many discrete models such as FPU
lattice, sine-Gordon to name a few. However, here we will focus our attention to TW of the DNLS model. Unlike
the IDNLS in which exact continuous traveling solitons are known, there are no known explicit solutions for DNLS
solitons. Previous studies of TWs for the DNLS equation employed various techniques and ansatz [44–46]. One
method is to write the DNLS as a perturbed IDNLS [47] and use perturbation theory, based on inverse scattering,
to gain some insight to the solution. However, this method is limited to moderately confined wave functions and
cannot be used as a constructive method. Another technique is to use the “exact” stationary solutions discussed in
Section 3.2 and, based on what we know from continuous NLS theory, employ a linear phase tilt:

φn = Fn exp(iβnh) (3.22)

with Fn being the stationary solution found before and β the beam “velocity” or phase tilt. However, by doing so,
we do not obtain a uniformly moving solitary wave (as can be seen in Fig. 6 where the top of the beam oscillates).
This is even more clear when we zoom in on small amplitude where radiation modes are seen to be emitted during
propagation (see Fig. 7). Our analysis, which is based on the discrete Fourier methods, reveals another fundamental
distinction from the IDNLS traveling solitons: there are approximate TW solutions which are “multimode” discrete
solitons, i.e., a single mode (sech-like shape) does not propagate without significant radiation [48]. In fact the modes
we found are characterized by having a nonlinear “chirp”. To formulate the analysis, we look for traveling localized
modes in the form

φn(z) = u(ξ) exp[−i(βnh − ωz)], ξ = nh − Vz (3.23)

with V and ω being the soliton velocity and wavenumber shift, respectively. Assuming u is complex, i.e., u(ξ) =
F(ξ) + iG(ξ) (with F , G being real), then Eq. (2.12) takes the form

V
dG

dξ
+D1F +D2G + (F2 + G2)F = ωF, −V

dF

dξ
+D1G −D2F + (F2 + G2)G = ωG, (3.24)

Fig. 6. Evolution of the stationary solution in physical domain for ω = 1 and h = 0.5 obtained by direct numerical simulation by employing a
linear phase tilt (or velocity) with β = 0.5.
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Fig. 7. The same as in Fig. 6 but zoomed to small amplitude. Radiation modes are clearly seen which leads to a nonuniform moving beam.

where the linear operators D1 and D2 are defined by

D1f ≡ 1

h2
[ cos (βh)(E+ + E−)f − 2f ], D2g ≡ sin (βh)

h2
(E+ − E−)g (3.25)

with E±S(ξ) ≡ S(ξ ± h). To find the mode shapes and soliton velocity, we proceed as before by taking the discrete
Fourier transform of Eq. (3.24) which yields the following iteration scheme:

F̂n+1(q) = Ω2(q)

Ω1(q)
G̃n(q) +

(
α1

β1

)3/2

Q1[F̂n, G̃n], G̃n+1(q) = Ω2(q)

Ω1(q)
F̂n(q) +

(
α2

β2

)3/2

Q2[F̂n, G̃n],

(3.26)

where F̂ (q) and Ĝ(q) ≡ −iG̃(q) are the Fourier transforms of F(ξ) and G(ξ), respectively, and

Q1[F̂ , G̃] = h2

4π2Ω1(q)
(F̂ ∗ F̂ ∗ F̂ − G̃ ∗ G̃ ∗ F̂ ), Q2[F̂ , G̃] = h2

4π2Ω1(q)
(F̂ ∗ F̂ ∗ G̃ − G̃ ∗ G̃ ∗ G̃),

(3.27)

where ∗ denotes a convolution:

f ∗ g =
∫
D

f(k)g(q − k) dk.

The convergence factors αj and βj , j = 1, 2 are given by

α1 =
〈
F̂n, F̂n − Ω2G̃n

Ω1

〉
, α2 =

〈
G̃n, G̃n − Ω2F̂n

Ω1

〉
, β1 = 〈F̂n,Q1〉, β2 = 〈G̃n,Q2〉

with

Ω1(q) = ω + 2

h2
[1 − cos (hq) cos (βh)], Ω2(q) = 2

h2
sin (hq) sin (βh) + Vq. (3.28)
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Fig. 8. Mode shapes in physical space for ω = 1 and β = 0.5. Solid line corresponds to h = 0.5 and velocity V = −0.25 whereas dashed line
for h = 1 and V = −0.155.

The next stage would be to iterate Eq. (3.26). However, Eq. (3.26) form a system of two equations with three
unknowns, F̂ , G̃ and V . Therefore, we need to add an extra condition to match the number of variables with the
number of equations. By doing so, we proceed as follows. For a given set of parameters h, ω and β > 0, the
mode shapes and soliton velocity are found by iterating Eq. (3.26) with an initial guess, e.g., F̂0(q) = sech(q),
G̃0(q) = sech(q) tanh (q) and V = V∗ < 0. The iterations are carried out until the condition |Ej| ≡ |αj − βj| < ε

(j = 1, 2) is satisfied with ε > 0 being a prescribed tolerance. However, unlike the stationary case, here, the soliton
velocity is still to be determined. For any choice of V∗ < 0 if |Ej| </ ε, we seek a different value of V∗ at which Ej
changes sign. Then, we use the bisection method to change V∗ in order to locate the correct velocity V and modes
F̂ , G̃ for each ω, β and h. Typical soliton modes are shown in Fig. 8.

At this stage it is useful to make some further comments on the Fourier transform. Since ξ is a continuous variable
it implies that Eq. (3.24) are continuous equations in ξ. Therefore it seems natural to use the continuous Fourier
transform rather than discrete. However, when we apply the continuous Fourier transform in Eq. (3.24), we find that
the numerical scheme based on Eq. (3.26) with π/h → ∞ does not converge to a solution. This is a strong indication
that, as opposed to the integrable case, a true continuous stationary or TW solutions to the DNLS model does not
exist. By continuous solution we mean a solution that can be defined off the lattice points which is necessary when
discussing TWs on lattices. In fact, the perturbation analysis presented below supports this observation as it fails to
give consistent results off the grid points. To support these founding, let us take the continuous limit on the DNLS
which yields

i
∂φ

∂z
+ φxx + α4φxxxx + |φ|2φ = 0, (3.29)

where α4 = h2/12. Importantly, it was shown in [49] that Eq. (3.29) with α4 > 0 lacks exact soliton solutions
whereas it possess closed form solution for α4 < 0 [50]. Moreover, in this case the asymptotic behavior of the
solution to Eq. (3.29) in the limit 0 < α4 � 1 is [49]

φ ∼ sech(ξ) + O(e−Υ/|h|)P(ξ, z),

with ξ = x− Vz and Υ being a positive constant with P(ξ, z) being a concrete function of both ξ and z (see Eq. (16)
of Ref. [49]). This means that for h = 0.1 (as an example), the nonstationary correction to the exact solution (when
α4 = 0) is exponentially small and cannot be captured in numerical simulations. These results differ from those of
[51,52] in which a “continuous” traveling solitary waves were reported using Fourier series expansions with finite
period L while assuming convergence as L → ∞.
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Fig. 9. Evolution of a moderately localized soliton in physical domain for β = 0.5, V = −0.25, ω = 1 and h = 0.5 obtained by direct numerical
simulation.

Fig. 10. Evolution of a strongly localized soliton in physical domain for β = 0.5, V = −0.2, ω = 2 and h = 0.5 obtained by direct numerical
simulation.

Although Eq. (3.26) can be solved numerically with high accuracy, the resulting solutions are only obtained at
the discrete locations ξ = nh, while all real values of ξ are called upon in a TW solution. So the question we want to
ask is: what happen to the modes found above when they propagate across the arrays? To answer this question, we
simulated Eq. (2.12) using φn(z = 0) = u(nh) e−iβnh as an initial condition with u(nh) = FTW(nh) + iGTW(nh)

being the solutions obtained from (3.26). When a moderately localized mode1 is launched, the beam moved across the

1 Moderate localization obtains when the FWHM of the intensity is 4–6 lattice sites; strong localization occurs when FWHM = 1–3 lattice
sites.



292 M.J. Ablowitz, Z.H. Musslimani / Physica D 184 (2003) 276–303

Fig. 11. Evolution of a strongly localized soliton in physical domain for large distance. Contrary to Fig. 10, in which the beam travels for short
distance, here after some distance, the beam starts to decelerate. Parameters are: β = 0.5, V = −0.2, ω = 2 and h = 0.5.

waveguides undistorted (Fig. 9) over 100 normalized z-units. This corresponds, according to the experimental data
reported in [11], to 120 mm (recall that the waveguides used in [11] were 6 mm in length). On the other hand, strongly
localized modes travel essentially undistorted for shorter distances (around 20 normalized z-units, see Fig. 10)
which corresponds to 24 mm. Noticeably, during propagation there was a change of 0.0133%/mm(0.245%/mm) in
the soliton velocity for moderately (strongly) localized modes in which case strongly localized mode slows down
and eventually relaxes to a stationary state (see Fig. 11). This behavior depends crucially on the initial amplitude.
Higher amplitude solitons are less “mobile” than lower amplitude beams. The discrete Fourier transform yields a
useful, but nonuniform TW solution.

4. Asymptotic theory for discrete TWs

4.1. Perturbation expansion around stationary solutions

We have seen in Section 3.4, that TWs with nonuniform speed can be numerically constructed by means of the
Fourier iteration method. These solutions can move over short distances without drastic change in their shape or
speed. However, strongly localized modes will immediately start decelerating and emitting radiation. Our conclusion
from Section 3.4 was that uniform TWs for the DNLS equation are unlikely to exist. To give further support to
this belief, we consider the case in which the solitons move slowly. We develop a fully discrete perturbation theory
for finite amplitudes. It is important to note that our perturbative approach is fundamentally different than the
perturbation methods based on inverse scattering theory (cf. [47]). We begin by taking β = εβ1 + O(ε2), ε � 1,
and expand the soliton velocity, frequency and the wave functions in a power series in ε:

F = F0 + εF1 + ε2F2 + O(ε3), G = εG1 + ε2G2 + O(ε3), (4.1)

V = εV1 + ε2V2 + O(ε3), ω = ωs + εω1 + ε2ω2 + O(ε3). (4.2)
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Substituting Eqs. (4.1) and (4.2) into Eq. (3.26), we find that to leading order (ε0), F0 satisfies the stationary equation
and is even in ξ:

L1F0(ξ) = 0. (4.3)

The order ε equations for F1 and G1 are given by

L1F1 = ω1F0, (4.4)

L2G1 = V1
dF0

dξ
+ β1

h
(E+ − E−)F0 (4.5)

and the order ε2 system is

L2G2 = ω1G1 + V1
dF1

dξ
+ V2

dF0

dξ
− 2F0F1G1 + β1

h
(E+ − E−)F1, (4.6)

L1F2 = ω1F1 + ω2F0 − V1
dG1

dξ
− F0G

2
1 − 3F0F

2
1 + β2

1

2
(E+ + E−)F0 − β1

h
(E+ − E−)G1, (4.7)

where the linear operators L1 and L2 are defined by

L1S ≡ −ωsS+ 1

h2
(E+ + E− − 2)S+ 3F2

0S, L2S ≡ −ωsS+ 1

h2
(E+ + E− − 2)S+ F2

0S. (4.8)

Next we solve the system of equations at each order in ε. By taking ω1∂/∂ωs in Eq. (4.3) we find that solution to F1

is given by

F1 = ω1
∂F0

∂ωs

+ c1
∂F0

∂ξ
. (4.9)

To solve equation in (4.5), we make the ansatz:

G1 = V1A + β1ξF0 + c2F0, (4.10)

where c1 and c2 are arbitrary constants and A satisfies

L2A = ∂F0

∂ξ
, (4.11)

which can be solved either numerically by Fourier transform method or by reduction of order method. Note that
A(ξ) is an anti-symmetric function.

4.2. Solvability conditions at O(ε)

The velocity V1(β1) and frequency shift ω1, are determined by a solvability condition at order ε2 which is
the discrete analog of Green’s identity. We start first with the order ε equations. Let W(ξ) be a solution to the
homogeneous equation, L1W(ξ) = 0. Multiplying Eq. (4.4) by W(ξ) and subtracting F1(ξ)L1W(ξ) = 0 we find

∆ξ[Y(ξ)] = h2ω1W(ξ)F0(ξ), (4.12)

where Y(ξ) = W(ξ − h)F1(ξ) − F(ξ − h)W(ξ) and ∆ξ is defined by ∆ξ[S(ξ)] = S(ξ + h) − S(ξ). An important
identity which will be used frequently is the discrete analog of Green’s identity

+∞∑
�=−∞

[S(ξ + �h) − S(ξ + (� − 1)h)] = 0
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with � ∈ Z. Since W = dF0/dξ, summing over all integers in Eq. (4.12) and using the discrete Green’s identity we
find

ω1

+∞∑
�=−∞

(
F0

dF0

dξ

)∣∣∣∣
ξ+�h

= 0. (4.13)

Importantly, if ξ is not restricted to the grid points then the sum in Eq. (4.13) is generally not zero. We shall consider
the case in which ξ ∈ Z otherwise, as we will see below, no TW solution is obtained. With this assumption in mind,
the solvability condition at order ε is satisfied and at this stage ω1 is an arbitrary constant. Similarly, we find that
the solvability condition for Eq. (4.5) reads

+∞∑
�=−∞

F0(ξ + �h)

⎡⎣V1
dF0

dξ

∣∣∣∣∣∣
ξ+�h

+ β1

h
(F0(ξ + (� + 1)h) − F0(ξ + (� − 1)h))

⎤⎦ = 0. (4.14)

As before, if we are off the grid points then the sum in (4.14) does not necessarily vanish and as a result the velocity
will depend on ξ. Therefore, we restrict the sum to the lattice points which is consistent with the discrete Fourier
transform.

4.3. Solvability conditions at O(ε2)

Next we consider the solvability conditions to the O(ε2) equations which will determine the velocity V1 and
frequency ω1. The solvability conditions for Eqs. (4.6) and (4.7), respectively, read

+∞∑
�=−∞

F0(ξ + �h)

[
V1

dF1

dξ

∣∣∣∣
ξ+�h

+ V2
dF0

dξ

∣∣∣∣∣
ξ+�h

+ β1

h
(F1(ξ + (� + 1)h) − F1(ξ + (� − 1)h))

+ω1G1(ξ + �h) − 2F0(ξ + �h)F1(ξ + �h)G1(ξ + �h)

]
= 0, (4.15)

+∞∑
�=−∞

F0(ξ + �h)

[
ω1F1(ξ + �h) + ω2F0(ξ + �h) − V1

dG1

dξ

∣∣∣∣
ξ+�h

− F0(ξ + �h)G2
1(ξ + �h)

−3F0(ξ + �h)F2
1 (ξ + �h) + β2

1

2
(F0(ξ + (� + 1)h) + F0(ξ + (� − 1)h))

−β1

h
(G1(ξ + (� + 1)h) − G1(ξ + (� − 1)h))

]
= 0. (4.16)

Substituting the expressions for F1 and G1 [see Eqs. (4.9) and (4.10)] in Eqs. (4.15) and (4.16) and using the fact
that the function A(ξ) is anti-symmetric we find[

A11 A12

A21 A22

] [
c1

c2

]
= 0, (4.17)
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where

A11 = V1

+∞∑
�=−∞

F0(ξ + �h)

⎡⎣d2F0

dξ2

∣∣∣∣∣∣
ξ+�h

+ β1

h

⎛⎝dF0

dξ

∣∣∣∣∣∣
ξ+(�+1)h

− dF0

dξ

∣∣∣∣
ξ+(�−1)h

⎞⎠⎤⎦
− 2V1

+∞∑
�=−∞

A(ξ + �h)F2
0 (ξ + �h)

dF0

dξ

∣∣∣∣
ξ+�h

− 2β1

+∞∑
�=−∞

(ξ + �h)F3
0 (ξ + �h)

dF0

dξ

∣∣∣∣
ξ+�h

,

A12 = ω1

+∞∑
�=−∞

F2
0 (ξ + �h) − 2ω1

+∞∑
�=−∞

F3
0 (ξ + �h)

dF0

dωs

(ξ + �h),

A21 = ω1

+∞∑
�=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+�h

− 6ω1

+∞∑
�=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+�h

F0(ξ + �h)
dF0

dωs

(ξ + �h),

A22 = −
+∞∑

�=−∞

dF0

dξ

∣∣∣∣
ξ+�h

[2β1(ξ + �h)F3
0 (ξ + �h) + 2V1A(ξ + �h)F2

0 (ξ + �h)]

− β1

h

+∞∑
�=−∞

dF0

dξ

∣∣∣∣
ξ+�h

(F0(ξ + (� + 1)h) − F0(ξ + (� − 1)h)) − V1

+∞∑
�=−∞

(
dF0

dξ

)2
∣∣∣∣∣
ξ+�h

.

The dependence of the velocity on β1 will be determined by requiring that the determinant of the matrix
equation (4.17) vanish. By restricting the sum to the lattice points, ξ = ξ� ≡ �h, which is consistent with the
discrete Fourier transform we find that the results are consistent if ω1 = 0 in which case the velocity is given by

V1 = −a1

a2
β1, a1(h) =

∑
�∈Z

dF0

dξ

∣∣∣∣
ξ�

[
2ξlF

3
0 (ξl) + 1

h
(E+ − E−)F0(ξl)

]
,

a2(h) =
∑
�∈Z

dF0

dξ

∣∣∣∣
ξ�

⎡⎣2A(ξ�)F
2
0 (ξ�) + dF0

dξ

∣∣∣∣∣∣
ξ�

⎤⎦ . (4.18)

We compared these semi-analytical results with direct numerical simulation for the fully discrete case and found a
good agreement for distances z of order 1. However, for longer distances, the theory needs to be modified. Moreover,
in the limit h → 0 we retrieve the known result V1 = −2β1, G1(ξ) → 0.

5. Nonlinear diffraction management

5.1. Heuristic approach

Let us begin the analysis by considering an infinite array of weakly coupled optical waveguides with equal
separation d. We have seen that the equation which governs the evolution of a singly polarized beam in a nonlinear
waveguide array follows the discrete NLS equation. A natural generalization to two interacting electric fields E

(1)
n

and E
(2)
n , is given by [13,29,30,53,54]

dE
(j)
n

dz
= iC(E

(j)

n+1 + E
(j)

n−1) + ik(j)
w E(j)

n + i(�En)jE
(j)
n , j = 1, 2, (5.1)

where � is a 2 × 2 matrix with κjj and κjl, j �= l the self and cross-phase modulation coefficients, respectively, that

result from the nonlinear index change, En = (|E(1)
n |2, |E(2)

n |2)T, C a coupling constant, z the propagation distance
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and k
(1,2)
w the propagation constants of the waveguides. When a cw modes of the form

E(1,2)
n (z) = A1,2 exp[i(kzz − nkxd )] (5.2)

is inserted into the linearized version of Eq. (5.1) it yields

kz = k(1,2)
w + 2C cos (kxd ), k′′

z = −2Cd2 cos (kxd ), (5.3)

where, as mentioned earlier, discrete diffraction is given by k′′
z . An important consequence of Eq. (5.3) is that k′′

z can
have a negative sign if π/2 < |kxd| ≤ π, hence, a light beam can experience anomalous diffraction. Experimentally,
the sign and local value of the diffraction can be controlled and manipulated by launching light at a particular angle
with respect to the normal to the waveguides or equivalently by tilting the waveguide array. To build a nonlinear
model of diffraction management, we use a cascade of different segments of the waveguide, each piece being tilted
by an angle zero and γw, respectively. The actual physical angle γw (the waveguide tilt angle) is related to the
wavenumber kx by the relation [27] sin γw = kx/k where k = 2πn0/λ0 (λ0 = 1.53 �m is the central wavelength
in vacuum and we take n0 = 3.3 to be the linear refractive index). In this way, we generate a waveguide array with
alternating diffraction. Next, we define the dimensionless amplitudes U

(j)
n (U(1)

n ≡ Un, U
(2)
n ≡ Vn) by

E(j)
n =

√
P∗U(j)

n ei(k(j)
w +2C)z, z′ = z

z∗
, (5.4)

where P∗ = max(|Un|2max, |Vn|2max) is the characteristic power and z∗ the nonlinear length scale. Substituting these
quantities into Eq. (5.1) yields the following (dropping the prime) diffraction-managed vector DNLS equations
[29,30]:

i
dUn

dz
+ D(z/zw)

2h2
(Un+1 + Un−1 − 2Un) + (|Un|2 + η|Vn|2)Un = 0,

i
dVn

dz
+ D(z/zw)

2h2
(Vn+1 + Vn−1 − 2Vn) + (η|Un|2 + |Vn|2)Vn = 0, (5.5)

where η = κ12/κ11 (we take κ11 = κ22, κ12 = κ21) and z∗ = 1/(κ11P∗). We choose z∗C cos (kxd) = D(z/zw)/(2h2)

where D(z/zw) is a piecewise constant periodic function that measures the local value of diffraction. Here zw ≡
2L/z∗ with L being the physical length of each waveguide segment (see Fig. 12(a) for schematic representation).
Eq. (5.5) describe the dynamical evolution of coupled beams in a Kerr medium with varying diffraction. When
the “effective” nonlinearity balances the average diffraction then bright vector discrete solitons can form. The
dependence of the coupling constant C on the waveguide width (�) and separation (d) is given by (for AlGaAs
waveguide) C = (0.00984/�) exp(−0.22d) (see Eq. 13.8-10, pp. 523 of Ref. [55]). Therefore, the coupling constant
C that corresponds to the experimental data reported in [28] (for 2.5 �m waveguide separation and width) is found

2L

(a)

∆ 2

∆(ζ)

θ 2 1−θ 2

ζ

∆1

(b)

Fig. 12. Schematic presentation of the waveguide array (a) and the diffraction map (b).
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to be C = 2.27 mm−1. For typical power P∗ ≈ 300 W; typical nonlinear Kerr coefficient κ11 = 3.6 m−1 W−1 and
typical waveguide length L ≈ 100 �m we find z∗ ≈ 1 mm and zw ≈ 0.2, which suggests the use of asymptotic
theory based on small zw. Such asymptotic analysis was developed in [29,30] for both the scalar and vector cases
where the diffraction function D = δ1 + ∆/zw with ∆ being a piecewise constant function (see Fig. 12(b)). Model
(5.5) admits stationary soliton solution even when zw is of order 1.

5.2. Asymptotic theory for diffraction management

5.2.1. Renormalization
We have seen in the preceding section how can we build, based on physical heuristic arguments, a model that

incorporate both normal and anomalous diffraction. The key idea in formulating a model of diffraction management,
is to use a cascade of different segments of waveguide, each piece being tilted by an angle zero and γ , respectively.
Here, we give a derivation of the model, in the scalar case, based on asymptotic theory. Two approaches are given.
The first is based on perturbation expansion using a renormalized eigen-mode of each single waveguide, whereas
in the second we expand around eigenfunction of an untilted waveguide. It is clear from Fig. 12(a) that each single
waveguide is not stationary. As a result, the evolution of the beam’s amplitude is governed by(

∂2

∂z2
+ ∂2

∂x2

)
� + k2

0f
2(X)� = 0, X = x − α

ε

∫ Z

0
D(Z′) dZ′, (5.6)

whereas before, Z = εz; α is a small parameter to be determined later and D(Z) a piecewise constant periodic
function that measures the local value of diffraction. When the waveguides are well separated then the dynamics of
each mode ψm in waveguide f 2

m is decoupled and is given by

(α2D2(Z) + 1)
d2ψm

dX2
+ (k2

0f
2
m(X) − λ2

0)ψm = 0. (5.7)

However when the waveguides are at close proximity, we approximate the solution to Eq. (5.6) as a multiscale
perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(X) e−iλ0z. (5.8)

Substituting the ansatz (5.8) into Eq. (5.6), we find

+∞∑
m=−∞

[
−2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2
+

(
(α2D2 + 1)

d2ψm

dX2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ 2iαλ0DEm

dψm

dX
− 2αεD

∂Em

∂Z

dψm

dX
− αεEm

dD
dZ

dψm

dX

]
e−iλ0z = 0. (5.9)

Using Eq. (5.7) in the above equation, multiplying Eq. (5.9) by ψ∗
n exp(iλ0z) and integrating over X yields the

following:

+∞∑
m=−∞

[(
−2iελ0

∂Em

∂Z
+ ε2 ∂2Em

∂Z2

) ∫ +∞

−∞
dX ψmψ∗

n + k2
0Em

∫ +∞

−∞
dX 	f 2

mψmψ∗
n

+ 2iαλ0DEm

∫ +∞

−∞
dX

dψm

dX
ψ∗

n − εα

(
2D

∂Em

∂Z
+ Em

dD
dZ

) ∫ +∞

−∞
dX

dψm

dX
ψ∗

n

]
= 0. (5.10)
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Similar to the arguments we presented before, we shall assume that the overlap integrals follow the scaling given
in Eq. (2.6) and that α = O(µ). In close analogy to the calculations given before, we find that for a sech-like mode
(Eq. (2.7)) profile we have∫ +∞

−∞
dX

dψm

dX
ψ∗

n = b

µ
e−|n−m|/µ, (5.11)

where b is a constant. Restricting the sum in Eq. (5.10) to the nearest neighbors, i.e., m = n, n ± 1 and by defining
z̃ = Z/(2λca0), k2

0c1 = C1, 2λcbD = D̃; En = Ẽ∗
n exp(−ik2

0c0z̃) we find that En satisfies (dropping the tilde)

i
∂En

∂z
+ C1(En+1 + En−1) + iD(z)(En+1 − En−1) = 0. (5.12)

The constant diffraction case, i.e., Eq. (2.10) is recovered when D = 0. Eq. (5.12) is the general dynamical equation
that governs the evolution of optical beam in a diffraction-managed linear waveguide array. However, when the
intensity of the incident beam is sufficiently high then the refractive index of the medium will depend on the
intensity which for Kerr media is proportional to the intensity. Therefore, by following the same procedure outlined
in Section 2.1 we find that the general evolution equation for the optical field in a diffraction-managed nonlinear
waveguide array is governed by

i
∂En

∂z
+ C1(En+1 + En−1) + iD(z)(En+1 − En−1) + gnl|En|2En = 0. (5.12)

In the case of strong diffraction for which max |D(z)| � |C1| (recall that D(z) is a piecewise constant function) and
by defining En = En exp(−iπn/2), Eq. (5.12) reduces to

i
∂En

∂z
+ D(z)(En+1 + En−1) + gnl|En|2En = 0. (5.13)

5.2.2. Direct approach
In this section, we give a different approach to derive a model for diffraction management. We approximate the

solution to Eq. (5.6) again as a multiscale perturbation series:

� =
+∞∑

m=−∞
Em(Z)ψm(X) ei[ϕm(z)−λ0z], (5.14)

where the the phase ϕm(z) will be chosen later. Substituting the ansatz (5.14) into Eq. (5.6), we find

+∞∑
m=−∞

ei[ϕm(z)−λ0z]

[
Em

d2ψm

dX2
(1 + α2D2) + k2

0f
2Emψm + 2i

(
dϕm

dz
− λ0

) (
ε
∂Em

∂Z
ψm − αD

dψm

dX
Em

)

−
(

dϕm

dz
− λ0

)2

Emψm − 2αεD
∂Em

∂Z

dψm

dX
− αεEm

dD
dZ

dψm

dX
+ i

d2ϕm

dz2
Emψm + ε2 ∂Em

∂Z
ψm

]
= 0.

(5.15)

Using Eq. (2.1) and multiplying Eq. (5.15) by ψ∗
n exp[−iϕn(z)] and integrating over −∞ < X < ∞ yields the

following equation (ignoring the order ε2 term):
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+∞∑
m=−∞

ei[ϕm(z)−ϕn(z)]

{
Em

∫
dX ψmψ∗

n

[
α2D2(λ2

0 − k2
0f

2
m) + k2

0	f 2
m −

(
dϕm

dz

)2

+ 2λ0
dϕm

dz
+ i

d2ϕm

dz2

]

− α

[
Em

(
2i

(
dϕm

dz
− λ0

)
D + dD

dZ

)
+ 2εD

∂Em

∂Z

]
×

∫
dX

dψm

dX
ψ∗

n + 2iε

(
dϕm

dz
− λ0

)
∂Em

∂Z

∫
dX ψmψ∗

n

}
= 0.

Until now the phase factor ϕm is arbitrary. Therefore, we shall choose the phase in such a way that

α2D2
∫ +∞

−∞
dX(λ2

0 − k2
0f

2
m)|ψm|2 =

[(
dϕm

dz

)2

− 2λ0
dϕm

dz

] ∫ +∞

−∞
dX |ψm|2. (5.16)

Eq. (5.16) implies that

dϕm

dz
= O(α2),

(
dϕm

dz

)2

= O(α4),
d2ϕm

dz2
= O(αε). (5.17)

The localized nature of the waveguides indicates that ϕm is independent of m, i.e., it is the same for all waveguides.
With this scaling in mind and by taking as before α = O(µ), we recover Eq. (5.12).

5.3. Asymptotic theory for vector diffraction management

In this section we present a derivation of the vector DM-DNLS equation starting from the nonlinear vector
Helmholtz equations which is obtained from Maxwell’s equations. The propagation of an intense laser beam in a
Kerr medium is described by the vector Helmholtz equations:(

∂2

∂x2
+ ∂2

∂z2

)
E + δ∇(∇ · PNL) + k2

0f
2(x)E + δPNL = 0. (5.18)

The nonlinear polarization PNL can be expressed in terms of the electric field as

PNL = (E · E∗)E + γ(E · E)E∗, (5.19)

where γ is a constant related to the third order nonlinear susceptibility [56]. Since we are interested in interac-
tion between two coupled laser beams, we shall assume that each one is initially linearly polarized and mutually
orthogonal, i.e.:

E(x, z) = E1(x, z)x̂ + E2(x, z)ŷ + E3(x, z)ŷ. (5.20)

In this case, the nonlinear polarization takes the form

PNL = P
(1)
NLx̂ + P

(2)
NL ŷ + P

(3)
NL ẑ, (5.21)

where

P
(1)
NL = ((1 + γ)|E1|2 + |E2|2)E1 + γE2

2E
∗
1 + γE2

3E
∗
1, (5.22)

P
(2)
NL = (|E1|2 + (1 + γ)|E2|2)E2 + γE2

1E
∗
2 + γE2

3E
∗
2, (5.23)

P
(3)
NL = (|E1|2 + |E2|2 + (1 + γ)|E3|2)E3 + γE2

1E
∗
3 + γE2

2E
∗
3. (5.24)
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Substituting the expression for E in Eq. (5.18) and taking into account the nonlinear polarization, leads to the
coupled system:(

∂2

∂x2
+ ∂2

∂z2

)
E1 + δ

∂2P
(1)
NL

∂x2
+ k2

0f
2(x)E1 + δP

(1)
NL = 0, (5.25)

(
∂2

∂x2
+ ∂2

∂z2

)
E2 + k2

0f
2(x)E2 + δP

(2)
NL = 0, (5.26)

(
∂2

∂x2
+ ∂2

∂z2

)
E3 + δ

∂2P
(1)
NL

∂x∂z
+ δ

∂2P
(3)
NL

∂z2
+ k2

0f
2(x)E3 + δP

(3)
NL = 0. (5.27)

In this work, we are interested in interaction of two mutually orthogonal beams. However, if we initially assume that
E3 = 0, then the source term ∂2P

(1)
NL/∂x∂z appearing in Eq. (5.27) will eventually generate a nonzero E3 component.

In fact, this additional term (due to nonlinear polarization) is of order δ. Hence, we are justified in neglecting E3 as
compared to E1 and E2. Next we follow the same expansion as mentioned earlier and let

E1 =
+∞∑

m=−∞
Am(Z)ψm(X) e−iλ0z, E2 =

+∞∑
m=−∞

Bm(Z)ψm(X) e−iλ0z, (5.28)

where X has been defined in Eq. (5.6). The expansion of the linear terms is already given in (5.12) with the addition
of on-site terms kwgAn and kwgBn. Therefore, we focus the attention below solely on the nonlinear terms and in

particular give an estimate on the order of magnitude of ∂2P
(1)
NL/∂x2. Substituting the ansatz (5.28) into Eqs. (5.25)

and (5.26); multiplying by ψ∗
n exp(iλ0z) and integrating over X yields the following result for the nonlinear terms:∫ +∞

−∞
dXP(1)

NLψ∗
n eiλ0z = (1 + γ)

∑
m,m′,m′′

AmAm′A∗
m′′

∫ +∞

−∞
dX ψmψm′ψ∗

m′′ψ∗
n

+
∑

j,j′,j′′
BjB

∗
j′Aj′′

∫ +∞

−∞
dX ψjψj′ψ∗

j′′ψ∗
n + γ

∑
l,l′,l′′

BlBl′A
∗
l′′

∫ +∞

−∞
dX ψlψl′ψ

∗
l′′ψ

∗
n.

(5.29)

∫ +∞

−∞
dXP(2)

NLψ∗
n eiλ0z =

∑
m,m′,m′′

AmA∗
m′Bm′′

∫ +∞

−∞
dX ψmψm′ψ∗

m′′ψ∗
n + (1 + γ)

∑
j,j′,j′′

BjBj′B∗
j′′

×
∫ +∞

−∞
dX ψjψj′ψ∗

j′′ψ∗
n + γ

∑
l,l′,l′′

AlAl′B
∗
l′′

∫ +∞

−∞
dX ψlψl′ψ

∗
l′′ψ

∗
n. (5.30)

Due to the assumption of widely separated waveguides, the only order 1 contribution comes from the nonlinear
term when m = m′ = m′′ = n. We therefore find that to O(ε) the nonlinear evolution of An and Bn is given by
(taking δ = ε)

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (ã1|An|2 + b̃1|Bn|2)An + η̃1B

2
nA

∗
n = 0, (5.31)

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (ã2|Bn|2 + b̃2|An|2)Bn + η̃2A

2
nB

∗
n = 0, (5.32)

where the coefficients ã1, ã2, b̃1, b̃2, η̃1, η̃2 are given by

ã1 = (1 + γ)ηnl + γnl, b̃1 = ηnl + γnl, ã2 = (1 + γ)ηnl, b̃2 = ηnl, η̃1 = γηnl + γnl, η̃2 = γηnl,
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and ∫ +∞

−∞
dX |ψn|4 = ηnl,

∫ +∞

−∞
dX

∂2

∂X2
(|ψn|2ψn)ψ

∗
n = γnl.

By rescaling the field amplitudes, i.e., An = Ãn/
√

ã1, Bn = B̃n/
√

ã2 we find the system (dropping the tilde):

i
∂An

∂z
+ kwgAn + C(z)An+1 + C∗(z)An−1 + (|An|2 + b1|Bn|2)An + η1B

2
nA

∗
n = 0,

i
∂Bn

∂z
+ kwgBn + C(z)Bn+1 + C∗(z)Bn−1 + (|Bn|2 + b2|An|2)Bn + η2A

2
nB

∗
n = 0,

with b1 = b̃1/ã2, b2 = b̃2/ã1, η1 = η̃1/ã2, η2 = η̃2/ã1 (see also Section 1).

6. Conclusions

Localized, stable nonlinear waves, often referred to as solitons, are of broad interest in mathematics and physics.
They are found in both continuous and discrete media. In this paper, a unified method is presented which is used to
obtain soliton solutions to discrete problems. In recent experiments, discrete solitons were observed in an optical
waveguide array. The fundamental governing system is the scalar DNLS equation. A suitable modification of this
system describes diffraction-managed solitons.

In this paper we have derived and investigated scalar and vector discrete diffraction-managed systems. The
proposed vector model describes propagation of two polarization modes interacting in a waveguide array with Kerr
nonlinearity in the presence of varying diffraction. The coupling of the two fields is described via a cross-phase
modulation coefficient. In the regime of normal diffraction, both stationary and moving discrete solitons are analyzed
using the Fourier transform method. The results indicate that a continuous stationary solution and a TW solutions
with uniform velocity are unlikely to exist. In the presence of both normal and anomalous diffraction a model is
developed from first principles that governs the propagation of two polarization modes interacting in a nonlinear
waveguide array via cross-phase modulation coupling.
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The carrier-envelope phase slip of an ultrashort pulse circulating in a mode-locked Ti:sapphire laser is ana-
lyzed. The laser cavity is modeled by a dispersion- and nonlinearity-managed nonlinear Schrödinger equation.
The combined contributions to the phase slip induced by nonlinear phase and nonlinear dispersion are found
to approach zero for strong dispersion maps. The dependence of the slip on third-order dispersion is found as
well. The analytical results are verified using numerical simulations. © 2004 Optical Society of America
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Mode-locked Ti:sapphire lasers generate a regularly
spaced train of pulses separated by one cavity round-
trip time. The carrier-envelope phase slip (CEPS)
is the change from pulse-to-pulse of the phase offset
between the envelope and the carrier waves. Con-
trolling the phase slip has been the subject of recent
experimental efforts in optical frequency metrology,
carrier-envelope phase coherence, and extreme non-
linear optics.1 – 4 In a recent seminal contribution
Haus and Ippen5 studied the CEPS for classical and
dispersion-managed (DM) solitons, the latter being
waveguide solutions of a perturbed DM nonlinear
Schrödinger equation. DM solitons are a key element
to describing Ti:sapphire lasers.6 In this Letter an
asymptotic theory governing the propagation of DM
and nonlinearity-managed solitons is applied to a
model of the laser. Applying multiple-scales analysis
yields a relation for the nonlinear change of the phase
velocity over one cavity round trip. In our model
we treat nonlinear dispersion (the shock term) and
third-order dispersion (TOD) as small perturbations.
They induce changes in the group velocity that are
found using conservation-law methods. The non-
linear slip induced by the combined effects is found to
approach zero as O�1�s�, where s is the cavity’s map
strength. In addition, it is found that the CEPS can
be controlled by changing the average group-velocity
dispersion (GVD) and TOD in the laser. Our ana-
lytical results agree with numerical simulations and
display the explicit dependence of the phase slip on
physical parameters.

Typically, the electromagnetic f ield of a pulse is
decomposed into a rapidly oscillating carrier wave
exp�i�kz 2 vt�� � exp�i�1�vp 2 t�z�vz� that is modu-
lated by a slowly varying envelope. Here z is the
propagation direction, t is time, k�v� � vn�v��c
is the center wave number, where v is the center
frequency, n�v� is the linear index of refraction,
and c is light speed in vacuum. During propaga-
tion the carrier slips through the envelope, because
the carrier propagates at phase velocity vp � v�k

while the envelope propagates at group velocity
vg � 1�k0�v�. Thus the linear contribution to the slip
of the carrier-envelope phase offset is given (mod 2p)
by dlinear � �vp21 2 vg21�vL � 2c21v2n0�v�L, where
L is the propagation distance. In addition, when
an intense pulse propagates in a Kerr medium (such
as sapphire) there is a nonlinear contribution to the
phase slip. To study the nonlinear slip we recall that
the propagation of the envelope is well described by
the classical nonlinear Schrödinger (NLS) equation

iAz 2
k00

2
Att 1 gjAj2A � 2iv21g�jAj2A�t , (1)

where A�z, t� is the slowly varying envelope, t � t 2
z�vg is the retarded-time frame, k00 is the GVD coeffi-
cient, g � n2v�cAeff is the nonlinear coeff icient, where
n2 is the Kerr (nonlinear) refractive index, and Aeff
is the effective cross-sectional area of the pulse, and
the term on the right-hand side, often called the shock
term, corresponds to nonlinear dispersion arising from
the Kerr effect. We focus on the shock term first be-
cause it becomes larger with shorter pulses. Indeed,
the shock term scales as ejAj3, where e � 2p�vt0 and
t0 is the pulse width. For example, at l � 800 nm and
t0 � 20 fs one has v�2p � 400 THz and e � 0.13. In
addition, the shock term induces a nonlinear change
in the CEPS, a phenomenon that is consistent with
the dependence of the CEPS on pulse energy (pump
power).1,4 Without the shock term and when k00 is a
negative constant, Eq. (1) has the soliton solution

A�z, t� � A0 sech�t�t0 2 T �exp�if�z�� ,

f�z� � gjA0j2z�2 , (2)

where A0 is amplitude and T corresponds to a time
shift of the pulse center. Self-phase modulation is de-
scribed by f�z�, which, in turn, induces a nonlinear
change in the phase velocity as D�1�vp� � f0�z��v �
gjA0j2�2v. The timing shift corresponds to a change

0146-9592/04/151808-03$15.00/0 © 2004 Optical Society of America
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in the group velocity as D�1�vg� � T 0�z�t0. The nor-
malized nonlinear contribution to the CEPS was de-
fined in Ref. 5 as

d̃NL �
D�1�vp� 2 D�1�vg�

D�1�vp�
� 1 2

T 0�z�
ef0�z�

. (3)

For classical solitons the shock term gives5 T 0�z� �
egjA0j2. Thus d̃NL � 21, which means that for clas-
sical solitons the nonlinear change in vg21 is twice as
large that of vp21.

For a regularly spaced train of pulses, such as those
emitted from a mode-locked Ti:sapphire laser, the
CEPS refers to the change of the phase offset between
carrier and envelope from pulse to pulse, which is
the phase slip that each pulse accumulates over one
cavity round trip, before being sampled at the output
coupler. The linear contribution to the CEPS is thus
dlinear � 2c21v2

P
m nm

0�v�Lm, where the summation
is carried over all the cavity elements (crystal, prisms,
etc.). In addition, the nonlinear contribution to the
CEPS is the difference between the nonlinear phase
and the timing shifts accumulated over one cavity
round trip. In normalized form it is given by the
average of Eq. (3):

d̃NL � 1 2
�T 0�z�	
e�f0�z�	

, (4)

where � 	 stands for the average over one cavity
round trip. A typical Ti:sapphire laser consists of a
Ti:sapphire crystal that has a Kerr response as well
as large normal GVD and a set of prisms and (or)
mirrors especially designed to have large anomalous
GVD. Hence such lasers are well described as DM
systems,6 which have been heavily studied in telecom-
munications. Let us recall some of the results of
these studies. For further analysis we normalize the
variables as z̃ � z�z�, t̃ � t�t0, D�z� � 2k00�z ��k00�,
and u�z, t� � A�z , t��

p
P�, where P� is the character-

istic pulse peak power, z� � 1�gP� is the (average)
nonlinear length, and k00� � t0

2�z�. After dropping
the tildes, we can describe the pulse propagation using
the perturbed NLS7:

iuz�z, t� 1
D�z �
2

utt 1 g�z � juj2u � 2ieg�z � �juj2u�t ,

(5)

where z � z�lc is the fast variable, lc is the normal-
ized (with respect to z�) optical length of the cavity,
D�z � � D 1 lc21D�z � is the dispersion map, where D
is the average dispersion and D�z ��lc is the large and
rapidly varying dispersion with zero average path,
and the right-hand side corresponds to the shock
term. A lumped model of a cavity consists of a sym-
metric two-step dispersion map, i.e., D�z � � D1 . 0
for z [ 
�0, u/2�, �1 2 u/2, 1�� and D�z � � D2 , 0 for
z [ �u/2, 1 2 u/2�, subject to D1u 1 D2�1 2 u� � 0, with
period extension for z . 1. To model a Ti:sapphire
laser we choose u � 0.75 and a managed nonlinearity:
g�z� � 1 in the normal GVD section and g�z� � 0 in the
anomalous GVD section [see Fig. 1(a)]. It is useful to
define C�z � �

Rz
0 D�z 0�dz 0 as well as to map strength

s � D1u�2. Classical NLS equation (1) corresponds

to s � 0 and C�z � � 0. Ti:sapphire systems, however,
operate in the strong DM regime, which corresponds to
large-variance GVD (s) and small average GVD (D).

The two small parameters in Eq. (5) are e (weak
nonlinear dispersion) and lc (short nonlinear length).
Let us treat the shock term perturbatively by f irst
considering the unperturbed model, i.e., when e � 0.
Since lc ,, 1 one can apply the method of mul-
tiple scales to Eq. (5). With this method it was
previously shown7 that, to leading order, û�z,v� �
Û �v, z�exp�2i/2v2C�z ��, where ĥ�v� � F 
h�t�� �R
h�t�exp�ivt�dt. A solvability condition for O�lc�

leads to the DMNLS (averaged) equation:

i
≠Û
≠z

2
D
2

v2Û 1 �J�û�	 � 0 , (6)

where J�û��g�z �exp�i/2v2C�z ��F 
juj2u�. Equation (6)
is a nonlocal (integral) equation that governs the av-
eraged dynamics of the solutions of Eq. (5). Looking
for a DM soliton of the form Û �z,v� � f̂ �v�exp�ifz�,
where f�z� � l2z�2, leads to the following equation:

2
l2

2
f̂ �v� 2

D
2

v2f̂ 1 �J� f̂ �	exp�2il2z�2� � 0 . (7)

Taking the inverse Fourier transform, multiplying by
� f 1 tft�, and integrating leads to

l2

2
�

2
W

øZ
F21
J� f̂ �� � f 1 tft�dt

¿
2

3D
2W

Z
� ft�2dt ,

(8)

where W �
R
f 2dt is energy. With strong disper-

sion management f �t� can be approximated with a
Gaussian,7 which is helpful for gaining insight into
the physics, by assigning specific pulse parameters.
Thus, substituting f �t� � a�2pb�21�2exp�2t2�2b� into
Eq. (8) gives the result that

Fig. 1. (a) Dispersion [D�z �, dotted lines] and nonlinearity
maps [g�z �, dashed lines] used in (b) and (c). (b) Numeri-
cal phase [Eq. (6), solid curve], l2z�2 (dotted curve)
and lG

2z�2 (dashed curve). (c) Numerical timing shift
[Eq. (6), solid curve], average slope with Eq. (10) (dot-
ted curve), and with Eq. (11), below (dashed curve).
(d) Normalized CEPS (12) with l �

p
2, u � 0.75, for three

values of D.
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�f0�z�	 �
l2

2
�

lG
2

2
�

a2�1 2 u�q�x�p
8pb

2
3D
4b

, (9)

where

q�x� �
sinh21�x�2�

x
1

2
�4 1 x2�1�2

, x �
2s
b

.

Equation (7) can be solved numerically using a
fixed-point method,7 which for strong dispersion man-
agement gives the result that x grows monotonically to
7.9. Therefore, q�x� decreases monotonically to 0.51,
b � s�3.95, and a � 1.46l�s��1 2 u��1�2. Equation (9)
thus shows that with strong dispersion management
the average nonlinear phase shift decreases to a
(energy-dependent) constant.

To f ind the timing shift induced by the shock term
we use the conservation law for timing corresponding
to Eq. (5), which, after averaging, gives us, to leading
order,

�T 0�z�	 � 2
2e

Wlc

ø
D�z �Im

ZZ
juj2uutt

�dtdz
¿

1
3e

2W

øZ
juj4dt

¿
, (10)

where u�z, t� � F21
 f̂ �v�exp�2iv2C�z��2��. Note that
the shock term conserves energy, i.e., W � constant.
Using the Gaussian ansatz leads to

�T 0�z�	 �
ea2�1 2 u�q�x�p

8pb
, (11)

which shows that the average timing shift decreases
to a constant with strong dispersion management. We
note that the shock term induces an O�lc� phase change
as well, which, however, is negligible compared with
Eq. (9).

To verify the analytic results we solve Eq. (5)
numerically with e � 0.1, lc � 0.2, D � 0.1, s � 10,
u � 0.75, and initial conditions û�0,v� � f̂ �v�, where
f̂ �v� is the solution of Eq. (7) with D � 0.1, s � 10,
and l �

p
2. Figure 1(b) shows that the slope of

the numerically recovered phase (after unwrapping),
i.e., f�z� � arg�û�z, 0��, is almost indistinguishable
from l2�2 during propagation and agrees well with
lG

2�2 calculated using Eq. (9). Figure 1(c) shows
that the averaged slope of the numerical timing shift
[T �z� � W21

R
tjuj2] is precisely that obtained with

Eq. (10) and is in good agreement with Eq. (11). Note
that the CEPS (4) depends on the phase and timing
shifts accumulated over one round trip and hence on
the average slopes of f�z� and T �z�.

Remarkably, the first term on the right-hand side of
Eq. (9) times e is the same as Eq. (11). Thus, combin-

ing these results with Eq. (4) we arrive at

d̃NL �
1

1 2
p
2a2�1 2 u�q�x��3pD

�
1

1 2 l2s�6D
.

(12)

Hence d̃NL approaches zero monotonically as O�1�s�
[see Fig. 1(d)]. This means that, unlike classical soli-
tons, the combined contributions of the nonlinear phase
and the shock term to the phase slip nearly cancel each
other with strong dispersion management. We note
that Ref. 5 obtained d̃NL approaches 20.1, presumably
because a rather large D was used. Indeed, Fig. 1(d)
shows that with larger values of D the slip saturates
at larger s, whereas with smaller D the slip becomes
roughly independent of map strength, a conclusion that
may be useful for controlling the slip. The unnormal-
ized form of the slip equation (12) is dNL � ��f0	 2

e21�T 0	�gP�L � 23k
00
L�t0

2s, where k
00

is the aver-
age-cavity GVD and L is the cavity length. This result
is consistent with the insensitivity of the slip to pulse
energy with strong dispersion management.4 In that
case, however, one should consider additional effects on
the slip. One such effect is TOD, which can be modeled
by adding �ik

000
��6gP�t0

3��uttt to the right-hand side of
Eq. (5), where k

000
is the average TOD coefficient. Us-

ing a similar analysis leads to dTOD � 2vk
000
L�t0

2s.
We remark that the asymptotic methods used here

on a nonlinear DM model are different from the analy-
sis in Ref. 5, which was based on a linear DM model
with effective parameters. Our methods are accurate
and display an explicit dependence of the CEPS on
physical parameters.

To conclude, our results indicate that for stronger
dispersion management the nonlinear phase slip be-
comes insensitive to map strength and tends to zero.

This research was partially supported by the
U.S. Air Force Off ice of Scientific Research under
grant F-49620-03-1-0250. B. Ilan’s e-mail address is
boaz@colorado.edu.
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The relation between the fundamental parameters of energy and temporal duration of ultrashort pulses,
under the condition of varying the average dispersion, are demonstrated both theoretically and experi-
mentally in a solid-state femtosecond mode-locked laser. An asymptotic theory for nonlinear and
dispersion managed solitons agrees well with the experimental data and demonstrates that the dominant
factor in the pulse dynamics arises from the equilibrium established between the nonlinear Kerr effect and
linear dispersion.
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Solitons are fascinating nonlinear phenomena that arise
widely in physics. Solitons have a finite, localized energy
and propagate unchanged. They form from the competi-
tion between linear dispersion and the nonlinear index of
refraction. Surprisingly, when the sign of the linear disper-
sion periodically varies, as in long distance fiber commu-
nications, a new breed of soliton forms. The change in the
sign of the dispersion causes these so-called dispersion
managed (DM) solitons to temporally broaden and recom-
press or ‘‘breathe’’ as they propagate [1]. The prevalence of
DM solitons has generated significant research toward
understanding their behavior [2–5].

To experimentally characterize the propagation dynam-
ics of DM solitons, a medium amenable to systematic
changes in the linear dispersion is required. Such charac-
terization has proven difficult partly because of the com-
plexity in systematically varying the linear dispersion. The
ultrashort optical pulses propagating in solid-state mode-
locked lasers are also dispersion managed. However, the
method by which these pulses are dispersion managed
allows for systematic control over the cavity dispersion
and thus, provides a near ideal environment to undertake
such studies. In addition, these pulses experience a period-
icity in the nonlinear refractive index, known as nonlinear
management. Recent theoretical work in understanding
their dynamics has shown novel behavior that is distinct
from that of classical solitons [4]. Here, we report the first
experimental demonstration of the systematic varying of
the group velocity dispersion for a nonlinear and dispersion
managed soliton. We show remarkable agreement between
experiments and the DM theory of solitons for the scaling
of the fundamental pulse properties of energy and temporal
duration for the ultrashort pulses in a mode-locked laser.
This study advances the understanding of the dynamics of
the DM system in ultrashort pulsed mode-locked lasers,
which have numerous important applications that rely
upon pulse stability [6–10].

In the classical theory of solitons, the nonlinear
Schrödinger equation (NLS) governing the pulse envelope
u�z; t� in an optical fiber is

iuz�z; t� � �00

2
utt�z; t� � �0ju�z; t�j2u�z; t� � 0; (1)

where �00 is the group velocity dispersion (GVD) co-
efficient, t is the retarded time (with respect to the group
delay), and �0 � n2!=cAeff is the nonlinear coefficient
for an effective transverse area Aeff of the beam, with
center frequency !, propagating in the z direction
through a medium with a Kerr nonlinear refractive index
n2, where c is the speed of light [11]. The soliton solution
for constant anomalous dispersion, �00 < 0, is u�z; t� �
Asech �c0t� �ei�0jAj2z=2, where c0 � 2sech�1 �1= ���

2
p �, A is the

real-valued amplitude, and � is the temporal FWHM. The
intensity is jAj2 � P=Aeff , where P � E=� is the pulse
power with energy E � R juj2dt. For the theory of classi-
cal solitons (CS), the relation between these fundamental
parameters is

� � 2c0j�00j
�0E

: (2)

This scaling for classical solitons was observed in optical
fibers [12]. No such relation has been experimentally dem-
onstrated for DM solitons.

In the nonlinear and dispersion managed theory, u�z; t�
satisfies Eq. (1) with periodically varying GVD and non-
linear coefficients. Using a dispersion managed model, it
was shown that stable pulses can form in a mode-locked
laser [4]. A mode-locked laser is a pulsed laser that emits a
periodic sequence of optical pulses where the pulses are
spaced by the cavity round-trip time (the group delay, �g).
Figure 1(a) is a schematic of a 92.8 MHz repetition-rate
Kerr-lens mode-locked (KLM) Ti:sapphire laser pumped
by a solid-state frequency-doubled Nd:YVO4 laser.
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Since such a laser can generate ultrashort pulses
(&20 fs), the average dispersion in the cavity must be rela-
tively small to sustain this pulse [13]. In one cavity round-
trip, the pulse propagates through cavity elements with
different signs of dispersion. The most significant contri-
butions to the linear dispersion come from the normal
dispersion �00

n in the region of length ln in the Ti:sapphire
crystal, and the compensating anomalous dispersion �00

a in
region of length la in the prism sequence. For sustained,
stable mode locking, the intensity of the pulse at the crystal
center, after it has experienced this linear dispersion com-
pensation, is now sufficiently high for the nonlinear Kerr
effects (self- focusing and self-phase modulation) to occur
so that the mode-locked operation is preferred over the
continuous wave operation. For such a dispersion map the
GVD, averaged over one round-trip in the cavity, h�00i, is
used to define the round-trip group delay dispersion
(GDD); that is, h�00ilt � �00

nln � �00
ala, where lt � ln � la

is the total optical length of the cavity, as seen in Fig. 1(b).
Indeed, by this definition of the round-trip GDD, the two

shaded regions in Fig. 1(b) are of equal area. All other
cavity elements, including air and the cavity mirrors, irre-
spective of their sign of GDD, only contribute to the net
linear dispersion compensation provided by the cavity
prism sequence and so, for simplicity, we take la � ln.

To model this dispersion map, �00 in Eq. (1) is replaced
by the local GVD, �00�z�. It is convenient to introduce the
GDD variance of the dispersion map. This variance is
known as the map strength s where s � j�00

i li � 1
2 h�00iltj,

which is independent of the replacement of i with n or a. In
the DM theory, s arises naturally as a physically relevant
and theoretically important parameter [14,15]. The re-
duced map strength M � s=�h�00ilt� is the relative strength
of the GDD variance with respect to the round-trip GDD.
The nonlinearity must also be managed in the theory, with
the replacement � � �0 in the crystal and � � 0 else-
where, so now � � ��z�. This nonlinear and dispersion
managed equation is referred to as the perturbed NLS
(PNLS),

iuz�z; t� � �00�z�
2

utt�z; t� � ��z�ju�z; t�j2u�z; t� � 0: (3)

Figure 1(b) shows the nonlinear and dispersion maps of the
laser in one cavity round-trip. For the DM theory, three
experimental input parameters, h�00ilt, �0, and s, are re-
quired to model the fundamental propagation dynamics.

To characterize the experimental relation between the
fundamental pulse properties, we recorded E as a function
of � for various values of the average cavity GDD, h�00ilt.
In the mode-locked laser, dispersion causes the group delay
of the pulse (�g � 1=frep, where frep is the repetition rate)
to depend upon the center frequency ! of the mode-locked
spectrum. Actively controlling the center frequency
through the use of a slit in the cavity, positioned after the
prism P1, permits one to map �g�!� and thus, to measure
the round-trip GDD [Fig. 1(a)] [16]. For a given prism P1

insertion, the slit near P2 was situated in the cavity beam
with the slit opening adjusted to reduce the bandwidth
while still permitting mode locking. The slit was then
translated transversely to the beam and at each slit position
the spectrum was recorded with an optical spectrum ana-
lyzer and frep was measured by an RF frequency counter.
The center frequency was calculated from the first moment
of the recorded optical spectrum. The GDD is given by the
linear coefficient of a least-squares fit to these data. From
this measured value of the GDD, the anomalous GDD of
the prism sequence and s are calculated. Since the non-
linearity occurs in a small region (within the Rayleigh
range of the beam focus) in the Ti:sapphire crystal (length
of 2.3 mm), we set ln � 0:5 mm so �00

nln � �30 fs2��00
n �

�60 fs2=mm�. To minimize the cavity GDD for more
stable mode locking, we use dispersion compensated mir-
rors (DCM) [17]. Since the prism sequence (and DCMs)
provide dispersion compensation up to second order,
higher order contributions are minimized by using prisms

FIG. 1. (a) Schematic of a mode-locked Ti:sapphire laser, with
the measurement setup. The position of the slit near prism P2 is
computer controlled to set the center frequency of mode-locked
operation. (b) Schematic of the nonlinear normal GVD propa-
gation due to the Kerr nonlinearity in the crystal and linear
anomalous GVD propagation in the prism sequence. (c) Spectral
profiles at four positions of the prism P1 resulting in four
different GDD values. The dash-dotted line S1 corresponds to
the most prism insertion. The spectrum narrowed as the prism
was pulled out of the beam. The solid line S4 corresponds to the
least prism insertion. The sharp feature at 900 nm may be the
result of the cavity mirror reflectivity characteristics.
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made of CaF2. Drift of the repetition rate arising from
cavity length fluctuations can disturb or even prohibit the
measurement of the GDD. This drift has been observed to
vary linearly with time and was minimized by isolating the
laser in a plexiglass enclosure. Additionally, the data ac-
quisition was automated so that the GDD was measured in
less than 60 sec and corrected for the drift.

To systematically change the cavity GDD, the first prism
P1 was successively translated into the beam [Fig. 1(a)].
The (fixed) separation between the prisms determines the
amount of anomalous compensation, while each prism’s
individual differential insertion into the beam determines
the added normal dispersion [Fig. 1(c)]. For each GDD
setting, the pump laser power was used to control the
intracavity pulse energy E and was ramped through the
full stability range of mode locking.

To gain insight into the fundamental governing dynam-
ics, an asymptotic analysis may be undertaken. The quan-
tity ln=l0, where l0 � 1=��0P�, is a measure of the length
over which the nonlinearity causes a 2�-phase shift in the
pulse. A perturbative expansion of the PNLS [Eq. (3)] to
first order in ln=l0 yields the dispersion managed nonlinear
Schrödinger equation (DMNLS)

iÛz�z;!� � h�00i
2

!2Û�z; !� � �0

2

ZZ �1

�1
sin�!1!2s�
!1!2s

� Û�z;!�!1�Û�z; !�!2�
� Û��z;!�!1 �!2�d!1d!2 � 0: (4)

The nonlinear management yields the factor of 1=2 in the
nonlocal term and so doubles the pulse energy as compared
to the usual DM solitons with a constant nonlinear coeffi-
cient. The DMNLS is a nonlocal equation and admits
localized stable solutions known as DM solitons,

Û�z;!� � ei��2=2�zf̂�!�; (5)

where �2 is a constant and f̂�!� is real and symmetric [14].
When these solutions seed the PNLS, they remain local-
ized and stable while acquiring an additional phase term.
This frequency dependent phase introduces a chirp in the
pulse, with a period related to the periodicity of the dis-
persion map. As the DM soliton propagates from the center
of the normal region, it temporally broadens and then
recompresses until it reaches the center of the anomalous
region, whereupon it begins to broaden again, thereby
breathing, as seen in the inset in Fig. 2, whereas the
classical soliton does not breathe. The full (PNLS) solu-
tion, written in terms of the DM soliton is

u�z; t� � F�1�Û�z; !�e�i�!2=2�
R

z

0
��00

i �z��h�00i		: (6)

The DMNLS, unlike the PNLS, has constant coefficients.
Another significant advantage of the DMNLS is that the
rapidly varying phase associated with the breathing is
removed and the DM soliton solution is readily obtained.

Thus, the energy E and the temporal FWHM � are calcu-
lated from Eq. (5).

The experimental data for the temporal FWHM depen-
dence upon the intracavity pulse energy for four values of
the GDD are plotted in Fig. 2. Since the theoretical model
predicts the pulse duration at the crystal center (z � 0), the
width � for each E setting was determined assuming a
transform-limited optical spectrum. In this regime, as the
GDD becomes more anomalous, the pulse requires higher
energies to remain stably mode locked. The theoretical
curves are plotted in Fig. 2 where each is distinguished
by the value of the reduced map strength, M. Given that the
mechanisms for mode locking are not included in the
model, the curves show remarkable agreement with the
data and accurately predict the pulse dynamics over a
broad range of parameters.

In generating the theoretical nonlinear and dispersion
managed solutions, only one fitting parameter is used. The
experimental uncertainty in the effective area Aeff of the
beam at the center of the crystal requires that the nonlinear
coefficient �0 be fit to match the data (n2 � 3:2�
10�8 mm2=MW). Fitting one experimental data point,
we find Aeff � 200 �m2 and so �0 � 1:26�mm 
MW��1.
Since our model uses only one fitting parameter, here we
have explicitly determined �0 for an ultrashort pulsed
mode-locked laser.

The formation of a mode-locked pulse in a Ti:sapphire
laser requires gain and loss mechanisms that have so far

FIG. 2 (color online). Scaling of the fundamental pulse pa-
rameters in a mode-locked Ti:sapphire laser. The points are the
measured temporal FWHM at the four values of the average
cavity GDD. The curves are the solutions of Eq. (4), where one
data point (54.4 nJ, 14:6 fs) was used to fit �0. The legend states
both the GDD values in fs2 (and the corresponding M values).
The errors for the GDD are approximately 1% and the errors for
the � values are negligible on the scale shown. The spectra in
Fig. 1(c) correspond to each of the highest E values (S1 corre-
sponds to the point at 54.2 nJ). The inset shows the breathing
dynamics of a dispersion managed soliton juj2 [Eq. (6)] propa-
gating along z.
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been neglected in the model. Such effects typically include
saturable absorption, saturable gain, and spectral filtering
and, when included in the theoretical model, the governing
equation is called the master equation for mode locking
[18]. We have included saturable absorption and gain in the
theoretical model (in the PNLS) and have confirmed that
the predictions are largely insensitive to these processes.
Consequently, this simplifies the theory for the understand-
ing of the propagation of pulses in mode-locked lasers,
establishing that though these gain and loss processes are
necessary to generate the pulse, the pulse’s subsequent
dynamics is well governed by the DM theory [Eq. (4)].
Hence, the pulse’s behavior is dominated by the competing
mechanisms of the Kerr nonlinearity and linear dispersion.

For the CS theory (s � 0) there is a fixed relationship
between ln=l0 and the normalized GDD, jh�00ijlt=�2, as
seen in Eq. (2). In the DM theory, the additional parameter
of s changes this relation and predicts the separation be-
tween the curves observed experimentally, as seen in
Fig. 3. The CS line was obtained by fitting �0 in Eq. (2)
to one data point. As the energy E vanishes, the soliton is
not sustained, and hence, the DM (and CS) curves con-
verge to zero (not shown). We also note that the Ti:sapphire
laser is in a regime where ln=l0 is O�1�. Nevertheless, our
asymptotic theory for this regime still agrees with the
direct numerical simulations to the PNLS equation.

In summary, for the solitons propagating in mode-locked
Ti:sapphire lasers, the agreement between the PNLS and
the experimental data demonstrates that the dominant fac-
tor in the pulse dynamics is the equilibrium established
between the Kerr nonlinearity and the linear dispersion.
We have used an asymptotic theory developed for the
PNLS to predict the dynamics of these solitons using
only one fitting parameter in the model to generate the
theoretical curves. This study shows that the dispersion
management concepts originally developed in fiber com-
munications apply in a much broader context.
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[4] Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus,

E. P. Ippen, and J. G. Fujimoto, J. Opt. Soc. Am. B 16,
1999 (1999).

[5] N. Smith, F. Knox, N. Doran, K. Blow, and I. Bennion,
Electron. Lett. 32, 54 (1996).

[6] D. Meshulach and Y. Silberberg, Nature (London) 396,
239 (1998).

[7] S. A. Diddams et al., Science 293, 825 (2001).
[8] Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature
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FIG. 3 (color online). Plot of the scaling of the asymptotic
parameter with the normalized GDD, where the reduced map
strength M is fixed for each of the theoretical curves. The solid
line corresponds to the CS theory using Eq. (2) where one data
point was used to fit �0. The curves are from the nonlinear and
dispersion managed theory [Eq. (4)] and correspond to the same
M values (with their respective colors and line types) as those
given in Fig. 2. The experimental data are those from Fig. 2, with
the appropriate scaling each pair of E and GDD with �.
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Optical spatial or temporal solitons in nonlinear me-
dia have attracted considerable attention in the sci-
entific community. They have been demonstrated to
exist in a wide range of physical systems in both con-
tinuous and discrete settings.1–3 Such nonlinear
modes can form as a result of a balance between dif-
fraction or dispersion and nonlinearity. A central is-
sue for these types of nonlinear guided waves is how
to compute localized, i.e., soliton, solutions, which
generally involve solving nonlinear ordinary or par-
tial differential equations or difference equations.
Various techniques have been used, e.g., shooting and
relaxation techniques and the self-consistency
method, to find nonlinear modes that utilize the con-
cept that a soliton forms when the optical field in-
duces a waveguide structure via the nonlinearity and
self-traps itself (see, e.g., Refs. 4–6). Another method,
introduced by Petviashvili,7 for constructing localized
solutions of a nonlinear system is based on trans-
forming to Fourier space and determining a conver-
gence factor based upon the degree (homogeneity) of
a single nonlinear term (e.g., 
U
pU has homogeneity
p+1). While it was first used to find localized solu-
tions in the two-dimensional Korteweg–deVries equa-
tion (usually referred to as the Kadomtsev–
Petviashvili equation8,9), the method has been
significantly extended and has been used to find lo-
calized solutions in a wide variety of interesting sys-
tems, e.g., dispersion-managed10 and discrete
diffraction-managed11,12 nonlinear Schrödinger equa-
tions, dark and gray solitons,13 and lattice vortices.14

This method often is successful only when the under-
lying equation contains nonlinearity with fixed homo-
geneity. However, many physically interesting prob-
lems involve nonlinearities with different
homogeneities, such as cubic–quintic, or even lack
any homogeneity, as in saturable nonlinearity.

In this Letter we describe a novel spectral renor-
malization scheme with which we can compute local-
ized solutions in nonlinear waveguides. The essence
of the method is to transform the underlying equa-

tion that governs the soliton (e.g., nonlinear
Schrödinger type) into Fourier space and find a non-
linear nonlocal integral equation (or system of inte-
gral equations) coupled to an algebraic equation (or
system). The coupling prevents the numerical
scheme from diverging. The nonlinear guided mode is
then obtained from an iteration scheme, which in the
cases we have investigated converges rapidly. The ad-
vantages of the present method are that (i) it can be
applied to a large class of physically interesting prob-
lems including those in which the self-consistency
method fails, as is the case for second-harmonic gen-
eration, (ii) it is relatively easy to implement (e.g.,
compared with relaxation methods), (iii) it can
handle higher-order nonlinearities with different ho-
mogeneities, and (iv) it is spectrally efficient. More-
over, this method can find wide applications in non-
linear optics, Bose–Einstein condensation, and fluid
dynamics. We begin by considering a scalar nonlinear
Schrödinger-like equation:

i
�U

�z
+ �2U − V�x�U + N�
U
2�U = 0, �1�

where U is the envelope proportional to the electric
field, z is the propagation direction, N is a nonlinear-
ity that depends on intensity, V�x� models an optical
lattice, x= �x ,y�, and �2=�2 /�x2+�2 /�y2. A special
class of soliton solution can be constructed by assum-
ing that U�x ,z�=u�x ;��exp�i�z�, where � is the
propagation constant or the soliton eigenvalue. Sub-
stituting the above ansatz into Eq. (1), we get

− �u + �2u − V�x�u + N�
u
2�u = 0. �2�

This is a nonlinear eigenvalue problem for u and �
that is supplemented with the boundary condition u
→0 as 
r
→ +�, where r2=x2+y2. The scheme is
based on Fourier analysis, which transforms Eq. (2)
into a nonlocal equation that will then be solved us-
ing a convergent iteration. Define the Fourier trans-
form F by
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û�k� = F�u�x�� = �
−�

+� �
−�

+�

u�x�exp�i�kxx + kyy��dx,

�3�

where dx=dxdy. First, consider the case with no op-
tical potential or external defect �V=0�, for which �
�0. Applying the Fourier transform to Eq. (2) leads
to

û�k� =
F�N�
u
2�u�

� + 
k
2
. �4�

The idea is to construct a condition that limits the
amplitude under iteration from either growing with-
out bound or tending to zero. This is accomplished
by introducing of a new field variable, u�x�
=�w�x� , û�k�=�ŵ�k�, where ��0 is a constant to be
determined. Then the function ŵ satisfies

ŵ�k� =
F�N�
�
2
w
2�w�

� + 
k
2
� Q��ŵ�k��. �5�

Multiplying Eq. (5) by ŵ*�k� and integrating over
the entire k space, we find the relation

G��� � �
−�

+�


ŵ�k�
2dk − �
−�

+�

ŵ*�k�Q��ŵ�k��dk = 0, �6�

providing an algebraic condition on the constant �.
Finally, the desired solution is obtained by iterating
Eq. (5):

ŵm+1�k� =
F�N�
�m
2
wm
2�wm�

� + 
k
2
�7�

for m�1; �m denotes the solution to G��m�=0 at it-
eration m. Other variants of Eq. (6) are possible. But
what is crucial is to solve Eq. (7) coupled to an
algebraic-type equation that is obtained from Eq. (5)
by imposing an integral identity such as Eq. (6). We
name this method spectral renormalization. It is
straightforward to implement Eq. (7): Initially we
guess a function w1�x� [e.g., a Gaussian or sech-like
profile], which from Eq. (6) yields �1 that satisfies
G��1�=0. Then, from Eq. (7), we obtain ŵ2�k�, which
from the inverse, Fourier transform leads to w2�x�.
The iteration continues until convergence is
achieved. The procedure described above reproduces
the results presented elsewhere.12 Knowing the
weakly nonlinear limit is very useful in this regard.
Before presenting specific examples, we explain how
to construct localized solutions in the presence of an
external defect �V�0�. In this case, ��0���−
�
�.
But dividing by the expression 
�
− 
k
2 leads to a sin-
gularity. To avoid this, we add to and subtract from
Eq. (2) the term ru�x�, where r is a positive constant,
and then take the Fourier transform. This leads to

û�k� =
�r + 
�
�û

r + 
k
2
−

F�Vu� − F�N�
u
2�u�

r + 
k
2
� R�û�k��. �8�

Following the change of variable u�x�=�w�x� the it-
eration scheme takes the form ŵm+1�k�=R��mŵm�k��,

with �m given by the relation

�
−�

+�


ŵm�k�
2dk − �
−�

+�

ŵm
* �k�R��mŵm�k��dk = 0. �9�

To illustrate the method in a prototypical problem
we consider photorefractive lattice solitons in self-
focusing saturable nonlinearity, for which V�x�
=I0�cos2�x�+cos2�y�� and N�
u
2�=−1/ �1+ 
u
2�. These
photorefractive solitons were observed experimen-
tally for the first time by Segev’s group.15 The lattice
modes were originally found using the self-
consistency method.16 The reason for our showing
this example is to delineate a situation in which the
nonlinearity does not have a well-defined homogene-
ity. For the fully saturable case, the iteration scheme
reads as

ŵm+1�k� =
�r + 
�
�

r + 
k
2
ŵm −

F�Vwm�

r + 
k
2

+
1

r + 
k
2
F� wm

1 + 
�m
2
wm
2� , �10�

where �m are obtained from iterating Eq. (9) by using
standard nonlinear algebraic equation solvers, e.g.,
the Newton method. A typical example of a funda-
mental discrete soliton that corresponds to the pa-
rameters I0=1 and �=0.8 is shown in Fig. 1. We have
verified the stationarity of the mode by using direct
numerical simulation in Eq. (1). We can readily gen-
eralize the above method to include more than one
field. In that case, Eq. (2) is replaced by M coupled
stationary nonlinear Schrödinger-like equations that
are solvable using the same idea outlined above.

Another interesting case that arises in many appli-
cations is that of second-harmonic generation. The
system of equations governing stationary soliton
states17–21 is

− �A + W�x�A + �2A + AB = 0, �11�

− 4�B + 4W�x�B + �2B +
A2

2
= 0, �12�

Fig. 1. Fundamental lattice soliton obtained by iterating
Eq. (10) for I0=1 and 
�
=0.8.

August 15, 2005 / Vol. 30, No. 16 / OPTICS LETTERS 2141



where ��0 is the soliton propagation constant and
the lattice potential is given by W�x�
=W0 cos�2x�cos�2y�. Following a similar procedure,
we adopt the change of variables A=�1� , B=�2	. In
this case the iteration scheme takes the form

�̂m+1 =
F�W�m� + �2mF��m	m�

� + 
k
2
, �13�

	̂m+1 =
4F�W	m� + ��1m

2 /�2m�F��m
2 /2�

4� + 
k
2
. �14�

The convergence factors �1m and �2m satisfy the
coupled system

�2m = −

�
−�

+�

dk†�� + 
k
2�
�̂m
2 − �̂m
* F�W�m�‡

�
−�

+�

dk�̂m
* F��m	m�

,

�1m
2 =

�2m �
−�

+�

dk†�4� + 
k
2�
	̂m
2 − 4	̂m
* F�W	m�‡

�
−�

+�

dk	̂m
* F��m

2 /2�

.

Typical examples of quadratic lattice solitons are
shown in Figs. 2 and 3.

In conclusion, we have developed a novel numeri-
cal scheme with which to compute self-localized
states of nonlinear waveguides that is flexible and
can be applied to many nonlinear systems. As proto-
typical examples, we considered photorefractive satu-
rable nonlinearity, which lacks the property of homo-
geneity and second-harmonic generation. We have
shown how to find lattice solitons by using this spec-
tral renormalization method.
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Air Force Office of Scientific Research under grant
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A model describing wave propagation in optically modulated waveguide arrays is proposed. In the weakly
guided regime, a two-dimensional semidiscrete nonlinear Schrödinger equation with the addition of a bulk
diffraction term and an external “optical trap” is derived from first principles, i.e., Maxwell equations. When
the nonlinearity is of the defocusing type, a family of unstaggered localized modes are numerically con-
structed. It is shown that the equation with an induced potential is well-posed and gives rise to localized
dynamically stable nonlinear modes. The derived model is of the Gross-Pitaevskii type, a nonlinear
Schrödinger equation with a linear optical potential, which also models Bose-Einstein condensates in a mag-
netic trap.
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Wave propagation in nonlinear periodic structures dis-
plays unique phenomena that are absent in homogeneous
media. The interplay between periodicity and nonlinearity
can lead to the formation of discrete or lattice solitons, which
were predicted theoretically in the context of optical wave-
guide arrays �1� and then experimentally observed in �2�.
Until recently, discrete solitons were considered experimen-
tally in one-dimensional geometry �2�. However, by making
use of the photorefractive screening nonlinearity one can
“write” either one- or higher-dimensional optical waveguide
arrays by interfering pairs of plane waves �3�. Indeed, such
localized structures were experimentally observed in two-
dimensional geometries �4�.

In this paper we study wave propagation in optically
modulated waveguide arrays, starting from the full time-
harmonic three-dimensional Maxwell’s equations. For the
case where the periodic modulation along the y direction is
much larger than the periodic modulation along the x direc-
tion we derive, using multiscale asymptotic analysis, a semi-
discrete nonlinear Schrödinger equation with the addition of
bulk diffraction term and an external “optical trap.” When
the nonlinearity is of the defocusing type �where in the ab-
sence of modulation no finite energy solitons are known�
unstaggered localized modes are numerically constructed.
The fundamental properties such as the well-posedness of
the equation, existence, and the dynamical stability associ-
ated with a special class of localized wave solutions, i.e.,
stationary wave, or ground state, are discussed. The semidis-
crete model is derived from the scalar nonlinear Helmholtz
equation. Below we briefly outline the justification for ne-
glecting vectorial effects under certain physical assumptions.
A more general and detailed study of scalar and vector semi-
discrete nonlinear Schrödinger �NLS� type models will be
given elsewhere.

We begin by considering the three-dimensional Maxwell
equations governing time-harmonic solutions of frequency

0

�2E − � �� · E� + k0
2�E + P� = 0, k0 =


0

c
. �1�

Here, �=�xî+�yĵ+�zk̂, E=E�x ;
0� denotes the complex en-
velope of the electric field, P=P�E�x� ;
0� denotes the po-
larization field, containing both linear and nonlinear re-
sponses; we further assume the nonlinear polarization to be
of Kerr type �5� where the second component of the polar-
ization is given by

P2 = �E2 + ���
E1
2 + �1 + 
�
E2
2 + 
E3
2�E2 + 
�E1
2 + E3

2�E2
*�;
�2�

where 
 is a constant, � is proportional to the nonlinear index
change of refraction, and � is a function of x and y; the other
polarization components are found by cyclically changing
the indices �1→2→3→1�. We consider propagation in the z
direction through a photonic structure �invariant in z� having
nontrivial spatial variations in the �x ,y� plane due to �. A
schematic of the kind of transverse structure we consider is
given in Fig. 1. This structure has a rapid periodic variation
in x and a slow modulation in y. In nondimensional terms,
this corresponds to the assumed form �=��x ,�1/2y�, where �
is a small dimensionless parameter. The period in x is of
order 1 whereas a typical distance in y is of order �−1/2. We
further assume that the nondimensional nonlinear index of
refraction is small in size �O����. Then, analysis of
Maxwell’s equations �1� shows that E3 /E2=O��� and
E1 /E2=O��3/2� and to leading order

�zE3 = − �yE2. �3�

Then the second component of Maxwell’s equations �1�
leads to the following nonlinear Helmholtz equation

�2� + f2�x,y�� + ��
�
2� = 0, �4�

where � is the envelope wave function, which is propor-
tional to the optical field E2 ��2=�x

2+�y
2+�z

2�. f2�x ,y�=1+�
is the linear refractive index of the waveguide structure, � is
proportional to � and sgn�= +1 and sgn�=−1 correspond to,
respectively, the cases of self-focusing and self-defocusing
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nonlinearity. We assume that the linear refractive index ap-
pearing in �4� takes the form

f2�x,y� = F2�x� + � aFp
2�x,�1/2y� , �5�

where a= ±1. F2�x� is the refractive index of a grating struc-
ture in the x longitudinal coordinate, which may be viewed
as a superposition of spatial translates of a basic waveguide
with index profile F0

2�x�, which we assume to be single
moded. Thus, F2�x���mFm

2 �x�, Fm�x�=F0�x−mD�. Here,
�Fp

2�x ,�1/2y� is a weak modulation of refractive index �slow
in y and fast in x�. One can create a photonic structure of this
type by illuminating a photorefractive crystal with a pair of
interfering one-dimensional plane waves weakly modulated
along the y direction with a wavelength larger than the wave-
length along the x direction. We now analyze wave propaga-
tion in a nonlinear optical two-dimensional array and discuss
the physical phenomena that result.

We exploit the weak nonlinearity �small �� in �4� and �5�
to construct a multiple scale expansion of the envelope,
�. We seek � as a superposition of x− translates of the
isolated single mode wave function with slowly varying am-
plitudes �6�

� � �
m=−�

+�

Am�Z,Y��m�x�ei�z, �6�

where Z=�z and Y =�1/2y are slow propagation and modula-
tion scales, respectively. Here, ��x� is the single waveguide
mode and � its corresponding eigenvalue

d2�

dx2 + �F0
2�x� − �2�� = 0, �7�

and �m�x�=��x−mD�. Substituting the expansion �6� into
the Helmholtz equation �4� and making use of �7�, we find

that the corrections to �6� are small provided the projections
of

�
m=−�

+� �2i���m
�Am

�Z
+ �m„F2�x� − Fm

2 �x�…Am + ��m
�2Am

�Y2

+ a�Fp
2�x,Y��mAm + �� �

m�,m�=−�

+�

�m�m��m�
* AmAm�Am�

* �
= 0, �8�

onto all � j are of order �� ,��1. This yields �see also �6��

i
�An

�Z
+ C�An+1 + An−1� + 


�2An

�Y2 + aVn�Y�An + �
An
2An = 0,

�9�

where �C=1/c0� (F2�x�−Fn±1
2 �x�)�n±1�n

*dx, Vn�Y�
=1/c0�Fp

2�x ,Y�
�n
2dx, �=� /c0� 
�n
4dx, and c0

=2�� 
�n
2dx; 
=1/ �2��. Note that we are considering the
regime where only nearest neighbor waveguides contribute
to order �. Equation �9� governs the slow evolution of An in
a weakly modulated optically induced waveguide array. Next
we examine linear propagation and then highlight some
physical nonlinear phenomena that are predicted by the
model �9�. For the ideal one-dimensional waveguide array
�
=�=Vn�Y��0�, the propagating field experiences discrete
diffraction due to optical tunneling to adjacent sites and ex-
hibits a typical discrete diffraction pattern with the intensity
mainly concentrated in the outer lobes �7�. However, in the
presence of modulation �
�0 and Vn�0�, and in the quasi-
two-dimensional configuration �when modulating along the y
direction�, the waveguide action prevents the beam from dif-
fracting. It should also be noted that a similar derivation in
the case when two fields are initially present, i.e., nontrivial
E1 ,E2 leads to a vector system whose first component
satisfies,

i
�An

�1�

�Z
+ C�An+1

�1� + An−1
�1� � + 


�2An
�1�

�Y2 + aVn�Y�An
�1�

+ ���1 + 
�
An
�1�
2 + 
An

�2�
2�An
�1� + 
An

�1�2
An

�2�* = 0,

�10�

and the second equation is obtained by cyclically changing
the indices �1→2→1�. In a future publication we will give
the derivation in detail. We now discuss the results obtained
for the model �9� which are depicted in Figs. 2–4. First, in
both self-focusing and self-defocusing cases, propagating
beams of any finite power do not collapse or filament. This is
in contrast to the continuum analog, the two-dimensional
cubic-focusing NLS equation, whose solutions with suffi-
cient initial power are well known to develop singularities at
a finite distance into a bulk Kerr propagation medium �8�.
That the semidiscrete character inhibits collapse, �see Fig. 4�,
can be understood by an argument based on the conserved
integrals of �9�

FIG. 1. A typical modulated waveguide array.
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N = �
n
� 
An
2dY

H = C�
n
� 
An+1 − An
2 + 
�YAn
2 − aVn
An
2 −

�

2

An
4dY .

That no singularity can form as the wave form propagates
through increasing Z is a direct consequence of the Z− inde-
pendence of N and H and the semidiscrete Sobelev-
Gagliardo-Nirenberg inequality �dSNG� for functions fn�Y�
defined on the integer lattice times the real continuum

�9–11�: Let f�= (fn�Y�), �f�= (fn+1�Y�) and �f��p
p=�n� 
fn
pdY.

Then, there is a universal constant C*�0 such that for all f�

�f��4
4 � C*��Y f��2�f� − �f��2�f��2

2. �11�

In particular, the Z independence of N and H and the in-

equality �11� together imply upper bounds on ��Y f��Z��2 and


f��Z ,Y�
 in terms of H and N �which are independent of Z
and Y�. These bounds break down when passing to the
continuum limit. It should be remarked that in the de-
focusing case, 
��0, when Vn�Y��0, there are no localized
nonlinear modes. In this case, a finite energy concentration
diffractively spreads and attenuates in amplitude. However,
the optical trapping potential, Vn�Y�, introduces the possibil-
ity of stable bright solitonlike states. Indeed, the existence
and importance of such nonlinear defect modes has been
studied in the context of a plasma model �12� and in the
trapping of nonlinear pulses in fiber gratings with localized
defects �13�. Such nonlinear defect modes are solutions to
Eq. �9� of the form An=Bne−i�Z and satisfy

�Bn + C�Bn+1 + Bn−1� + 

�2Bn

�Y2 − Vn�Y�Bn + �
Bn
2Bn = 0,

�12�

where ��0 is the propagation constant. In the above, we
took a=−1 and �=−1. The existence and stability of these
states follows from their variational characterization as local
minima of the energy functional H subject to fixed total
power, N. Here too, the inequality �11� plays a role in that it
implies the boundedness from below of the constrained en-

ergy. For simplicity, in our numerics we consider a perturbed
index, which is locally parabolic �which can be induced by a

weak sinusoidal refractive index�, Fp
2�x ,Y�= �̃x2+ �̃Y2 lead-

ing to the induced potential

Vn�Y� = �n2 + �Y2. �13�

To numerically construct the bound states solutions to Eq.
�12� we first define the Fourier transform F and its inverse
F−1

B̂�k,q� = F�Bn�Y�� = �
n=−�

+� �
−�

+�

Bn�Y�e−i�qn+kY�dY , �14�

Bn�Y� = F−1�B̂�k,q�� =
1

�2��2�
−�

+� �
−�

+�

B̂�k,q�e+i�qn+kY�dkdq .

�15�

The idea of the method �see also Ref. �14�� is to make the

change of variables: Bn�Y�=�Qn�Y�, B̂�k ,q�=�Q̂�k ,q�,
where ��0 is a constant to be determined from a consis-
tency condition. Taking the Fourier transform on Eq. �12�
and using the above change of variables we get

FIG. 3. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq. �12� in the presence of a one-dimensional “discrete trap”
��=1/2; �=0.1� for the defocusing nonlinearity. The parameters
are C=2, �=4, 
=1, and �=−1.

FIG. 4. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq. �12� without a trap �Vn�Y��0� for the focusing nonlin-
earity. The parameters are C=2, �=1, 
=1, and �= +1.

FIG. 2. Localized semidiscrete, two-dimensional soliton solu-
tion to Eq. �12� in the presence of a semidiscrete two-dimensional
trap ��=�=1/2� for the defocusing nonlinearity. The parameters
are C=2, �=4, 
=1, and �=−1.

WAVE DYNAMICS IN OPTICALLY MODULATED… PHYSICAL REVIEW E 71, 055602�R� �2005�

RAPID COMMUNICATIONS

055602-3



��k,q�Q̂�k,q� − F�Vn�Y�Qn�Y�� = − �2F��
Qn
2Qn� ,

�16�

where ��k ,q�=�+2C cos�q�−
k2. Multiplying Eq. �16� by

Q̂*�k ,q� and integrating over the �k ,q� space, we find

�2 =

−� Q̂*�k,q�
��k,q�Q̂�k,q� − F�Vn�Y�Qn�Y���dkdq

� Q̂*�k,q�F��
Qn
2Qn�dkdq

.

�17�

Since ��k ,q� vanishes for �=−2C cos�q�+
k2, we add and

subtract �r+2C�Q̂�k ,q� in Eq. �16� where r is an arbitrary
positive number. Then the iteration will take the following
form:

Q̂�m+1� =
r + � + 2C

r + 2C�1 − cos�q�� + 
k2Q̂�m��k,q�

−
F�Vn�Y�Qn

�m��Y�� − ���m��2F��
Qn
�m�
2Qn

�m��
r + 2C�1 − cos�q�� + 
k2 ,

�18�

where ��m� is defined by the right-hand side of �17� with Q
set equal to Q�m�. Typical examples of self-localized beams
are shown in Figs. 2–4. In Fig. 2 we have a trap in both n

and Y and the mode is localized equally in both directions. In
Fig. 3, we depict a trap with �=1/2 and �=0.1, which is
much longer in the Y direction than the discrete n. We also
note that when the trap is only a function of n ��=0�, the
corresponding mode is only localized in the n direction;
similarly it turns out that when the trap is localized in the y
direction �e.g., �=0� then the mode is only localized in the Y
direction. Finally we find that when the trap is “turned off”
Vn=0—then we find a new localized mode in the focusing
nonlinear case when 
�=1 �see Fig. 4�.

In conclusion, a model describing wave propagation in
optically modulated waveguide arrays is derived from Max-
well’s equations. In the weakly guided regime, a discrete
nonlinear Schrödinger equation with the addition of a bulk
diffraction term and an external “optical trapping potential”
is derived. In the defocusing regime, where in the absence of
modulation no finite energy solitons are known, the induced
optical trap prevents the beam from defocusing, resulting in
a stable unstaggered localized mode. These results also es-
tablish a connection to the modeling of Bose-Einstein con-
densation where discrete optical lattices with a potential in-
duced by a magnetic trap have been studied �cf. �15��.

M.J.A. was partially supported by the Air Force Office of
Scientific Research under Grant No. F-49620-03-1-0250 and
by the NSF under Grant No. DMS-0303756 M.I.W. was par-
tially supported by the NSF under Grant No. DMS-0412305.
K.J. acknowledges partial support from the University of
Colorado.

�1� D. N. Christodoulides and R. J. Joseph, Opt. Lett. 13, 794
�1988�.

�2� H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, and J.
Aitchison, Phys. Rev. Lett. 81, 3383 �1998�.

�3� N. Efremidis, S. Sears, D. N. Christodoulides, J. Fleischer, and
M. Segev, Phys. Rev. E 66, 046602 �2002�.

�4� J. Fleischer, M. Segev, N. Efremidis, and D. N. Christodoul-
ides, Nature �London� 422, 147 �2003�.

�5� R. W. Boyd, Nonlinear Optics, 2nd ed. �Academic Press,
SanDiego, CA, 2003�.

�6� M. J. Ablowitz and Z. H. Musslimani, Physica D 184, 276
�2003�.

�7� A. Yariv, Optical Electronics in Modern Communications �Ox-

ford University Press, Oxford, 1997�.
�8� P. L. Kelley, Phys. Rev. Lett. 15, 1005 �1965�.
�9� M. I. Weinstein and B. Yeary, Phys. Lett. A 222, 157 �1996�.

�10� M. I. Weinstein, Nonlinearity 12, 673 �1999�.
�11� B. Yeary, Ph.D. thesis, University of Michigan, 1996 �unpub-

lished�.
�12� H. A. Rose and M. I. Weinstein, Physica D 30, 207 �1988�.
�13� R. H. Goodman, R. E. Slusher, and M. I. Weinstein, J. Opt.

Soc. Am. B 19, 1635 �2002�.
�14� M. J. Ablowitz and Z. H. Musslimani, Opt. Lett.�to be pub-

lished�.
�15� P. Meystre, Atom Optics �Springer, Berlin, 2001�.

ABLOWITZ et al. PHYSICAL REVIEW E 71, 055602�R� �2005�

RAPID COMMUNICATIONS

055602-4



Physica D 207 (2005) 230–253

Wave collapse in a class of nonlocal
nonlinear Schrödinger equations
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Abstract

Wave collapse is investigated in nonlocal nonlinear Schrödinger (NLS) systems, where a nonlocal potential is coupled to an
underlying mean term. Such systems, here referred to as NLS-Mean (NLSM) systems, are also known as Benney–Roskes or
Davey–Stewartson type and they arise in studies of shallow water waves and nonlinear optics. The role of the ground-state in
global-existence theory is elucidated. The ground-state is computed using a fixed-point method. The critical-powers for collapse
predicted by the Virial Theorem, global-existence theory, and by direct numerical simulations of the NLSM are found to be in
good agreement with each other for a wide range of parameters. The ground-state profile in the water-wave case is found to
be generically narrower along the direction of propagation, whereas in the optics case it is generically wider along the axis of
linear polarization. In addition, numerical simulations show that NLSM collapse occurs with a quasi self-similar profile that is
a modulation of the corresponding astigmatic ground-state, which is in the same spirit as in NLS collapse. It is also found that
NLSM collapse can be arrested by small nonlinear saturation.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Blowup; Singularity formation; Modulated nonlinear waves

1. Introduction

Nonlinear waves problems are of wide physical and mathematical interest and arise in a variety of scientific fields
such as nonlinear optics, fluid dynamics, plasma physics, etc. (cf. [7,36]). The solutions of the governing nonlinear
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waves equations often exhibit important phenomena, such as stable localized waves (e.g., solitons), self-similar
structures, chaotic dynamics and wave singularities such as shock waves (derivative discontinuities) and/or wave
collapse (i.e., blowup) where the solution tends to infinity in finite time or finite propagation distance. A prototypical
equation that arises in cubic media, such as Kerr media in optics, is the (2+1)D focusing cubic nonlinear Schrödinger
equation (NLS),

iuz(x, y, z) + 1
2	u + |u|2u = 0, u(x, y, 0) = u0(x, y), (1)

where u is the slowly-varying envelope of the wave, z is the direction of propagation,1 (x, y) are the transverse
directions, 	u ≡ uxx + uyy, and u0 is the initial conditions. Remarkably, in 1965 Kelley [23] carried out direct
numerical calculations of (1) that indicated the possibility of wave collapse. In 1970, Vlasov et al. [34] proved that
solutions of Eq. (1) satisfy the following “Virial Theorem" (also called Variance Identity)

d2

dz2

∫
(x2 + y2)|u|2 = 4H, H = 1

2

∫
(|∇u0|2 − |u0|4), (2)

where ∇ ≡ (∂x, ∂y), the integrations are carried over the (x, y) plane, and H, which is a constant of motion, is the
Hamiltonian of Eq. (1). Using the Virial Theorem, Vlasov et al. concluded that the solution of the NLS can become
singular in finite distance (or time), because a positive-definite quantity could become negative for initial conditions
satisfying H < 0 . On the other hand, Weinstein [35] showed that when the power (which is also conserved)
is sufficiently small, i.e., N = ∫ |u0|2 = constant < Nc ≈ 1.8623π, the solution exists globally, i.e., for all z > 0.
Therefore, a sufficient condition for collapse is H < 0 while a necessary condition for collapse is N > Nc. Weinstein
also found that the ground-state of the NLS plays an important role in the collapse theory. This ground-state
is a “stationary” solution of the form u = R(r) eiz, such that R is radially-symmetric, positive, and monotonically
decaying. Papanicolaou et al. [27] studied the singularity structure near the collapse point and showed asymptotically
and numerically that collapse occurs with a (quasi) self-similar profile. The readers are referred to [30] for a
comprehensive review of related studies. Recent research by Merle and Raphael [26] further elaborated on the
collapse behavior of NLS Eq. (1) and related equations, allowing for detailed understanding of the self-similar
asymptotic profile. Furthermore, Gaeta and coworkers [24] recently carried out detailed optical experiments in
cubic media that reveal the nature of the singularity formation and showed experimentally that collapse occurs with
a self-similar profile.

On the other hand, there are considerably fewer studies of wave collapse that arises in nonlinear media, whose
governing system of equations have quadratic nonlinearities, such as water waves and χ(2) nonlinear-optical media.
Here we discuss a class of such systems, denoted as NLS-Mean (NLSM) systems, which are sometimes referred to
as Benney and Roskes [8] or Davey and Stewartson [13] type. The physical derivation of NLSM systems in water
waves and nonlinear optics is reviewed in Section 2. Broadly speaking, the derivation of NLSM systems is based on
an expansion of the slowly-varying (i.e., quasi-monochromatic) wave amplitude in the first and second harmonics
of the fundamental frequency, as well as a mean term that corresponds to the zeroth harmonic. This leads to a system
of equations that describes the nonlocal-nonlinear coupling between a dynamic field that is associated with the first
harmonic (with a “cascaded” effect from the second harmonic), and a static field that is associated with the mean
term (i.e., the zeroth harmonic). For the physical models considered in this study, the general NLSM system can be
written in the following non-dimensional form,

iuz + 1
2 (σ1uxx + uyy) + σ2u|u|2 − ρuφx = 0, φxx + νφyy = (|u|2)x, (3)

where u(x, y, t) corresponds to the field associated with the first-harmonic, φ(x, y, t) corresponds to the mean
field, σ1 and σ2 are ±1, and ν and ρ are real constants that depend on the physical parameters. It is well-known

1 In this study z plays the role of the evolution variable (i.e., like time).
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that System (3) can admit collapse of localized waves when σ1 = σ2 = 1 and ν > 0. In that case, the governing
equations are

iuz + 1
2	u + |u|2u − ρuφx = 0, (4a)

φxx + νφyy = (|u|2)x, (4b)

where ν > 0 and ρ is real, and the initial conditions are u(x, y, 0) = u0(x, y), φ(x, y, 0) = φ0(x, y), such that
Eq. (4b) is satisfied at z = 0, i.e., φ0,xx + νφ0,yy = (|u0|2)x. The goal of this study is to further investigate the
collapse dynamics in the NLSM System (4).

We note that System (4) reduces to the classical NLS Eq. (1) when ρ = 0, because in that case the mean field
φ does not couple to the harmonic field u in Eq. (4a). In addition, when ν = 0 Eq. (4b) gives that φx = |u|2 and,
therefore, Eq. (4a) reduces to a classical NLS Eq. (1) with the cubic term (1 − ρ)|u|2u. As we shall see, in optics
ρ > 0, whereas in water waves ρ < 0. In either case, i.e., when ρ �= 0, the NLSM System (4) is a nonlocal system
of equations. Indeed, since ν > 0, Eq. (4b) can be solved as

φ(x, y, z) =
∫ ∞

−∞
G(x − x′, y − y′)

∂

∂x′ |u(x′, y′, z)|2 dx′ dy′,

where G(x, y) is the usual Green’s function. For Eq. (4b) G(x, y) = (4π)−1 log(x2 + y2/ν), which corresponds to
a strongly-nonlocal function φ. While one might have expected the strong-nonlocality in the NLSM to arrest the
collapse process, generally speaking, that is not the case for System (4). Moreover, there is a striking mathematical
similarity between collapse dynamics in the NLS and NLSM cases.

The paper is organized as follows:

(1) In Section 2 NLSM systems in water waves and in nonlinear optics are discussed.
(2) In Section 3 the theory of collapse and global existence in NLS and NLSM equations is reviewed. In addition,

the Hamiltonian is used to explain why collapse in the case of water waves (ρ < 0) is relatively easier to attain,
and also occurs more quickly, than in the case of nonlinear optics (ρ > 0).

(3) Using global existence theory and numerical calculations of the ground-state, in Section 4 the necessary con-
dition for collapse is explored in terms of the parameters ν and ρ in the NLSM System (4). Using the Virial
Theorem and the Hamiltonian, a sufficient condition for collapse is found for Gaussian input beams, explic-
itly in terms of ν, ρ, and the input power. These theoretical results are found to be consistent with numerical
simulations of the NLSM System (4) and are also consistent with the numerical results of Crasovan et al. [12]
for nonlinear optics (ρ > 0). In addition, the effect of input astigmatism in the initial conditions on the critical
power for collapse is studied (Section 4.1]). Furthermore, in Section 4.2 it is shown that the NLSM can admit
collapse even without the cubic term [i.e., without |u|2u in Eq. (4a)].

(4) In Section 5 the astigmatism of the NLSM ground-state is explored in the (ν, ρ) parameter space. It is found
that the ground-state is relatively more astigmatic for nonlinear optics (ρ > 0) than for water waves (ρ < 0). In
addition, the dependence of the astigmatism of the ground-state on ν is found to be weaker than its dependence
on ρ.

(5) In Section 6 simulations of the NLSM System (4) show that the collapsing solution is well described by a quasi
self-similar profile that is given in terms of a modulation of the corresponding ground state, a result that is in
the same spirit as for the NLS equation and also strengthens the results of Papanicolaou et al. [28]. However,
in [28] the ground-state itself was not computed and, in turn, it was not shown numerically that the asymptotic
profile approaches the corresponding ground-state. In this study numerical simulations directly show that the
collapsing wave approaches a quasi self-similar modulation of the corresponding ground-state. To calculate the
ground-state a fixed-point algorithm is used, which has been previously applied in dispersion-managed NLS
theory (see Appendix C).
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(6) In Section 7 numerical simulations are used to show that NLSM collapse can be arrested by a small saturation
of the cubic nonlinearity, a phenomenon that can be explained using the results of Fibich and Papanicolaou [19]
for the the perturbed NLS.

2. NLSM systems in water waves and nonlinear optics

Below we review some of the main results from the derivations of NLSM systems, with an emphasis on collapse.

2.1. Water waves

In the context of free-surface gravity-capillary water waves, NLSM equations result from a weakly-nonlinear
quasi-monochromatic expansion of the velocity potential as

φ(x, y, t) ∼ ε[Ãei(kx−wt) + c.c. + Φ̃] + ε2[Ã2e2i(kx−wt) + c.c.] + · · · , (5)

where x is the direction of propagation, y the transverse direction, t the time, ε � 1 a measure of the (weak)
nonlinearity, Ã, Ã2, and Φ̃ are slowly varying functions of (x, y, t), which correspond to the coefficients of the
first, second, and zeroth harmonics, respectively, “c.c.” denotes complex conjugate of the term to its left, and the
frequency ω satisfies the dispersion relation ω2(κ) = (gκ + Tκ3) tanh(κh), where g is the gravity acceleration, T
is the surface tension coefficient, and κ = √

k2 + l2, where (k, l) are the wave-numbers in the (x, y) directions,
respectively. Substituting the wave expansion (5) into the water-wave equations (i.e., Euler’s equation with a free
surface) and assuming slow modulations of the field in the x and y directions results in a nonlinearly-coupled
system for Ã and Φ̃. After non-dimensionalization, i.e., (A, Φ) = (Ã, Φ̃)k2/

√
gh, one finds the general NLSM

system [6]

iAτ + λAξξ + µAηη = χ|A|2A + χ1AΦξ, (6a)

αΦξξ + Φηη = −β(|A|2)ξ, (6b)

where ξ = εk(x − cgt), η = εly and τ = ε2√gk t are dimensionless coordinates, and cg = ∂ω/∂k is group velocity.
The coefficients λ, µ ≥ 0, χ, χ1 ≥ 0, α and β ≥ 0 are suitable functions of h, T, k, cg, and the second-order dispersion
coefficients ∂2ω/∂k2 and ∂2ω/∂l2. We note that in the derivation of System (6) Ã2 is expressed in terms of Ã, which
accounts for the fact that A2 does not appear explicitly in the resulting system.2

NLSM equations were originally obtained by Benney and Roskes [8] in their study of the instability of wave
packets in water of finite depth h, without surface tension. In 1974, Davey and Stewartson [13] studied the evolution
of a 3D wave packet in water of finite depth and obtained a different, although equivalent, form of these equations.
In 1975 Ablowitz and Haberman [4] studied the integrability of systems such as (6). These integrable systems
correspond to the Benney–Roskes equations in the shallow water limit. In 1977, Djordevic and Reddekopp [14]
extended the results of Benney and Roskes to include surface tension. Subsequently, Ablowitz and Segur [6] inves-
tigated System (6) or, equivalently, System (3). They showed that the shallow water limit, i.e., h → 0, corresponds
to σ1 → −ν = ±1, and ρ → 2 in System (3). The resulting equations agreed with those obtained by Ablowitz
and Haberman [4]. Hence, the shallow-water limit of System (6) is integrable and can be obtained from an associ-
ated compatible linear scattering system. In [21] these reduced equations were linearized by the inverse scattering
transform (see also [3]).

Subsequently, Ablowitz and Segur [6] studied the NLSM System (6) in the non-integrable case. In this parameter
regime, System (6) can be transformed by a rescaling of variables to System (3) with σ1 = σ2 = 1 and ν > 0, i.e.,

2 A similar observation holds in the optics case mentioned below.
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the so called focusing elliptic–elliptic case, which, physically speaking, requires sufficiently large surface tension.
They found that System (6) preserves the Hamiltonian

H =
∫ [

λ

∣∣∣∣∂A∂ξ
∣∣∣∣2

+ µ

∣∣∣∣∂A∂η
∣∣∣∣2

]
− 1

2

∫ [
(−χ)|A|4 + αχ1

β
(Φξ)2 + χ1

β
(Φη)2

]
, (7)

where the first and second integrals correspond to the second-derivative and the nonlinear terms in Eq. (6a), respec-
tively, and the integrations are carried over the (ξ, η) plane. When, in addition to the physical requirements µ ≥ 0,
β ≥ 0, and χ1 ≥ 0, one has that λ > 0, −χ > 0, and α > 0, the first and second integral terms in (7) are positive and
negative-definite, respectively. This corresponds to the self-focusing regime. Clearly, in that case H < 0 is possible
for sufficiently large initial conditions.3 Furthermore they proved that the following Virial Theorem holds

∂2

∂τ2

∫ (
ξ2

λ
+ η2

µ

)
|A|2 = 8H.

As can be seen, if H < 0, the moment of inertia vanishes at a finite time. In that case, as for the NLS case mentioned
above, this indicates finite-distance singularity formation. We note that in the same study collapse solutions with the
self-similar profile were also investigated, i.e., with |A| ∼ L−1f ( x

L
,

y
L

), where L = L(t) approaches zero during
the collapse.

2.2. Nonlinear optics

The electric polarization field of intense laser beams propagating in optical media an be expanded in powers of
the electric field as

P = χ(1) × E + χ(2) × E × E + χ(3) × E × E × E + · · · , (8)

where E = (E1, E2, E3) the electric field vector and χ(j) are the susceptibility tensor coefficients of the medium.
In isotropic Kerr media, where the nonlinear response of the material depends cubically [i.e., through χ(3) and
when χ(2) ≡ 0] and instantaneously on the applied field, the dynamics of a quasi-monochromatic optical pulse is
governed by the NLS Eq. (1) (cf. [9,23,31]). It turns out that NLSM type equations also arise in nonlinear optics
when studying media with a non-zero χ(2) [even when χ(3) ≡ 0], i.e., materials that have a quadratic nonlinear
response. Such materials are anisotropic, e.g., crystals whose optical refraction has a preferred direction.

Ablowitz et al. [1,2] found, from first principles, that NLSM type equations describe the evolution of the elec-
tromagnetic field in such quadratically [i.e., χ(2)] polarized media. Both scalar and vector (3+1)D NLS systems
were obtained. Briefly, in this derivation one assumes a quasi-monochromatic expansion of the x component of the
electromagnetic field (which is primarily linearly-polarized), with the fundamental harmonic, second-harmonic,
and a mean term as

E1 ∼ ε[A ei(kx−ωt) + c.c.] + ε2[A2 e2i(kx−ωt) + c.c. + φx] + · · · , (9)

where A, A2, and φ are slowly varying functions of (x, y, t), which correspond to the first, second, and zeroth
harmonics, respectively. Using a polarization field of the form (8) in Maxwell’s equations leads to the system of
equations

[2ik∂Z + (1 − αx,1)∂XX + ∂YY − kk′′∂TT + Mx,1|A|2 + Mx,0φx]A = 0, (10a)

[(1 − αx,0)∂XX + ∂YY + sx∂TT ]φx − αy,0∂XYφy = (Nx,1∂TT − Nx,2∂XX)|A|2, (10b)

3 Note that from Eq. (6b) Φ scales as |A|2, so all the terms in the second integral of (7) scale like |A|4.
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where αx,0, αx,1, αy,0, and sx depend on the linear polarization term χ(1); Mx,0, Nx,1, and Nx,2 depend on the
nonlinear polarization terms χ(2) and χ(3); and Mx,1 depends on products of χ(2) and χ(3). Physically speaking,
the dependence of Mx,1 on χ(2) and χ(3) corresponds to the fact that the second-harmonic (i.e., Ã2) is coupled to
the first harmonic (i.e., Ã1), a process that is sometimes referred to as “optical rectification” or “cascaded” optical
effect. However, as in the water-wave case, here too Ã2 is expressed in terms of Ã, which is why A2 does not
appear explicitly in the resulting system (10). In addition, similar to the water-wave case, the term with Mx,0 in
System (10a) couples the mean field to the first-harmonic field. Interestingly, when the time dependence in these
equations is neglected (∂T ≡ 0) and for media with a special symmetry class such that αy,0 = 0, it can be seen that,
after proper rescaling, the governing system of equation is given by System (4). In [32] these equations were further
elucidated and the coefficients described in terms of the electro-optic effect.

From the point of view of perturbation analysis, it is interesting to remark that in the expansion of the field in the
case of water-waves [i.e., Eq. (5)], the mean term Φ̃ appears as an O(ε) term, whereas in the in the case of optics
[i.e., Eq. (9)], the mean term φx appears as an O(ε2) term. However, the physically measurable quantity in water
waves is Φ̃x, which scales like O(ε2), because Φ̃ is slowly-varying. Therefore, the expansions in the water-wave
and optics cases are, in fact, analogous from the viewpoint of perturbation analysis.

Wave collapse in such NLSM systems was recently investigated numerically by Crasovan et al. [12]. They solved
the following normalized system of equations,

iUz + 1
2	U + |U|2U − ρUV = 0, (11a)

Vxx + νVyy = (|U|2)xx, (11b)

where U is the normalized amplitude of the envelope of the electric field, V the normalized static field, ρ a coupling
constant that comes from the combined optical rectification and electro-optic effects, and ν corresponds to the
anisotropy coefficient of the medium. They solved System (11) numerically with Gaussian initial conditions for U.
The regions of collapse were investigated for various values of the parameters ρ and ν. We note that System (11) is
a simple mathematical modification of the NLSM System (4). Indeed, starting with the NLSM System (4), taking
the derivative of Eq. (4b) with respect to x, and defining the new variable (potential) V = φx, one finds that the
resulting system is identical to (11).

3. Global existence, collapse, and the ground-state

We begin by briefly outlining some of the known results for the NLS and NLSM equations. Two conserved
quantities for the NLS Eq. (1) and NLSM System (4) are the power, i.e.,

N(u) =
∫

|u|2 = N(u0), (12)

where the integrations (here and below) are carried over the (x, y) plane, and the Hamiltonian, i.e.,

HNLS(u) = 1

2

∫
|∇u|2 − 1

2

∫
|u|4 = HNLS(u0),

HNLSM(u, φ) = 1

2

∫
|∇u|2 − 1

2

∫
|u|4 + ρ

2

∫
(φ2

x + νφ2
y) = HNLSM(u0, φ0), (13)

where HNLS and HNLSM correspond to Eq. (1) and System (4), respectively, and φ in (13) is obtained from Eq. (4b).
In addition, the Virial Theorem holds (cf. [6]),

∂2

∂z2

∫
(x2 + y2)|u|2 = 4H, (14)
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where H is the corresponding Hamiltonian, i.e., either HNLS or HNLSM. We are interested in the localized-decaying
case, when u andφ vanish sufficiently rapidly at infinity to be in the Sobolev spaceH1, i.e.,

∫ |u|2 + ∫ |∇u|2 < ∞ and
similarly for φ. We note that within the context of the water-wave problem (i.e., ρ < 0), existence and well-posedness
of solutions of System (4) were studied in [22]. Singularity formation corresponds to finite-time (or finite-distance)
blowup in H1. Since the L2 norm is conserved (12), blowup in H1 amounts to limz→Zc

∫ |∇u|2 = ∞, where Zc is
the collapse distance. In fact, it is well-known in NLS and NLSM theories that when a singularity occurs, the peak
amplitude of the wave blows-up as well, i.e., limz→Zc max(x,y) |u(x, y, z)| = ∞.

When H < 0 it follows from the Virial Theorem (14) that the solution becomes singular in finite time. This gives
a sufficient condition for collapse. On the other hand, a necessary condition for collapse can be obtained using the
associated ground-state, as reviewed below. We note that the Hamiltonian (13) is comprised of three integrals, the
first of which is positive definite, the second negative definite, and, when ν ≥ 0, the third integral is definite with a
sign that is determined by ρ. Generally speaking, NLS (and NLSM) theory shows that the positive-definite terms
correspond to defocusing mechanisms, while the negative-definite terms correspond to focusing mechanisms. Thus,
it follows that when ρ > 0, i.e., in the optics case, the coupling to the mean field corresponds to a self-defocusing
mechanism, while when ρ < 0, i.e., the water-wave case, it corresponds to a self-focusing effect in addition to the
cubic term in the NLS Eq. (1). In other words, loosely speaking, one can expect that self-focusing in the water-wave
case is “easier” to attain than in the optics case (see Sections 4 and 6 for details).

A stationary solution of the NLSM System (4) is a solution of the form u(x, y, z) = F (x, y) eiλz and φ(x, y, z) =
G(x, y), where F and G are real functions and λ is a positive real number. Substituting this ansatz into System (4)
gives

− λF + 1
2	F + F3 − ρFGx = 0, (15a)

Gxx + νGyy = (F2)x. (15b)

Similarly, the NLS stationary solutions, which are obtained by substituting u = R(x, y) eiλz into the NLS Eq. (1),
satisfy

− λR + 1
2	R + R3 = 0. (16)

The ground-state of the NLS4 can be defined as a solution in H1 of Eq. (16) for a given λ having minimal power
of all the nontrivial solutions. The existence and uniqueness of the ground state have been proven, as also the fact
that it is radially-symmetric, positive, and monotonically decaying (see [30]). Since R(r; λ) = √

λR(
√

λ r; 1), it
suffices to consider the case λ = 1, for which the solution is henceforth denoted by R. Furthermore, Weinstein [35]
proved that the NLS ground-state is a minimizer of a Gagliardo-Nirenberg inequality that is associated with the
NLS Hamiltonian. To be precise, the functional

J(u) = ‖u‖2
2 ‖∇u‖2

2

‖u‖4
4

, ‖u‖p
p ≡

∫
|u|p,

attains its minimum for u ∈ H1 when u(x, y) = R(r), where R is the ground-state of Eq. (16) and J(R) = 2/Nc,
where Nc ≡ ∫

R2. Moreover, Weinstein proved that when N < Nc, the NLS solution exists globally (i.e., for all
z > 0) in H1. In addition, it is not difficult to show (cf. Appendix A) that any stationary solution, in particular the
ground-state, admits a zero Hamiltonian, i.e., HNLS(R) = 0. These results can be used to explain why the ground-
state may be considered to be on the borderline between existence and collapse. Indeed, consider the initial conditions
u0 = (1 + ε)R(r) with ε = constant. When ε < 0 then N < Nc and, therefore, the solution exists globally. On the
other hand, when ε > 0 then H < 0 and, therefore, finite-distance collapse is guaranteed by the Virial Theorem

4 R, the NLS ground-state, is sometimes referred to as the Townes profile.
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(cf. [35]). We note that N ≥ Nc is only a necessary condition for collapse, i.e., there are solutions with N > Nc that
exist globally.

Similarly to the NLS case, the ground-state of System (15) can be defined as the nontrivial solution (F, G) in
H1, such that F has minimal power. Cipolatti [10] proved the existence of the ground-state. In the same spirit as for
the NLS, Papanicolaou et al. [28] defined the ground-state as the minimizer the associated functional5

J(u) = ‖u‖2
2 ‖∇u‖2

2∫
[|u|4 + B(u)u∗2]

, B(u) ≡ F−1

[
ρk2

x

k2
x + νk2

y

F[|u|2]

]
,

where F and F−1 denote the Fourier Transform operator and its inverse, respectively (see Appendix B). They
extended global existence theory to the NLSM and proved the following.

Theorem 3.1. Consider System (4) with initial conditions u0 ∈ H1. Let F be the nontrivial minimizer of J(u)
above, and let Nc be defined as

Nc(ν, ρ) ≡
∫

F2(x, y; ν, ρ). (17)

Then F is a positive function and, therefore, Nc > 0. In addition, if
∫ |u0|2 < Nc the solution of System (4) exists

in H1 for all z > 0.

In other words, solutions of the NLSM System (4) exist globally when their power is smaller than the power of the
corresponding ground-state.

On the other hand, since the ground-state is a stationary solution, in analogy to HNLS(R) = 0, one has also (see
Appendix A)

Proposition 3.2. Let (F, G) be a solution of System (15). Then

HNLSM(F, G) ≡ 1

2

∫
(∇F )2 − 1

2

∫
F4 + ρ

2

∫
(∇νG)2 = 0, (18)

where (∇νG)2 ≡ G2
x + νG2

y.

Therefore, it follows from Theorem 3.1, the Virial Theorem (14), and Proposition 3.2 that, as in the NLS case, the
NLSM ground-state is neutrally-stable and may be considered to be on the borderline between global existence and
collapse.

4. Collapse and global-existence regions

In this section System (4) is considered with the Gaussian initial conditions

uG
0 (x, y) =

√
2N

π
e−(x2+y2), (19)

where N = N(G) is the input power of uG
0 . The collapse and global-existence regions in the NLSM System (4)

are explored in the (N, ν, ρ) parameter space using the results obtained from the Virial Theorem (14), the global-
existence Theorem (3.1), and direct (2+1)D numerical simulations of the NLSM System (4).

5 Note that from Eq. (4b) φx = ρ−1B(u).
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The critical power Nc(ν, ρ) is calculated from the ground-state [see Eq. (17)], which is found by using a numerical
method that is explained in Appendix C. For the NLSM simulations a standard fourth order accurate Runge-Kutta
integration is used, with a fourth order accurate spatial finite-difference stencil. The computational domain is a
truncation of the (x, y) plane with Dirichlet boundary-conditions at |x| = L and |y| = L, where L is taken sufficiently
large, so to assure that the results are independent of reflections from the outer boundaries.

Substituting the initial-conditions (19) into the NLSM Hamiltonian (13) gives (see Appendix B)

H(uG
0 , φG

0 ) = N −
(

1 − ρ

1 + √
ν

)
N2

2π
. (20)

It follows from (20) and the Virial Theorem (14) that for the Gaussian initial conditions (19) there is a threshold
power for which H = 0, given by

NH
c (ν, ρ) ≡ 2π

1 − ρ/(1 + √
ν)

, (21)

such that when N > NH
c then H < 0 and, therefore, the solution collapses at finite distance. We note that this

condition makes sense only when 0 < NH < ∞, which implies ρ < 1 + √
ν. Conversely, when either ρ ≥ 1 +√

ν (no matter how large N) or N ≤ NH
c , then H ≥ 0, in which case collapse is not guaranteed by the Virial

Theorem.
Fig. 1 compares the critical power for collapse, Nc (17), the threshold-power NH

c (21), and the “actual” power
for collapse found from numerical simulations of the NLSM System (4), where the latter is obtained by gradually
increasing the input power (or amplitude), i.e., N in the initial conditions (19), until the solution undergoes collapse.
This figure also shows that for ν = 0.5 and −1 ≤ ρ ≤ 1, NH

c (21) is quite close to Nc, which, in turn, is very
close to the numerically obtained threshold power for collapse in the NLSM System (4). For example, for the
classical NLS (i.e., ρ = 0) the discrepancy between Nc(R) ≈ 1.86π and NH

c (R) = 2π is approximately 7% (see
also [16]). In addition, in this entire parameter regime the discrepancy between Nc and the numerically-obtained
threshold power is less than 2%. Furthermore, this figure shows that the change in the critical power with ρ

is more pronounced for ρ > 0 than for ρ < 0. Similarly, Fig. 2 shows that for a wide range of the parameters,
NH

c (21) is a good approximation of Nc, which, in turn, is a good approximation of the numerically-obtained
power for collapse. Furthermore, this figure shows that the critical power is weakly-dependent on ν, for either
sign of ρ.

Fig. 1. The critical power for collapse as a function of ρ for ν = 0.5 (ρ < 0 for water-waves and ρ > 0 for optics). Nc is obtained from the power
of the ground-state [i.e., Eq. (17), dashes], NH

c corresponds to H = 0 [i.e., Eq. (21), dotted], and the threshold power for collapse obtained by
numerically integrating the NLSM [i.e., System (4) with (19), solid]. “GE” denotes global existence and “NLSM” denotes numerical simulations
of System (4).
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Fig. 2. Same as Fig. 1 with: (a) ρ = −0.2 and varying ν; (b) ρ = 0.2 and varying ν.

An alternative way of using Eq. (20) is to fix N and allow ν and ρ to vary. Thus, for a fixed N there is a separatrix
curve in the (ν, ρ) plane for which H = 0, given by

ρH
c (N, ν) ≡

(
1 − 2π

N

)
(1 + √

ν), (22)

such that when ρ < ρH
c then H < 0 and collapse is guaranteed by the Virial Theorem. These separatrix curves are

depicted in Fig 3, which is consistent in the case of ρ > 0 with the results of Crasovan et al. [12].
As discussed in Section 3, larger (more positive) values of ρ correspond to more defocusing. In fact, the results

in this section show that when ρ < 0, or when ρ > 0 and sufficiently small, the defocusing effect induced by the
coupling to the mean field is weaker than the focusing effect induced by the cubic term in Eq. (4a). In that case,
collapse is guaranteed by the Virial Theorem for sufficiently large input power. On the other hand, when ρ > 0 and
is sufficiently large, the defocusing effect induced by the coupling to the mean field can overcome the focusing effect
induced by the cubic term in Eq. (4a). In that case, the NLSM can effectively behave as a defocusing NLS-type
equation, i.e., like Eq. (1) with a negative sign before the cubic term.

We emphasize that H ≥ 0 does not imply GE, because H < 0 is only a sufficient condition for collapse, not
a necessary one. Nevertheless, owing to their explicitness and apparent accuracy, conditions (21) and (22) can
be useful for predicting for the boundary in the (N, ν, ρ) space between the regions of collapse and GE. On the

Fig. 3. The regions in the (ν, ρ) plane corresponding to collapse and global-existence (GE). Equating the power of the ground-state, Nc(ν, ρ)
[i.e., Eq. (17)], to the power N(G) of the initial conditions (19) [dashes, denoted by N(G) = N(ν, ρ) in the legend], ρH

c obtained from H = 0
[i.e., Eq. (22), dotted, denoted by H(G) = 0 in the legend], and using numerical simulations of the NLSM [i.e., System (4), solid] for: (a)
nonlinear optics (i.e., ρ > 0) and the initial conditions (19) with the fixed input power N(G) = 10; (b) water waves (i.e., ρ < 0) and the initial
conditions (19) with N(G) = 4π/3.
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other hand, the condition derived from GE theory appears to be more accurate in the following sense: the actual
(numerical) critical power appears to be slightly closer to Nc than to NH

c . We note that in [16] a similar conclusion
was reached for the NLS Eq. (1) when using Gaussian as well as other types of initial conditions.

4.1. Input astigmatism

It is interesting generalize the results above to the case when the initial conditions are astigmatic. To do that,
consider the astigmatic Gaussian initial conditions

uE
0 (x, y) =

√
2EN

π
e−[(Ex)2+y2], (23)

where N is the input power and E is input ellipticity. Here E = 1 corresponds to radial symmetry, whereas 0 < E < 1
and E > 1 correspond to relative elongation along the x and y axes, respectively.

Similar to Eq. (20), one arrives at (see Appendix B)

H(uE
0 , φE

0 ) = 1 + E2

2
N −

(
1 − ρ

1 + √
ν/E

)
EN2

2π
. (24)

Thus, denoting

NH
c (ν, ρ, E) ≡ (E + 1/E)π

1 − ρ/(1 + √
ν/E)

, (25)

it follows that when N > NH
c then H < 0 and, therefore, the solution collapses at finite distance. This condition

makes sense only when 0 < NH < ∞, which implies that ρ < 1 + √
ν/E.

Generally speaking, NH
c increases with astigmatism. For example, let us consider the optics case with 0 < ρ <

1 + √
ν/E with an input beam (23) that is “focused” along the x direction, i.e., has E > 1. As E increases it will

approach the value Ec = √
ν/(ρ − 1), for which NH

c = ∞. Physically speaking, this results suggests that as the
input beam becomes narrower along the x-axis, the critical power for collapse increases, making the collapse more
difficult to attain. This conclusion is consistent with the numerical observations of Crasovan et al. [12] in the optics
case, and is in the same spirit as the results of Fibich and Ilan [17] for the NLS case (i.e., ρ = 0).

In addition, for a given power N, the separatrix curve in the (ν, ρ) plane for which H = 0 is given by

ρH
c (N, ν, E) ≡

[
1 − (E + 1/E)π

N

] (
1 +

√
ν

E

)
, (26)

such that when ρ < ρH
c then H < 0 and, therefore, collapse is guaranteed by the Virial Theorem.

4.2. Related NLSM-type system

Consider the NLSM System (4) without the cubic term, i.e.,

iuz + 1
2	u − ρuφx = 0, (27a)

φxx + νφyy = (|u|2)x. (27b)

One might expect that the nature of collapse in the NLSM-type System (27) would be similar to the NLSM
System (4). Indeed, the analysis of System (27) is quite similar to that in Sections 3 and 4. The only difference is
that the Hamiltonian corresponding to (27) is like (13), but without the second “self-focusing” integral, that is,

H(u, φ) = 1

2

∫
|∇u|2 + ρ

2

∫
(φ2

x + νφ2
y).
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Since the Virial Theorem (14) remains unchanged, collapse is possible in System (27) whenever ρ < 0 and the
initial conditions are sufficiently large. Furthermore, substituting the initial-conditions (19) into the Hamiltonian
above gives

H(u0, φ0) = N + ρ

1 + √
ν

N2

2π
.

It follows that the threshold power for which H = 0 is given by

NH
c (ν, ρ) ≡ −2π(1 + √

ν)

ρ
.

Thus, similar to the NLSM case, the Virial Theorem guarantees that the solution of System (27) undergoes finite-
distance collapse when N > NH

c . To conclude, although the cubic term in the NLSM System (4) is self-focusing,
its presence is not necessary for collapse to occur. In other words, collapse can occur even in the case when the
nonlinearity is strictly and strongly nonlocal.

5. Astigmatic ground-states

Below we study how the astigmatism of the ground-state depends on ρ and ν. The astigmatism is recovered from
the ground-state as

e(F ) ≡
∫ |(F2)x|∫ |(F2)y| . (28)

It follows from (28) that e = 1 corresponds to a radially-symmetric ground-state, and e < 1 and e > 1 correspond
to a ground-state that is relatively wider along the x and y axes, respectively. In other words, e ≈ Ly/Lx, where Lx

and Ly are the full-widths at half-max of the function.
Fig. 4(a) and (b) shows the on-axes amplitudes of the ground-state for ρ = 0 (i.e., the radially-symmetric R

profile); (ν, ρ) = (0.5, −1); and (ν, ρ) = (0.5, 1). The contour plots in Fig. 4(c) and (d) correspond to the ρ =
−1 and ρ = 1 cases, respectively. These plots clearly show that the ground-states with ρ �= 0 are astigmatic. In
addition, Fig. 5 shows the 3D plots and corresponding contour plots of the ground-state for (ν, ρ) = (4, −4),
which has e ≈ 1.5 . Both F (x, y) and the corresponding mean field G(x, y) are clearly astigmatic. Furthermore, the
mean field G is strongly nonlocal (see also Fig. 5d), as can be expected from the Poisson-type Eq. (15b) that is
solves.

Fig. 6a shows that (i) the NLS ground-state (ρ = 0) is radially-symmetric, (i.e., e = 1); (ii) when ν = 0.5 and
ρ < 0 (water-waves) F is wider along the y-axis (i.e., e > 1); and (iii) when ν = 0.5 and ρ > 0 (optics) F is wider
along the x-axis (i.e., e < 1). We note that the parameter space explored in Figs. 1 and 6a is the same. Comparing
these two figures, one sees that as ρ is changed from ρ = 0 (in either direction), the deviation from the NLS ground
state is accompanied by a significant deviation in the critical power, as well as by a deviation from radial-symmetry.
Therefore, as |Nc(ν, ρ) − Nc(ν, 0)| increases with ρ, so does the astigmatism of the ground-state (along the x or y
axes). On the other hand, Figs. 2 and 6b show that the critical power and the astigmatism are only weakly dependent
on ν, for either sign of ρ. In addition, Fig. 6a shows that, for the same values of ν, the function F is relatively more
astigmatic for ρ > 0 (i.e., for optics) than for ρ < 0 (i.e., for water waves).

In summary, one has the following generic picture:

(1) The ground-state profile in the water-wave case is narrower along the direction of propagation (i.e., e > 1),
whereas in the nonlinear optics case it is wider along the axis of linear polarization (i.e., e < 1).
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Fig. 4. Top: The on-axes amplitudes of the ground-state (a) along the y-axis and (b) along the x-axis for (ν, ρ) = (0.5, 1) (dashes), ρ = 0
(solid), and (ν, ρ) = (0.5, −1) (dotted). Bottom: Contour plots of F (x, y) for: (c) ρ = −1 (corresponding to dotted above) with astigmatism
[i.e., Eq. (28)] e ≈ 1.17; (d) ρ = 1 (corresponding to dashes above) with e ≈ 0.59.

(2) The ground-state is relatively more astigmatic for nonlinear optics (ρ > 0) than for water waves (ρ < 0).
(3) Whereas the astigmatism of the ground-state changes significantly with ρ, it depends only weakly on ν.

6. Quasi self-similar astigmatic collapse

Asymptotic analysis and numerical simulations strongly suggest that when collapse occurs in NLS Eq. (1),
under quite general conditions, it occurs with a quasi self-similar profile that is a modulation (up to a phase) of the
ground-state (cf. [30]), i.e.,

|u(x, y, z)| ∼ 1

L(z)
R

(
r

L(z)

)
, (29)

where (x, y) are in some region surrounding of the collapse point (which typically shrinks during the self-focusing
process),R(r) is the NLS ground-state (see Section 3), andL(z) is a modulation function, such that limz→Zc L(z) = 0,
where Zc is the collapse distance (or time). In the NLS case, the ground-state R(r) is radially-symmetric and, to the
best of our knowledge, all the NLS-collapse simulations to date have shown that collapse occurs with a radially-
symmetric profile. The quasi self-similar collapse has received much theoretical attention since the contribution
of Merle and Tsutsumi [25]. However, it is very difficult to justify (29) rigorously. Only very recently did Merle
and Raphael [26] provide a sharp result explaining this quasi self-similar behavior in the case of the NLS Eq. (1).
Furthermore, on the experimental side, Gaeta and coworkers [24] recently carried out detailed measurements in
optical Kerr media showing that the collapse process occurs with a self-similar profile, in consistency with Eq. (29).
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Fig. 5. The ground-state [i.e., solution of System (15)] for (ν, ρ) = (4, −4). (a) and (b) are 3D plot of F (x, y) and G(x, y), respectively; (c) and
(d) are contour plots corresponding to (a) and (b), respectively.

In contrast to the NLS case, when ρ �= 0 and ν > 0 the NLSM System (4) is not rotationally invariant and
the stationary solutions of (15) are not radially symmetric. Moreover, with this choice of parameters the stationary
solutions cannot be transformed into radially-symmetric functions by any rescaling of x and y. Therefore, the NLSM
ground-state, F (x, y), is inherently astigmatic, which makes the analysis and numerical simulations more difficult.
The asymptotic analysis of Papanicolaou et al. [28] indicates that, similar to the NLS collapse, NLSM collapse
occurs with a modulated profile, i.e.,

|u(x, y, z)| ∼ 1

L(z)
P

(
x

L(z)
,

y

L(z)
, b(z)

)
, (30)

Fig. 6. The astigmatism (28) of the ground-state F (x, y) of System (4) for: (a) ν = 0.5 with −1 ≤ ρ ≤ 1 (i.e., same as Fig. 1); (b) ρ = −0.2
(dashes) and ρ = 0.2 (solid) with 0 ≤ ν ≤ 1 (i.e., same as Fig. 2a and b, respectively).
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for certain functions P(x, y, z), L(z), and b(z), such that as z → Zc, L(z) and b(z) approach zero and P(x, y, z)
asymptotically approaches the corresponding ground-state F (x, y). Numerical simulations of the NLSM using
“dynamic rescaling” suggested that, indeed, the collapsing solution approaches a modulated profile. However,
in [28] the ground-state itself was not computed. Since it was not computed, it was not shown (numerically) that the
asymptotic profile approaches the corresponding ground-state. The numerical results in this section suggest that,
down to moderately small values of L(z), the amplitude of the collapsing solution behaves as

|u(x, y, z)| ∼ 1

L(z)
F

(
x

L(z)
,

y

L(z)

)
, (31)

where F (x, y) is the ground-state of System (4). Therefore, the results of this study strengthen those of [28],
because the collapsing wave is directly compared to the corresponding ground-state and is shown to approach a
quasi self-similar modulation of the ground-state itself.

To study NLSM collapse numerically, System (4) is solved with the Gaussian initial conditions (19). The self-
focusing dynamics are recovered from the simulations using the focusing factor, |u(0, 0, z)|/u0(0, 0), as a function
of the propagation distance z. The astigmatism of the solution is recovered in accordance with (28) as

e(z) =
∫ |(|u|2)x|∫ |(|u|2)y| . (32)

We begin by presenting several numerical simulations of collapse, that also serve to verify some of the results
of the previous sections. As noted in Section 3, the Hamiltonian of the NLSM suggests, loosely speaking, that the
water-wave case (ρ < 0) is “more focusing” than the optics case (ρ > 0). Indeed, Fig. 7 shows that when the same
initial conditions are used for all cases, collapse with ρ = −1 precedes collapse with ρ = 0, which, in turn precedes
collapse with ρ = 1. For this figure, the input power is taken as 1.2Nc(ν = 0.5, ρ = 1) ≈ 12.2. We note that this
value of Nc is approximately twice as large as Nc(R) and approximately 3.3 times larger than Nc(ν = 0.5, ρ = −1)
(see Fig. 1).

Since ρ < 0 and ρ > 0 correspond water waves and optics, respectively, and since critical power depends on ρ,
a more “balanced” comparison between the water-wave and optics cases requires using the same initial conditions
with an input power chosen with respect to the corresponding critical power (which is different for water-waves
and optics). Therefore, the rest of the simulations below [i.e., Figs. 8–13] use the input power N = 1.2Nc(ν, ρ),
i.e., 20% above the corresponding critical power for collapse. Fig. 8a shows the dynamics of the focusing factor for
ν = 0.5 with: ρ = 0 (NLS), ρ = 1 (optics), and ρ = −1 (water waves). Similarly to Fig. 7, the collapse distance
with ρ > 0 is greater than with ρ ≤ 0. Surprisingly, the collapse distance in the ρ = 0 and ρ < 0 cases is almost the

Fig. 7. (a) The focusing factor the NLSM solutions [i.e., System (4)] with ν = 0.5 and three values of ρ (see legend) using the initial conditions (19)
with the same input power N = 1.2Nc(ν = 0.5, ρ = −1) ≈ 12.2. (b) The corresponding astigmatism (32) of the solution as a function of the
focusing factor.
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Fig. 8. Same as Fig. 7, but with the input power N = 1.2Nc(ν, ρ), i.e., 20% above the corresponding critical power.

same. Although one might have expected the collapse with ρ < 0 to precede collapse with ρ = 0 (as in Fig. 7), this
is not the case here, because N(ρ = −1) is approximately 1.6 times smaller than N(ρ = 0) (see Fig. 3). Thus, in
Fig. 8 the collapse distances of the ρ = −1 and ρ = 0 simulations are close, because the input power in the ρ = 0
simulation is much larger than the input power in the ρ = −1 one.

In addition, Fig. 8b shows the corresponding astigmatism plots. The astigmatism is plotted as a function of the
focusing factor (rather than as a function of z) in order to “blow up” the dynamics near the collapse point, where the
interesting changes in the astigmatism are expected to occur. While the NLS solution remains radially-symmetric
(i.e., e ≡ 1), the NLSM solutions become astigmatic during propagation. Furthermore, ρ < 0 and ρ > 0 correspond

Fig. 9. Same as Fig. 8 with [(a) and (b)] ρ = −0.2 and ν = 0 (solid), ν = 0.2 (dashes), and ν = 1 (dotted, on top of the dashes); [(c) and (d)]
same as above with ρ = 0.2.
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Fig. 10. Convergence of the modulated collapse profile (dashes) to the NLSM ground state (solid) along the x-axis (top) and the y-axis (bottom)
with (ν, ρ) = (0.5, 1). The initial conditions are (19) with N = 1.2Nc(ν, ρ).

to e > 1 and e < 1, respectively, which is consistent with in Figs. 4 and 6. As can be seen from this figure, at the
initial stage of the propagation the astigmatism of the NLSM solutions becomes large, in a direction that depends
on ρ. Based on these simulations it appears that the astigmatism approaches a (more or less) constant value at the
collapse point, a value that depends on ν and ρ (such that e �= 1). This is consistent with the results in [28], as well
as with the results presented below.

Figs. 7–9 indicate that NLSM collapse is astigmatic, however, they do not show that the collapse process is quasi
self-similar. In order to study the self-similarity of the collapse process, in accordance with Eq. (31), the modulation
function is recovered from the solution as

L(z) = F (0, 0)

|u(0, 0, z)| ,

Fig. 11. Same as Fig. 10 with (ν, ρ) = (0.5, −1).
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Fig. 12. Same as Fig. 10 with (ν, ρ) = (4, −4).

where F (x, y) is the corresponding ground-state. The rescaled amplitude of the solution of the NLSM, i.e.,
L|u(Lx̃, Lỹ, z)|, is compared with F (x̃, ỹ), where F (x̃, ỹ) is the ground-state and (x̃, ỹ) = ( x

L
,

y
L

). In order to show
that the collapse process is, indeed, quasi self-similar with the corresponding ground-state, the rescaled amplitude
is shown to converge pointwise to F near the origin as z → Zc (i.e., near the collapse point).

Fig. 10 shows that the NLSM collapse is indeed self-similar with the ground-state for ν = 0.5 and ρ = 1. The
rescaled on-axis amplitude is compared separately on the x and y axes (top and bottom plots, respectively). One can
see that, as the solution is undergoing self-focusing [i.e., as L(z) approached zero], its rescaled profile approaches
that of the astigmatic ground-state near the origin.

Fig. 11 shows the same picture with ρ = −1, whose ground-state is somewhat less astigmatic than with ρ = 1
(as mentioned above). In order to observe self-similar collapse with ρ < 0 and a more astigmatic profile, Fig. 12

Fig. 13. Same as Fig. 12 on a semi-log plot.
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compares the solution and the ground-state with ν = 4 and ρ = −4. The ground-state in this latter case is clearly
astigmatic and, in turn, the collapse process is quasi self-similar with the ground-state. Fig. 13 further demonstrates
the local nature of the self-similar collapse process. While the spatial region in the vicinity of the collapse point is
self-similar to the ground-state, the outer “wings” of the solution do not approach the ground-state. This phenomenon
is well-known in the NLS case as well [30], and can be understood as follows: in accordance with Eq. (31), exactly
one critical power enters the collapse region. More precisely, as z → Zc, the power of u(x, y, z) contained in a
“ball” of radius L(z) around the collapse point is just slightly above Nc (cf. [25]). Since the input power is 20%
above Nc, the residual 20% radiates into the outer wings in a process that is not self-similar with the ground-
state.

7. Collapse arrest

As mentioned in Section 2.2, within the context of nonlinear optics, the self-focusing mechanism in the NLSM
is due to a quadratic effect [1,2]. However, it is well-known that collapse with an infinite amplitude does not occur
in physical situations. In reality, there are always physical mechanisms that arrests the collapse. Such mechanisms
have been studied extensively in nonlinear optics, e.g., nonlinear saturation [11,33], beam nonparaxiality [15], and
vectorial effects [18]. In order to investigate the arrest of collapse in NLSM in the optics case, we consider the
NLSM with a small nonlinear saturation of the cubic nonlinearity as

iuz + 1

2
	u + |u|2u − ρuφx

1 + ε|u|2 = 0, (33a)

φxx + νφyy = (|u|2)x, (33b)

where ε is the small nonlinear-saturation parameter.
When ρ � 1 and ε � 1 System (33) is a small perturbation of the NLS Eq. (1). In that case, the asymptotic

analysis of Fibich and Papanicolaou [19] for the perturbed NLS can be used. Their analysis is based on the asymptotic
and numerical observations that the collapsing solution in the NLS case is self-similar with the ground-state (Townes
profile), i.e., as in Eq. (29). The asymptotic analysis predicts that, to leading order, the dynamics of the focusing
factor in the solution of System (33) is given by the following ODE (see [19, 5.3–5.4])

(wz)2 = −4H0

M

(wM − w)(w − wm)

w
, (34)

where w(z) = L2(z), L(z) is the focusing-factor in Eq. (29), M ≈ 0.55, and H0, wM , and wm are constants that
depend only on ε and the initial conditions, such that wM > wm. It follows from this nonlinear-oscillator-type
equation that for generic initial conditions the intensity of the solution initially focuses [i.e., L(z) decreases] until L ∼√

wm = O(
√

ε), then defocuses [i.e., L(z) increases] until L ∼ √
wM , followed by focusing–defocusing oscillations,

such that
√

wm ≤ L(z) ≤ √
wM .

Fig. 14 shows the on-axis amplitude of the numerical solution of System (33) for ρ = 0.5, ν = 1, ε = 0.0025,
and the initial conditions (19) with N = 1.5Nc, where Nc is the critical power corresponding to ε = 0. The nu-
merical solution of System (33) agrees qualitatively with the predictions based on Eq. (34). Indeed, one sees
that collapse is arrested by the small nonlinear saturation, followed by a series of focusing–defocusing oscilla-
tions.

It should be mentioned that the physical mechanisms that arrest the collapse in water waves are not understood
to the same level as in optics, in part because of the scarce experimental results on water waves with large surface
tension.
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Fig. 14. Collapse in the NLSM [i.e., System (4) with (ν, ρ) = (1, 0.5), dashes] is arrested by small nonlinear saturation [i.e., System (33) with
(ν, ρ) = (1, 0.5) and ε = 0.0025, solid] leading instead to focusing–defocusing oscillations.

8. Summary and final remarks

The results of this study show that nonlinear-wave systems that admit a quadratic–cubic type interaction, such as
in nonlinear optics and in nonlinear free-surface water waves, lead to the NLSM System (4). The NLSM can admit
finite-distance collapse in a certain parameter regime. The regions of collapse and global-existence is explored in a
relevant parameter space and the consistency between global existence theory, the Virial Theorem, and numerical
simulations the NLSM System (4) is established. Furthermore, numerical simulations of the NLSM show that the
collapse process occurs with a quasi self-similar profile, which is a modulation of the ground-state profile. The
ground-state profile is found using a numerical algorithm that was recently used in dispersion-managed NLS theory.
Generically, the ground-state profile is astigmatic and, therefore, the collapse profile is astigmatic as well.

These results are in the same spirit as for the NLS Eq. (1). However, NLSM theory is more difficult and not
as advanced as NLS theory. There are several remaining questions and problems. For example, it remains an open
problem to extend the sharp theoretical results on the self-similar nature of the singularity to the NLSM case. From the
numerical perspective, while our simulations indicate that NLSM collapse occurs with a self-similar ground-state,
we only resolve moderate focusing factors [i.e., O(10)] near the collapse point. Using more specialized numerical
methods (cf. [28,20]), much larger focusing factors (e.g., greater than 104) could furnish more convincing evidence
of this self-similar collapse. From the experimental perspective, self-similar collapse in quadratic–cubic type media
remains to be demonstrated in either free-surface water waves or nonlinear optics.
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Appendix A. Proof of Proposition 3.2

Following Weinstein [35], if one substitutes the stationary solution (15) into the Virial Theorem (14), one finds
that the variance, i.e., the integral on left-hand side, is independent of z. Therefore, its second-z derivative is zero,
which implies that the right-hand side, i.e., the Hamiltonian of the stationary solution (15), is zero as well. �
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Below an alternative constructive proof is given. Multiplying Eq. (15a) by F and Eq. (15b) by G and integrating
gives

− λ

∫
F2 + 1

2

∫
(FFxx + FFyy) +

∫
F4 − ρ

∫
F2Gx = 0, (A.1a)∫

(GGxx + νGGyy) =
∫

(F2)xG. (A.1b)

Using integration by-parts (IBP) on (A.1b) gives∫
F2Gx =

∫
(∇νG)2, (A.2)

where (∇νG)2 ≡ G2
x + νG2

y. Combining (A.1b) and (A.1a) leads to

λ

∫
F2 + 1

2

∫
(∇F )2 −

∫
F4 + ρ

∫
(∇νG)2 = 0 . (A.3)

On the other hand, multiplying Eq. (15a) by (xFx + yFy) gives that

−λ

2

∫
[x(F2)x + y(F2)y] + 1

4

∫
[x(F2

x )x + y(F2
y )y] + 1

2

∫
(xFyyFx + yFxxFy)

+ 1

4

∫
[x(F4)x + y(F4)y] − ρ

2

∫
[x(F2)xGx + y(F2)yGx] = 0.

Using IBP several times on the first four terms we arrive at

λ

∫
F2 − 1

2

∫
F4 − ρ

2

∫
[x(F2)xGx + y(F2)yGx] = 0. (A.4)

Similarly, multiplying Eq. (A.1b) by (xGx + yGy) and using IBP leads to∫
[x(F2)xGx + y(F2)xGy] = 0.

Using IBP and Eq. (A.2) gives∫
[x(F2)xGx + y(F2)yGx] = −

∫
F2Gx = −

∫
(∇νG)2. (A.5)

Substituting (A.5) into (A.4) we obtain that

λ

∫
F2 − 1

2

∫
F4 + ρ

2

∫
(∇νG)2 = 0.

Subtracting from Eq. (A.3) gives Eq. (18). �

Appendix B. Derivation of the Hamiltonians (20) and (24)

The derivation of Eq. (24) is outlined below. Substituting the astigmatic Gaussian initial conditions (23) into the
first two terms of the Hamiltonian (13) gives

1

2

∫
|∇u0|2 − 1

2

∫
|u0|4 = (1 + E2)N

2
− EN2

2π
. (B.1)
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It remains to calculate the third term in Eq. (13). To do that it is convenient to use the Fourier Transform. Below we
denote

f̂ (kx, ky) = F[f ] ≡
∫

f (x, y) e−ikxx−iky , f (x, y) = F−1[f̂ ] ≡ 1

(2π)2

∫
f̂ (kx, ky)eikxx+ikyy,

as the direct and inverse 2D Fourier Transforms, respectively, where (kx, ky) are the Fourier frequencies in (x, y)
directions and the integrations are carried over the (x, y) and (kx, ky) planes, respectively. Therefore, it follows from
Eq. (4b) that

φ̂0 ≡ F[φ(x, y, 0)] = − ikx

k2
x + νk2

y

û2
0.

Using Parseval’s identity and substituting the Gaussian initial conditions (19) leads to

∫
(φ2

x + νφ2
y) = 1

4π2

∫
k2
x(û2

0)2

k2
x + νk2

y

= N2

4π2

∫
k2
x e−(k2

x+E2k2
y)/(4E2)

k2
x + νk2

y

.

Transforming to the cylindrical coordinates defined by (kx, ky) = (r cos θ, E−1r sin θ) yields

ρ

2

∫
(φ2

x + νφ2
y) = ρN2

8π2E

∫ ∞

0
e−r2/4E2

r dr

∫ 2π

0

dθ

1 + (ν/E2) cot2 θ
= ρN2E

4π2

2π

1 + √
ν/E

.

Combining with Eq. (B.1) and the Hamiltonian (13) yields Eq. (24). Note that Eq. (20) is a special case of Eq. (24)
with E = 1.

Appendix C. Calculating the ground state

The NLSM ground state is obtained in this study using a fixed-point numerical procedure similar to that recently
used in dispersion-managed soliton theory (cf. [5,29]).

Below we use the following formulation. Let u(x, y, z) and v(x, y, z) be solutions of the system

iuz + 1
2 (uxx + uyy) + |u|2u − ρuv = 0, (C.1a)

vxx + νvyy = (|u|2)xx. (C.1b)

We note that Systems (4) and (C.1) are mathematically equivalent under the transformation v ≡ φx. A stationary
solution of system (C.1) has the form u(x, y, z) = eiλzF (x, y) and v(x, y, z) = V (x, y), where F and V are real
functions and λ is an arbitrary real number. Substituting this ansatz into system (C.1) gives

− λF + 1
2 (Fxx + Fyy) + F3 − ρFV = 0, (C.2a)

Vxx + νVyy = (F2)xx. (C.2b)

When the stationary solutions are known to be radially-symmetric, e.g., when ρ = 0 or ν = 0, one can write this
system as a single ODE in the radial variable. In that case, one can solve the ODE using a “shooting” method. This
technique, however, does not work well for a “true” PDE, i.e., when F and G are not radially-symmetric, which is
the case in this study when both ρ and ν are nonzero. Therefore, in order to solve this system we use a fixed-point
method as explained below.



252 M. Ablowitz et al. / Physica D 207 (2005) 230–253

Taking the Fourier Transform (see Appendix B) of System (C.2) gives

−λF̂ − |k|2
2

F̂ + F[F3 − ρFV ] = 0, (k2
x + νk2

y)V̂ = k2
xF[F2],

where F̂ (kx, ky) and V̂ (kx, ky) are the Fourier transforms of F (x, y) and V (x, y), respectively, and |k|2 = k2
x + k2

y .
This system can be re-written as

F̂ = 1

λ + |k|2/2
F[F3 − ρFV ], (C.3a)

V̂ = k2
x

k2
x + νk2

y

F[F2]. (C.3b)

The idea is to use the fixed-point iterative method

F̂ (n+1) = 1

λ + |k|2/2
F[F3 − ρFV ](n),

where the right-hand side is evaluated using V (n) found using Eq. (C.3b). This procedure is then supplemented with
an initial guess F (0)(x, y) = f0(x, y), which is typically chosen to be a Gaussian, i.e., f0(x, y) = e−x2−y2

. However,
this approach fails, because the right-hand side of Eq. (C.2) is nonlinear and, as a result, the iterations either converge
to the trivial solution or diverge to infinity. To rectify this problem, one can “homogenize” the right-hand side of
Eq. (C.3) as follows. Multiplying (C.3a) by F̂∗ and integrating over the (kx, ky) plane yields the equation SL = SR,
where

SL ≡
∫

|F̂ |2, SR ≡
∫

1

λ + |k|2/2
F[F3 − ρFV ]F̂∗.

Here SL and SR are two scalar quantities that can be efficiently calculated using Fast-Fourier Transforms. Since
SL = SR when F and V are solutions of (C.2), one can use instead the modified iterative method

F̂ (n+1) = 1

λ + |k|2/2

(
SL

SR

)α

F[F3 − ρFV ](n), (C.4)

where SL and SR are calculated using F and V at step n and V (n) is found using Eq. (C.3b). Here α is an arbitrary
constant that is chosen to make the right-hand side of (C.4) have homogeneity zero with respect to F, which is to be
expected to prevent the aforementioned divergence. In our case the right-hand side of (C.4) scales like (SL/SR)αF3 =
F3−2α. This observation suggests using α = 3/2, which, indeed, allows the fixed-point method (C.4) to converge.
The convergence can be monitored using error := |(SL/SR) − 1|, which should approach zero. Typically, 20–40
steps suffice for obtaining error < 10−8. In addition, when the solution obtained by this method is substituted for
the initial conditions of the NLSM System (4), the NLSM solution is confirmed to be stationary, i.e., its amplitude
remains (approximately) constant for a propagation distance of z = O(10).

References

[1] M.J. Ablowitz, G. Biondini, S. Blair, Multi-dimensional pulse propagation in resonant materials χ(2) materials, Phys. Lett. A 236 (1997)
520.

[2] M.J. Ablowitz, G. Biondini, S. Blair, Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic
materials, Phys. Rev. E 63 (2001) 605.



M. Ablowitz et al. / Physica D 207 (2005) 230–253 253

[3] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge,
1991.

[4] M.J. Ablowitz, R. Haberman, Nonlinear evolution equations—two three dimensions, Phys. Rev. Lett. 35 (1975) 1185.
[5] M.J. Ablowitz, Z. Musslimani, Dark and gray strongly-dispersion managed solitons, Phys. Rev. E 67 (2003) 025601(R).
[6] M.J. Ablowitz, H. Segur, On the evolution of packets of water waves, J. Fluid Mech. 92 (1979) 691.
[7] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
[8] D.J. Benney, G.J. Roskes, Wave instabilities, Stud. Appl. Math. 48 (1969) 377.
[9] R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13 (1964) 479.

[10] R. Cipolatti, On the existence of standing waves for the Davey–Stewartson system, Commun. Part. Diff. Eq. (1992) 967.
[11] B.I. Cohen, B.F. Lasinski, A.B. Langdon, J.C. Cummings, Dynamics of ponderomotive self-focusing in plasmas, Phys. Fluids B-Plasma

Phys. 3 (1992) 766.
[12] L.C. Cravosan, J.P. Torres, D. Mihalache, L. Torner, Arresting wave collapse by self-rectification, Phys. Rev. Lett. 91 (2003) 063904.
[13] A. Davey, K. Stewartson, On three-dimensional packets of surface waves, Proc. R. Soc. Lond. A 338 (1974) 101.
[14] V.D. Djordevic, L.G. Reddekopp, On two-dimensional packets of capillary gravity waves, J. Fluid Mech. 79 (1977) 703.
[15] G. Fibich, Small beam nonparaxiality arrests self-focusing of optical beams, Phys. Rev. Lett. 76 (1996) 4356.
[16] G. Fibich, A.L. Gaeta, Critical power for self-focusing in bulk media and in hollow waveguides, Opt. Lett. 25 (2000) 335.
[17] G. Fibich, B. Ilan, Self-focusing of elliptic beams: an example for the failure of the aberrationless approximation, J. Opt. Soc. Am. B 17

(2000) 1749.
[18] G. Fibich, B. Ilan, Vectorial and random effects in self-focusing and in multiple filamentation, Physica D 157 (2001) 113.
[19] G. Fibich, G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM

J. Appl. Math. 60 (1999) 183.
[20] G. Fibich, W. Ren, X.P. Wang, Numerical simulations of self-focusing of ultrafast laser pulses, Phys. Rev. E 67 (2003) 056603.
[21] A.S. Fokas, M.J. Ablowitz, On a method of solution for a class of multidimensional nonlinear evolution equations, Phys. Rev. Lett. 51

(1983) 7.
[22] J.M. Ghidaglia, J.C. Saut, On the initial value problem for the Davey–Stewartson systems, Nonlinearity 3 (1990) 475.
[23] P.L. Kelley, Self focusing of optical beams, Phys. Rev. Lett. 15 (1965) 1005.
[24] K.D. Moll, A.L. Gaeta, G. Fibich, Self-similar optical wave collapse: observation of the Townes profile, Phys. Rev. Lett. 90 (2003) 203902.
[25] F. Merle, Y. Tsutsumi, L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J.

Diff. Eq. 84 (1990) 205.
[26] F. Merle, P. Raphael, On the universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Inventiones Mathematicae 156

(2004) 565.
[27] G.C. Papanicolaou, D. McLaughlin, M. Weinstein, Focusing singularity for the nonlinear Schrödinger equation, Lec. No. Numer. Appl.

Anal. 5 (1982) 253.
[28] G.C. Papanicolaou, C. Sulem, P.L. Sulem, X.P. Wang, The focusing singularity of the Davey–Stewartson equations for gravity-capillary

surface waves, Physica D 72 (1994) 61.
[29] V.I. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys. 2 (1976) 257.
[30] C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation, Springer-Verlag, New York, 1999.
[31] V.I. Talanov, Self focusing of wave beams in nonlinear media, Sov. Phys. JETP Lett. 2 (1965) 138.
[32] J.P. Torres, L. Torner, I. Biaggio, M. Segev, Tunable self-action of light in optical rectification, Opt. Commun. 213 (2002) 351.
[33] F. Vidal, T.W. Johnston, Electromagnetic beam breakup: Multiple filaments, single beam equilibria, and radiation, Phys. Rev. Lett. 77

(1996) 1282.
[34] S. Vlasov, V. Petrishchev, V. Talanov, Averaged description of wave beams in linear and nonlinear media, Radiophys. Quant. Elec. 14

(1971) 1062 (1070 in English).
[35] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983) 567.
[36] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.



Noise-induced linewidth in frequency combs

Mark J. Ablowitz
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526

Boaz Ilan
School of Natural Sciences, University of California, Merced, P.O. Box 2039, Merced, California 95344

Steven T. Cundiff
JILA, National Institute of Standards and Technology and the University of Colorado, Boulder,

Colorado 80309-0440

Received January 26, 2006; revised March 16, 2006; accepted April 3, 2006; posted April 7, 2006 (Doc. ID 67456)
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Frequency combs are a ubiquitous tool in time and
frequency metrology. They are generated by trains of
evenly spaced pulses, whose spectrum consists of a
comb of oscillators with evenly spaced frequencies, or
comb lines. Advanced ultrafast mode-locked lasers
can generate broad optical frequency combs with un-
precedented stability. This breakthrough has revolu-
tionized the field of frequency metrology, since it al-
lows for bidirectional conversion between high
(optical) and low (radio, microwave) frequencies.1,2

However, noise sources in the lasing medium broaden
the comb lines.3,4 Schawlow and Townes (S–T) de-
rived a formula for the linewidth of cw lasers.5 With
the advent of pulsed mode-locked lasers, quantum-
noise theory developed by Haus and collaborators has
been useful for studying the stability of the ensuing
modes.6 Many theoretical studies have since been de-
voted to the understanding of the pulse dynamics
(see Ref. 4 and references therein). It is known that
many physical mechanisms can broaden the comb
lines; see, for example, Takushima et al.3 and Kärt-
ner et al.,4 who recently studied the linewidth experi-
mentally and theoretically in passively and actively
mode-locked lasers. In this Letter, the pulse’s jitter is
treated as a generalized random walk, from which
the induced linewidth is derived. Asymptotic analysis
reveals that, when the standard deviation of the nth
pulse’s time-jitter scales np/2, where p is a jitter expo-
nent, the linewidth of the kth comb line scales like
k2/p. The S–T (linear-dispersionless) and pure-soliton
(nonlinear-dispersive) dynamics are derived as two
special cases of this scaling law. These results have
potential implications for current research in
ultrafast spectroscopy.1,2,7

A mode-locked laser emits an ultrashort pulse each
time the intracavity pulse arrives at the output cou-
pler. The spectrum of N successively emitted pulses
is

F��
n=1

N

E�t − Tn�ei	ne−i
ct + c.c.� = Ê�
̃�Ŝ�
̃� + c.c.,

�1�

where E�t−Tn�ei	n is the complex, slowly varying
electric-field envelope of the nth pulse, where Tn and
	n are the arrival time and overall phase of the nth
pulse, respectively, and 
c is the carrier frequency;
we define 
̃�
−
c, c.c. stands for the complex con-
jugate, û=F�u�=�u�t�ei
tdt denotes the Fourier
transform, Ê�
̃� is the single-pulse spectrum, and the
comb function is

Ŝ�
̃� = �
n=1

N

ei
̃Tn+i	n. �2�

In the absence of noise, the time between successive
pulses is Trep=Tn+1−Tn; the repetition frequency is

rep=2� /Trep; and the pulse-to-pulse (overall) phase
change is �	=	n+1−	n, which is related to the
carrier-envelope phase change, �	CE, as �	=�	CE
+
cTrep. Therefore apart from absolute time and
phase offsets, Tn=nTrep, 	n=n�	, and the measure-
ment time is NTrep. In the limit of an infinite number
of pulses, the comb function approaches the ideal fre-
quency comb (see Fig. 1), i.e., 
Ŝ�
̃� 
 →�k=−�

� ��
̃− 
̃k�
as N→�, where ��
� is the Dirac delta function, and
the kth comb line’s frequency is given by


̃k = k
rep + 
̃o, 
̃o = −
�	

2�

rep, �3�

where 
̃o is the offset frequency and, for convenience,
the comb lines are enumerated around 
c.

When noise is considered, let Tn=nTrep+x and 	n
=n�	+y be the center time and phase of the nth
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pulse, respectively, where Trep and �	 are the aver-
age repetition time and phase change, and x=�Tn
and y=�	n correspond to zero-mean random jitter.
The probability density of the nth center-time and
phase jitter is assumed to be joint Gaussian8:

gn�x,y� = Ae−�1/2�1−r2����x/�x�2−�2r2xy/Cx,y�+�y/�y�2�, �4�

where �x and �y are the standard deviations of the
center-time and phase jitter, respectively; the covari-
ance is Cx,y= ��Tn�	n	=r�x�y, where r is the correla-
tion coefficient; and A= �2��x�y�1−r2�−1. We consider
pulses that undergo generalized random walks; i.e.,
their center-time and phase jitter satisfy

�x
2 = cx����2np, Cx,y = cxy��np, �y

2 = cy�2np, �5�

where cx ,cy ,cxy are O�1� constants, � is nondimen-
sional noise strength, � is the pulse temporal FWHM,
and p is the jitter exponent. Our analysis holds for all
p�1; however, we focus on two physically special
cases:

Linear-dispersionless dynamics �p=1�. This corre-
sponds to cw laser beams, whose dynamics are gov-
erned by a linear-dispersionless wave equation.
Spontaneous emission leads to a random jitter of the
phase of the carrier wave, which, in turn, broadens
the spectrum.5 It can be shown that the phase jitter
is a first integral of the noise along the intracavity
propagation distance, z, which leads to a (standard)
random walk of the phase. Therefore considering a
wave train that is emitted from the laser cavity at ev-
ery zn=nL, for cavity length L, the standard devia-
tion of the phase of the nth wave packet scales as
�y��zn��n; i.e., Eq. (5) with p=1. We note that this
scaling law has also been found to describe center-
time jitter of certain mode-locked lasers.3,4

Pure-soliton dynamics �p=3�. Pulse propagation in
mode-locked lasers is described by the master equa-
tion; i.e., a nonlinear Schrödinger equation for the
electric field in the laser cavity that takes gain and
loss mechanisms into account.6 In many types of
mode-locked lasers, the dispersion and nonlinear co-
efficients vary along z, generating dispersion and
nonlinear managed solitons.9,10 SE occurs in the gain

medium, e.g., a Ti:sapphire crystal. These models re-
semble soliton propagation in amplified telecommu-
nication fibers, which have been studied extensively.
Based on such models, Gordon and Haus11 and Gor-
don and Mollenauer12 showed that the center-time
and phase jitter of solitons scale as z3/2; i.e., Eq. (5)
with p=3. This is because the frequency jitter is a
first integral (along z) of the noise, and, therefore, a
standard random walk, whereas nonlinearity and
dispersion cause the center-time and phase jitter to
be integrals of the frequency jitter.

Taking the average of the comb function Eq. (2) as
S̄�
̃�=��Ŝ�
̃�gn�x ,y�dxdy, and using Eqs. (4) and (5),
yields the averaged comb function as

�6�

where ��
̃� is dimensionless.
Our goal is to find the linewidth of the kth comb

line, defined as the FWHM of 
S̄�
̃�
2 around 
̃k. It is
convenient to normalize this linewidth with respect
to 
rep, in which case the normalized �
1/2�k� satisfies

�S̄�
̃k +
1

2

rep�
1/2��2

=
1

2

S̄�
̃k�
2. �7�

We first analyze the broadening induced solely by
center-time jitter; i.e., when cxy=cy=0, cx=1, and
��
̃�= ���
̃�2. Recalling that 
̃=
−
c, the averaged
comb function [Eq. (6)] admits the following fre-
quency regimes. Near the carrier frequency, i.e., for


−
c 
 � ���Np/2�−1 [or Np��
̃��1�, the broadening is
due only to the finite number of pulses. This gives the
time-measurement-limited (TML) linewidth that
scales like the inverse of the measurement time; i.e.,
�
1/2��NTrep�−1 (see Fig. 2A). On the other hand, for


−
c 
 � ����−1, the noise-induced exponent in Eq. (6)
is so large that the noise smears out the comb lines.
In between there is an asymptotic frequency regime,
which is characterized by weak noise, i.e., ��
̃�
= ���
̃�2�1, and many pulses (or long measurement
time); i.e., Np��
̃��1. These asymptotic conditions
bound the frequency as

1

��Np/2 � 

 − 
c
 �
1

��
. �8�

Within this range, careful asymptotic analysis of Eq.
(6) reveals that the linewidth scales as �
1/2
��1/p�
̃�. Since 
̃k�k
rep, it follows that the funda-
mental relation between center-time jitter and line-
width is given by

�x � ��np/2 Þ �
1/2 � ���
rep�2/pk2/p, �9�

where n is pulse number and k is comb-line number.
Equation (9) shows that the standard deviation of
center-time jitter and the broadening of the comb
lines have reciprocal exponents. Since k is enumer-
ated with respect to 
c, the broadening Eq. (9) is the

Fig. 1. (Color online) Schematic of a pulse train (left) and
its spectrum (right). In the absence of noise, the pulse’s
spectrum determines the bandwidth, while the repetition
time, Trep=Tn+1−Tn, and overall phase change, �	=	n+1
−	n, determine the comb function [Eqs. (1)–(3)]. The fre-
quency of the kth comb line (enumerated around 
c) is 
̃k
=k
rep+ 
̃o, where 
rep and 
̃o are the repetition and offset
frequencies. Noise induces a random jitter in the center
time and phase, Tn and 	n, which broadens the comb lines.
The linewidth (
1/2 in the inset) is the FWHM of the comb
function [Eq. (2)] around a comb frequency [Eq. (7)].
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largest at the outer edges of the spectrum. Of par-
ticular interest are the linear-dispersionless �p=1�
and pure-soliton �p=3� dynamics, which yield
�
1/2

linear�k2 and �
1/2
soliton�k2/3, respectively (see Fig.

2A). To generate Fig. 2, the averaged comb function
[Eq. (6)] is summed in the vicinity of a given comb
line [Eq. (3)], and the FWHM [Eq. (7)] of the resulting
function is calculated to obtain the linewidth of that
comb line. This is repeated for many comb lines to
generate the graphs. It follows that the linear-
dispersionless linewidth increases parabolically
around 
c, whereas the soliton linewidth increases as
�
−
c�2/3 (see Fig. 2B). We note that Eq. (9) gives the
limiting value of the linewidth for long measurement
time; i.e., after N�
�� 
���
−
c�
−2/p pulses. All sub-
sequent pulses have a negligible effect on the line-
width. Indeed, we verified that the asymptotic line-
width in Fig. 2 is almost the same with 103 and 104

pulses.
Returning to the averaged comb function [Eq. (6)],

for pure phase jitter, cx=cxy=0, and �=cy�2 is inde-
pendent of 
. Thus phase jitter causes all the comb
lines to drift together, maintaining their relative
spacing. Using similar analysis as above yields
�
1/2��2/p, when N−p/2���1. Since �2 scales as the
ratio of lasing-threshold power, Pth, to mode power,
Pout, the fundamental relation between phase jitter
and linewidth is given by

�y
2 �

Pth

Pout
np Þ �
1/2 � � Pth

Pout
�1/p

. �10�

For p=1 the well-known S–T scaling law is recov-
ered, i.e., �
1/2

S–T��Pout�−1, whereas for solitons we ob-
tain that �
1/2

soliton��Pout�−1/3. Since Pout�Pth, this sug-
gests that phase-jitter broadening is more sensitive

to power changes with soliton dynamics than with
linear-dispersionless dynamics.

When both center-time and phase jitter are consid-
ered, it follows from the comb function [Eq. (6)] that
the contribution from center-time jitter dominates at
the outer edges of the spectrum, i.e., when 

−
c 

�1/�; the phase-jitter contribution dominates near

c, i.e., when 

−
c 
 �1/�; while center-time, phase,
and cross-correlation jitter can have comparable ef-
fects when 

−
c 
 �1/�.

In summary, the broadening induced by center-
time jitter of linear-dispersionless waves increases
parabolically around the center frequency, whereas
for solitons, it grows as �
−
c�2/3. In general, the
center-time jitter and linewidth have reciprocal expo-
nents. This result can be understood as a noise-
induced manifestation of time-frequency duality. In
addition, phase jitter induces a linewidth that scales
like Pout

−1/p, which yields a Pout
−1/3 scaling law for solitons.

We remark that due to the wide range of operating
regimes of mode-locked lasers,3,4,6 one should not rule
out any value of the jitter exponent from consider-
ation. In addition, technical noise could change the
carrier-envelope phase (instead of the overall phase),
which would call for a different choice of random
variables.
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namics obey the scaling law [Eq. (9)]; i.e., they fit the power
laws �
1/2

linear�k2.0 and �
1/2
soliton�k0.67, respectively. Near

the center frequency for p=1, the TML linewidth scales as
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as �
−
c�2 and �
−
c�2/3, respectively. For reference, a
single-pulse spectrum with a dimensional FWHM of
1/ �10�� is depicted.
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Localized nonlinear modes, or solitons, are obtained for the two-dimensional nonlinear Schrödinger equation
with various external potentials that possess large variations from periodicity, i.e., vacancy defects, edge dislo-
cations, and quasicrystal structure. The solitons are obtained by employing a spectral fixed-point computational
scheme. Investigation of soliton evolution by direct numerical simulations shows that irregular-lattice solitons
can be stable, unstable or undergo collapse.

PACS numbers: 05.45.Yv: Solitons; 63.20.Pw: Localized modes in Lattices; 61.44.Br: Quasicrsytals; 42.65.Tg: Optical
solitons; nonlinear guided waves

Solitons are localized nonlinear waves that occur in many
branches of physics and their properties have provided a deep
and fundamental understanding of complex nonlinear sys-
tems. In recent years there has been considerable interest in
the study of solitons in systems with periodic potentials or
lattices, in particular those that can be generated in nonlinear
optical materials. [1–5] In periodic lattices, solitons can form
when their propagation constant, or eigenvalue, lies within
certain regions, often called gaps, a concept that is borrowed
from Floquet-Bloch theory for linear propagation. However,
the external potential of complex systems can be much more
general and physically richer than a periodic lattice. For ex-
ample, atomic crystals can possess various irregularities, such
as defects and edge dislocations, as well as quasicrystal struc-
tures, which have long-range orientational order but no trans-
lational symmetry [6, 7]. In general, when the lattice’s peri-
odicity is slightly perturbed, the band-gap structure and soli-
ton properties become slightly perturbed as well, but other-
wise solitons are expected to exist in much the same way as
in the perfectly periodic case [8, 9]. However, the existence
and properties of multidimensional solitons when the exter-
nal potential possesses large variations from periodicity has
remained largely unexplored.

In this Letter, we find two-dimensional (2D) solitons in lat-
tices possessing vacancy defects, edge-dislocations, and qua-
sicrystal structures. This is achieved using a fixed-point spec-
tral method for computing the ground-states of the underly-
ing Nonlinear Schrödinger (NLS) equation. A comparative
study of the power-eigenvalue dependence leads to important
observations regarding soliton power, gap edge and stability
properties. Evolution is investigated by direct numerical sim-
ulations, showing that slightly-perturbed solitary waves in ir-
regular lattices can either undergo small or large amplitude
oscillations or collapse. We note that the physical proper-
ties of optically generated quasicrystal potentials have gen-
erated significant interest and that vortex waves have recently
been employed in the generation of localized defects within
optical lattices [10, 11]. Our results also have application to
photonic band-gap systems, wherein novel experimental tech-
niques have recently been used to fabricate irregular lattice
structures [11–14].

We study the nonlinear system governed by the focusing
(2+1)D NLS equation (in nondimensional units) with an ex-
ternal potential,

iuz + ∆u + |u|2u − V (x, y)u = 0 . (1)

In optics, u(x, y, z) corresponds to a complex-valued slowly-
varying amplitude of the electric field in the (x, y) plane that
is propagating along the z direction, ∆u ≡ uxx + uyy cor-
responds to diffraction, the cubic term in u originates from
the nonlinear (Kerr) change in the refractive index, and the
potential V (x, y) corresponds to a modulation of the linear
refractive index of the medium. Equation (1) also governs
the dynamics of certain Bose-Einstein Condensates (BEC),
where u(x, y, z) represents the wave function of the mean-
field atomic condensate that is trapped in a potential [15].

We look for localized solutions of Eq. (1) in the form
u(x, y, z) = f(x, y) e−iµz , where µ is the propagation con-
stant (or eigenvalue) and f(x, y) is a real-valued localized
function that, following Eq. (1), satisfies the nonlinear eigen-
equation

∆f +
[
µ + |f |2 − V (x, y)

]
f = 0 . (2)

In this study we consider potentials that can be written as the
intensity of a sum of N phase-modulated plane waves, i.e.,

V (x, y) =
V0

N2

∣∣∣∣∣
N−1∑
n=0

ei�kn·�r+iθn(x,y)

∣∣∣∣∣
2

, (3)

where V0 > 0 is constant, �r = (x, y), �kn is a wavevector,
θn(x, y) is a phase function through which irregularities are
introduced, and the normalization by N2 gives that V0 is the
potential’s peak-depth, i.e., V0 = maxx,y V (x, y). Such 2D
potentials can be physically realized in optics by interference
of plane waves and phase functions [11]. In some situations,
they are invariant in the third dimension [16]. For example,
these phase functions can be composed from different config-
urations of vortices [17], which, in turn, can be created using
computer-generated holograms [11].

In order to solve Eq. (2), we use a fixed point spectral com-
putational method [18], as explained below. Applying the



2

Fourier transform of to Eq. (2) and adding and subtracting a
term rû, where r > 0 is constant, leads to

f̂(ν) = R̂[f̂ ] ≡
(r + µ)f̂ + F

{
[|f |2 − V (x, y)]f

}
r + |ν|2

,

where ν = (νx, νy) are the Fourier variables, F stands for the
Fourier transform, and the role of the constant r is to avoid a
singularity in the denominator (we use r = 5). A new field
variable is introduced as f(x, y) = λw(x, y), where λ �= 0 is
a constant to be determined. The iteration method takes the
form ŵm+1 = λ−1

m R̂[λmŵm],m = 0, 1, 2, . . . , where λm

satisfies the associated algebraic condition
∫∫ +∞

−∞

|ŵm(ν)|2 dν = λ−1
m

∫∫ +∞

−∞

R̂[λmŵm]ŵ∗

m(ν) dν .

It has been found that this method prevents the numerical
scheme from diverging. Thus, the soliton is obtained from
a convergent iterative scheme (see also [19] for an alterna-
tive procedure in case there is a well-defined homogeneity).
The initial “starting point”, w0(x, y), is typically chosen to
be a Gaussian. The iterations are stopped when the relative

convergence factor, δ =

∣∣∣∣λm+1

λm

− 1

∣∣∣∣ , reaches 10−10. We

note that convergence is reached quickly, but slows down as
the mode becomes more extended, i.e., as µ approaches the
(nonlinear) gap edge. We also note that the convergence of
a similar method has been proven under suitable assumptions
on the potential. [20]

The first case of the potential (3) we study is an irregular
2D square lattice with a vacancy defect [see Figure 1(a)], i.e.,

V (x, y) =
V0

25

∣∣∣2 cos(kxx) + 2 cos(kyy) + eiθ(x,y)
∣∣∣2 , (4)

where the phase function θ(x, y) is given by

θ(x, y) = tan−1

(
y − y0

x

)
− tan−1

(
y + y0

x

)
.

Physically, θ(x, y) corresponds to two first-order phase dislo-
cations displaced in the y-direction by a distance of 2y0. A
vacancy defect can thus be obtained using y0 = π/K, where
K = kx = ky . Note that the “vacancy” in the origin is created
from a continuous function and that far from the origin the po-
tential (4) is locally a square lattice with period 2π/K. Using
the computational method outlined above, localized modes
(solitons) of Eqs. (2) and (4) are found, centered around the
vacancy as shown in Fig. 1(b). In certain respects, they resem-
ble solitons centered around a minimum of a periodic square
lattice. In further investigations, it is found that as the soliton’s
center is moved farther from the vacancy, its profile and band-
gap structure converge to those of the corresponding periodic
lattice [i.e., Eq. (4) with θ(x, y) ≡ 0].

In a similar manner, a lattice with an edge dislocation, anal-
ogous to those that can be found in atomic crystals [7, 11], can
be obtained from Eq. (3) using

V (x, y) =
V0

25
{2 cos[kxx + θ(x, y)] + 2 cos(kyy) + 1}2 (5)
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FIG. 1: (Color online) (a) Contour image of a lattice with a vacancy
defect, i.e., Eq. (4) with K = kx = ky = 2π and V0 = 12.5. Spots
correspond to local maxima. (b) Contour plot of the soliton with
µ = 0.5 superimposed on the lattice. For visibility, only a small
portion of the [−10, 10]2 computational domain is presented.

with the phase-dislocation function θ(x, y) = 3π
2 −

tan−1
(

y
x

)
. Figure 2(a) shows that this dislocation is unlike

a point defect, insofar as the density of lattice sites changes
vertically across the lattice. Despite this strong irregularity,
solitons are found to exist in the vicinity of the phase dislo-
cation. Figure 2(b) shows that the soliton has an asymmetric
shape. The soliton’s center is situated above the phase dislo-
cation, in between neighboring local maxima of the lattice. In
this respect, it is like a soliton on a lattice minimum. It should
be noted that the starting point of the computational method
is around the origin and, during the iterations, the solution
moves upward along the y axis, until convergence is reached.
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FIG. 2: (Color online) Same as Fig. 1 for a lattice with an edge dis-
location [Eq. (5)], using the same lattice parameters and µ = 0.5 as
in Fig. 1. The soliton’s peak is located at (0, 0.68).

Next we investigate solitons on quasicrystal lattices. Such
lattices appear naturally in certain molecules [6, 7], have been
investigated in optics [21–23], and studied in BEC [24]. Im-
portantly, Freedman et al. recently predicted and observed
solitons in Penrose quasicrystals, which were generated using
the method of optical induction [25]. In this study, the opti-
cal potential is formed by the far-field diffraction pattern of a
mask with point-apertures that are located on the N vertices



3

of a regular polygon. The corresponding potential is given by

V (x, y) =
V0

N2

∣∣∣∣∣
N−1∑
n=0

ei(kxx+kyy)

∣∣∣∣∣
2

, (6)

where (kx, ky) = (K cos(2πn/N),K sin(2πn/N)). The po-
tential (6) with N = 2, 3, 4, 6 yields periodic lattices, which
correspond to the standard 2D crystal structures. All other
values of N correspond to quasicrystals, which have a local
symmetry around the origin and long-range order, but, un-
like periodic crystals, are not invariant under spatial transla-
tion [26]. Below we focus on the case N = 5 [see Fig. 3(a)],
whose lattice is often referred to as a Penrose quasicrystal.

We find solitons on the Penrose lattice [see Fig. 3(b)], cen-
tered around the origin, which is the global maximum of the
lattice potential. Similar to solitons centered at the maximum
of a periodic square lattice, these Penrose solitons have a dim-
ple (see Fig. 4). Further investigations reveal that Penrose
solitons centered around local minima do not have a dimple,
similar to their periodic-lattice counterparts.

(a)

x

y

−3 3

−3

3

x

y

(b)

−3 3
−3

3

FIG. 3: (Color online) Same as Fig. 1 for a Penrose lattice [Eq. (6)
with N = 5] and corresponding soliton centered around the center
(maximum), using the same lattice parameters and µ = 0.5 as in
Fig. 1.

FIG. 4: (Color online) Similar to solitons on the maxima of periodic
lattices, Penrose solitons can have a dimple, which becomes more
pronounced for large values of µ, i.e., near the gap edge. (A) Cross-
section along the y axis of a Penrose soliton (6u2(x, 0), solid) with
µ = 2, superimposed on the underlying lattice (dashes). (B) 3D view
of a soliton’s intensity showing the dimple.

It is noteworthy that in the limit of waves impinging from
all directions (i.e., N → ∞) the quasicrystal lattice (6)

approaches the Bessel lattice, i.e., limN→∞ V(x, y;N) =

V0J
2
0 (Kr), in which solitons have recently been studied

(cf. [27]). In fact, as N increases, at any given radius the
angular distance between the lattice maxima (and minima) de-
creases and the limiting Bessel lattice has continuous rings of
maxima.

We note that some of the previous studies of Penrose lat-
tices considered a different definition of the lattice, whereby
cylinders of Kerr material were located at vertices of a (vir-
tual) Penrose tile surrounded by air [21–23, 28, 29]. In con-
trast, the medium considered here is homogeneous, with a
constant Kerr coefficient and continuous modulation of the
linear refractive index (6).

To compare the different lattice solitons, in Fig. 5 we plot
the soliton power, P =

∫
|u|2 dxdy, as a function of eigen-

value µ, for all the lattices studied above as well as for
the corresponding periodic square-lattice [i.e., Eq. (4) with
θ(x, y) ≡ 0] centered around either local minima and max-
ima. We remark that all the above lattices share a common
peak-depth, V0 = 12.5, as well as periodicity far from the ir-
regularity, K = 2π, where, for the Penrose lattice, K can be
thought of as a “local” wavenumber [see Eq. (6)].

We define the first nonlinear gap edge, µmax, as the mini-
mal eigenvalue beyond which the numerical method does not
converge to a localized state. The comparison shows that all
the lattices above have a semi-infinite gap, i.e., the numeri-
cal method converges to a localized state when µ < µmax,
for some lattice-dependent µmax. When the eigenvalue ex-
ceeds µmax, the numerical method typically converges to
an extended state (but see below for exceptions). In addi-
tion, the comparison reveals that (see Fig. 5): (i) The power
of vacancy-defect, edge-dislocation, and Penrose-quasicrystal
lattice solitons is lower than their periodic counterparts for a
considerable range of eigenvalues. In particular, of all the lat-
tices studied here, the lowest power is obtained for vacancy
and edge dislocation solitons. (ii) A vacancy defect has lit-
tle effect on the gap size (µmax ≈ 2), but it significantly
reduces the power threshold, i.e., the minimal soliton power
throughout the gap. However, it is noteworthy that the power
threshold is positive for all these potentials, i.e., the irregular-
ities do not allow the formation of linear (zero-power) modes
within the gap. (iii) An edge-dislocation reduces the gap size
(note: µmax ≈ 0.95), whereas, (iv) a Penrose soliton has a
slightly larger gap size (µmax ≈ 2.2) compared to a solitons
on a periodic square lattice. However, solitons on the maxima
of periodic-square and Penrose lattices have a similar power
behavior, which is a somewhat unexpected result, since these
lattices have a very different structure.

A striking observation in Fig. 5 is that the gap edge with
an edge-dislocation occurs at 0.9 < µmax < 0.95, which is
considerably smaller than for the other lattices. In fact, during
the computation, an interesting phenomenon occurs as µ is in-
creased. When µ = 0.9, a reliable convergence (δ = 10−10)
is reached and, in this case, the solution is between the lo-
cal maxima shown in Fig. 2(b). When µ = 0.95 , the solu-
tion initially converges at the same location (with δ = 10−5).
However, this “convergence” is misleading, since with further
iterations the solution moves upward along the y axis, “slid-
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ing” up in between two local maxima and eventually converg-
ing (with δ = 10−10) in between the four local maxima that
are one lattice cell above the edge dislocation. The resulting
soliton is therefore similar to one on a periodic square lattice,
insofar as the nearest four lattice maxima are approximately
symmetric and equi-spaced. In fact, further investigations re-
veal that for 0.95 < µ < 2 the soliton remains one lattice cell
above the dislocation and its power-eigenvalue dependence is
very similar to that of on a periodic lattice. Thus, the edge-
dislocation clearly shrinks the size of the nonlinear gap.

−4 −3 −2 −1 0 1 2
9

11

13

15

µ

P

prd, on max

Penrose

vacancy

edge−dislocation

prd, on min

FIG. 5: (Color online) Soliton power as a function of eigenvalue
within the semi-infinite band-gap, for the same lattices as in the pre-
vious figures, as well as solitons on the maximum and minimum of
a periodic (“prd”) square lattice. All lattices share a common peak
depth, V0 = 12.5, and background periodicity, K = 2π.

The question of soliton evolution under perturbations is im-
portant for applications. To study this, we perform direct com-
putations of Eq. (1) using the various potentials, where the ini-
tial conditions are the soliton with 1% random noise in ampli-
tude and phase. Generically, it is found that: (i) solitons cen-
tered around lattice minima (e.g., of periodic, vacancy, edge-
dislocation and quasicrystal lattices) undergo small-amplitude
oscillations when dP/dµ < 0 and large-amplitude oscilla-
tions when dP/dµ > 0; (ii) solitons centered around lattice
maxima (e.g., of periodic and quasicrystal lattices) can un-
dergo collapse after finite propagation distance.

In conclusion, the existence of stable 2D solitons is demon-
strated in self-focusing media with irregular lattice poten-
tials possessing vacancy defects, dislocations, and quasicrys-
tal structures. Fig. 5 shows that these Penrose solitons are sim-
ilar to solitons on periodic-lattice maxima; whereas, there are
significant differences between vacancy and edge-dislocations
solitons as compared to their periodic-lattice counterparts.

This work was partially supported by US Air Force under
grant F-49620-03-1-0250.
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S. Nolte, and A. Tünnermann, Opt. Lett. 29, 468 (2004).
[13] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D.

Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538
(2004).

[14] W. Cai and R. Piestun, Appl. Phys. Lett. 88, 111112 (2006).

[15] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Di-
lute Gases (Cambridge University Press, 2001).

[16] R. Piestun and J. Shamir, J. Opt. Soc. Am. A 15, 3039 (1998).
[17] J. F. Nye and M. V. Berry, Proc. Royal Soc. London 336, 165

(1974).
[18] M. J. Ablowitz and Z. H. Musslimani, Opt. Lett. 30, 2140

(2005).
[19] Z. H. Musslimani and J. Yang, J. Opt. Soc. Am. B 21, 973

(2004).
[20] D. E. Pelinovsky and Y. A. Stepanyants, SIAM J. Appl. Math.

42, 1110 (2004).
[21] R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo,

and R. Lewen, Opt. Lett. 30, 424 (2004).
[22] R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95,

133901 (2005).
[23] W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, Nature

436, 993 (2005).
[24] L. Sanchez-Palencia and L. Santos, PRA 72, 053607 (2005).
[25] B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N.

Christodoulides, and J. W. Fleischer, Nature 440, 1166 (2006).
[26] M. Senechal, Quasicrystals and Geometry (Cambridge Univer-

sity Press, 1995).
[27] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Phys. Rev. Lett.

93, 093904 (2004).
[28] P. Xie, Z.-Q. Zhang, and X. Zhang, Phys. Rev. E 67, 026607

(2003).
[29] A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and

F. Capolino, Phys. Rev. Lett. 94, 183903 (2005).



DISCRETE SCALAR AND VECTOR

DIFFRACTION-MANAGED NONLINEAR SCHRÖDINGER

EQUATION

MARK J. ABLOWITZ AND ZIAD H. MUSSLIMANI

Department of Applied Mathematics, University of Colorado at Boulder
Campus Box 526, Boulder, CO 80309-0526, USA

In this paper, an asymptotic equation is derived from first principles which governs
the propagation of electromagnetic waves in a waveguide array in the presence of

both normal and anomalous diffraction. This is termed diffraction management.
The theory is then extended to the vector case of coupled polarization modes.

1. Introduction

Dynamics of discrete nonlinear systems dates back to the mid fifties when
Fermi, Pasta and Ulam (FPU) studied dynamics of nonlinear springs 1.
Apart from the fact that the work of FPU motivated the discovery of soli-
tons, it also stimulated considerable interest in the study of discrete nonlin-
ear media which possesses self-confined structures (discrete solitary waves).
Such waves are localized modes of nonlinear lattices that form when “dis-
crete diffraction” is balanced by nonlinearity. In physics a soliton usually
denotes a stable localized wave structure, i.e., solitary wave. We shall use
the term soliton in this broader sense (i.e., they do not necessarily interact
elastically). Discrete solitons have been demonstrated to exist in a wide
range of physical systems 2−5. For example, atomic chains 6,7 (discrete
lattices) with on-site cubic nonlinearities, molecular crystals 8, biophysical
systems 9, electrical lattices 10, and recently in arrays of coupled nonlinear
optical waveguides 11,12. An array of coupled optical waveguides is a setting
that represents a convenient laboratory for experimental observations.

The first theoretical prediction of discrete solitons in an optical waveg-
uide array was reported by Christodoulides and Joseph 13. Later, many
theoretical studies of discrete solitons in a waveguide array reported switch-
ing, steering and other collision properties of these solitons 14−19 (see also
the review papers 20,21). In all of the above cases, the localized modes are
solutions of the well known discrete nonlinear Schrödinger (DNLS) equa-

1
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tion which describes beam propagation in Kerr nonlinear media (according
to coupled mode theory). Discrete bright and dark solitons have also been
found in quadratic media 22, in some cases, their properties differ from their
Kerr counterparts 23.

In fact, the DNLS equation (and its “cousins” such as diffraction man-
aged DNLS or DNLS with a potential such as discrete BEC) is “asymptot-
ically universal”. Namely it is the discrete equation which emerges from
either a weakly nonlinear Helmholtz equation with a suitable “potential”
or a weakly nonlinear continuous NLS equation with a suitable potential
where the following terms are in balance:

i) slow variation in either distance (waveguide array) or time (for
BEC);

ii) linear terms induced by a potential which can be viewed as asymp-
totically separated localized potentials (sometimes called the “tight
binding approximation” );

iii) nonlinearity.

It took almost a decade until self-trapping of light in discrete nonlinear
waveguide array was experimentally observed (Eisenberg et. al. 11,12).
When a low intensity beam is injected into one or a few waveguides, the
propagating field spreads over the adjacent waveguides hence experiencing
discrete diffraction. However, at sufficiently high power, the beam self-traps
to form a localized state (a soliton) in the center waveguides. Subsequently,
many interesting properties of nonlinear lattices and discrete solitons were
reported. For example the experimental observation of linear and nonlinear
Bloch oscillations in: AlGaAs waveguides 24, polymer waveguides 25 and
in an array of curved optical waveguides 26. Discrete systems have unique
properties that are absent in continuous media such as the possibility of
producing anomalous diffraction 27. Hence, self-focusing and defocusing
processes can be achieved in the same medium (structure) and wavelength.
This also leads to the possibility of observing discrete dark solitons in self-
focusing Kerr media 28. The recent experimental observations of discrete
solitons 11 and diffraction management 27 have motivated further interest
in discrete solitons in nonlinear lattices. This includes the newly proposed
model of discrete diffraction managed nonlinear Schrödinger equation 29,30

whose width and peak amplitude vary periodically; optical spatial solitons
in nonlinear photonic crystals 31−33 and the possibility of creating discrete
solitons in Bose-Einstein condensation 34. Also, recently, it was shown
that discrete solitons in two-dimensional networks of nonlinear waveguides
can be used to realize intelligent functional operations such as blocking,
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routing, logic functions and time gating 35−38. In addition, spatiotemporal
discrete solitons have been recently suggested in nonlinear chains of coupled
microcavities embedded in photonic crystal structures 39. Additional useful
references could be found in 40−56.

In this paper, an asymptotic equation is derived from first principles
which governs the propagation of electromagnetic waves in a waveguide
array in the presence of both normal and anomalous diffraction. This is re-
lated to the second model discussed above, i.e., diffraction managed DNLS
equation. The theory is then extended to the vector case of coupled polar-
ization modes.

2. Linear and Nonlinear Propagation

If the full width at half maximum (FWHM), τ , of the optical field is small
compared to the distance, d, between adjacent waveguides, then the propa-
gating beams across each single waveguide do not “feel” each other. There-
fore, the amplitude of each beam evolves independently according to the
linear wave equation:

d2ψ0

dx2
+

[
k2
0f

2
0 (x) − λ2

0

]
ψ0 = 0 , (2.1)

where k0 is the wavenumber of the optical field in vacuum; f2
0 is the refrac-

tive index of a single waveguide and λ0 is the lowest eigenvalue (propagation
constant) that corresponds to the ground state ψ0 (a bell shape eigenfunc-
tion). In this respect we have assumed that a single waveguide supports
only a single mode. The more intricate situation of multimode waveguide
is also possible in which case λ0 → λj and ψ0 → ψj where j is the num-
ber of modes occupied by a single waveguide. On the other hand when
τ is on the order of d or larger, then there is significant overlap between
modes of adjacent waveguides. In either case, the beam’s amplitude is not
constant in z anymore. Moreover, when the intensity of the incident beam
is sufficiently high then the refractive index of the medium will depend on
the intensity, which for Kerr media is proportional to the intensity. In this
case, the evolution of the total field’s amplitude Ψ follows from Maxwell
equations (

∂2

∂z2
+

∂2

∂x2

)
Ψ +

(
k2
0f

2(x) + δ|Ψ|2
)
Ψ = 0 , (2.2)

where f2(x) represents the refractive index of the entire structure and δ is
a small parameter to be determined later. If the overlap between adjacent
modes is “small”, which is valid in the regime µ ≡ τ/d � 1, we expect
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the power exchange to be slow. By introducing a slow scale Z = εz (ε is
a small parameter to be determined later) we approximate the solution to
Eq. (2.2) as a multiscale perturbation series:

Ψ =
+∞∑

m=−∞
Em(Z)ψm(x) exp(−iλ0z) . (2.3)

In this notation, ψm(x) = ψ0(x−md) and f2
m(x) = f2

0 (x−md). Substitut-
ing the ansatz (2.3) into Eq. (2.2), we find

+∞∑
m=−∞

[
−2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2
+

(
d2ψm

dx2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ δ
∑

m′,m′′
EmEm′E∗

m′′ψmψm′ψ∗
m′′

⎤
⎦ e−iλ0z = 0 . (2.4)

Using Eq. (2.1) in the above equation, multiplying Eq. (2.4) by ψ∗
n exp(iλ0z)

and integrating over x yields the following

+∞∑
m=−∞

[(
−2iελ0

∂Em

∂Z
+ ε2 ∂2Em

∂Z2

) ∫ +∞

−∞
dxψmψ∗

n + k2
0Em

∫ +∞

−∞
dx∆f2

mψmψ∗
n

+ δ
∑

m′,m′′
EmEm′E∗

m′′

∫ +∞

−∞
dxψ∗

nψmψm′ψ∗
m′′

⎤
⎦ = 0 . (2.5)

Here, ∆f2
m ≡ f2 − f2

m which measures the deviation of the total re-
fractive index from each individual waveguide. As mentioned earlier, the
overlap integral between adjacent waveguides is an important measure in
determining the dynamic evolution of the modes. With this in mind, we
shall assume that the overlap integrals appearing in Eq. (2.5) can be ap-
proximated by∫

dxψmψ∗
m+N = aNεN ,

∫
dx∆f2

m|ψm|2 = c0ε ,

∫
dx∆f2

mψmψ∗
m±1 = c1ε .

(2.6)

In order to understand the idea behind this scaling, we will assume that
the mode at waveguide m can be modeled by

ψm(x) = sechκ(x − md) , (2.7)

where κ = 1/τ ; τ is the FWHM. The reason for this choice is only to
simplify the analysis. In fact, the real modes of a step index waveguide has
exponential behavior which is close to a sech like mode. Other choices of
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eigen-functions with different exponential decay are possible, e.g., ψm(x) =
exp[−(x − md)2/τ2] but the basic ordering mechanism remains the same.
A straightforward calculation shows that∫ +∞

−∞
dxψmψ∗

n = ce−|n−m|/µ , (2.8)

with c being a constant of order one. Since µ � 1, then the choice ε =
exp(−1/µ) provides a measure for the order of magnitude for the overlap
integral. Restricting the sum in Eq. (2.5) to nearest neighbors i.e., m =
n, n ± 1 (which contribute to the order ε equation) and assuming that the
only order 1 contribution comes from the nonlinear term is when m = n =
m′ = m′′ and that ∫ +∞

−∞
dx|ψn|4 = gnl ,

we find that to O(ε) the nonlinear evolution of En is given by

−2iλ0a0
∂En

∂Z
+ k2

0c0En + k2
0c1(En+1 + En−1) + gnl|En|2En = 0 , (2.9)

where we have taken δ = ε to ensure maximal balance. By defining new
variables z̃ = Z/(2λ0a0), k2

0c1 = C, En = Ẽ∗
n exp(−ik2

0c0z̃) we find that Ẽn

satisfies (dropping the tilde)

i
∂En

∂z
+ C(En+1 + En−1) + gnl|En|2En = 0 . (2.10)

To put the DNLS equation in dimensionless form, we define

En =
√

P∗φn exp(2iCz) , z′ = z/znl (2.11)

with P∗ and znl being the characteristic power and znl the nonlinear length
scale. Then φn satisfies

i
dφn

dz
+

1
h2

(
φn+1 + φn−1 − 2φn

)
+ |φn|2φn = 0 , (2.12)

with znlC = 1/h2 and znl = 1/(gnlP∗). In the DNLS equation there are
two important length scales: the diffraction and nonlinear length scales
respectively defined by LD ∼ 1/C and znl = 1/(gnlP∗). Solitons which are
self-confined and invariant structures are expected to form when LD ∼ znl.

3. Asymptotic Theory for Diffraction Management

3.1. Renormalization

We have seen in the preceding section how can we build, based on physical
heuristic arguments, a model that incorporate both normal and anomalous
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diffraction. The key idea in formulating a model of diffraction manage-
ment, is to use a cascade of different segments of waveguide, each piece
being tilted by an angle zero and γ respectively. Here, we give a deriva-
tion of the model, in the scalar case, based on asymptotic theory. Two
approaches are given. The first is based on perturbation expansion using
a renormalized eigen-mode of each single waveguide, whereas in the second
we expand around eigenfunction of an untilted waveguide. It is clear that
each single waveguide is not stationary. As a result, the evolution of the
beam’s amplitude in the linear approximation is governed by(

∂2

∂z2
+

∂2

∂x2

)
Ψ + k2

0f
2(X)Ψ = 0 , X = x − α

ε

∫ Z

0

D(Z ′)dZ ′ , (3.13)

where as before, Z = εz; α is a small parameter to be determined later and
D(Z) is a piecewise constant periodic function that measures the local value
of diffraction. When the waveguides are well separated then the dynamics
of each mode ψm in waveguide f2

m is decoupled and is given by(
α2D2(Z) + 1

)d2ψm

dX2
+

(
k2
0f

2
m(X) − λ2

0

)
ψm = 0 . (3.14)

However when the waveguides are at close proximity, we approximate the
solution to Eq. (3.13) as a multiscale perturbation series:

Ψ =
+∞∑

m=−∞
Em(Z)ψm(X)e−iλ0z . (3.15)

Substituting the ansatz (3.15) into Eq. (3.13), we find
+∞∑

m=−∞

[
−2iελ0ψm

∂Em

∂Z
+ ε2ψm

∂2Em

∂Z2

+
((

α2D2 + 1
)d2ψm

dX2
+ k2

0f
2ψm − λ2

0ψm

)
Em

+ 2iαλ0DEm
dψm

dX
− 2αεD

∂Em

∂Z

dψm

dX
− αεEm

dD

dZ

dψm

dX

]
e−iλ0z = 0 .(3.16)

Using Eq. (3.14) in the above equation, multiplying Eq. (3.16) by
ψ∗

n exp(iλ0z) and integrating over X yields the following
+∞∑

m=−∞

[(
−2iελ0

∂Em

∂Z
+ ε2 ∂2Em

∂Z2

) ∫ +∞

−∞
dXψmψ∗

n

+k2
0Em

∫ +∞

−∞
dX∆f2

mψmψ∗
n + 2iαλ0DEm

∫ +∞

−∞
dX

dψm

dX
ψ∗

n

−εα

(
2D

∂Em

∂Z
+ Em

dD

dZ

) ∫ +∞

−∞
dX

dψm

dX
ψ∗

n

]
= 0 . (3.17)
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Similar to the arguments we presented before, we shall assume that the
overlap integrals follow the scaling given in Eqs. (2.6) and that α = O(µ).
In close analogy to the calculations given before, we find that for a sech-like
mode [Eq. (2.7)] profile we have∫ +∞

−∞
dX

dψm

dX
ψ∗

n =
β

µ
e−|n−m|/µ , (3.18)

where b is a constant. Restricting the sum in Eq. (3.17) to nearest neighbors
i.e., m = n, n ± 1 and by defining z̃ = Z/(2λca0), k2

0c1 = C1, 2λcbD = D̃;
En = Ẽ∗

n exp(−ik2
0c0z̃) we find that En satisfies (dropping the tilde)

i
∂En

∂z
+ C1

(
En+1 + En−1

)
+ iD(z)

(
En+1 − En−1

)
= 0 . (3.19)

The constant diffraction case, i.e., Eq. (2.10) is recovered when D = 0.
Eq. (3.19) is the general dynamical equation that governs the evolution of
optical beam in a diffraction-managed linear waveguide array. However,
when the intensity of the incident beam is sufficiently high then the refrac-
tive index of the medium will depend on the intensity which for Kerr media
is proportional to the intensity. Therefore, by following the same procedure
outlined in Sec. 2 we find that the general evolution equation for the optical
field in a diffraction-managed nonlinear waveguide array is governed by

i
∂En

∂z
+ C1

(
En+1 + En−1

)
+ iD(z)

(
En+1 − En−1

)
+ gnl|En|2En = 0 .(3.20)

In the case of strong diffraction for which max|D(z)| >> |C1| (recall that
D(z) is a piecewise constant function) and by defining En = En exp(iπn/2),
Eq. (3.20) reduces to

i
∂En

∂z
+ D(z)

(
En+1 + En−1

)
+ gnl|En|2En = 0 . (3.21)

3.2. Direct Approach

In this section, we give a different approach to derive a model for diffrac-
tion management. We approximate the solution to Eq. (3.13) again as a
multiscale perturbation series

Ψ =
+∞∑

m=−∞
Em(Z)ψm(X)ei[ϕm(z)−λ0z] , (3.22)

where the the phase ϕm(z) will be chosen later. Substituting the ansatz
(3.22) into Eq. (3.13), we find
+∞∑

m=−∞
ei[ϕm(z)−λ0z]

[
Em

d2ψm

dX2

(
1 + α2D2

)
+ k2

0f
2Emψm



8

+2i
(dϕm

dz
− λ0

)(
ε
∂Em

∂Z
ψm − αD

dψm

dX
Em

)
−

(dϕm

dz
− λ0

)2

Emψm

−2αεD
∂Em

∂Z

dψm

dX
− αεEm

dD

dZ

dψm

dX
+ i

d2ϕm

dz2
Emψm + ε2 ∂Em

∂Z
ψm

]
= 0.(3.23)

Using Eq. (2.1) and multiplying Eq. (3.23) by ψ∗
n exp[−iϕn(z)] and inte-

grating over −∞ < X < ∞ yields the following equation (ignoring the
order ε2 term)

+∞∑
m=−∞

ei[ϕm(z)−ϕn(z)]

{
Em

∫
dXψmψ∗

n

×
[
α2D2(λ2

0 − k2
0f

2
m) + k2

0∆f2
m −

(dϕm

dz

)2

+ 2λ0
dϕm

dz
+ i

d2ϕm

dz2

]

−α
[
Em

(
2i

(dϕm

dz
− λ0

)
D +

dD

dZ

)
+ 2εD

∂Em

∂Z

]

×
∫

dX
dψm

dX
ψ∗

n + 2iε
(dϕm

dz
− λ0

)∂Em

∂Z

∫
dXψmψ∗

n

}
= 0 .

Until now the phase factor ϕm is arbitrary. Therefore, we shall choose the
phase in such a way that

α2D2

∫ +∞

−∞
dX

(
λ2

0−k2
0f

2
m

)
|ψm|2 =

[(dϕm

dz

)2

−2λ0
dϕm

dz

] ∫ +∞

−∞
dX|ψm|2 .(3.24)

Eq. (3.24) implies that

dϕm

dz
= O(α2) ,

(dϕm

dz

)2

= O(α4) ,
d2ϕm

dz2
= O(αε) . (3.25)

The localized nature of the waveguides indicates that ϕm is independent of
m, i.e., it is the same for all waveguides. With this scaling in mind and by
taking as before α = O(µ), we recover Eq. (3.19).

4. Asymptotic Theory for Vector Diffraction Management

In this section we present a derivation of the vector diffraction managed
DNLS equation starting from the nonlinear vector Helmholtz equations
(which is obtained from Maxwell’s equations). The propagation of an in-
tense laser beam in a Kerr medium is described by the vector Helmholtz
equations:(

∂2

∂x2
+

∂2

∂z2

)
E + δ∇

(
∇ · PNL

)
+ k2

0f
2(x)E + δPNL = 0 . (4.26)

The nonlinear polarization PNL can be expressed in terms of the electric
field as

PNL = (E · E∗)E + γ(E · E)E∗ , (4.27)
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where γ is a constant related to the third order nonlinear susceptibility 56.
Since we are interested in interaction between two coupled laser beams,
we shall assume that each one is initially linearly polarized and mutually
orthogonal, i.e.,

E(x, z) = E1(x, z)x̂ + E2(x, z)ŷ + E3(x, z)ẑ . (4.28)

In this case, the nonlinear polarization takes the form

PNL = P
(1)
NL x̂ + P

(2)
NL ŷ + P

(3)
NL ẑ , (4.29)

where

P
(1)
NL =

(
(1 + γ)|E1|2 + |E2|2

)
E1 + γE2

2E∗
1 + γE2

3E∗
1 , (4.30)

P
(2)
NL =

(
|E1|2 + (1 + γ)|E2|2

)
E2 + γE2

1E∗
2 + γE2

3E∗
2 . (4.31)

P
(3)
NL =

(
|E1|2 + |E2|2 + (1 + γ)|E3|2

)
E3 + γE2

1E∗
3 + γE2

2E∗
3 . (4.32)

Substituting the expression for E in Eq. (4.26) and taking into account the
nonlinear polarization, leads to the coupled system:

(
∂2

∂x2
+

∂2

∂z2

)
E1 + δ

∂2P
(1)
NL

∂x2
+ k2

0f
2(x)E1 + δP

(1)
NL = 0 , (4.33)

(
∂2

∂x2
+

∂2

∂z2

)
E2 + k2

0f
2(x)E2 + δP

(2)
NL = 0 , (4.34)

(
∂2

∂x2
+

∂2

∂z2

)
E3 + δ

∂2P
(1)
NL

∂x∂z
+ δ

∂2P
(3)
NL

∂z2
+ k2

0f
2(x)E3 + δP

(3)
NL = 0 . (4.35)

In this work, we are interested in interaction of two mutually orthogonal
beams. However, if we initially assume that E3 = 0, then the source term
∂2P

(1)
NL/∂x∂z appearing in Eq. (4.35) will eventually generate a nonzero E3

component. In fact, this additional term (due to nonlinear polarization) is
of order δ. Hence, we are justified in neglecting E3 as compared to E1 and
E2. Next we follow the same expansion as mentioned earlier and let

E1 =
∑+∞

m=−∞ Am(Z)ψm(X)e−iλ0z

E2 =
∑+∞

m=−∞ Bm(Z)ψm(X)e−iλ0z ,
(4.36)

where X has been defined in Eq. (3.13). The expansion of the linear terms
is already given in (3.19) with the addition of onsite terms kwgAn and
kwgBn. Therefore, we focus the attention below solely on the nonlinear
terms and in particular give an estimate on the order of magnitude of
∂2P

(1)
NL/∂x2. Substituting the ansatz (4.36) into Eqs. (4.33) and (4.34);
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multiplying by ψ∗
n exp(iλ0z) and integrating over X yields the following

result for the nonlinear terms:∫ +∞

−∞
dXP

(1)
NLψ∗

neiλ0z = (1 + γ)
∑

m,m′,m′′
AmAm′A∗

m′′

∫ +∞

−∞
dXψmψm′ψ∗

m′′ψ∗
n

+
∑

j,j′,j′′
BjB

∗
j′Aj′′

∫ +∞

−∞
dXψjψj′ψ∗

j′′ψ∗
n

+ γ
∑

l,l′,l′′
BlBl′A

∗
l′′

∫ +∞

−∞
dXψlψl′ψ

∗
l′′ψ

∗
n . (4.37)

∫ +∞

−∞
dXP

(2)
NLψ∗

neiλ0z =
∑

m,m′,m′′
AmA∗

m′Bm′′

∫ +∞

−∞
dXψmψm′ψ∗

m′′ψ∗
n

+ (1 + γ)
∑

j,j′,j′′
BjBj′B∗

j′′

∫ +∞

−∞
dXψjψj′ψ∗

j′′ψ∗
n

+ γ
∑

l,l′,l′′
AlAl′B

∗
l′′

∫ +∞

−∞
dXψlψl′ψ

∗
l′′ψ

∗
n . (4.38)

Due to the assumption of widely separated waveguides, the only order one
contribution comes from the nonlinear term when m = m′ = m′′ = n. We
therefore find that to O(ε) the nonlinear evolution of An and Bn is given
by (taking δ = ε)

i
∂An

∂z
+ kwgAn+ C(z)An+1 + C∗(z)An−1

+(ã1|An|2 + b̃1|Bn|2)An + η̃1B
2
nA∗

n = 0 , (4.39)

i
∂Bn

∂z
+ kwgBn+ C(z)Bn+1 + C∗(z)Bn−1

+(ã2|Bn|2 + b̃2|An|2)Bn + η̃2A
2
nB∗

n = 0 , (4.40)

where the coefficients ã1, ã2, b̃1, b̃2, η̃1, η̃2 are given by:

ã1 = (1 + γ)ηnl + γnl , b̃1 = ηnl + γnl ,

ã2 = (1 + γ)ηnl , b̃2 = ηnl ,

η̃1 = γηnl + γnl , η̃2 = γηnl ,

and ∫ +∞

−∞
dX|ψn|4 = ηnl ,

∫ +∞

−∞
dX

∂2

∂X2

(
|ψn|2ψn

)
ψ∗

n = γnl .
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By rescaling the field amplitudes, i.e., An = Ãn/
√

ã1, Bn = B̃n/
√

ã2 we
find the system (dropping the tilde):

i
∂An

∂z
+kwgAn+C(z)An+1+C∗(z)An−1+(|An|2+b1|Bn|2)An+η1B

2
nA∗

n = 0 ,

i
∂Bn

∂z
+kwgBn+C(z)Bn+1+C∗(z)Bn−1+(|Bn|2+b2|An|2)Bn+η2A

2
nB∗

n = 0 ,

with b1 = b̃1/ã2, b2 = b̃2/ã1, η1 = η̃1/ã2, η2 = η̃2/ã1 ( see also the in-
troduction). Finally, we would like to comment on the FWM term in
Eqs. (4.39) and (4.40). In case that kwg � 1 then by defining new fields
An = An exp(kwgz) and Bn = Bn exp(kwgz) the FWM term B2

nA∗
n be-

comes B2
nAn exp(kwgz) which averages to zero due to the rapid variation in

z. Similar arguments hold for A2
nB∗

n. However, if kwg is of order one, then
it is necessary to study the effect of FWM on the discrete vector solitons.

5. Conclusions

In this paper we have derived and investigated scalar and vector discrete
diffraction managed systems. The proposed vector model describes prop-
agation of two polarization modes interacting in a waveguide array with
Kerr nonlinearity in the presence of varying diffraction. The coupling of
the two fields is described via a cross-phase modulation coefficient.

Acknowledgment

M.J.A. is partially supported by the Air Force Office of Scientific Research,
under grant number F49620-03-1-0250, and NSF under grant number DMS-
0070792.

References

1. E. Fermi, J. Pasta, and S. Ulam, Studies of nonlinear problems, Los Alamos
Rep. LA1940, 1955.

2. O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova
model, Phys. Rep. 306, (1998) 1-108.

3. D. Henning and G. P. Tsironis, Wave transmission in nonlinear lattices, Phys.
Rep. 307, (1999) 333-432.

4. S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295, (1998) 181-264.
5. F. Lederer and J. S. Aitchison, Discrete solitons in nonlinear waveguide ar-

rays, Les Houches Workshop on Optical Solitons, Eds. V. E. Zakharov and
S. Wabnitz, Springer-Verlag (1999) 349-365.

6. A. C. Scott and L. Macneil, Binding-energy versus nonlinearity for a small
stationary soliton, Phys. Lett. A 98, (1983) 87-88.



12

7. A. J. Sievers and S. Takeno, Intrinsic localized modes in anharmonic crystals,
Phys. Rev. Lett. 61, (1988) 970-973.

8. W. P. Su, J. R. Schieffer, and A. J. Heeger, Solitons in polyacetylene, Phys.
Rev. Lett. 42, (1979) 698-1701.

9. A. S. Davydov, Theory of contraction of proteins under their excitation, J.
Theor. Biol. 38, (1973) 559-569.

10. P. Marquii, J. M. Bilbaut, and M. Remoissenet, Observation of nonlinear
localized modes in an electrical lattice, Phys. Rev. E 51, (1995) 6127-6133.

11. H. Eisenberg, Y. Silberberg, R. Morandotti, Discrete spatial optical solitons
in waveguide arrays, A. Boyd, and J. Aitchison, Phys. Rev. Lett. 81, (1998)
3383-3386.

12. R. Morandotti, U. Peschel, J. Aitchison, H. Eisenberg, and Y. Silberberg,
Dynamics of discrete solitons in optical waveguide array, Phys. Rev. Lett.
83, (1999) 2726-2729.

13. D. N. Christodoulides and R. J. Joseph, Discrete self-focusing in nonlinear
arrays of coupled wave-guides, Opt. Lett. 13, (1988) 794-796 .

14. Y. S. Kivshar, Self-localization in arrays of defocusing waveguides, Opt. Lett.
18, (1993) 1147-1149.

15. W. Krolikowski and Y. S. Kivshar, Soliton-based optical switching in waveg-
uide arrays, J. Opt. Soc. Am. B 13, (1996) 876-887.

16. A. B. Aceves, C. De Angelis, S. Trillo, and S. Wabnitz, Storage and steering
of self-trapped discrete solitons in nonlinear wave-guide arrays, Opt. Lett.
19, (1994) 332-334.

17. B. Malomed and M. I. Weinsrein, Soliton dynamics in the discrete nonlinear
Schrödinger equations, Phys. Lett. A 220, (1996) 91-96.

18. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo,
and S. Wabnitz, Discrete self-trapping, soliton interactions, and beam steer-
ing in nonlinear waveguide arrays, Phys. Rev. E 53, (1996) 1172-1189.

19. A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, Multidi-
mensional solitons in fiber arrays, Opt. Lett. 19, (1994) 329-331.

20. F. Lederer, S. Darmanyan, and A. Kobyakov, Discrete solitons, In: Spatial
Solitons, Eds. S. Trillo and W. Torruellas (Springer-Verlag, Berlin, 2001),
267-290.

21. P.G. Kevrekidis, K.Ø. Rasmussen and A.R. Bishop, The discrete nonlinear
Schrödinger equation: A survey of recent results, Int. J. of Mod. Phys. B 15,
(2001) 2833-2900.

22. T. Peschel, U. Peschel, and F. Lederer, Discrete bright solitary waves in
quadratically nonlinear media, Phys. Rev. E 57, (1998) 1127-1133.

23. S. Darmanyan, A. Kobyakov, and F. Lederer, Strongly localized modes in
discrete systems with quadratic nonlinearity, Phys. Rev. E 57, (1998) 2344-
2349.

24. R. Morandotti, U. Peschel, J. Aitchison, H. Eisenberg, Experimental obser-
vation of linear and nonlinear optical Bloch oscillations, and Y. Silberberg,
Phys. Rev. Lett. 83, (1999) 4756-4759.

25. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, Optical
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