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1 Introduction

Character, word, and line-level geometric groundtruth is crucial for optical character
recognition (OCR) algorithm development and evaluation. Such groundtruth is typically
created manually and therefore its creation is time-consuming, expensive, and prone to
human errors.

Consider a case in which researchers already have geometric groundtruth for a small
set of document images but would like to use these document-groundtruth pairs to boot-
strap the construction of a larger (more varied) data set. Two scenarios are possible. In
the first scenario, the groundtruth for the set of original real document images is created
manually, and in the second scenario, the groundtruth for the set of original synthetic
document images is generated automatically. In both cases the algorithm developer
would like to print, photocopy, fax and rescan the original document images and then
automatically generate the geometric groundtruth for the rescanned documents.

In this paper, we present a point matching based algorithm to automatically generate
the groundtruth for rescanned images. The algorithm extracts feature points from the
original and rescanned images and then registers the two images using a point matching
algorithm. The groundtruth for the rescanned images is then generated by transforming
the groundtruth of the original images.

In Chapter 2, related research is summarized. The automatic groundtruth generation
methodology 1s outlined in Chapter 3, and the matching algorithms are discussed in
Chapter 4. We discuss the impact of image pattern complexity on image registration
in Chapter 5. The error metric and experimental protocol for conducting controlled
experiments are discussed in Chapter 7. Experimental results are presented in Chapter 8.
In Chapter 9, image registration is used for generating groundtruth for microfilmed and
faxed images. Finally, in Chapter 10, we provide our conclusions.

Part of the work presented in this paper appeared in DAS2000 [15].

2 Previous Work

Kanungo and Haralick [13, 14] proposed a methodology for automatically generating
the groundtruth of a rescanned image by estimating the transformation between two
images and then transforming the groundtruth using the estimated transformation. They
estimated the transformation from corresponding pairs of feature points. Four corner
points of the images were used as feature points to estimate the transformation. The
point matching registration algorithm was then improved by using a robust local template
matching algorithm. However, their method is not robust when part of the image is
missing or there are extra feature points in the image. This drawback can be overcome by
using all the available feature points. Hobby [10] improved the registration by considering
all feature points. He used a direct search optimization method to minimize the mismatch
in the estimated transformation. However, his method finds a local minimum instead of
a global minimum. More recently, Viard-Gaudin et al. [25] proposed a methodology for
creating groundtruth for handwritten documents. They designed a database of online
and offline handwritten data. They manually determined corresponding points in the
online and offline domain and then estimated the affine transformation between the two
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Figure 1: The automatic closed-loop methodology of Kanungo and Haralick.

coordinate systems.

Numerous feature point matching algorithms have been reported in the literature.
Baird [1] used feature points to do image matching. Breuel [3] also proposed an algo-
rithm for feature point matching. He estimated the transformation by subdividing the
transformation space. Huttenlocher et al. [11, 12] used a branch-and-bound algorithm
using Hausdorff distance as the distance measure. They used the distance transform to
determine nearest neighbors. Mount et al. [20] proposed a modified branch-and-bound
algorithm based on partial Hausdorff distance. They used kd-tree-based nearest neigh-
bor searching to find correspondences. These algorithms are discussed in more detail in
Section 4.2.

3 The Automatic Groundtruthing Methodology

Given an image and its groundtruth information, we wish to generate groundtruth for
an image which is a transformed (scanned, photocopied, microfilmed, faxed, etc.) ver-
sion of the original image. The basic idea is to estimate the transformation between
the two images and then transform the groundtruth information using the estimated
transformation.

Figure 1 illustrates the methodology that Kanungo and Haralick [14] used for gen-
erating groundtruth information for real images. Four corner points of the images were
used as feature points to estimate the transformation. The four feature points, p1, p2, p3
and py were determined by the following equations:

p1 = arg min(z(a:) + y(as)),
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Figure 2: Local template matching.

p2 = argmax(z(b;) — y(b;)),
ps = argmin(z(c;) +y(ci)),
ps = argmax(z(d;) — y(di)),

where a;, b;, ¢; and d; are respectively the upper-left, upper-right, lower-right, and lower-
left corners of the bounding boxes of each connected component in the image. More
improvement is achieved by applying a local template matching algorithm described in
Figure 2. The dashed rectangle in Figure 1 is the module that is being replaced by the
algorithm described in this paper.

First we extract the connected components of the original and transformed images.
The number of connected components in a typical document image is 1000-5000, which
makes the running time of the estimation procedure too large. To reduce the complexity
of the problem, we group the connected components. The groups are approximately at
the word level. As a result of grouping, the number of feature points to be considered
is reduced to about 20-25% of its original size. We explain the feature point grouping
procedure in Section 4.1.

Using the two feature point sets, one from the original image and the other from the
transformed image, we estimate the transformation by using the feature point registration
algorithms described in Section 4.2. Figure 3 shows an illustration of this procedure.

4 The Matching Algorithm

We need to find the correspondence and the transformation between two point sets.
There are two major steps in the matching procedure: (i) feature point grouping and (ii)
feature point registration.
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4.1 Feature point grouping

To reduce the size of the problem, we group connected components at the word token
level. Let B be the set of bounding boxes, N N*(b) be the k nearest neighbors of bounding
box b, PQ) be a priority queue, 7 be a threshold, and root(b) be the root of b, which is
initialized to be b. The key of the priority queue is the distance between the two bounding
boxes. Bounding boxes with the smallest distance appear on top of the queue. In selecting
the threshold, we used the threshold selection method of Kittler and Illingworth [16].
The thresholding works as follows. Assume that the observations come from a mixture
of two Gaussian distributions having respective means and variances (p1,07) and (pz, 03)
and respective proportions ¢; and ¢g;. We determine the threshold T that results in
1,92, 11, ft2,01,02. They minimize the Kullback directed divergence [18] J from the
observed histogram P(1),..., P(I) to the unknown mixture distribution f, where

P, N A .
J = Z:P(z) 10g[f('i,)] = ZP(@) log P(i) — ZP(@) log f(1)
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Because the first term of .J does not depend on the unknown parameters, the minimization
can be done by minimizing the second term. Assume that the modes are well separated.
Then for some threshold ¢ that separates the two modes
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¢ L I L
H(t) = =3 P(i)log —2—e 20 = S P(i)log —2—e (="
i=1 277-0-1 i=t4+1 27T0'2



Input
B: Set of bounding boxes
I: Input image
Output
Set of grouped bounding boxes
begin
forall be B
root(b) « b
for all ' € NN*(b)
put (b,8') into PQ
pair (b,b') « pair with smallest distance of P
while distance of (b,8') < 7
do
if root(b) # root(t)
then for all ¥ with root(¥')
root(b") = root(b)
end
end

Figure 4: The feature point grouping algorithm.

From the assumption of well-separated modes, the mean and variance estimated from
P(1),... P(t) will be close to gy and oy, and the same for the second part. By using
these estimated values, we can evaluate H(t) for each t. We choose the threshold ¢ which
minimizes H(t).

The grouping algorithm is illustrated in Figure 4. In Figure 5, we show an image
overlaid with bounding boxes of the grouped connected components. This sample image
contains 2127 connected components, and 442 groups. We can see that these groups are
approximately at the word level. Grouping takes less than 10 seconds per image when
run on a Sun Ultra-Sparc 5 with clock speed 361.2 MHz.

4.2 Feature point based registration algorithms

With feature points generated by the methodology described in Section 4.1, we need
to estimate the transformation between the two sets of feature points. In this section,
we discuss several registration algorithms that can be used for this purpose. All the
algorithms work on feature points, and therefore we can use any of these methods for
our matching problem. The algorithms take two sets of feature points as input, and
estimate the transformation between them. We also need to give the bounds for the
initial search space.

4.2.1 Huttenlocher et al.’s algorithm

Huttenlocher et al. [11, 12] proposed a feature matching algorithm using the Hausdor{f
distance as a similarity measure. A set of transformations (a cell) is defined such that
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Input
I: Original point set
R: Transformed point set
Output
{: Estimated transformation
begin
Initialize a cell Cy to contain all transformations of interest.
Initialize a list of cells L with Cj.
while cell size > threshold
for each cell ¢ € L
if ¢ can contain a transformation ¢ s.t. Hrx([,t(R)) <7
add ¢ to interesting list 1L
Create a new L with smaller cells s.t. they completely cover IL.
end

where Hp(I,t(R)) = max(hr(I,t(R)), hx(t(R), 1)),
and hg(t(R), 1) = K}f}ét(R) mines || e —r ||

Figure 6: Huttenlocher et al.’s algorithm.

the optimum transformation lies inside this cell. A list of interesting cells is created
and initialized to be this cell. Let I be the original points and R be the transformed
points. For each cell in the list, determine whether it is possible that the cell contains a
transformation ¢ for which Hpx(I,t(R)) < 7, where

Hix (1, t(R)) = max(h(I,t(R)), hx(t(R), 1)),

and
- — ~th 1 y
i (L(R). 1) = Ky ymin [~ |

If the rule is satisfied, the cell is marked as interesting. Once the entire list has been
scanned, a new list of smaller cells (of the same size) is constructed such that it completely
covers the interesting cells. This step is repeated until the cell size is smaller than a
threshold. Figure 6 shows the pseudo-code of this algorithm.

4.2.2 Breuel’s algorithm

Breuel [3] proposed a registration algorithm called RAST (Recognition using Adaptive
Subdivisions of Transformation space). We define a box to be a set of transformations.
Initially, the box contains all the transformations we would like to consider. The algo-
rithm finds all possible correspondences between the two feature point sets and evaluates
the quality of the match resulting from this set of correspondences.

If the upper bound on the best possible match is either (i) smaller than the required
minimum quality or (ii) smaller than the best solution found so far, we abandon this

7



Input
I: Original point sets
R: Transformed point sets
Output
i: Estimated transformation
SearchBox(box, depth, candidates)
begin
intersecting = all candidates that intersect box
containing = all candidates that contain box
axis = depth mod 4
if evaluate(intersecting) < best_Quality then return
else if(candidates = containing) or (depth > max_Depth)
then best_Quality=evaluate(intersecting)
best_Box = box
return
else SearchBox(left(box,axis), depth+1, intersecting)
SearchBox(right(box,axis), depth+1, intersecting)
end
RAST(constraints, max_Depth, min_Quality)
begin
best_Quality = min_Quality
best_Box = none
SearchBox(entire_box, 0, constraints)
return best_Box
end

Figure 7: Breuel’s algorithm.

part of the transformation space. Otherwise, we subdivide the current box into smaller
regions and repeat the same procedure recursively. This process terminates when all
boxes have correspondences, or when a threshold is reached. The RAST algorithm is
given in Figure 7.

4.2.3 Mount et al.’s algorithm

Mount et al. [20] proposed a branch-and-bound algorithm for feature point matching.
They used the partial Hausdorfl distance [11] as the similarity measure. Given point sets
A and B and parameter k, the partial Hausdorff distance is defined as
Hy(I, R) = k! min,ep dist(i,r).

Let T' be the range of the affine transformation, and € be the error bound. The basic
approach of the branch-and-bound algorithm is as follows. For a given T', we first compute
the upper and lower bounds on similarity. Next, a priority queue is constructed such that
the element that has the largest size is on top of the queue. In each iteration, we pick
up the largest element from the priority queue and see if its similarity lower bound is

8



Input
I: Original point sets
R: Transformed point sets
T': Initial search space
Output
{: Estimated transformation
begin
construct and initialize PQ) with given T'
while PQ size # 0 and best_similarity > ¢
do
T « next element in P()
compute lower bound of similarity for 7'
if lower bound of 7' > best_similarity - €
then kill this cell and proceed to the next one
compute upper bound of similarity for 7'
if upper bound of T' < best_similarity
then update best_similarity and transformation
split T into Ty and T,
insert T7 and T, into PQ)
end
end

Figure 8: Mount et al’s algorithm.

better than the current best similarity. If not, we kill that element and proceed to the
next largest element. Otherwise, we compute the upper bound and check if it is better
than the current best similarity. If it is, we (i) update the best similarity to be the upper
bound of the current element, (ii) update the best transformation, (iii) split the element
into two parts along the longest side,and (iv) insert both new elements into the priority
queue. This process is iterated until we achieve the target similarity or there are no
more elements to be processed in the queue. In computing the upper and lower bounds
of a given range of transformation, we use the kd-tree-based nearest neighbor searching
algorithm proposed in [2, 7]. The matching algorithm is illustrated in Figure 8.

4.2.4 Hobby’s algorithm

Hobby proposed a new approach to the registration problem [10]. In this algorithm, he
defined a mismatch function and found the minimum values using direct search optimiza-
tion methods, such as Nelder-Mead’s [21] and Torczon’s [24] algorithms. The mismatch
function is defined as follows. Let R be the real image with connected component CF,
and I be the ideal image with groundtruth G’. Using the initial affine transformation
T?, transform CF to C®. Then for each g/ € G, we can choose the c?R € C% such
that the distance d(g/, c?R) is minimized. Then apply a standard vector norm (he used
the L4 norm) to the resulting list of d values.

9



Input
I: Original point sets
R: Transformed point sets
TY: Initial transformation from R to 1
Output
#: Estimated transformation
0 = (tmw Loy by, Lyys Loy ty)

d(g!, c?R): Distance measure between g/, ¢

begin '

Let C® be the connected components of R
Let G be the groundtruth of 1
cFeCl gl e
COR = TO(CR), IR ¢ COR
for each g! € GT

for each c?R c O

compute d(g?, c?R)

k; = argmin; d(g!, c?R)

Find 6 that minimizes the function

F(0; 1,G' R) = /S g1eqn (d(g], cfF) )

end

Figure 9: Hobby’s algorithm.

The distance measure d is defined as follows. Assume that we have two boxes A and
B. The distance between them is defined to be

d(A, B) = mm(df(Am, Axg, le, Brg) + df(Byl, Ayg, Byh Byg),
df(Bxh BzQ; Awl; AJEQ) + df(Byla By27 Aylv Alﬂ))
‘I’dp(AIQ - A1717 BI‘2 — Brl) + dp(AyQ - Ayb By2 - Byl)

where the x1 and z2 subscripts refer to a box’s minimum and maximum x coordinates
and the y1 and y2 subscripts refer to a box’s minimum and maximum y coordinate. dy
and d, are defined to be

0 fzs <zyand 2o < 24
di(z1, 29, 23,24) = min(| 3 — @1 |, | 24 — 22 |)
+ max(0,zy — 21 — (x4 — x3)) otherwise

dy(a,b) = max(0, maz(a,b) — 8min(a, b)).

He used four corner points of the image as used by Kanungo and Haralick [14] to estimate
the initial affine transformation 7. Figure 9 shows his algorithm. More details about
this algorithm and the distance measure can be found in [10].
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5 The Impact of Pattern Complexity on Image Registration

It is clear that the performance of the registration algorithms described in Section 4.2
depends on the number of feature points to be registered. However, the complexity of
the image may also affect algorithm performance.

In this section, we examine the impact of the complexity of an image on the objective
function and the algorithm performance. For all the experiments described in this section,
we fixed the number of points in each image to be 500.

5.1 Impact on objective function

Two extreme cases are considered, one with an asymmetric image, and the other with a
highly symmetric image. Figure 10 is an example of an asymmetric image. This image
consists of 500 data points on 8 line segments; most of the lines are not parallel to each
other. In this image, the gaps between points on the line segments are varying, making
the line segments asymmetric. For this data set, we can anticipate that the objective
function should converge to the global minimum smoothly (there would not be many
local minima). To show the six-dimensional objective function, we fixed five parameters
while varying one parameter around the optimal solution.

Figure 11 shows the impact of changes in the first four parameters of the affine
transformation. The impact of changes in the two translation parameters is shown in
Figure 12. As we anticipated, there are very few local minima, making it faster for the
algorithm to converge to the global minimum.

Figure 13 is an example of a symmetric image. This image consists of 500 data
points with 50 parallel line segments. In this case, we fix the gap between points to
be constant. For this image, we can anticipate that there are many local minima in
the objective function, because if we translate the image by the distance between the
points/lines, this results in another good match (even though not as good as the global
minimum). Therefore, the objective function will have some periodic structure in the
translation direction. Figure 15 shows this behavior of the objective function. For both
x and y translations, there are periodic local minima in the objective function. In fact,
the periods correspond to the distances between points in the two directions. For the
other affine parameters, similar behavior is observed, causing the objective function to
have many local minima as the parameters change. This behavior is shown in Figure 14.

5.2 Impact on algorithm performance

The shape of the objective function affects the performance of the algorithm. There
are several algorithms that can find the global optimum when there are numerous local
minima. However, if the objective function has many local minima, these algorithms
have difficulty in finding the global one. When we ran the branch-and-bound algorithm
described in Section 4.2.3, it took 39 seconds on the asymmetric image of Figure 10, and
138 minutes on the symmetric image of Figure 13.

Table 1 shows the running times of the branch-and-bound algorithm when applied to

11



Asymmetric Image (500 points)

4000.0

o Original Points

+ Transformed Points
+ 0
* o
* £ 8
3000.0 o ::
. o 19
s
«0b . 1
40 O ok ",
P R P
Oooooog'@gooooooaoom*
¢ %0 .
) B o,
8 5&’;33 s o0l e,
: oo, o, *x
2000.0 | L
% Co "+ o
% o’ 0, v, o
FRC TN
oo o Ty
% oot 0y .
10+ ° .,
& EN
0%’ o, Tt
% o e
Lo 0
1000.0 ST
<}
S8
g
L g
/ § ¢
S . %
O L serrrsspiArEEREEEEEERELRL LA
0.0 X 35000000000000000000000 00

Figure 10:

60.0

1000.0

| ©00000O0

2000.0

Layout of asymmetric image.

40.0

Similarity

20.0

0.0
p-20dp

p-10dp

p+10dp p+20dp

Figure 11: Objective function of asymmetric image.

12




200

150

100

50

Y translation
-100 -50

-150

-200

600.0

0.0

=
)
. —
=
7!
o
T AO». w
E
o — £
*
-0 <) Ke) *%*%*****
o —~ ok ¥
80 [%)] L oo **wwmw*wﬁe$@@@wmmwm@oo 1
< +— c 289 ¥ %%
S S m c £73 **uwowwm@e@@@&mowmw@oo
== i m = m % £ **wmmwwaQQQQmewwwwoo
&L © A =5 **§3309qqaee0ddddoqqoo
] © o < o LG5S 2339
c c H c D **WOOWW@PPQQ@QwOO*O*O*%O
M M o - o D m **%O*M [SeX Qb%@@@o*o*o*o*@bo g
S * * ¥
X > -0 L w oE * o*o*o*o*g@QQQ@@*o*o*o*o%o
00000000000 000000
* N m N— o * td*o****% dﬁ****%b
: o m *udﬁomumy@%ﬁbééu@u@ooooooo
i =
o ®© = ) *5H500000000000000000
S e z g8 .
© © m par xR a A
+ Y ommmwee&e@umooowmeQQQQ&wooowo
— * * *
EOU x C I3) *owwmmeﬂw@@&&wwwowwwmg@nw&&&wwownu
* * *
= m = *wwwppg®@&&@mwmwwmwp@@@@&&wmwoWO
L **
- = *oooQPQQQQQ%%%MOOO@%PQQQ@@%O*%OOO
+ (O] Fok ¥ ¥ R RREF ok * ¥
o [} m 2000 d o*o*o*o*o*@@%%@%o co00
= n LA * X
- = m W,Mwnow,mow.@p@,@@%@@ To00000 o'oo 000
(R s oo%%%bb@o&&*o&oo%%%bbb@o@d&&oom
L * * 4
o W %) Mommmﬁbééddﬁwmwmmmbﬁbad&dwwmom
* * *
wn .o r— Mom%m@@@adddwwowmmmbbaaﬁwwwwoo
*
Lu Mommmﬂ@&aa&wmwwooooooooooooooo
) *
Ly L o 1m L L L
o o = ©) =) = = =
o o o o o o o
o o .. o o o o
< N o~ o o o o
= < ® « =
Awrejuis °
—~
=
20
.-
=~

3000.0

2000.0

13

1000.0
Figure 13: Layout of symmetric image.

0.0



150.0

100.0

Similarity

50.0

oo 1 1
p-20dp p-10dp p p+10dp p+20dp

Figure 14: Objective function of symmetric image.

Y translation
-200 -150 -100 -50 0 50 100 150 200

300.0 w ‘ ‘ ‘ ‘ ‘ |
o———o X translation
«———+ Y translation
200.0 |
2
ks
£
[}
100.0 |
0.0 ‘

0 50 100 150 200 250 300 350 400
X translation

Figure 15: Objective function of symmetric image (translation).

14



‘ Image type ‘ Number of lines ‘ Gap type ‘ Running time

Asymmetric 8 Variable 39 sec.
Asymmetric 8 Constant 51 sec.
Symmetric 8 Variable/diff. direction 54 sec.
Symmetric 8 Variable/same direction 98 sec.
Symmetric 50 Variable 68 min.
Symmetric 50 Constant 138 min.

Table 1: Timing information on images with various complexities.

Asymmetric Image with constant gap
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Figure 16: Asymmetric image with constant gaps.

images with various types of complexity. Figures 1618 show the layout of these images.
From this timing information, we can see that as the image becomes more symmetric,
the running time for registration increases. In many cases, document images are highly
symmetric, having similar layout to that in Figure 13. This fact tells us that registration
of document images usually takes more time than for more asymmetric images, such as
satellite images and video images.

6 Attributed Point Matching

To improve algorithm performance, we introduce the notion of attributes of feature points
into the similarity measure. Attributes can be color, area, width, height, aspect ratio, or
number of black pixels. The similarity measure is now a function of the distance between
the points as well as the similarity between their attributes. We use the number of black
pixels as an attribute of the feature points. As discussed in Chapter 4, a feature point
represents a group of connected components. Therefore, we can count the number of
black pixels in each group of connected components.

Now we need to define the similarity measure for the attribute. Let An; be the differ-
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ence between the numbers of black pixels in two feature points, and d be the Euclidean
distance between them. Then the new similarity sem, is defined to be

1 Anb 1 d

stm, = p)\—1 exp(———) + (1 — p))\—2 eXp(—)\—Z),

where Ay = E[Any], Ay = F[d] ,and 0 < p < 1.

By changing p we can control the weight of the attribute. For example, if we use only the
distance, we can set p to be 0, so that the first term of stm 1s 0. When the distance is 0,
the similarity is also 0, and when the distance goes to infinity, the similarity approaches 1.

Instead of partial Hausdorff distance, we use the new attributed similarity as the
similarity measure for Mount et al.’s algorithm described in Section 4.2.3. In Figures 19—
22 we show the behavior of the algorithm for the two similarity measures. The image
contains 30 randomly generated points. We then remove 10% of the points, introduce
the same number of outlier points, and transform the image with a 5° rotation and an x
translation of 50. The running time for partial Hausdorff distance is 41 seconds, whereas
it takes 26 seconds for attributed similarity. For comparison, we multiply the attributed
similarity by 100 so that the similarity has the range [1,100] instead of [0,1]. Figure 19 is
the graph of best similarity at each iteration. We observe that the attributed similarity
decreases faster than the partial Hausdorff distance.

In Figure 20 we compare the maximum size of the cell at each iteration for two
similarity measures. The attributed measure also decreases faster in this case. The
number of active cells is important in terms of system resources. The maximum number
of active cells represents the memory usage of the algorithm. As we observe in Figure 21,
the maximum number of active cells for attributed similarity is less than half that for
partial Hausdorff distance. Figure 22 shows the best similarity as a function of the search
tree level. We observe that they are similar to each other, and therefore we can suppose
that in both cases they take similar paths in the search tree to reach the optimal solution.

7 Error Metric and Experimental Protocol

7.1 Error metric

For the analysis of the experimental results, we need to define an error criterion. Let G be
the set of groundtruth elements ¢g;,2 = 1,---, N,, where N is the number of characters in
the image. Typically, g; is a tuple: ¢; = (x4, yi, w;, hi, ;) € R x R x Rt x RY x F, where,
x;,y; are the z- and y-coordinates of the upper-left corner of the character-level bounding
box, w;, h; are the width and height of that bounding box, and f; is the font. Let § and 0
denote the true and estimated transformations respectively. We can get the groundtruth
for the rescanned image by transforming (G using the estimated transformation. Then
we can define G? and GY to be the set of transformed groundtruth elements as follows:

G’ = T(@) with elements ¢! = (2,4 w? B?, f7)

G = Té(G) with elements gf = (mf,yf,wf, hf,f?).

We can compute g¢ and ¢¢ as follows:
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Figure 21: Number of active cells vs. number of iterations
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Figure 22: Best similarity vs. tree level
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(af ) =T i) (el ") = T7 (s )
To define w?, h? and wf, hf, let u;, v; be the - and y-coordinates of the lower-right corner
of the boundmg box:
up = x; Fw, v =y +h;
(uf, )" = T(w, v3), (uf, 0%)" = T‘g(uu’vz)
w! = uf — 6h‘9—v —yZ

2

wf—ue—x he—v —y?.
Also, we assume that f? = ff = f;. The Euclidean distance between the centroids of the
corresponding bounding boxes §; is defined as
§; = ||Centroid(g?), Centroid(gf)”.
Then the mean and maximum error measures for an image can be defined as follows:
Pmean(Gev Ge) = % 2iz1 6
Prmaz(GY, Gé) = max;{61, - On}

7.2 Experimental methodology and protocol

Our experiment was performed on the University of Washington data set [22]. This data
set contains journal images with character-level geometric groundtruth. We performed
two experiments, one on non-rotated images and the other on rotated images.

The experiment on non-rotated images was performed on 450 images. These images
were generated by transforming 10 randomly selected images from the University of
Washington data set by 45 different transformations. The rotation angle R was set at zero
and the scale S and translation X, Y; parameters were selected from the following sets:

S = {65%,80%,100%,120%, 135%},
X; ={-50,0,50}, ¥; = {—100,0,100}.
The initial search space was 60% ~ 140% for scale, —100 ~ 100 for X translation, and
—200 ~ 200 for Y translation.

For the experiment on rotated images, we generated another 450 images from the same
10 images. For each image, we have 45 different transformations described as follows:
We choose the scale parameter value from the set

S = {65%,80%,100%,120%, 135%},
rotation from the set
R ={0°,1°,3°},
and the X, Y translations from the set
(X:,Y:) ={(0,0),(50,0),(100,0)}.
The initial search space was 60% ~ 140% for scale, —10° ~ 10° for rotation, —100 ~ 100
for X translation and —200 ~ 200 for Y translation.

8 Results and Discussion

In this section we describe the results of our controlled experiments. We used the branch-
and-bound method described in Section 4.2.3 for feature point registration.
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Figure 23: Distributions of mean and maximum errors.
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8.1 Experiments on non-rotated images

To analyze the results, we generate the histogram of estimation errors. As discussed in
Section 7.1, we calculate pcan(G?, G?) and pr..(GY, G?) for each image pair. For the
set of images O, the number of images that had errors in the range A is counted. The
following 1s the notation for this analysis. Let O be the set of images, T' be the set of
transformations, A be the width of the range, I be the set of transformed images, and G
be the set of groundtruth elements (&;. The histograms of the mean and maximum error,

Hiean(k;0,T,A) and Hy0(k; O, T, A), are defined as follows:

E—1)A
Hm@fln(k;OvTvA) — H{Z € I | %

(k+1)

< Pmean(vaGf) }H

DA

: k—
Hpao(k;0,T,A) = |[{i € 1 | (T —

We have 450 transformed images for which groundtruth is estimated. The histograms
of the mean and maximum error distributions of this image set are shown in Figure 23.

We set A to be 0.4 pixel.

From the results, we see that the estimated groundtruth is close to the true ground-

; k41
< pranl i,y < DD + E

truth with less than 3 pixels of mean error and 5 pixels of maximum error. The mean
of the mean error is 1.09 pixels, and the mean of the maximum error is 2.16 pixels. The
estimation takes 10 ~ 15 minutes per image when run on a Sun Ultra-Sparc 5 with clock

speed 361.2 MHz.

8.2 Experiment on rotated images

The same methodology as that for the non-rotated images was used for the experiment
on rotated images. Figures 24, 25, and 26 are the distributions of mean errors for the
rotated images.

For non-rotated images, we have a similar result to that in Section 8.1, with most
of the mean errors less than 3 pixels. However, for the images rotated by 1°, the mean
errors become larger, about 40 pixels, and for 3° rotated images, the average of the mean
errors is about 100 pixels.

9 Application: Registration for microfilmed and faxed images

9.1 Image registration for microfilmed images

In this section an experiment on microfilmed images is discussed. Assume that we are
given a set of images with known groundtruth, and corresponding microfilmed images.
We wish to generate the groundtruth for the microfilmed images from the available
groundtruth.

In general, microfilmed images have the following features:

1. Large black areas around the image (similar to photocopied images)
2. A lot of small black pixels (so-called salt-and-pepper noise)
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Figure 24: Distribution of mean errors for 0° rotated images.
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Figure 26: Distribution of mean errors for 3° rotated images.

3. Many broken characters
4. Many merged characters.

Because of these features, it is helpful to filter out the connected components whose
area is too small (case 2) or too large (case 1). Also, using feature point grouping as
described in Section 4.1 helps, especially in cases 3 and 4. Consider the case in which
many characters are broken apart in a microfilmed image (see Figures 27 and 28). In
many cases, these broken parts are still very close to each other. In most cases the
grouping algorithm regroups them.

Another case is when the characters are joined. In this case we have relatively large
connected components. However, the grouped result will be similar to that of the original
image, because in most cases, the joint characters are not larger than words. Therefore
we still have reasonable feature points for the original and microfilmed images. This
matters, because the registration algorithm is based on the feature points, and if we do
not provide a good correspondence, it is obvious that the registration algorithm cannot
give us a good result.

Figures 29 and 30 are corresponding original and microfilmed images. Figure 31 is
the microfilmed image overlaid with the estimated groundtruth information. We used
the methodology discussed in Section 3; the groundtruth is at the word and zone level in
DAFS [8] format. The registration algorithm of Breuel [3], described in Section 4.2.2, was
used. The experiment was conducted on the University of Washington III data set [22]
with 978 images, and the corresponding microfilmed images. The registration took about
17 minutes per image when run on a Sun Ultra-Sparc 10 with clock speed 481.7 MHz.
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providing a secure trap. Then nearby
secretory cells exude enzymes, forming
a little stomach that digests the insect.

One of the best-known examples of
plant behavior comes from Mimosa pu-
dica, often called the sensitive plant.
When the leaves of the plant are
touched, they bend over and appear
dead. The drooping arises from a me-
chanically driven action potential. More-
over, an action potential propagates
from the stimulated region throughout
the plant. This causes drooping in the
rest of the plant, a defense mechanism
apparently designed to make the whole
plant look unappealing.

Not all plant action potentials, how-
ever, cause obvious responses. In
Luffa—the plant whose gourd or fruit is
used for “loofah” sponges—action po-
tentials cause a transient inhibition of
growth. And in a variety of flowers,
pollen landing on the stigma generates
an action potential, which may be in-
volved in subsequent pollination or the
maturation process. In tomato seed-
lings, a mechanical wound induces
electrical activity that causes the accu-
mulation of proteins that limit further
damage to the plant.

Electrical phenomena control many
responses in plants. In a characean alga,
we understand many of the details of
the mechanism that leads from a duck’s
nip on the plant to the cessation of pro-
toplasmic streaming. But we are just be-
ginning to address the similarities be-
tween the electrical excitability in
characean algae and higher plants, let
alone animals. In any case, it is apparent
that plants can perform long-distance
communication through electrical sig-
nals, such as the passing of information
from a mechanical stimulus from one
Mirmosa stem to another. Many biolo-
gists continue to describe electrical ex-
citability as part of the animal world. In
the future, we should think of plants as
excitable too.
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other adaptations. Hence, there is
no more reason to believe that the
brain is a tabula rasa than to
believe that the stomach is a gener-
al digester designed to track the
foods an organism may encounter.

Differences in research strategies

In its pure form, DA focuses on
differences in LRS between individ-
vals encountering different en-
vironments, and uses the methods
of behavioural ecology to study
these differences. EP, in its purest
form, uses the methods of evol-
utionary biology and experimental
psychology to study the naturally
selected design of psychological
mechanisms. Consider how these
two types of researcher might
approach  testing the Trivers—
willard" hypothesis about the allo-
cation of parental investment to
male and female progeny.

Trivers and Willard argued that if
(1) variance of male LRS exceeded
that of female LRS, (2) the relative
health and dominance of mothers is
passed on to their progeny, and (3)
healthy or dominant males obtain
more matings than males lacking
these attributes, then (4) females
will be selected to allocate invest-
ment in progeny as a function of
their health or dominance. Clutton-

perspectives

Specific ancestral
selection pressures
on a species

7

Innate adaptation: information processing
mechanisms instantiated in neural hardware

¢ Ancestral
C tal
. environment
Operational adaptation in ancestral S o o [ —
environment due to innate information
processing mechanisms responding to <« |mmediate
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Fig. 2. The evolutionary psychologist's perspective on how the evolved innate adaptation in conjunction
with the current developmental and immediate environments produces current behaviour. Because
there Is a clear distinction between ancestral and current environments and between ancestral and cur-
rent i ions {although not between ancestral and current innate adaptations) ancestral

Brock et al'%, in a c hensi
study of red deer (Cervus elaphus),
found considerable support for the
hypothesis. Sons born to mothers
above median rank were more
reproductively successful than their
daughters, while daughters born to
subordinatc mothers were more
reproductively successful than their
sons. Moreover, the ratio of sons to
daughters produced by dominant
mothers was higher than for subor-
dinate mothers. Because the sex
ratio and reproductive success
were key dependent variables in
this study, it is similar to some
studies of sex allocation done by
DAs and described by Sieff".

An  evolutionary.  psychologist
attempting to test the Trivers—
Willard hypothesis would first con-
struct a selection model relating
sexual dimorphism in variance in
reproductive success in males and
females and health or status of
mother to the benefits of differen-
tial investment in sons and daugh-

and current behaviour may differ considerably. Although ancestral behaviour contributed to ancestral
fitness, and hence the evolution of the innate adaptation, current behaviour need not contribute to cur-

rent fitness

cription of how sex allocation might
have been sefected for in a particu-
lar species. The model would be
used in conjunction with infor-
mation about the natural history of
the species to explore the param-
eter space of the independent vari-
ables to determine whether a ‘win-
dow' of opportunity could have
existed for the evolution of the
putative adaptation. If the results
of the modelling suggested that the
evolution of the adaptation is
plausible, a theory of the nature of
the adaptation, specified in terms
of decision rules assumed to be
instantiated in neural hardware,
would be formulated. The depen-
dent variables would be outputs
from the decision process affecting
nursing time, amount of protection
from predators, elc., given to sons
and daughters, rather than fitness

or behavi assumed

ters'®. Varying the of
the model would provide a des-

to enhance fitness. Attitudes, val-

ues, intentions and motives would
be measured in human studies. A
decision rule might be something
like: “If subordinate and physically
weak, be more responsive to the
needs of daughters than of sons;
but if strong and dominant be
more attentive to the needs of
sons than of daughters’. It would be
necessary to formulate a theory of
the relation between ancestral and
current environments

Such a theory requires a model
of how the crucial independent
variables, which are measures of
adaptation-relevant external and
internal environmental variables,
are represented to the ancestral
adaptation. Dominance, for exam-
ple, might have been represented
in terms of posture, frequency of
unreciprocated threat displays, or
resources held by different ances-
tral individuals. Once the decision
rules that describe the adaptation

Figure 29: Original image to be registered.
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were key dependent variables in
this study, it is similar to some
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ables to determine whether a ‘win-
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existed for the evolution of the
putative adaptation. If the results
of the modelling that the

ues, intentions and motives would
be measured in human studies. A
decision rule might be something
like: “If subordinate and physically
weak. be more responsive to the
needs of daughters than of sons;
but if stong and dominant be
more attentive to the needs of
sons than of daughters’. It would be
necessary to formulate a theory of
the relation between ancestral and

evolution of the adaptation Is
plausible, a theory of the nature of
the ion, specified in terms

attempting to test the Trivers—
Willard hypothesis would first con-
struct a selection relating
sexual dimorphism in variance in
reproductive success in males and
females and health or status of
mother to the benefits of differen-
tial investment in sons and daugh-
ters'. Varying the parameters of
the model would provide a des-

Figure 30: Microfilmed image to be registered.

of decision rules assumed to be
instantiated in neural hardware,
would be formulated. The depen-
dent variables would be outputs
from the decision process affecting
nursing time, amount of protection
from predators, etc., given to sons
and daughters, rather than fitness
measures or behaviours assumed
to enhance fitness. Attitudes, val-
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Such a theory requires a model
of how the crucial independent
variables, which are measures of
adaptation-relevant extemal and
intemal environmental variables,
are represented to the ancestral
adaptation. Dominance, for exam-
ple, might have been represented
in terms of posture, frequency of
unreciprocated threat displays, or
resources held by different ances-
tral individuals. Once decision
rules that describe the adaptation
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9.2 Experiment on a faxed image

In Section 9.1, we discussed a methodology for generating groundtruth for microfilmed
images. The same methodology can be applied to other images such as photocopied or
faxed images. We faxed and rescanned an image, and ran the feature point registration
algorithm to produce the groundtruth for this image. Figure 32 shows the faxed image
overlaid with the estimated groundtruth.

10 Conclusions

We have proposed an improvement over the automatic groundtruthing algorithm pro-
posed by Kanungo and Haralick. We used feature point grouping to reduce the complex-
ity of the problem. Then we used feature point registration algorithms on the grouped
feature point sets to estimate the transformation between two images. To analyze the
result of a controlled experiment, we defined the error metric to be the Euclidean distance
between the centroids of corresponding characters. Further reduction in groundtruth lo-
cation error can be achieved by using the local template matching algorithm described
by Kanungo and Haralick [13, 14].

The contributions of this paper are:

o We made the image registration process more robust by using all the feature points
available from both the original and transformed images. Several point matching
algorithms were discussed and used for document image registration.

o We studied the impact of pattern complexity on the registration process. By ob-
serving the behavior of the objective function, we found that registration takes
more time on symmetric images than on asymmetric ones.

o We also studied attributed point matching. Each feature point can have an at-
tribute, such as color, area, width, height, aspect ratio, or number of black pixels.
This attribute can be introduced into the similarity measure to make registration
faster and more accurate. We used the number of black pixels as an attribute, and
found the best similarity and maximum cell size at each iteration, as well as the
number of active cells at each iteration.

o We used our algorithm to create groundtruth for scanned microfilm images and
faxed images.
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Figure 32: Estimated groundtruth of faxed image.
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