Supporting Real-Time Applications in an Integrated Services Packet Network:

Architecture and Mechanism

David D. Clark!

Laboratory for Computer Science

Massachusetts Institute of Technology

ddc@lcs.mit.edu

Abstract

This paper considers the support of real-time applications
in an Integrated Services Packet Network (ISPN). We first
review the characteristics of real-time applications. We ob-
serve that, contrary to the popular view that real-time ap-
plications necessarily require a fixed delay bound, some real-
time applications are more flexible and can adapt to current
network conditions. We then propose an ISPN architec-
ture that supports two distinct kinds of real-time service:
guaranteed service, which is the traditional form of real-
time service discussed in most of the literature and involves
pre-computed worst-case delay bounds, and predictedservice
which uses the measured performance of the network in com-
puting delay bounds. We then propose a packet scheduling
mechanism that can support both of these real-time services
as well as accommodate datagram traffic. We also discuss
two other aspects of an overall ISPN architecture: the ser-
vice interface and the admission control criteria.

1 Introduction

The current generation of telephone networks and the cur-
rent generation of computer networks were each designed to
carry specific and very different kinds of traffic: analog voice
and digital data. However, with the digitizing of telephony
in ISDN and the increasing use of multi-media in computer
applications, this distinction is rapidly disappearing. Merg-
ing these sorts of services into a single network, which we re-
fer to here as an Integrated Services Packet Network (ISPN),
would yield a single telecommunications infrastructure offer-
ing a multitude of advantages, including vast economies of
scale, ubiquity of access, and improved statistical multiplex-
ing. There is a broad consensus, at least in the computer
networking community, that an ISPN is both a worthy and
an achievable goal. However, there are many political, ad-
ministrative, and technical hurdles to overcome before this
vision can become a reality.

1 Research at MIT was supported by DARPA through NASA Grant
NAG 2-582, by NSF grant NCR-8814187, and by DARPA and NSF
through Cooperative Agreement NCR-8919038 with the Corporation
for National Research Initiatives.

Scott Shenker Lixia Zhang
Palo Alto Research Center
Xerox Corporation
shenker, lixia@parc.xerox.com

One of the most vexing technical problems that blocks
the path towards an ISPN is that of supporting real-time
applications in a packet network. Real-time applications
are quite different from standard data applications, and re-
quire service that cannot be delivered within the typical data
service architecture. In Section 2 we discuss the nature of
real-time applications at length; here, however, it suffices
to observe that one salient characteristic of the real-time
applications we consider is that they require a bound on
the delivery delay of each packet?. While this bound may
be statistical, in the sense that some small fraction of the
packets may fail to arrive by this bound, the bound itself
must be known a priori. The traditional data service archi-
tecture underlying computer networks has no facilities for
prescheduling resources or denying service upon overload,
and thus is unable to meet this real-time requirement.

Therefore, in order to handle real-time traffic, an en-
hanced architecture is needed for an ISPN. We identify four
key components to this architecture. The first piece of the
architecture is the nature of the commitments made by the
network when it promises to deliver a certain quality of ser-
vice. We identify two sorts of commitments, guaranteed and
predicted. Predicted service is a major aspect of our paper.
While the idea of predicted service has been considered be-
fore, the issues that surround it have not, to our knowledge,
been carefully explored.

The second piece of the architecture is the service inter-
face, i.e., the set of parameters passed between the source
and the network. The service interface must include both
the characterization of the quality of service the network will
deliver, fulfilling the need of applications to know when their
packets will arrive, and the characterization of the source’s
traffic, thereby allowing the network to knowledgeably al-
locate resources. In this paper we attempt to identify the
critical aspects of the service interface, and offer a particular
interface as an example. We address in passing the need for
enforcement of these characterizations.

The third piece of the architecture is the packet schedul-
ing behavior of network switches needed to meet these ser-
vice commitments. We discuss both the actual scheduling
algorithms to be used in the switches, as well as the schedul-
ing information that must be carried in packet headers. This

?Since the term bound is tossed around with great abandon in the
rest of the paper, we need to identify several different meanings to
the term. An a priori bound on delay is a statement that none of
the future delays will exceed that amount. A post facto bound is the
maximal value of a set of observed delays. Statistical bounds allow
for a certain percentage of violations of the bound; absolute bounds
allow none.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 1992 2. REPORT TYPE 00-08-1992 to 00-08-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Supporting Real-Time Applicationsin an Integrated Services Packet
Network: Architecture and M echanism

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
M assachusetts I nstitute of Technology,77 M assachusetts REPORT NUMBER
Avenue,Cambridge,M A,02139-4307

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 13
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

part of the architecture must be carefully considered; since it
must be executed for every packet it must not be so complex
as to effect overall network performance.

The final part of the architecture is the means by which
the traffic and service commitments get established. Clearly,
the ability of the network to meet its service commitments is
related to the criteria the network uses to decide whether to
accept another request for service. While we do not present
a specific algorithm to regulate the admission of new sources,
we show the relation between the other parts of our proposal
and a general approach to the admission control problem.

There are also many architectural issues not directly re-
lated to the nature of real-time traffic; for instance, the is-
sues of routing and interaction of administrative domains
all pose interesting challenges. We do not address these is-
sues in this paper, and any final architectural proposal for
an ISPN must solve these longstanding problems. It is im-
portant to note, however, that we do not believe that the
architectural choices we advocate here for real-time traffic
unnecessarily restrict the scope of solutions to these other
problems.

This paper has 12 Sections and an Appendix. In Section
2 we begin with a discussion of the nature of real-time traf-
fic. In particular, we note that some real-time applications
can adapt to current network conditions. This leads us to
propose, in Section 3, that the ISPN support two kinds of
real-time service commitments: guaranteed service and pre-
dicted service. In Section 4 we present a time-stamp based
scheduling algorithm which is a nonuniformly weighted ver-
sion of the Fair Queueing algorithm discussed in Reference
[4], and then refer to a recent result due to Parekh and Gal-
lager (see References [19, 20]) which states that, under cer-
tain conditions, this algorithm delivers guaranteed service in
a network of arbitrary topology. We then turn, in Sections
5 and 6, to the scheduling algorithms best suited for pro-
viding predicted service. We combine these two scheduling
algorithms in Section 7, presenting a unified scheduling algo-
rithm which provides both guaranteed and predicted service.
The scheduling algorithm incorporates two novel ideas; that
of using FIFO service in a real-time context, and that of cor-
relating the queueing delay of a packet at successive nodes
in its path to reduce delay jitter. Given the current frenzy
of activity in the design of real-time scheduling algorithms,
we do not expect that the algorithm presented here will be
the final word on the matter; however, we do hope that the
insight embodied therein will be of lasting value. In partic-
ular, we think that the insight underlying our design, that it
is necessary to distinguish between the two basic principles
of isolation and sharing, 1s both fundamental and novel.

In Section 8 we return to the issue of the service interface.
Since the service interface will be invoked by applications,
we expect that a real-time service interface will outlive any
particular underlying network mechanism. Thus, we have
attempted in our proposal to produce an interface which is
flexible enough to accommodate a wide variety of supporting
mechanisms. Admission control policies are discussed briefly
in Section 9, and the support of other service qualities is
covered in Section 10.

In order to build up sufficient context to meaningfully
compare our work to previously published work, we de-
lay the detailed discussion of related work until Section 11.
However, we wish to note here that our work borrows heav-
ily from the rapidly growing literature on providing real-
time service in packet networks. In particular, the works of

Parekh and Gallager ([20, 19]), Jacobson and Floyd ([14]),

and Lazar, Hyman, and Pacifici ([12, 13]) have all con-
tributed to our design.

Finally, in Section 12, we conclude our paper with a re-
view of our results and a brief discussion of related economic
issues. The Appendix contains details relating to the simu-
lation results that are presented in Sections 5-7.

2 Properties of Real-Time Traffic

2.1 A Class of Real-Time Applications

In the discussion that follows, we focus on a particular class
of real-time application which we dub play-back applications.
In a play-back application, the source takes some signal,
packetizes it, and then transmits it over the network. The
network inevitably introduces some variation in the delay of
each delivered packet. This variation has traditionally been
called jitter. The receiver depacketizes the data and then
attempts to faithfully play back the signal. This is done
by buffering the incoming data to remove the network in-
duced jitter and then replaying the signal at some designated
play-back point. Any data that arrives before its associated
play-back point can be used to reconstruct the signal; data
arriving after the play-back point is useless in reconstructing
the real-time signal. For the purposes of this paper, we as-
sume that all such applications have sufficient buffering to
store all packets which arrive before the play-back point; we
return to this point in Section 10.

Not all real-time applications are play-back applications
(for example, one might imagine a visualization application
which merely displayed the image encoded in each packet
whenever it arrived). However, we believe the vast majority
of future real-time applications, including most video and
audio applications, will fit this paradigm. Furthermore, non-
play-back applications can still use the real-time network
service provided by our architecture, although this service
is not specifically tailored to their needs.

Play-back real-time applications have several service re-
quirements that inform our design proposal. First, since
there i1s often real-time interaction between the two ends
of an application, as in a voice conversation, the application
performance is sensitive to the data delivery delay; in general
lower delay is much preferable. Second, in order to set the
play-back point, the application needs to have some infor-
mation (preferably an absolute or statistical bound) about
the delays that each packet will experience. Third, since all
data is buffered until the play-back point, the application is
indifferent as to when data is delivered as long as it arrives
before the play-back point®. This turns out to be a crucial
point, as it allows us to delay certain packets which are in no
danger of missing their play-back point in favor of packets
which are. Fourth, these play-back applications can often
tolerate the loss of a certain fraction of packets with only a
minimal distortion in the signal. Therefore, the play-back
point need not be so delayed that absolutely every packet
arrives beforehand.

2.2 The Nature of Delay

The delay in the network derives from several causes. There
is in practice a large fixed component to the delay, caused
by the propagation of the packet at the speed of light, and

3This is where we invoke the assumption, mentioned previously,
that the receiver has sufficient buffers.

the delay in transmission at each switch point waiting for
the entire packet to arrive before commencing the next stage
of transmission. (Cut-through networks avoid this delay by
starting transmission before receipt is complete; most packet
networks are not cut-through.) Added to this fixed delay is a
variable amount of delay related to the time that each packet
spends in service queues in the switches. This variation, or
getter, is what must be bounded and minimized if adequate
real-time service is to be achieved.

Queueing is a fundamental consequence of the statistical
sharing that occurs in packet networks. One way to reduce
jitter might be to eliminate the statistical behavior of the
sources. Indeed, one misconception is that real-time sources
cannot be bursty (variable in their transmission rate), but
must transmit at a fixed invariant rate to achieve a real-time
service. We reject this idea; allowing sources to have bursty
transmission rates and to take advantage of statistical shar-
ing is a major advantage of packet networks. Our approach
is thus to bound and characterize the burstiness, rather than
eliminate it.

The idea of statistical sharing implies that there are in-
deed several sources using the bandwidth; one cannot share
alone. Our approach to real-time traffic thus looks at the
aggregation of traffic as fundamental; the network must be
shared in such a way that clients (1) get better service than
if there were no sharing (as in a circuit switched or TDM
network) and (2) are protected from the potentially negative
effects of sharing (most obviously the disruption of service
caused by sharing with a mis-behaving source that overloads
the resource).

2.3 Dealing with Delay

In order for an application to predict its level of performance
with a given quality of network service, it needs to deter-
mine, to achieve satisfactory performance, what fraction of
its packets must arrive before the play-back point, and it
needs to know where to set its playback point. Thus, some
bound on the delay, plus an estimate of the fraction of pack-
ets missing that bound, forms the nucleus of the network’s
service specification in the service interface (to be discussed
more fully in Section 8).

Some real-time applications will use an a prior: delay
bound advertised by the network to set the play-back point
and will keep the play-back point fixed regardless of the
actual delays experienced. These we dub rigid applications.
For other applications, the receiver will measure the network
delay experienced by arriving packets and then adaptively
move the playback point to the minimal delay that still pro-
duces a sufficiently low loss rate. We call such applications
adaptive. Notice that adaptive applications will typically
have an earlier play-back point than rigid applications, and
thus will suffer less performance degradation due to delay.
This is because the client’s estimate of the de facto bound
on actual delay will likely be less than the a prior: bound
pre-computed by the network. On the other hand, since
the adaptation process is not perfect and may occasionally
set the play-back point too early, adaptive applications will
likely experience some amount of losses.

The idea of adaptive applications is not relevant to cir-
cuit switched networks, which do not have jitter due to
queueing. Thus most real-time devices today, like voice
and video codecs, are not adaptive. Lack of widespread
experience may raise the concern that adaptive applications
will be difficult to build. However, early experiments sug-

gest that it is actually rather easy. Video can be made
to adapt by dropping or replaying a frame as necessary,
and voice can adapt imperceptibly by adjusting silent peri-
ods. In fact, such adaptative approaches have been applied
to implement packetized voice applications since early 70’s
(citeWeinstein); the VT ([2]) and VAT ([15]) packet voice
protocols, which are currently used to transmit voice on the
Internet, are living examples of such adaptive applications®.
It is important to note that while adaptive applications can
adjust to the delivered delays over some range, there are
typically limits to this adaptability; for instance, once the
delay reaches a certain level, it would become difficult to
carry out interactive conversations.

Another useful distinction between network clients is how
tolerant they are to brief interruptions in service. This level
of tolerance is not just a function of the application, but
also of the end users involved. For instance, a video confer-
ence allowing one surgeon to remotely assist another during
an operation will not be tolerant of any interruption of ser-
vice, whereas a video conference-based family reunion might
happily tolerate interruptions in service (as long as it was
reflected in a cheaper service rate).

We can thus characterize network clients along two axes:
adaptive or rigid, and tolerant or intolerant. It is unlikely
that an intolerant network client is adaptive, since the adap-
tive process will likely lead, in the event of rapidly changing
network conditions, to a brief interruption in service while
the play-back point is re-adjusting. Furthermore, a tolerant
client that is rigid is merely losing the chance to improve its
delay. Such a combination of tolerance and rigidity would
probably reflect the lack of adaptive hardware and software,
which we believe will soon be cheap and standard enough to
become fairly ubiquitous. We are thus led to the prediction
that there will be two dominant classes of traffic in the net-
work: intolerant and rigid clients, and tolerant and adaptive
clients. We predict that these two classes will likely request
very different service commitments from the network. Thus,
these basic considerations about delay and how clients deal
with it have produced a taxonomy of network clients that
guides the goals of our architecture.

Before turning to the issue of service commitments, let
us note that one of the key differences between real-time
applications and the traditional datagram applications lies
in the nature of the offered traffic. Data traffic is typically
sporadic and unpredictable. In contrast, real-time appli-
cations often have some intrinsic packet generation process
which 1s long lasting compared to the end-to-end delays of
the individual packets. This process is a consequence of the
specifics of the application; for example the coding algorithm
for video, along with the nature of the image, will determine
the packet generation process. Furthermore, the character-
ization of this generation process can often be closely rep-
resented by some traffic filter (such as a token bucket to
be described later), and/or be derived from measurement.
When a network has some knowledge of the traffic load it
will have to carry, it can allocate its resources in a much
more efficient manner.

3 Service Commitments

Clearly, for a network to make a service commitment to a
particular client, it must know beforehand some characteri-

4Yet another example of an adaptive packet voice application is
described in Reference [5].

zation of the traffic that will be offered by that client. For
the network to reliably meet its service commitment, the
client must meet its traffic commitment (i.e., its traffic must
conform to the characterization it has passed to the net-
work). Thus, the service commitment made to a particular
client is predicated on the traffic commitment of that client.
The question is, what else is the service commitment predi-
cated on (besides the obvious requirement that the network
hardware function properly)?

One kind of service commitment, which we will call guar-
anteed service, depends on no other assumptions. That is,
if the network hardware is functioning and the client is con-
forming to its traffic characterization, then the service com-
mitment will be met. Notice that this level of commitment
does not require that any other network clients conform to
their traffic commitments. Guaranteed service is appropri-
ate for intolerant and rigid clients, since they need absolute
assurances about the service they receive.

However, guaranteed service is not necessarily appropri-
ate for tolerant and adaptive clients. Adaptive clients, by
adjusting their play-back point to reflect the delays their
packets are currently receiving, are gambling that the net-
work service in the near future will be similar to that deliv-
ered in the recent past. Any violation of that assumption in
the direction of increased delays will result in a brief degra-
dation in the application’s performance as packets begin
missing the play-back point. The client will then readjust
the play-back point upward to reflect the change in service,
but there will necessarily be some momentary disruption
in service. This will occur even if the network is meeting
its nominal service commitments (based on the bounds on
the service), because an adaptive application is typically ig-
noring those a priori bounds on delay and adapting to the
current delivered service.

Thus, as long as the application is gambling that the re-
cent past is a guide to the near future, one might as well
define a class of service commitment that makes the same
gamble. Our second kind of service commitment is called
predicted service. This level of commitment has two com-
ponents. First, as stated above, the network commits that
if the past is a guide to the future, then the network will
meet its service characterization. This component embod-
ies the fact that the network can take into account recent
measurement on the traffic load in guessing what kind of
service 1t can deliver reliably. This is in marked contrast
to the worst-case analysis that underlies the guaranteed ser-
vice commitment. Second, the network attempts to deliver
service that will allow the adaptive algorithms to minimize
their play-back points. (This is the same as saying that the
service will attempt to minimize the post facto delay bound.)
Obviously, when the overall network conditions change, the
quality of service must also change; the intent of the second
component of the commitment is that when network con-
ditions are relatively static, the network schedules packets
so that the current post facto delay bounds (which are typi-
cally well under the long-term a priori bounds that are part
of the service commitment) are small.

Notice that predicted service has built into it very strong
tmplicit assumptions about the behavior of other network
clients by assuming that the network conditions will remain
relatively unchanged, but involves very few explicit assump-
tions about these other network clients; i.e., their current
behavior need not be explicitly characterized in any precise
manner. Thus, for predicted service, the network takes steps
to deliver consistent performance to the client; it avoids the

hard problem, which must be faced with guaranteed service,
of trying to compute a priori what that level of delivered
service will be.

We have thus defined two sorts of real time traffic, which
differ in terms of the service commitment they receive. There
is a third class of traffic that we call datagram traffic, to
which the network makes no service commitments at all,
except to promise not to delay or drop packets unnecessar-
ily (this is sometimes called best effort service).

We now have the first component of our architecture,
the nature of the service commitment. The challenge, now,
is to schedule the packet departures at each switch so that
these commitments are kept. For the sake of clarity, we first
consider, in Section 4, how to schedule guaranteed traffic
in a network carrying only guaranteed traffic. In Sections
5 and 6 we then consider how to schedule predicted traffic
in a network carrying only predicted traffic. After we have
assembled the necessary components of our scheduling algo-
rithm we then, in Section 7, present our unified scheduling
algorithm which simultaneously handles all three levels of
service commitment.

As we present these scheduling schemes, we also lay the
groundwork for the other key pieces of the architecture, the
specifics of the service interface (which must relate closely
to the details of the service commitment) and the method
to control the admission of new sources.

4 Scheduling Algorithms for Guaranteed Traffic

In this section we first describe a traffic filter and then a
scheduling algorithm that together provide guaranteed ser-
vice.

As discussed briefly in Section 3, a network client must
characterize its traffic load to the network, so that the net-
work can commit bandwidth and manage queues in a way
that realizes the service commitment. We use a particular
form of traffic characterization called a token bucket filter.
A token bucket filter is characterized by two parameters, a
rate v and a depth b. Omne can think of the token bucket
as filling up with tokens continuously at a rate r, with b
being its maximal depth. Every time a packet is generated
it removes p tokens from the bucket, where p is the size
of the packet. A traffic source conforms to a token bucket
filter (r,b) if there are always enough tokens in the bucket
whenever a packet is generated.

More precisely, consider a packet generation process with
t; and p; denoting the generation time and size, respectively,
of the ¢’th packet. We say that this traffic source conforms
to a token bucket filter (r,b) of rate r and depth b if the
sequence n; defined by no = b and n; = MIN[b,n,—1 +
(t; — ti—1)r — p;] obeys the constraint that n; > 0 for all
1. The quantities n;, if nonnegative, represent the number
of tokens residing in the bucket after the ¢’th packet leaves.
For a given traffic generation process, we can define the non-
increasing function b(r) as the minimal value such that the
process conforms to a (r, b(r)) filter.

In recent years, several time-stamp based algorithms have
been developed. These algorithms take as input some preas-
signed apportionment of the link expressed as a set of rates
r® (where a labels the flows); the resulting delays depend
on the bucket sizes b¥(r?)

One of the first such time-stamp algorithms was the Fair
Queueing algorithm introduced in Reference [4]. This al-
gorithm was targeted at the traditional data service archi-

tecture, and so involved no preallocation of resources (and
thus had each r® = p where p denotes the link speed).
In addition, a weighted version of the Fair Queueing algo-
rithm (which we refer to as WFQ), in which the r® need
not all be equal, was also briefly described in Reference [4]°.
The VirtualClock algorithm, described in References [25, 26],
involves an extremely similar underlying packet scheduling
algorithm, but was expressly designed for a context where
resources were preapportioned and thus had as a fundamen-
tal part of its architecture the assumption that the shares r<
were arbitrary. Parekh and Gallager, in Reference [19], rein-
troduce the WFQ algorithm under the name of packetized
generalized processor sharing (PGPS). They have proven an
important result that this algorithm, under certain condi-
tions, can deliver a guaranteed quality of service ([20]). We
present a brief summary of the WFQ algorithm below, since
we make use of it in our overall scheduling algorithm; see
References [4, 20] for more details.

First, consider some set of flows and a set of clock rates
r®. The clock rate of a flow represents the relative share of
the link bandwidth this flow is entitled to; more properly, it
represents the proportion of the total link bandwidth which
this flow will receive when it is active. By assigning it a
clock rate r* the network commits to provide to this flow
an effective throughput rate no worse than (uro“)/(Z:/6 r?)
where the sum in the denominator is over all currently active
flows.

This formulation can be made precise in the context of a
fluid flow model of the network, where the bits drain contin-
uously out of the queue. Let ¢ and p{* denote the generation
time and size, respectively, of the ¢’th packet arriving in the
a’th flow. We define the set of functions m®(t), which char-
acterize at any time the backlog of bits which each source
has to send, and set m®(0) = 0. We say that a flow is active
at time ¢ if m®(¢) > 0; let A(¢) denote the set of active flows.
Then the dynamics of the system are determined as follows.
Whenever a packet arrives, m must discontinuously increase
by the packet size: m®(tT) = m®(¢t™) + p; if t = &, where
m®(tT) and m*(t7) refer to right hand and left hand limits
of m“ at t. At all other times, we know that the bits are
draining out of the queues of the active flows in proportion
to the clock rates of the respective flows:

am=(t)
at

om*(t) ure
ot Z,BeA(t) rf

This completely characterizes the dynamics of the fluid
flow model. Parekh and Gallager have shown the remarkable
result that, in a network with arbitrary topology, if a flow
gets the same clock rate at every switch and the sum of
the clock rates of all the flows at every switch is no greater
than the link speed, then the queueing delay of that flow is
bounded above by #*(r*)/r<. Intuitively, this bound is the
delay that would result from an instantaneous packet burst
of the token bucket size being serviced by a single link of
rate r; the queueing delays are no worse than if the entire
network were replaced by a single link with a speed equal
to the flow’s clock rate v*. This result can be motivated by
noting that if the source traffic were put through a leaky
bucket filter of rate r at the edge of the network®, then the

if o € A(t), =0if o & A1)

5The weighted version of Fair Queueing is mentioned on page 24
of Reference [4], though not referred to by the name Weighted Fair
Queueing.

6In a fluid flow version of a leaky bucket of rate r, the bits drain
out at a constant rate r and any excess is queued.

flow would not suffer any further queueing delays within the
network since the instantaneous service rate given to this
flow at every switch along the path would be at least r.
Thus, all of the queueing delay would occur in the leaky
bucket filter and, if the flow obeyed an (r,b) token bucket
filter, then the delay in the leaky bucket filter would be
bounded by b/r. Notice that the delay bound of a particular
flow is independent of the other flows’ characteristics; they
can be arbitrarily badly behaved and the bound still applies.
Furthermore, these bounds are strict, in that they can be
realized with a set of greedy sources which keep their token
buckets empty.

The previous paragraphs describe WFQ in the fluid flow
approximation. One can define the packetized version of the
algorithm in a straightforward manner. Define §7(¢) for all
t >t as the number of bits that have been serviced from
the flow o between the times ¢ and ¢. Associate with each
packet the function EZ(t) = (m(t) — 63(t))/r* where we
take the right-hand limit of m; this number is the level of
backlog ahead of the packet ¢ in the flow a’s queue divided
by the flow’s share of the link, and can be thought of as an
expected delay until departure for the last bit in the packet.
The packetized version of WFQ is merely, at any time ¢
when the next packet t