FINAL REPORT

DETERMINATION OF PARTICULATE& DUST CONCENTRATION DURING SHIPYARD DRYDOCK SANDBLASTING OPERATIONS

Prepared by

IEA

Post Office Box 12846 Research Triangle Par& NC 27709 (919) 667-0090

Prepared For
National Steel and Shipbuilding Company
Harbor Drive and 28th Street
San Diego, California 92186

In behalf of SNAME Ship Production Committee Panel SP-1 on Facilities and Environmental Effects

Under the National Shipbuilding Research Program

NSRP Task No. N1-89-2, Subtask 4

September 1992

a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR	98			
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
15. SUBJECT TERMS							
14. ABSTRACT							
13. SUPPLEMENTARY NO	OTES						
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
9. SPONSORING/MONITO	PRING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
Naval Surface War	ZATION NAME(S) AND AL rfare Center CD Co 8 9500 MacArthur	de 2230-Design Inte	0	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
				5f. WORK UNIT	NUMBER		
				5e. TASK NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
Drydock Sandblas	ting Operations			5c. PROGRAM F	ELEMENT NUMBER		
Determination of Particulate & Dust Concentration During Shipyard					5b. GRANT NUMBER		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
1. REPORT DATE SEP 1992	2. REPORT TYPE N/A				3. DATES COVERED		
including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding at OMB control number.	arters Services, Directorate for Info	ormation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

An Environmental Testing Company Phone 919.677.0090 Post Office Box 12846 Fax 919.677.0427 Research Triangle Park, NC 27709

REPORT NO.: 192-92-79

PROJECT: 1512-001

DATE: 9 September 1992

TYPE: EMISSION TEST REPORT

TITLE: AMBIENT MONITORING TEST

FOR TOTAL SUSPENDED AND PM, 10 PARTICULATE EMISSIONS DURING A SHIP SANDBLASTING OPERATION

NORFOLK SHIPBUILDING AND REPAIR CORPORATION NORFOLK, VIRGINIA

AUTHOR: Everett Poore

FIELD TEAM: Patrick Slater and Everett Poore

Industrial & Environmental Analysts, Inc.

120 Southcenter Court, Suite 200

Morrisville, NC 27560

PREPARED FOR: Thomas Beacham

Norfolk Shipbuilding and Drydock Corporation

750 Berkley Avenue Norfolk, VA 23523

TABLE OF CONTENTS

SECT	Page No.
1.0	Introduction
2.0	Project Description
3.0	Summary and Discussion of Results93.1 Gravirnetric Results93.2 Microscopy Analysis123.3 Meteorological Results163.4 summary17
4.0	Sampling and Analytical Procedures
5.0	QA/QC Procedures 5.1 HighVolumeSamplers
	List of Tables
2.2.1 2.2.2 2.3.1 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2 3.2.3 3.3.1	SummaryofBlasting Operations Conditions

List of Figures

	Sample Locations -Norshipco Drydock Area
	List of Photographs
2.1B 2.2A 3.2A 3.2B	U. S.N.S. Humphreys in Drydock with Dust Control Tarps in Place
	List of Appendices
Appen	ndix A Example Calculations
Apper	ndix B - Field Data Summaries and Data Sheets
Apper	ndix C – Laboratory Analysis Data and Chain-of-Custody Documentation
Apper	ndix D Field Summary Logs
Apper	ndix E – Equipment Calibrations

1.0 INTRODUCTION

Testing was performed to determine the concentrations of total suspended particulate (TSP) and particulate matter smaller than 10 microns (PM₁₀) during a typical sandblasting operation. Testing was conducted at the Norfolk Shipbuilding and Drydock Corporation (Norshipco) located in Norfolk, Virginia, on July 14-15, 1992 under the direction of Thomas Beacham of Norshipco. Sampling was conducted by Patrick Slater and Everett Poore of Industrial & Environmental Analysts, Inc. (IEA) Research Triangle Park, North Carolina. Testing was observed by Ms. Lural Driver and Mr. Roy Huntley of the U.S. Environmental Protection Agency (EPA). Gravirmetric analysis was performed by Clean Air Engineering (CAE) Analytical Services. Polarized Light Microscopy (PLM and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) analyses were performed by IEA, Inc., North Billerica, Massachusetts.

A discussion of the project and sandblasting process is presented in Section 2. A summary and discussion of sampling results is included in Section 3. Sampling and analytical procedures are discussed in Section 4. Quality assurance/quality control (QA/QC) procedures are presented in Section 5. All field data, chain-of-custody forms, laboratory data, field logs, and equipment calibrations are included in the appendices.

2.0 **PROJECT DESCRIPTION**

The U.S. Environmental Protection Agency (EPA) is in the process of developing a control technology guidance document (CTG) for the shipbuilding and repair industry. This document is to address the control of particulate matter smaller than 10 microns (PM₁₀) generated during the sandblasting of ships while in drydock.

The purpose of the test program was to determine: 1)whether PM₁₀ dust is generated during a sandblasting operation, 2) if so, what concentrations exist, and 3) the major constituents of the dust.

2.1 Drydock Area

Testing was performed at locations in a large floating drydock, approximately 950 feet long, 192 feet wide, and 55 feet deep. The U. S.N.S. Humphreys was placed in the drydock, supported by concrete/wood pillars. The ship was supported approximately 4-5 feet above the drydock floor, and approximately 10-15 feet from each of the two drydock walls. The two ends of the drydock were open.

Large tarps, constructed of 100% fire retardant polypropylene, were draped from the walls of the drydock to the sides of the ship. Tarps also covered the open ends of the drydock. Photos 2.1A and 2.1B shows the U. S.N.S. Humphreys in drydock with the dust control tarps in place.

2.2 Sandblasting Operation

Sandblasting of the ship was performed between 18:00 July 14 and 06:30 July 15, 1992. Testing was performed from 22:00 July 14 to 03:00 July 15. An average of 32 sandblasters were working during the sampling period. An average of 32,340 pounds of blasting material per hour was consumed during the monitoring period, resulting in approximately 8,600 square feet of paint removed. Table 2.2.1 summarizes the number of blasting nozzles in use and pounds of blasting material used during the test period.

Sandblasters were supported by hydraulic man-lifts to within 2 feet of the ship (Photo 2.2A). The pressure at the blasting nozzle was an average 99 pounds per square inch (p.s.i.). **Two blasting agents were utilized, labelled 'Norshipco' and 'ACC'.** Both blasting agents were virtually identical, showing major amounts of aluminum, silicon, and iron, with smaller amounts of potassium and calcium. Both agents appear to be a glass product, having both characteristic optical properties and particle morphology.

Particle sizing on the virgin balsting grits was performed. Table 2.2.2 presents the results of this analysis. The highest percentage (by weight) of both grits have effective diameters of 1 millimeter or greater.

Photograph 2.1A U. S.N.S Humphreys in drydock with dust control tarps in place.

Photograph 2.1B U.S.N.SHumphreys in drydock with dust control tarps in place.

TABLE 2.2.1 Summary of Blasting Operation Conditions Norfolk Shipbuilding and Repair Corporation Norfolk, Virginia

1		<u> </u>	
Time	Number of sandblasters	Pounds of Blast Grit used (lbs)	Average Pressure at Select Blasting Nozzles (p.s.i.)
18:00	28	16,968	
20:00	35	16,954	90
20:30	35	14,700	, ,
21:00	32	14,700	95
21:30	32	14,700	, ,
22:00	32	14,700	110
22:30	32	14,700	
23:00	32	14,700	105
23:30	0	0	
24:00	32	14,700	85
00:30	32	14,700	
01:00	32	14,700	100
01:30	32	14,700	
02:00	32	14,700	105
02:30	32	14,700	
03:00	32	14,700	95
03:30	32	14,700	
0400	32	14,700	90
04:30	32	14,700	
05:00	32	14,700	100
05:30	32	14,700	
06:00	32	14,700	110
06:30	32	14,700	

Photograph 2.2A Sandblaster on Man-Lift U. S.N.S. Humphreys

TABLE 2.2.2
Particle Size Analysis of Blasting Grits
Norfolk Shipbuilding and Repair Corporation
Norfolk, Virginia

Equivalent ParticIe Diameter	ACC Blasting Grit (Weight %)	Norshipco Blasting Grit (Weight %)
> 1 m m	46.9	86.1
0.5mm to 1mm	25.8	11.2
250µ to 0.5MM	8.3	1.6
105µ to 250µ	11.3	0.9
48µ to 105µ	6.1	0.2
Less than 48µ	1.6	0.1

2.3 Sample Locations

A total of five(5) sample locations were chosen to evaluate the sandblasting operation based on recommendations from the U.S. EPA, Norshipco, and IEA. One additional location was chosen to determine the ambient background concentration of both TSP and PM_{10} . A description of the sample locations is presented in Table 2.3.1. Figure 2.3.1 presents a schematic representation of the sample locations surrounding the sandblasting operation.

The background samples were collected from 18:30 July 13 to 18:30 July 14, 1992 (24 hour samples). Sampling at the five locations surrounding the drydock area varied from 5 minutes to 15 minutes, depending upon the anticipated particulate loading.

TABLE 2.3.1 Description of Sample Locations Norfolk Shipbuilding and Repair Corporation Norfolk, Virginia

Sample Location	Description
1	Ambient Background Sample - collected at Norshipco Warehouse approximately 1 mile northeast of drydock area.
2	Located on north side of wing wall, outside the dust-control tarp, approximately 3-4 feet from the tarp.
3	Located on middle landing of stairway leading to the top of the north wing wall. Approximately 12 feet above drydock floor. Shielded from the east by the drydock wall. North and south sides of landing open to atmosphere. No dust control tarp between landing and ship.
4	On drydock floor, within blasting area. Approximately 10 feet from drydock wall, and 15 feet from ship.
5	On drydock floor, within blasting area. Approximately 10 feet from drydock wall, and 15 feet from ship.
6	On drydock floor, midships. Appnximately 5 feet tim drydock wall and 6-8 feet from ship.

SHIP

Figure 2.3.1 Sample Locations U.S.N.S. Humphreys

3.0 SUMMARY AND DISCUSSION OF RESULTS

3.1 Gravimetric Results

Table 3.1.1 presents a summary of the gravirnetric results of all samples collected. Table 3.1.2 presents a summary of all laboratory and field trip blank falters. Table 3.1.3 summarizes the TSP and PM₁₀ concentrations observed at each of the locations.

TSP concentrations ranged from a low of 6.42 mg/m³ at location 2 (11:55pm) to a high of 110 mg/m³, also at location 2 (10:23pm). PM₁₀ concentrations ranged from 1.99 mg/m³ at Location 2 (11:55pm) to 52.0 mg/m³ at Location 4 (2: OOam). The low dust concentration at 11:55pm can be attributed to the reduced number of sandblasters working at that time (see Table 2.2.1). The percentage of PM₁₀ dust present ranged from a low of 18 % at Locations 2 and 3 (10:30pm and 12:OOam respectively) to a high of 93 % at Location 2 (10:45pm). The low percentage of PM₁₀ at Location 6 (29 %) could be due to the close proximity of the sandblasters. It would be expected that the larger particles would settle in this short distance, while the PM₁₀ particles would tend to stay airborne for a longer period of time, and thus be carried past the sampling locations by the air currents.

Filter contamination (field trip blanks) ranged from 0.0038g to 0.0250g. This was due to the extremely high concentration of dust in the areas. Because of the variability of this filter contamination samples were not blank corrected. This contamination also contributed to the variability in PM_{10} concentrations at the various locations, possibly higher PM_{10} measurements than were actually present.

TABLE 3.1.1
Particulate Matter Concentrations
Norfolk Shipbuilding and Repair Corporation
Norfolk, Virginia

TOTOMY VII gimu							
Sample Location	Run ID	Sample Type	Time o n	Total Sample Time (min)	Total grams collected (g)	Sample Flow Rate (m³/min]	Sample Conc. (mg/m³)
1	A	TSP	18:00	1,505	0.1877	1.251	0.10
1	В	PM_{10}	18:03	1,499	0.1354	1.443	0.06
		10		,			
2	A	TSP	22:00	15	1.2766	1.303	65.8
2	В	PM_{10}	22:02	15	0.3607	1.443	16.4
2	c	TSP	22:23	11	1.426	1.303	110
2	D	PM_{10}	22:21	10	0.2778	1.443	19.8
2	E	TSP	22:35	10	0.2789	1.303	21.4
2	F	PM_{10}	22:33	10	0.2789	1.416	19.9
2	G	TSP			VOID	_	Tom Filter
2 2 2 2 2 2 2 2 2 2 2	Н	PM_{10}			VOID		Tom Filter
2	I	TSP	23:55	10	0.0835	1.303	6.42
2	J	PM_{10}	23:55	10	0.0278	1.416	1.99
3	A	TSP	23:41	10	0.4436	0.971	44.4
3 3	В	PM_{10}	23:37	10	0.4192	1.521	28.0
3	C	TSP	23:54	10	0.4320	0.971	43.2
3	D	PM_{10}	23:53	10	0.1240	1.567	7.75
4	A	TSP		_	VOID	_	Torn Filter
4	В	PM_{10}			VOID	_	Tom Filter
4	C	TSP	02:08	5	0.6563	1.361	93.8
4	D	$PM_{_{\mathrm{IO}}}$	02:09	5	0.3639	1.331	52.0
5	A	TSP	02:20	5 5	0.2858	1.521	35.7
5 5	В	$PM_{_{IO}}$	02:21	5	0.1124	0.971	22.5
6	A	TSP	02:45	5	0.2447	1.361	35.0
6	В	PM_{10}	02:45	5	0.0715	1.490	10.2

TABLE 3.1.2 Laboratory and Field Blank Filter Analysis Norfolk Shipbuilding and Repair Corporation Norfolk, Virginia

Sample Location	Blank Type	Total Grams Present (g)
2	Field	0.0038
4	Field	0.0194
5	Field	0.0250
6	Field	0.0072
66-205	Lab	0.0010
66-215	Lab	0.0001
66-216	Lab	-0.0001
66-217	Lab	0.0000

Sample Location	TSP Concentration (mg/m³)	PM ₁₀ Concentration (mg/m³)	% PM ₁₀
1	0.10	0.06	60%
2 2 2 2	65.8 110 21.4 6.42	16.4 19.8 19.9 1.99	25 % 18 % 93 % 31 %
3 3	44.4 43.2	28.0 7.75	63 % 18 %
4	93.8	52.0	55%
5	35.7	22.5	63 %
6	35.0	10.2	29%

11

3.2 Microscopy Analysis Results

Table 3.2.1 presents summary of the PLM analysis of select PM₁₀ falters. Table 3.2.2 presents a summary of the PLM analysis of select TSP falters.

The results from the microscopic analysis indicate that the majority of both the TSP and PM₁₀ particulate generated during the sandblasting operation can be attributed to the blasting grit, and not the paint or metal from the ship. This conclusion is also supported by the SEM-EDX analysis which shows that the major chemical components are aluminum and silicon, both present only in the blasting grits.

A comparison of the 'Mean Diameter' field of Tables 3.2.1 and 3.2.2 indicates that the size selective inlet (SSI) of the PM_{10} sampler was able to effectively restrict the particles greater than 10 microns from reaching the falter. Table 3.2.3 shows an average partticle analysis of three PM_{10} falters. The average mean diameter of these three filters was 10.7 microns.

In-field verification of the effectiveness of the PM₁₀SSI can be seen on the greased shim plate. (See Section 4.2.2 for description of the PM₁₀ sampler.) Photograph 3.2A shows a PM₁₀ greased shim plate with regular circular patterns, which indicates no entrainment of particles greater than PM₁₀.

Photograph 3.2B, however, shows a PM_{10} greased shim plate with obvious streaking of the larger particles, indicating possible entrainment of these larger particles onto the PM_{10} falter. This effect would bias the weight of the PM_{10} filter high, since particles larger than PM_{10} would be present.

Photograph 3.2B is of the PM₁₀ sampler used at Location 5. This would indicate a higher PM10 filter weight, as well as a higher average mean diameter of particles on the falter. This is supported by the PLM analysis of the Location 5 PM10 filter which did show a higher average mean diameter of particles present (see Table 3.2.1).

TABLE 3.2.1
Polarized Light Microscopy Analysis - PM₁₀Filters
Norfolk Shipbuilding and Repair Corporation
Norfolk, Virginia

1.					
Sample Location	Particle Type	Weight %	Number %	Mean Diameter (µ)	Density
lB	Minerals	36	44	7	2.6
	Opaques	21	29	7	1.5
	Blast Grit	8	6	8	2.6
	Biologicals	36	21	8	1.5
2B	Minerals	1	3	8	2.6
	Opaques	5	25	7	1.5
	Blast Grit	93	70	10	2.6
	Biological	<1	2	6	1.5
2D	Minerals	0	0	0	2.6
	Opaques	12	32	8	1.5
	Blast Grit	87	67	10	2.6
	Biological	1	1	10	1.5
3D	Minerals	2	2	9	2.6
	Opaques	11	36	7	1.5
	Blast Grit	86	61	9	2.6
	Biological	2	1	15	1.5
4D	Minerals	1	3	6	2.6
	Opaques	15	35	8	1.5
	Blast Grit	85	62	8	2.6
	Biological	0	0	0	1.5
5B	Minerals	4	4	14	2.6
	Opaques	24	39	12	1.5
	Blast Grit	72	57	13	2.6
	Biological	0	0	0	1.5
6B	Minerals	11	8	9	2.6
	Opaques	27	49	8	1.5
	Blast Grit	58	40	10	2.6
	Biologicals	4	3	10	1.5

TABLE 3.2.2
Polarized -Light Microscopy Analysis - TSP Filters
Norfolk Shipbuilding and Repair Corporation
Norfolk, Virginia

Sample Location	Particle Type	Weight	Number %	Mean Diameter (µ)	Density
2C	Minerals	<1	3	10	2.6
	Opaques	27	46	15	1.5
	Blast Grit	72	51	18	2.6
	Biological	0	0	10	1.5
3C	Minerals	<1	3	11	2.6
	Opaques	7	37	12	1.5
	Blast Grit	91	59	17	2.6
	Biological	1	1	25	1.5
4C	Minerals	<1	1	20	2.6
	Opaques	13	22	53	1.5
	Blast Grit	87	77	60	2.6
	Biological	0	0	0	1.5
5A	Minerals	1	2	19	2.6
	Opaques	5	18	16	1.5
	Blast Grit	90	78	20	2.6
	Biological	3	2	33	1.5
6A	Minerals	<1	5	9	2.6
	Opaques	10	17	15	1.5
	Blast Grit	89	78	18	2.6
	Biological	0	0	0	1.5

Table 3.2.3
PLM Particle Size Analysis - PM₁₀ Filters
Norfolk Shipbuilding and Repair Corporation
Norfolk, Virginia

Sample Location	Mean Particle Diameter (P)
2F	11
3B	12
n	9

Photograph 3.2A PM1O Greased Shim Plate - No Particle Trailing

Photograph 3.2B PM1O Greased Shim Plate - Particle Trailing

3.3 Meteorological Results

Meteorological conditions during sampling were recorded by Norshipco. A comparison of sample concentrations and meteorological conditions is presented in Table 3.3.1. Since the required sampling time varied from 5 to 15 minutes (due to rapid filter loading), a definitive effect on sample concentrations by Changing meteorological renditions can not be determined.

TABLE 3.3.1 Comparison of Sample Concentrations and Meteorological Conditions Norfolk Shipbuilding and Repair Corporation Norfolk, **Virginia**

Sample Location	Run ID/ Sample Type	Time On	Sample Cone (mg/m³)	Wind Direct.	Wind Speed (knots)	Temp (°F)	% Re1. Humidity
1	A-TSP	18:00	0.10	W	10	95	40
1	$B-PM_{10}$	18:03	0.06	W	10	95	40
2	A-TSP	22:00	65.8	W	10	89	48
2 2 2 2 2 2 2 2	$B-PM_{10}$	22:02	16.4	W	10	89	48
2	C-TSP	22:23	110	W	11	88	67
2	$D-PM_{10}$	22:21	19.8	W	11	88	67
2	E-TSP	22:35	21.4	W	11	88	67
2	$F-PM_{10}$	22:33	19.9	W	11	88	67
2	I-TSP	23:55	6.42	W	10	87	66
2	$J-PM_{10}$	23:55	1.99	W	10	87	66
3	A-TSP	23:41	29.6	W	8	88	67
3 3 3	$B-PM_{10}$	23:37	41.9	W	8	88	67
3	C-TSP	23:54	27.0	W	10	87	66
3	$D-PM_{10}$	23:53	12.4	W	10	87	66
4	C-TSP	02:08	93.8	W	10	84	76
4	D-PM ₁₀	02:09	52.0	W	10	84	76
5	A-TSP	02:20	35.7	W	10	84	76
5 5	B-PM ₁₀	02:21	22.5	W	10	84	76
6	A-TSP	02:45	35.0	W	13	84	80
6	B-PM ₁₀	02:45	10.2	W	13	84	80

3.4 Summary

Due to the extremely high concentrations of total suspened particulate in the locations sampled, accurate TSP and PM_{10} results were difficult to obtain. A more accurate determination of the PM_{10} generated requires sampling for longer periods of time than was possible at the locations selected, due to rapid loading of the filters and $> PM_{10}$ shim plate. In addition, the excessive contamination of falters due to the high area dust concentrations did not allow for accurate PM_{10} measurements.

The results of this study indicate that PM₁₀ dust is generated during the sandblasting operation. The concentrations of PM₁₀ dust found at the areas monitored ranged from 1.99 mg/m³ to 52 mg/m³, or from 18% to 93% of the total suspended particulate concentrations. The significant constituent of both the total and PM₁₀ dusts was the blasting grit. The percentage of paint found in both the TSP and PM₁₀ samples comprised only 5 to 27% (by weight) of the samples collected. Smaller amounts of minerals (e.g. ship metal, rust) were present.

PM₁₀ emissions from the sandblasting operation would be more accurately measured by placing the samplers in the dust plume at locations further from the sandblasting operation. As can be seen in Photograph 3.4A, the dust plume created is capable of travelling a considerable distance. A comparison of the PM₁₀ concentration present during and after a blasting event would provide a better estimate of the environmental impact, if any, of this type of blasting operation. The percentage of PM₁₀ present in the samples collected in close proximity to the blasting operation were lower, on average, than the percent of PM₁₀ found in the background sample.

Photograph 3.4A
Dus Plume Generated by Sandblasting Operation

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Airborne Dust Concentrations

4.1.1 Total Suspended Particulate

Sampling and analytical procedures used in this project are contained in 40 CFR Part 50 Appendix B (7-1-89 Edition). Samples were collected using high-volume samplers manufactured by General Metal Works, Inc. (GMW). Figure 4.1.1 shows a schematic of the high volume sampler. The High Volume Air Sampler is the recommended instrument for sampling large volumes of air for the collection of suspended particulate matter. The physical design of the sampler is based on aerodynamic principles which result in the collection of particles of 100 microns (Stokes Equivalent Diameter) and less. The sampler consists of a supporting screen for the falter in front of the blower/motor unit. During operation, the sampler is supported in a protective shelter so that the 8" x 10" surface of the filter is in a horizontal position approximately 3 feet above the floor. In its basic configuration, as used in this project, the sampler (Model GMWT 2200) is equipped with a flow meter connected to a pressure tap at the exhaust end of the motor. The sampler was modified to incorporate a programmable timer and continuous flow device for recording the flow rate over the entire sampling period.

$4.1.2 \text{ PM}_{10}$

PM₁₀ particles were collected using high-volume samplers manufactured by GMW equipped with a size selective inlet (SSI). Figure 4.1.2 shows a schematic of the high volume sampler equipped with the SSI. Particles enter the SSI through the symmetrical inlet, and are accelerated through multiple circular impactor nozzles. The base under the first set of nozzles is sprayed with Dow Silicone 361 grease. Particles greater than 10 microns impact with this greased impaction surface. The particles smaller than 10 microns are carried upward by the air flow, and then down through the multiple vent tubes to the 8" x 10' falter.

4.2 Filter Analysis

4.2.1 Gravimetric

The falters were standard glass fiber falters measuring 8" x 10". All falters were pretared by CAE Analytical Services. After sampling, the falters were put in foil pouches, replaced in their original envelopes, and post-weighed by CAE. The difference in the pre- and post-tare weights represents the mass of particulate collected.

Figure 4.1.2 PM 10 High Volume Sampler

Several blank falters were also submitted for analysis. Laboratory blank falters were falters which were not-removed from their original envelope. Trip blank falters were falters placed in the filter cassettes, taken to the sample location, placed in the sampler, and then removed and placed back into the original envelope. Laboratory data is presented in Appendix C. The total mass collected (in milligrams, mg) divided by the **standard** sample volume (in standard cubic meters, m³) represents the particulate concentration for the sample location (mg/m³).

4.2.1 Polarized Light Microscopy (PLM)

For PLM analysis, a portion of the sample was transferred to a microscope slide, immersed in oil, and examined ushg standard PLM techniques.. This analysis was able to classify the dust collected into four categories: minerals, opaques, blast grit, and biologicals. The 'minerals' category included any birefringent angular to rounded particles. These particles could be tranparent, or colorless to strongly colored. The 'opaques' category included all opaque (black) particles, plus any translucent particles which were recognizable as paint or rust. The 'blast grit' category included particles which were transparent, isotropic, colorless to green-brown and always very angular. The blast grit particles occasionally exhibited inclusions and frequently showed conchoidal fractures. The 'biological' category include spores, pollens, and vegetable fibers.

4.2.2 Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX)

Select filters were analyzed by SEM-EDX in order to compare the dust composition with the composition of the blast grits and paint samples from the U. S.N.S. Humphreys. Samples were excited by a ban of incident radiation. The sample then emitted x-rays which were detected by a cryogenically coded lithium drifted silicon detector. The energy proportional signal for each individual x-ray which transmits the detector was digitized and stored in a multi-channel puke-height analyzer. A qualitative spectrogram is produced, which was used to identify the elements present. Spectrogams are presented in Appendix C.

5.0 QA/QC PROCEDURES

The objective of a quality assurance/quality control (QWQC) program is to assure that the precision and accuracy of all environmental data generated by IEA, Inc. is commensurate with the data quality objectives (DQOs) of Norshipco. DQOS are based on a common understanding of the intended end use(s) of the data, the measurement process, and the availability of resources. Once DQOS are established, formally or informally, QC protocol can be defined for the measurements. The data quality objectives in this project are to provide information to Norshipco and the U.S. EPA regarding the concentrations and composition of TSP and PM₁₀ dust generated during a sandblasting event.

The goal of a QA/QC progam is to ensure that data generated and used for decision-making are scientifically sound, of known quality, and documented to be "in control". To accomplish this goal, standardize methods or procedures are used whenever possible. They must be validated for their intended use, rigorously followed, and data reported with quality indicators (precision, accuracy, completeness, etc.).

Two basic concepts used in a QC progarn are to:

- 1. Control errors.
- 2. Verify that the entire sampling and analytical methods are operating within acceptable performance limits.

Use of qualified personnel, reliable and well-maintained equipment, appropriate calibrations and standards, and close supervision of all operations are important components of the QC system. QC in this test progam included the use and documentation of calibrated sampling and analytical instruments, use of EPA validated methods (EPA 40 CFR Part 50 Appendix B), adherence to established protocol, method blanks as a check against possible contamination, sample chain-of-custody documentation, and redundant data calculation with checking.

5.1 High-Volume Samplers

The Hi-Vol samplers were calibrated prior to sampling. The blower/motor unit of each sampler is designed to compensate for any additional pressure drop due to particulate collection and maintain a constant flow rate of 40 cubic feet per minute. A continuous chart recorder which monitored the pressure drop across the unit was added to each sampler. Calibration was confirmed in the field using a calibration orifice whenever the indicated flow rate varied by more than ten percent (10%). The actual sampling rate combined with the sample time allowed calculation of the total volume sampled. Barometric pressure, ambient temperature, and relative humidity were recorded constantly by the Norshipco meteorological station. The volume of air collected (m³) at standard conditions (298 K, 760 mmHg) was calculated. Example calculations are provided in Appendix A. Calibration data are presented in Appendix E.

5.2 Filter Analysis

Gravimetric analysis was performed by clean Air Engineering (CAE) according to the analytical procedures defined in 40 CFR Part 50 Appendix B. Four laboratory filter blanks were provided for gravimetric analysis as a check against potential sample contamination. In addition, four field trip blanks were also analyzed to determine if falter contamination was possible by simply transporting the falter to the sampler location. Chain-of-custody sheets are provided in Appendix C. No absolute accuracy for this method can be defined due to the inability to determine a "true" particulate matter concentration. Based upon collaborative testing, the relative standard deviation (coefficient of variation) for a single analyst's precision (redatability) of the method is 3.0 percent. The corresponding value for interlaboratory precision is 3.7 percent.

Appendix A

Example Calculations

EXAMPLE CALCULATIONS

1. Sample Flow Rate

$$Q_{std} = \frac{1}{m} (Y - b)$$

Flow Rate at Standard Conditions, m³/min Where

Slope of Sampler Calibration Curve

Flow Rate Indicated on Sampler Chart Recorder

Y Intercept of Sampler Calibration Curve

Sample Run 1A Example:

$$Q = (1/38.068) X (42 - (-5.191))$$

$$1.251 \text{ mg/m}^3$$

2. Sample Volume

$$t \ X \ Q_{std} = V_a$$

Where Sample Time in Minutes

t = QSample Flow Rate (cubic meters per minute)

Sample Volume (cubic meters)

Example: Sample Run 1A

> $V_a = 1505 \min_{1.882 \text{ m}^3} x 1.251 \text{ m}^3/\text{min}$ 1,882 m³

3. Sample Concentration

Cone (mg/m3) =
$$\frac{WgX \ 1,000 \ Mg/g}{V_a}$$

 $\mathbf{W}_{\mathbf{g}} = \mathbf{v}_{\mathbf{a}}$ Where: Total Particulate Weight, in grams

Sample Volume, in cubic meters

Example: Sample Run 1A

> $(0.1877g \ x \ 1,000)/1,882 \ m^3 \ 0.10 \ mg/m^3$ Cone =

Appendix B

Field Data Summaries and Data Sheets

NORSHIPCO Project # 1512-001 Data Summary

Sample Number	Sampler ID	Indicated Flow (cfm)	Qstd (m3/min)	Sample 1 i m e (min)	Sample Volume (m3)	Total Weight (g)	Cone. (mg/m3)
1.4	4	42	1.051	1505	1002	0.1077	0.10
1A	4	42	1.251	1505	1883	0.1877	0.10
1B	3	48	1.443	1499	2163	0.1354	0.06
2A	4	44	1.303	15	20	1.2766	63.83
2B	3	48	1.443	15	22	0.3607	16.40
2C	4	44	1.303	10	13	1.4260	109.69
2D	3	48	1.443	10	14	0.2778	19.84
2E	4	44	1.303	10	13	0.2789	21.45
2F	3	47	1.416	10	14	0.2789	19.92
21	4	44	1.303	10	13	0.0835	6.42
2J	3	47	1.416	10	14	0.0278	1.99
3A	1	52	1.521	10	15	0.4436	29.57
3B	5	37	0.971	10	10	0.4192	41.92
3C	1	54	1.567	10	16	0.4320	27.00
3D	5	36	0.998	10	10	0.1240	12.40
4C	CAE	44	1.361	5	7	0.6563	93.76
4D	2	44	1.331	5	7	0.3639	51.99
5A	1	52	1.521	5	8	0.2858	35.73
5B	5	37	0.971	5	5	0.1124	22.48
6A	CAE	44	1.361	5	7	0.2447	34.96
6B	2	50	1.490	5	7	0.0715	10.21

HIGH VOLUME AMBIENT SAMPLER DATA SHEET RH 78%

Sampling Site: www.elase 930	
Sampler Location: Parking lot	
Sample No.:	

Before After
Barometric Pressure 79.58 29.57
Amblent Temperature 60.8 94

Site:	Noroligeo	Date: 2(13192 Performed By: PS/Et	0
	V		

				Identif		_		Total						
		Sampling	Height	N	0.	Samplin	g Period	Sampling	Pump	Sample	r Flow	Chec	k*	
	Sampler	Location	Above	1	XAD-2	7/13/92	7/14/92	Time	Timer	Manometer △H				Within
	S/N	I.D.	Ground	Filter	or PUF	Start	Stop	(min)	(hr/min)	(in. H2O)	Qxs	М	Qms	+/-10%
	4	/ -A		66-118	Total	18',00	19:05				42		42	ن
IEA-3	00011V	1-B	5 2"	66-BZ	PWIO	18:03	19:02				48		49	<u></u>
	pm 1538						•							
	¨							•						
												•		
									•					
														5.

Must Be Performed Before and After Each Sampling Period

Checked	Ву		
	7/19/92		

184 - Tent: 9
Borometric: 29.79
Humidit/: 5890

Sampler Sample N	Site: <u>N</u> Location: <u>S</u> lo.:	2 Viegue Z	Lee-f		Lourd		C		Barometric Press Ambient Temper	ature		efore	After
Site: <u>IM</u>	ulship-	outsic	le sh	Jue-		_Date:	7/14/	92	Performed By:	PS [E F	<u> </u>	
Sampler	Sampling Location	Height Above		lication lo. XAD-2	Ti.∽ Samplir	og Period	Total Sampling Time	Pump Timer	Sample Manometer ΔH	r Flow	Chec	k*	 Within
S/N	I.D.	Ground	Filter	L	· ·	Stop	(min)	(hr/min)	(in. H2O)	Qxs	М	Qms	+/~10%
1E4	S A	3.5	67-147	TSP	1303	13:18	15			44		44	
15-41-	20	4,5	67-148			20:15	15			48		48	
IEA ₄	2	3.5	(.7-150		13:27		11			44		44	
1541,-	20	4.5	67-149	PMIU	16:52	17:02	10			÷8		47	
IEA4	25	3.5	67-145	TSP	13:39	13:44	10			44		44	
1541-	25	4.5	27 -144	PM(D	17:03	17:13	10			47		47	
LEA4	26	3 .:	46-121	TSP	10	0							
541-	2H	4,5	66-93	PMIO	VOL	0	Tear in	f:/fo-					
	以工	3.5	46-209	TSP.	4:35	15:05	10			44		44	
541- 0111	25	415		PMIO	17:24	12:34	10			47	•	47	
	25		60-146	Field									
	Performed B				. •	riod			Checked By: Date:				

HIGH VOLUME AMBIENT SAMPLER DATA SHEET

	II		7.1	. 0		7									
	Sampler	Sampler Location: Sample No.:						Barometric Pressure Ambient Temperature			Before 	After			
	Site:	Halfwae	1 Decl	(3 '	Date:	7/14/9	2	Performed By: PS / EP					
	Sampler S/N	Sampling Location I.D.	Height Above Ground		ication lo. XAD-2 or PUF		g Perlod Stop	Total Sampling Time (min)	Pump Timer (hr/min)	Sample Manometer ∆ H (in. H2O)	r Flow Qxs	Chec M	ck* Qms	 Within +/-10%	
IEA-I	C0574	3A	3′		TSP	2341	2351	10	6871		54		52		
TEA-5	0109	3B	4'		PMIO	2337	2347	10	4946		36		28		
IEA-1		3८		6-199	TSP	2354	0:04	10	68:87		36		36	 	
IEA-5		30	41	GL 200	PMIO	2353	003	10	49:63		54		54		
							,								
i			·····												
		•										•			
									•						
														*1	
·	* Must Be	Performed	Before an	d After I	Each San	npling Per	riod	·	I	Checked By:					

Checked By: Date:

IEA-1

IEA-1

HIGH VOLUME AMBIENT SAMPLER DATA SHEET

	Sample I	lo.:	· · · · · · · · · · · · · · · · · · ·	1].				Amblent Temper	ature			
	Site:						Date:	7/14/	92	Performed By:	15/	/٤/		
		Sampling	Height		ication o.	Samplin	ıg Period			Sample		Chec	k*	
	Sampler S/N	Location I.D.	Above Ground	Filter	XAD-2 or PUF		Stop	Time (min)	Timer (hr/min)	Manometer Δ H (in. H2O)	Qxs	М	Qms	Within +/10%
AE 1942	-HAK	4A	31	66-126			1256	\$66.0	157/	V010	40		40	
A-20112	4819	43	41	66425	1M-10		10	iD						
				46-124										
 -														
ļ														
-														
-														
. #														
												•		
									·					
[[*4.

HIGH VOLUME AMBIENT SAMPLER DATA SHEET

efore After
Check
Within Qms +/- 1 0%
44
44

HIGH VOLUME AMBIENT SAMPLER DATA SHEET

Sampler	Site:/ Location: lo.:	loside	L Boi			iec			Barometric Pressure Ambient Temperature			Before	After
Site:					_	Date:	7/4/97	2	Performed By:	P	5/8	P	
	Sampling	Height		ication o.	Samplir	g Period	Total Sampling	Pump	Samp	ler F	low	Che	ck
Sampler S I N	Location I.D.	Above Ground	Filter	XAD-2 or PUF	Start	Stop	Time (min)	Timer (hr/min)	Manometer AH (In. H20)	Qxs	М	Qms	Within +/-10%
IGA-1	SA		66-213			0225	40-5			5 2		52	
IEA-5	5B	4.	66-210	PM-10	0221	0226	1105			38		36	
	5C	Field Blowk	6-205	T51									
	İ												
<u> </u>													
	Performed B				pling Per	iod			Checked By Date:				

(1)

HIGH VOLUME AMBIENT SAMPLER DATA SHEET

Sampling Site: Norshit Co Sampler Location: Mid Shill Sample No.:						; C		Barometric Press		E	Before —	After —	
Site:						Date:	7/15/92		Performed By:	L.) [(ع	
Sampler SIN	I Sampling Location I.D.	Height Above Ground	identi N Filter	XAD-2		g Period stop	Total Sampling Time (min)	Pump Timer (hr/min)	Sample Manometer AH (in. H20)	er Flow Qxs	Che M	ck Qms	Within +/-10%
CAE	6A	21	66-208	738	0245	0250	13405			44		44	
2	60	7	66207	ALLISIO	ر ۲۹ <u>۲</u>	०१८४	K+05			50		50	
	101	٠ ٢	66-206	Field									
Must Be	Performed	Before and	d After E	ach Sam	pling Pe	riod			Checked By				

Appendix C

Laboratory Analysis Data and Chain-of-Custody Documentation

Particulate Testing Weight Sheet

Page	1	of	3

_ IL-

Client IEA	Project Number /5/2 -001	Analyst באדע
Plant Nonsupe o	Unit	Balance GARROLD
Test Date 7/14/51		() () () () () () () () () ()

Description	Wt.	LD. and Sample Description	Sample	Date.	Weight	Tare weight	Date/1	
	4104		(inl)."	an'	***:(g):::://			(g)
Type FILTHE	4 . 1	(4) A T		769 war	3.6179	3 4827	The char	
Run	1	GERG PART, STAIN		7/24 1220	3 6175			
Location	7	15-16-6 And 2-6-11-9-51	TEB		36177			0.1354
Type FILTER		66 198		7/22 1945	3 2056	3.317/	7/10 1770	
Run	2	Grey PARET		סוגן מבור	3.504P			
Location	-	STAIN	TOB	7/27 10%	7.5047			0.187
		36119-02	1 0 11	7/23 (550	3.5048	3.2643	7/10 1720	0.787
Type FILELS	ا ۾ ا	64 199		7/24 1215	3.4665	1. 2013	7711.725	
Run] 3	FIELL GELY JAMET. STIOLU		1827 11 20	3. oB 65.			
Location		26119-03	KEB		3.6863			0.4320
Type FILTER		44 338 0	1	3/23 /5-50	3 4408	2.3.766	7/10 1713	
Kun	74	چې انگر شونديون له د دوون	1	7/24 1230	3.44.5			
Location	7	26114 - 04	T(F)B		3.4606			0. 18K
Type HURA	1	66 201		7/23 1600	3.7127	3.2721	7/10 1715	
Run	5	Fruit Gray point	1	The nec	3.7159			
	┥`╎	STAIN	200	7/27 1105	3.7155			
Location	+	36119-05	T(F/B		3,7157	2 2 5 4 6	7/10/215	0.4436
Type FILTER	ا ر إـ	66 202		767 1600	3.4740	3.2548	1/201713	
Kun	<u>ි</u> ර	FIND BROYPARE		7/27 1100	3,6743		•	
Location]	24119-02	TER		3.4744			0.4198
Type FILTER		64 203	1	3/47/538	2.3931	7.3641	7/10 1715	
Run	77	Light bacy finet other		7/24 1230	3.2916			
Location	-	Species of Pina Bet.	T(F)B		3.7914			00276
	1	66 204	7	7/23 1,555	3.3386. E	3.2549	7101615	
Type FILTER	8	FINE GREY PART		7/SW 1245				
Run	-1 ° 1	stric	Z					
Location	<u> </u>	26119-05	TEB		3.3384			0.083
Type FILTER	JĪ	66 205		7/23 1500	3.2800	32790	Trolles	
Run	ا و ا	Species of mue the		7/24 1325	3 2799		 	
Location	_ ا	76119-09	T(F)B		3.2800		(3.00) B	0.0010
Type FILTER		66 JC6	1/	7-4 1510	3 3068	3.7976	1/10115	
Run	10	Special fine beginner		7/24 (312	3.3045		 	
	-{ ``	Secretary are soul	77 P P	755 1110	3.305	r l	f .	n 0033
vL@atim′1	1	76119-10	T(FB		3 3048		<u>. </u>	57200 13

CAE P4 ver 1.0 D:/vpforms/weight

Note annearance of narticulate

'Two volumes e.g. (500/100) indicate an aliquot was taken indicate (T)himble, (F)ilter, or (B)eaker in box below.

Particulate Testing Weight Sheet

Pag<u>e 2</u> of 3

Client IER :	Project Number 1519-001	Analyst קוד
Plant Neksuipee	Unit	Balance 64,3000
Test Date 7/14/51		

		Sample volume	uater:::	Gross Weight	Tare -	Date/	- Net Weight
No.	Description *	(iil)2	Time	(g)	(g)	Time	(g)
	66 207		7/23 1455	3.34.59	3. 2947	7/101710	
1	LIVET CARY STAIN		7824 1150	3.7664]
		TFR	-	2.2(()			00715
			7/23/570	3.5357	3.2857	1/c 1710	1
2	eletet terresennei	/	7/w 065	2 5335			
	• •	T P P	1/27 /100				
		1 F B	26 2 1600		2 0 0 0 7	71.5 5 6	0.2447
1	_				3 293 /	1/10/17/5	
د	FINE BLK PINCT.		7/3 1105	3.3179			1
	26119 -13	TFB		3.3177			0,0350
	66 210		723 1550	3.3946	3.2820	7/10 1725	-
4	LIGHT GREY PART.		7/24 1200	3.3941			
		TFB		3.3944			0.1124
			7/23 1540		2 2 797	7/101725	
5	CHECKS OF SEE		7/241245	3.2966			
	•	TFB		2 76 51			20144
			1/23 154	3,4489	3.2860	7/10 1770	
6	FILE GRUIPART		1/24 1350	3.4489		4	
		TFB		7 cross			0.1639
i			7/23 1570	3.52.59	3.2004	7/10 1779	2.7437
7	LIEUTHAY PHD		7/24 1245	3.564			
		TFR		7 :7 ()			0. 2858
			7/22 (520		3 7010	7/6 1215	U. 2838
8							
١	Hongy would see poor		727 1110	3.4189			
	26119-18	TFB		3.9392			0.6563
ļ	46 215			3.2668	3.2669	7/10 1710	
9	CLEMU		1/24 1/40	3 26/7			
	26119-19	TFB		3.2668			0.0001
Ì	66 216		3×2 1.05	3 1974	7.2432		
10	CLEMN		7/24 /195	3.2929			
	26119-20	TFB		3.243/			0.0001
	No. 1 2 3 4 5 6 7 8	No. Description 1	No. Description (inl) 1 CL 207 1 Lum cary sman Fith the prime. 3C-119 11 2 Heter trensformed 10 CL 209 3 File the prime. 2C-12 TFB 4 Light Grey prime. 3Shin 2C-13 TFB 5 Specks of the first Grey prime. 2C-14-15 TFB 6 File Grey prime. 2C-16-16 7 Light Grey prime. 2C-17-18 8 Light Grey prime. 2C-18-18 8 Light Grey prime. 2C-18-18 8 Light Grey prime. 2C-18-18 10 CL 210 10 CL 216 10 C	No. Description (ml) Time 1	No. Description (ml) Time (g) 1	Mo. Description (ml) Time (2) (e) (g) (ml) Time (2) (g) (g) (ml) Time (2) (g) (g) (g) (ml) Time (2) (g) (g) (ml) Time (2) (g) (g) (ml) Time (2) (g) (g) (g) (ml) Time (2) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	The first sample Weight Weight Time (E) (E) (E) Time (E) (E)

Note appearance of particulate

Two volumes (e.g. 500/100) indicate an aliquot was taken.
Indicate (T)himble, (F)ilter, or (B)eaker in box below.

Particulate Testing Weight Sheet

Pag<u>e 3</u> of 3

Client	T.L13	Project Number	Analyst	TP
Plant	NORSHIPCO	unit	Balance	GA 2000
Test Date	7/14/92			

	WŁ	I.D. and Sample	Sample	Date/	Gross	Tare		-Net
Description	No	Description	volume (ml)	Time	Weight	Tare Weight	Daid:	Weight
	100	*Description	(1111):		(8/			
Type FILTER	1.	66217		7/23/605	1	3.1875	7/2 1700	4
Run	1	Cum		7/24 450	1.7878	 		4
Location	7	26119-21	TPB		3.1879			0.000
Type sure	i	67150		7/22 1552	4.6609	3.5143	7/10/64	
Run	2	Herry FMC		7/24 1220				1
Location	1	GEV PART	- CO	7/27 405	4.6566	ļ		ļ
		7-6119-22	T(E)B	3/ -	4.6569			1.1426
Type FILTER	_[47149		7/23 155		3.5106	7/10 1450	4
Run	3	MANY FIRST GAM		1/24 1230	2.7877		 	1
Location	1	2649-23	TE B		3.7876			0.3779
Type FILTER	Ī	67 148		343 1515	3.863	3.4975	7/10/150	
Run	4	been pres some		2/24 1220	3.R\$84			1
· · · · · · · · · · · · · · · · · · ·	 	1	/	751110	3.4590			
Location	<u>! </u>	24119-24	T(E) B		3.5000	<u> </u>		3607
Type FILTRE]	67147		7/27/5/5	4.7435	3.4671	7/10/67	
Run	5	MENU FIRE GREY		764,210	4-7438			1
Location	1	1624 26119-25	T(F/B		4.7437			1.2766
Type FILTER	1	67 146		7/23 1535		3.4682	7/101655	7-2-700
Run	6	CAPPER OF THERE		7/24 1220				
Location		Ather Trad read		<u>'</u>			·	
		2000 30 140	11.532		5/~			<u>0.0038</u>
Type FILTER	! _	67 145		7/23/55		3.4669	7/10/12	į
Run	7	PENNY FINEBELY PITAT FATTA TOLK		7/24 1210				\
Location	1	26119-77	TEB	113, (1113	4,6138			0.2789
Type FILTER		67 144		7/23 (53)	3.7462	3.4671	7/10 1700	1
Run	8			7/24 1300	3.7458			Ì
Location		DIET.						
	[!	FURN 3-6119.28	TFB		3.74/2			14 1700
Type FILTER]]	66123		1/17/530	3.4823	3.4817	7/10/64	
Run	9	LEOSE SPACES OF		7/24/20	3.4902			
Location		BLK AMT 26119-29	TFB	7621113	3.4901			0.066
Туре								1
Run	10							
Location		}	TFB					
				· <u>'</u>				

Note appearance of particulate

Two volumes (e.g. 500/100) indicate an aliquot was taken.
Indicate (T)himble, (F)ilter, or (B)eaker in box below.

Request for Analysis

Where Air Quality Analysis is Our Business

Chain of Custody

A Division of Clean Air Engineering 800-627-0033	Please print. Insti	ructions on 1	reverse	e side cor	respond v	vith circle	ed numbers.		#	15087
1) Chent. FEA Project Name. Noching	Proj. #: 1512	-001	4	Medi	ព្រំន	(5)	Avie	lyses R	equested	13001
Project Manager: E. Poor & Sampler: P. Slater / E. Poor &	Location: P.O.#: Quote #:		Silving in					///	///	
CAG C Sample Lab# M. Highinganon		time 3	Fred S	kitypuo Semii Ausainia !!	ing the	index serving			$\left/ \right/ \right _{\mathrm{Re}}$	marks (6
47-152						1'/	///			
107-151-										
67-151- 67-150	7/14/92		14			V			Retain	Filters
67-148 67-149	7/1492		14						To, F	cther
67-148	7114/92		11-			V			Anal	(150.5
67-147	7114192		14			レ				7
67-146	7/14192		14			レ				
07-145	7114192		14			L				
67-144	7114142					V				
(alo=93-										
160-121										
de-123 lele-121	7114142		14			1				
66 124										
46-125-										
66-126										
Turnaround time requested (check one	only):	is form was <u>com</u>		y: (9 Raine			E TIME	Receive (1920)	
6-9 bu	. , , 1	Client Signature	;	7 // 7/9z Date	- Buch	Hozelbe	8 7/1	> 8,00	D. Ckiorar	2
	days or less	omplete forms will can be cases, a refusal to er is required with the comment will work performed will alytical's fee schedule	use unneces accept sam lelivery of s be in acco	sary delay and ples. A purcha amples. All price reance with CA	सिम्बिक्यां है। इ.स.		(B)	ic Poice 1	kacador Ceri Ajji	
Rush results requested by (please circle):		15.00			In case w	e have questic	ons when sample	es arrive, CAI	Analytical should	call: (12)
Fax #: 919-460-1785 Phone					Name: _ C		Poure Ph	one: <u> </u>	-460-08	57
					-					

Request for Analysis

Where Air Quality Analysis is Our Business

Chain of Custody

A Division of Clean Air Engineering 800-627-0033	Please print. Instr	uctions on	reverse	side corre	spond wi	th circled	l numbers.		#_15086	
(1) Client: TEA	Proj. #: 1512 -	-001	0	Medi		(5)	Amaly	ses Ro	quested!	1
Project Name: Narshipe	Location:		14	WALCON IN				/ /		
Project Manager: E. Poore	P.O.#:	- FS1092		e e		/		/ /	/ / /	
Project Name: Narshipeo Project Manager: E. Poore Sampler: P. Sluter / B. Poore	Quote #:		A STATE		ouer Column		1 × 1 × 1		/ / /	
Constant Con	ipiac ii	ini. 3	Blan]			
CAP Sample Relation	પ્ર ા ક્ષિયાઓ ફેલ્લ		- <u>- </u>		Terror I	//`\\	′ / / ,	/ /	/ / Remarks	(<u>)</u>)
ESIDA.		Ş. B				// >	/ / /		Kemarks	
ld212	7/14/92		1/4			Vel			Retain tilties	
LK-213	7114192		110			1.			for firther	-
46-214	7114192		14			4			analyses	
46-215	7/14/92		10			4				-
ldo 214	7/14/92		14			L				
We 217	7114192		11			L				1
40-218	7114142		114			_				1
W-215	7114192		12			-				-
bb-220	7/14/92		14			~				
46-221-		柔								
								1 1		-
										-
								1 1		•-
										-
Turnaround time requested (check on	e only):	is form was con	pleted by	9	By the price	15.40	Din.	DE	Receive (ID) Land	()
Normal 10-15 bus. days [] 6-9 t		Jule for	De ?		(puny	andbu		17-35	P. Chorose	_
	. list fee) Inc	Client Signatur	rast annettr		Var 87	food	2/12	8;00		-
[] 3-5 bus. days [] 2 bu	s. days or less ord	me cases, a refusal to der is required with the	delivery of sa	imples. All prices	Restruptishis	High	ishle	ivine.	ice i in Cai Amineing	Ē
(2x list fee) (3x l	ist fee)	d work performed wi nalytical's fee schedu	II be in accor le and terms	dance with CAE and conditions.	In ac	hous a series			E Analytical should call:	الج
Rush results requested by (please circle): Fax or Phone	e Bill to	address:	10	•	-	-		E Analytical should call:	<u>(</u>)
Fax #: 919-400-1785 Phone	: #:				Send report	10: E.	Poore			1

September 4, 1992

Everett Poore North Carolina Field Office 120 South Center Court Suite 200 Morrisville NC 27560

Client Ref: Norshipco IEA-MA Job #16853

Attn: Everett Poore

Dear Sir:

Please find enclosed results of analyses of sixteen filter and 5 bulk samples which you submitted. These samples were examined using SEM-EDX and PLM techniques to characterize airborne particulates from marine paint sandblasting operations.

METHODS:

portions of the three bulk paint chip samples were ground with a mortar and pestle. The fine particles from the two bulk blasting grit samples were separated by spreading the materials on a smooth plastic sheet. For SEM-EDX work, particles were supported on double-back tape and coated with evaporated graphite. For PLM, particles were immersed in oil of calibrated index of refraction (n=1.510). For PLM work, particles were identified into four categories. The "Minerals" category included any birefringent angular to rounded, transparent, colorless to strongly colored particles. The "Opaques" category included all opaque (black) particles, plus any translucent particles also recognizable as paint or rust. The "Blast Grit" is transparent, isotropic, colorless to green-brown and always very angular, occasionally with inclusions and frequently showing conchoidal fracture. The "biological" are chiefly spores/ plus occasional pollens and vegetable fibers.

Should you have further questions, or need additional information, please feel free to contact me at any time.

Sincerely,

Drew Killius Mgr. Microscopy Services

La Melle

DK/ehs

Total Suspended Particulate Analysis by Polarized Light Microscopy Version 4.2 (c) copyright 1989 by EAL, 1991 by IEA

SAMPLE: 66-212

TSP (Ug/cubic meter) = 0)

ANALYZED EY: DK

08-27-1992

EAL JOB NO.: 16853

TYPE	WEIGHT %	NUMBER %	MEAN DIAM. (uM)	DENSITY
MINERALS	1	3	6	G= 2.6
OPAQUES	15	35	8	G= 1.5
BLAST GRIT	85	62	8	G= 2.6
BIOLOGICALS	o	0	0	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO H: 500X, PARTLY X-POLARS, TYPICAL

FINDINGS:

Looking first at the bulk materials, the paint chips and blasting grit are readily distinguishable, both by PLM and EDX. The blasting grit appears to be a glass product, having characteristic optical properties, and particle morphology (see "methods" above). Chemically, it shows major amounts of aluminum, silicon, and iron, with smaller amounts of potassium and calcium. Spectra of both samples are virtually identical. The fine particles shown in the PLM micrograph of sample 17 (ACO) are a good representation of how the material appears in the PLM photos of the filter samples. The paints appear optically as opaque material of irregular to somewhat rounded outline, and as such, resemble many common soots. Occasional translucent particles are also present, including material recognizable as rust. Chemically we see two or three classes of material. The Freeboard sample shows high titanium, plus zinc, while the other two samples (boot-top, keelbilge) show major copper, plus zinc, and a variable amount of iron. The elements copper, zinc, and titanium are unique to the paints and can be used as good tracers for airborne paint dust. Since iron is geochemically common, and occurs both as rust and as a constituent in the blasting grit, its usefulness as a chemical marker is somewhat more limited.

Turning to the filters, we can look first at the blank (66-217), where we see that the glass is a calcium-rich type and very inconspicuous in the PLM photo. The technique we use to remove particles from the filters is effective, and in the PLM work the glass fibers are also readily recognizable and do not constitute an interference.

After the blank, sample 66-127 appears to be the natural background in the area. Minerals, soots, and biological are present and typical in amount and appearance. Note in the EDX spectrogram the presence of a distinct peak for sulfur. This is a good indication that the soots are from combustion of high-sulfur fuels. The sulfur is also a good marker to help distinguish the soot fraction in the "opaques" category in the PLM analyses. The size of the particles shown in the photos is also typical of PM-10 type collection. (Note: at 500X, the scale is lmm=2um; e.g. a 10 micron particle will measure 5 millimeters). One filter (66-214) was apparently not a pm-10 type, and the very coarse particles present are readily apparent in the photos. Among the other samples given a full PLM analysis only one of the filters (66-210) showed mean sizes for the grit and opaques above the 10 UM level. It should be noted however that many filters showed mean sizes very close to the 10 micron level. Three filters were indicated as being of interest with regard to size only. I have done an abbreviated "one-category" PLM analysis on samples 66-203, 66-202, and 67-144 in order to obtain mean size information comparable to the mean size data given for the other (4-category) PLM analyses.

The last analyses conducted were particle size by sieving on the two bulk blasting grit samples. The table below gives weight percent in each size range:

	ACO	Norshipco
+ lmm	46.9	86.1
- 1 + 0.5mm	25.8	11.2
-0.5 + 60 mesh	8.3	~ 1.6
-60 + 140	11.3	I 0.9
-140 + 300	6.1	~ 0.2
- 300	1.6	I 0.1

DISCUSSION:

The overall picture which emerges here is that the fines from the blasting grit appear to be having the major impact on air quality. In the PLM analyses, the photos give a good qualitative appraisal. In using the weight percent data, keep in mind that the method may have one or two systematic biases. Firstly, particles are viewed lying flat on a microscope slide. Thin flakes or flattened chips may have a preferred orientation which presents their largest dimension, causing an overestimate of mass. Secondly, the mass calculation is based on a density value obtained from published data, which may not be exactly correct for the specific materials involved here. The number percent data, however, is less affected by preferred orientation. Likewise, the EDX data is obtained from a much larger population of more randomly oriented particles. None of the EDX analyses on the air filters show more than a few percent of copper, zinc, or titanium. This is also good evidence that the paint dust is not becoming airborne in large amounts. What does show in the EDX data is a variable amount of iron, which suggests that metal and rust particles may be more abundant than paint dust. This also agrees with the nature of the bulk paint samples; they are in the form of large flakes and chips. What I suspect is happening is that the greatest bulk of the paint is being removed by scraping or chipping, and that the sandblasting is being used to remove only the last vestiges of paint along with any rust, and even some fresh metal, as the final surface preparation step prio: to applying to the new finish.

IEA, INC. Total Suspended Particulate Analysis by Polarixed Light Microscopy version 4.2 (c) Copyright 1989 by EAL, 1991 by IEA

CLIENT: **NORSHIPCO**

TSP (ug/cubic meter) = 0SAMPLE: 67-148

09-01-1992 EAL JOB NO.: ANALYZED BY: DK

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.(uM)	DENSITY
MINERALS OPAQUES BLAST GRIT	1 5 93	3 25 70	8 7 10	G= 2.6 G= 1.5 G= 2.6
BIOLOGICALS	<1	2	6	G= 1.5

100 TOTAL COUNT:

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

IEA, INC.
Total Suspended Particulate Analysis by Polarized Light Microscopy -sion 4.2 (c) Copyright 1989 by EAL, 1991 by IEA

SAMPLE: 67-149 TSF (ug/cubic meter) = 0

ANALYZED BY: DK 09-01-1992 EAL JOB NO.:

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.CUM)	DENSITY
MINERALS OPAQUES	0 12	0 32	0 8	G= 2.6 G= 1.5
BLAST GRIT	87	67	10	G=1.3 $G=2.6$
BIOLOGICALS	1	1	10	G=1.5

TOTAL COUNT: C1100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO H: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC. TOtal Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) Copyright 1989 by EAL, 1991 by IEA

CLIENT:

NORSHIPCO

SAMPLE:

66-200

TSP (ug/cubic meter) = O

ANALYZED BY: DK

08-27-1992

EAL JOB NO.: 16853

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.CUM>	DENSITY
MINERALS	2	2	'9	G= 2.6
OPAQUES	11	36	7	G= 1.5
BLAST GRIT	86	61	'9	G= 2.6
BIOLOGICALS	2	1	1.5	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO H: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC.
Total Suspended particulate Analysis by Polarized Light Microscopy rsion, 4.2 (c) Copyright 1989 by EAL, 1991 by IEA

CLIENT: **NORSHIPCO**

TSP (ug/cubic meter) = (0)SAMPLE: 66-127

09-01-1992 ANALYZED BY: DK EAL JOB NO.:

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.(uM)	DENSITY
MINERALS	36	44	7	G= 2.6
OPAQUES	21	29	7	G= 1.5
ELAST GRIT	8	6	8	G= 2.6
BIOLOGICALS	36	21	8	G= 1.5

100 TOTAL COUNT:

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A- **-B-**

IEA, INC. TOtal Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) Copyright; 1989 by EAL, 1991 by IEA

SAMPLE: 66-207 TSP (ug/cubic meter) = 0

ANALYZED BY: DK 08-27-1992 EAL JOB NO.: 16853

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.(uM>	DENSITY
MINERALS OPAQUES	11 27	8 49	9 8	G= 2.6 G= 1.5
BLAST GRIT	58	40	10	G= 2.6
BIOLOGICALS	4	3	10	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC. Total Suspended Particulate Analysis by Polarized Light Microscopy version 4. 2 (c) Copyright 1989 by EAL, 1991 by IEA

SAMPLE: 66-210 TSp (ug/cubic meter:) = 0

ANALYZED BY: DK 09-01-1992 EAL JOB NO.:

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.(uM)	DENSITY
MINERALS	4	4	14	G= 2.6
OPAQUES	24	39	12	G= 1.5
BLAST GRIT	72	57	13	G= 2.6
BIOLOGICAL	0	0	0	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

IEA, INC. TOtal Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (Cl) Copyright 1989 by EAL, 1991 by IEA

NORSHIPCO CLIENT:

TSP (ug/cubic meter) = 0SAMPLE: 56-208

EAL JOB NO.: 16853 08-27-1992 ANALYZED BY: DK

TYPE	WEIGHT %	NUMBER %	MEAN DIAM.(uM	DENSITY
MINERALS	<1	5	9	G= 2.6
OPAQUES	10	17	15	G= 1.5
BLAŠT GRIT	89	78	18	G= 2.6
BI0LOGICALS	0	0	O	G= 1.5

100 TOTAL COUNT:

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A- **-B-**

IEA, INC.
Total Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) Copyright 1989 by EAL, 1991 by IEA

NORSHIPCO CLIENT:

TSP (ug/cubic meter:) = 066-199 SAMPLE:

09-01-1992 EAL JOB NO.: ANALYZED BY: DK

TYPE	WEIGHT %	NUMBER %	MEAN DIAM. (uM)	DENSITY
MINERALS	<1 7	3	11 12	G= 2.6 G= 1.5
OPAQUES BLAST GRIT	91	59	17	G= 1.5 G= 2.6
BIOLOGICALS	1	1	25	G= 1.5

100 TOTAL COUNT:

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A- **-B-**

IEA, INC.
Total Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) copyright 1989 by EAL, 1991 by IEA

SAMFPLE: 67-150 TSP (ug/cubic meter:) = 0

ANALYZED BY: DK 09-01-1992 EAL JOB NO.:

TYPE	WEIGHT %	NUMBER %	MEAN DIAM. (uM)	DENSITY
MINERALS OPAQUES BLAST GRIT	<: 1 27 72	3 46 51	10 15 18	G= 2.6 G= 1.5 G= 2.6
BIOLOGICALS	0	0	O	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC.
Total Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) copy right ,1989 by EAL, 1991 by IEA

SAMPLE: 66-213 TSP (ug/cubic meter) = 0

ANALYZED BY: DK 09-01-1992 EAL JOB NO.:

TYPE	WEIGHT %	NUMBER %	MEAN DIAM. (uM)	DENSITY
MINERALS	1	2	19	G= 2.6
OPAQUES	5	18	16	G= 1.5
BLAST GRIT	90	78	20	G≕ 2.6
BI0LOGICALS	3	2	33	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC. Total Suspended Particulate Analysis by Polarized Light Microscopy version 4.2 (c) Copyright 1989 by EAL~ 1991 by IEA

SAMPLE: 66-214 TSP (ug/cubic meter = 0

ANALYZED BY: DK 08-27-1992 EAL JOB NO.: 16853

TYPE	WEIGHT %	NUMBER %	MEAN DIAM-(uM)	DENSITY
MINERALS	<1	$\begin{array}{c} 1 \\ 22 \\ 77 \\ 0 \end{array}$	20	G= 2.6
OPAQUES	13		53	G= 1.5
BLAST GRIT	87		60	G= 2.6
BIOLOGICALS	0		0	G= 1.5

TOTAL COUNT: 100

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A-

IEA, INC. Total Suspended Particulate Analysis by Polarized Light Microscopy Version 4.2 (c) copyright 1989 by EAL, 1991 by IEA

NORSHIPCO CLIENT:

TSP (ug/cubic meter) = 0SAMPLE: 66-203

09-02-1992 ANALYZED BY: DK EAL JOB NO.:

TYPE WEIGHT % NUMBER % MEAN DIAM. (uM) **DENSITY**

100 100 G=2AVER.PART.

50 TOTAL COUNT:

PHOTO A: 500X, PARTLY X-POLARS, TYPICAL PHOTO B: 500X, PARTLY X-POLARS, TYPICAL

-A- **-B-**

SI-AUG-92 IG: 17:33 EDAX READY

BATE = ACPS

LIWE = 148 C Z E C

```
2 1, - AUG- 9 2 1 5 : 2 7 : 4 3 EDAX READY

RATE = OCPS TIME = 150 LSEC

FS = 10457CNT PRST = 150 LSEC

A = SANDBLAST MAT'L AC0
```


27-AUG-92 13:46:02 EDAX READY
RATE= 6CPS TIME= 150LSEC
FS= 1867CNT PRST= 150LSEC
A = USNS FREE BOARD

27-AUG-92 13:33:57 EDAX READY
RATE = 21CPS TIME = 150LSEC
FS = 1880CNT PRST = 150LSEC
A = USNS LT.LOAD TO DEEP BOOTOP


```
27-AUG-92 15:46:47 EDAX READY
HATE = OCPS
                    TIME = 100LSEC
FS= 9233CNT · PRST= 150LSEC
B = 66 - 214 FILTER
      SiKa
     AIKX
                      FeK&
           Κα
             Caka Tika
      2.00
                   6.00
                       B.00
            4.00
      OCNT O.OOKEV 10eV/ch B E·DAX
```

27-AUG-92 15:30:08 EDAX READY
RATE = 0CPS TIME = 128LSEC
FS = 2914CNT PRST = 150LSEC
B = 66-213 FILTER

27-AUG-92 14:26:24 EDAX READY

RATE = 2CPS TIME = 150LSEC

FS = 4316CNT PRST = 150LSEC

A = 66-212 FILTER

27-AUG-92 14:20:59 EDAX READY
RATE= 3CPS TIME= 103LSEC
FS= 3284CNT PRST= 150LSEC
A = 66-208 FILTER

27-AUG-92 14:16:20 EDAX READY HATE = 12CPS TIME = 101LSEC SS 3423CNT PRST = 150LSEC A = 66 - 207 FILTER SiKo AlKa FeKe-Κα

CaK& TiK&

6.00 8.00

OCNT O.OOKEV 10eV/ch A EDAX

4.00

2.00

02-SEP-92 08:48:19 EDAX READY RATE = 5CPS TIME = 64LSEC FS= 3802CNT PRST = 300LSEC A = 66 - 127 FILTERSiKa S Ka -CaK«-NaKk ClKx FeKa 6.00 8.00 2.00 4.00

OCNT O.OOKEV 10eV/ch A EDAX

27-AUG-92 14:37:21 EDAX READY

BATE= 667200 FILTER

EDAX READY

TIME= 100LSEC

PRST= 150LSEC

27-AUG-92 15:52:10 EDAX READY
RATE= 3CPS TIME= 37LSEC
FS= 1353CNT PRST= 150LSEC
B=66-199 FILTER

27-AUG-92 14:48:44 EDAX READY RATE = OCPS TIME = 83LSEC FS = 3097CNT PRST = 150LSEC B = 67 - 150 FILTER SiKa A1KX FeΚα KKX TiKX 4.00 6.00 2.00 8.00 OCNT O.OOKEV 10eV/ch B EDAX

27-AUG-92 15:41:42 EDAX READY

RATE= 0CPS TIME= 124LSEC

FS= 3750CNT PRST= 150LSEC

B=67-148 FILTER CATEGORY

SiKx

Volume Sandblast Material Used

Date: 7-14-12

Location: Titan Drydock
Purpose: PM-10 Study

Objective: Calculate on the half hour the number of pounds samblast used during that half hour. Start at 2000 at end at shift completion.

Time	# Nozzles	#1bs Blast Material Consumed
ex.1800to 1830 2000 2030 2100 2130 2200 2230 2300 2330 2400 0030 0100 0130 0200 0230 0300 0330 0400 0430 0500 0530 0600 0630 0700	28 35 33 33 33 33 33 33 33 33 33 33 33 33	16,968 LBS. 16,954 LBS. 14,700 LBS.

Total Estimated square footage removed during shift 22,373 Square Footage

Average Pressure Supplied to Blasting Head Date: 7-14-92

Location: <u>Titan Drydock</u> Purpose: <u>PM-10 Study</u>

Time	Average Pressure at Nozzles
2000	90 ?5 <u>x</u>
2100	95 PSI
2200	110 PSI
2300	105 PSI
2400	85 PSI
0100	100 ?3 <u>X</u>
0200	ios pse
0300	95 P3I
0400	90 P5I
0500	100 PSI
0600	io PSI
0700	

Meteorological Conditions
Date: 7-2-72
Location: Titan Drydock
Purpose: PM-10 Study

1800
00 a

NORFOLK SHIPBUILDING & DRYDOCK CORPORATION

PO BOX 2100 NORFOLK VIRGINIA 23501-2109 Telex: 823 613 Cable: NORSHIPCO Relepnone 864/494-4000

Meteorological Conditions

Date: 7-13-92

Purpose: PM-10 Background

Time	Wind	Direction	Speed, Ky
1800	W	240	_
1900	W	270	5
2000	W	270	5
2100	W	270	4
2200	W	260	2 2
2300	W	280	2
2400	W	240	2
July 14, 1992	••	240	4
0100 ·	W	250	
0200	W	270	4
0300	W	250	5
0400	W	260	8
0500	W	260	8
0600	W	250	8
0700	W		5
0800	W	260	8
0900	W	250	10
1000	W	270	10
1100	W	250	8
1200	W	250	8
1300	W	250	10
1400	W	250	10
1500	W	270	8
1600	W	270	8
1700		270	8
	W	270	8

(Jon Breaker) 1-3:-92 Appendix D

Field Summary Logs

Indian Valley Industries, Inc

DESERT STORM MAN/BLACK (100% fire retardant polypropylene)

WEIGHT	5 oz/yd ²
SHADE PERCENTAGE	72 5
AIR POROSITY	377 cfm
TENSILE STRENGTH Grab Method	Warp: 267 lbs Fill: 116 lbs
ELONGATION % Grab Method	Warp: 15% Fill: 13%
PUNCTURE	110 lbs
TEAR STRENGTH Trapezoid Method	Warp: 113 lbs Fill: 39 lbs
EURST STRENGTH Mullen	327 lbs/in ²

CONTAINMENT 80% to 85%

DISTALBUTED BY:

2001-8 Trade St. Chesapeales, VA 25323 (804) 487-1055

EMISSION TESTING FIELD PROJECT SUMMARY LOG

C'ENT Norshipe	٥	PROJECT NO.	1512-001
FLANT Norshipco	CITY _ K	Jarfolk	STATE VA
DATETIME	ACTI	ONTAKEN.	
7/13/92		•	
4:30pm Arri	re on site. Met w/	T. Beachum	
Giooph Arm	e off site warehouse	e. Set -up TSP am	2 PMG
Same	plens (Runs IA an	nd 1B)	
7/14/92			
9:00um Airi	ue on site. Met w/	T. Beachum + blootin	س دردس
5-66	ruisor. Toured dry due	k area. Left site	10:30 aug
3;00pm Acris	e on site. Met w/	T. Benchum + Laure	I Driver &
Roy	Hutley (EPA). Tour	ed drydock area.	Sample
. (0 0.	ations were discu	ssed and selected	stim .
EPA	A. representatives		
7:00pm Arriv	e off-site wareh	ouse. Collected filter	s for Runs
· IA	and 1B		
7:30 pm Arrive	- on-site. Assembled	L filter consettes in	drydock
045:	ee. Assembled sa	mplers.	
8:30pm Join	red by T. Beachum	and L. Driver/R. H	utter of EPA.
Posit	tioned samplers at	t positions 2 and	4
Page <u>/</u> of <u>3</u>	SIGNATURE 3 Posse		

EMISSION TESTING FIELD PROJECT SUMMARY LOG

PROJECT NO. 1512-00	(
LANT Norshipco : CITY Norfolk STATE	
PDATE/TIME ** ** ** ACTION TAKEN	
7/14/92 Started runs 2A \$ 2B	
10:15 pm Completed runs 2A # 2B	
10:23 pm Started rous 2C \$ 20	
10:33pm Completed runs QC \$20. Checked PM to head for	
particle trailing.	
10:35pm Started runs 2E & 2F. EPA officials leave site	ب سےنہلر
T. Beachum	
10:45pm Completed runs 2E & 2F. Noticed tears on filts	در ج
26 & 24. Returned to dock office to perpre	
more filter cassettes.	•
11:55pm Storted runs 2I and 2J while Pat Slater	<u></u>
started runs 3A and 3B.	
7/15/92 12:05 am Completed runs II and 2J. Pat Slater complete	نم
rus 3A,3B, 3C and 3D. Moved to location 4	
12:45an Started runs 4A &4B. Noticed tears in filters.	ided Runs.
Moved sumpless to new locations. Returned.	
dock office to assemble more filter casse	
Page 1 of 3 SIGNATURE 2 love .	

Appendix E

Equipment Calibrations

 $\ensuremath{\text{Q}_{\text{STD}}}$ - cfm \$ or $\ensuremath{\text{Q}_{\text{STD}}}$ - $\ensuremath{\text{M}^3/\text{min}}.$ FLOW RATE

THIS PLOT IS IN (check one)

cfm ______

They are NOT EQUIVALENT

HICH VOLUME SAMPLER CALIBRATION WORKSHEET

						9
			(200-)		0,8	g
		58	755.1		۵,۵	7
		94	898-1		5,0	ε
		34	1.172		۶. ۶	7
		90	425,0		5.1	1
$\frac{\left(\frac{iI}{iI}\right)\left(\frac{id}{id}\right)}{\left(\frac{iI}{iI}\right)\left(\frac{id}{id}\right)} / \sqrt{\qquad}$	$\frac{\left(\frac{88}{z^{1}}\right)\left(\frac{z^{2}}{u^{2}}\right)^{1}}{\left(\frac{z^{2}}{z^{1}}\right)\left(\frac{z^{2}}{u^{2}}\right)^{1}}$	4 I Sampler flow noisasion (vasidas)	(X) 3 Good files (Irom orilice certificelon im/en biz	$\frac{\left(\frac{865}{s^{7}}\right)\left(\frac{s^{4}}{s^{4}}\right)^{H\Delta}}{\left(\frac{s^{4}}{s^{7}}\right)^{H\Delta}}$	I AH Pressure drop acivice (in) or (cm)	.011
10 1 D	10 1 00			e e 3 8 (cubecejnes pe	V8 18002632	
For incorporation of average pressure and seasonal average temperature	For specific pressure and temperature cor- rections (see Table 2.1),			ini 19.92 io.) ph mi andiric pressure: P. = .	16d see13vA 1e	nondO
(X)	S	İ				
	N-3	Social No.		2-:f:-e		
Seriel No.			······································	SHOR	5A2 011	าจใต้เมคร
	Col. 501. 61 & Col. 6. Porce (21)					
	suro. Parm Haldr in.)	(1) Barometric press		7.7	115112	- 5100

Out = 1/m (appropriate expression from Table 2) - b)

to determine subsequent flow tale during use: X = 1/m (Y-b)

Least Aquares Calculations

Lincor regression of Y on X: Y = mX + b: Y = appropriate expression from Table 2.1: X = Qin

Slope (m) = 41.9400c Intercept (b) = 13.3033 Correlation Coallicient (r) = -

CALIBRATION WORK SHEET

QstD			CAI	IBKATION	WORKS	oneei		
(1) Run Point No.	(2) Elapsed Time - Δt Min.	(3) Initial Volume VM M ³	(4) Meter Inlet Static Pressure-ΔP mm of Hg	(5) Standard Volume Vsto M³	(6) Calibrator Orifice Static Press. AH in. of H ₂ 0	(7) Metric Flow Rate Qsτο M³/min.	(8) English Flow Rate Qsro ft³/min.	For application ref. 1 (9) $ \sqrt{\Delta H \left(\frac{Pa}{Psto}\right) \left(\frac{298}{TA}\right)} $
1 2 3 4 5 6	1.338 0.866 0.733 0.655 0.562		4.0 9.3 13.2 15.9 21.2	1.022 1.015 1.009 1.006 0.999	1.5 3.5 5.0 6.0 8.0	0.764 1.172 1.398 1.536 1.777	27,0 41,4 49,4 54.2 62.8	
Vsto =	Vm (Pa-ΔP) ΤSTD PSTD Ta VSTD Δt			M ³ x 35.3	1 = Ft ³		760	nd (8) are corrected to mm of Hg mm (298°K)
Qa								
(1) Run oint No.	(2) Elapsed Time - Δt Min.	(3) Initial Volume Vm M³	(4) Mete Inle Stati Pressur mm of	er t A∈ c Vo e-∆P	5a) ctual olume Va M ³	(6) Calibrator Orifice Static Press. ΔH in. of H ₂ 0	(7a) Metric Flow Rate Qa M³/min.	For application see ref. 2 (8a) $ \sqrt{\Delta H \left(\frac{TA}{PA}\right)} $
1 2 3 4 5 6	1.338 0.866 0.722 0.655 0.562		4.0 9.3 13. 15. 21.	3		1.5 3.5 5.0 40 8.0		
Va = Vm	P - Α-Ρ)			C	Da = Va	_		
(9) (10) (11)	та <u></u>	75.2 3	mm of Hg °C + 273 = °K %	Roots Meter Calibrator Or Model No.: Serial No.:	ifice:	09364 2 c 2	Calibration	performed by: Lazari Code 30-3-200 d in service: 11-12-90 d by user) 20B

additional information consult:

Notes: 1 EPA recommends calibrators should be recalibrated after one year of field use. 2. Copies of this calibration are not kept on file.

^{1.} The Federal Register, Vol. 47, No. 234, pp. 54896-54921, December 6, 1982

^{2.} Quality Assurance Handbook, Vol. II (EPA 600/4-77-027a), Section 2.11

HIGH VOLUME SAMPLER CALIBRATION WORKSHEET

(1) Boromotric prossure, Pamm Hg (or in.)

- (2) Temporalure, TAM-

100-81514

			s noi	Least Aquares Calculat		
	•	2.0 8.5 5.5	222.1 252.1 865.1		0,8	:
		& h 0E	426,0		ς·ε 5·1	1
$\frac{\frac{1}{\binom{1}{i}\binom{1}{i}\binom{1}{i}\binom{1}{i}}{\binom{1}{i}\binom{1}{i}}}{\binom{1}{i}\binom{1}{i}\binom{1}{i}}$	$\frac{10}{\left(\frac{965}{z^{1}}\right)\left(\frac{r^{2}}{s_{11}q}\right)^{1}}$	4 I Sampler (low rate indication (vachitrary)	(X) 3 Que (Irom orilice centification std. m³/min	$\left(\frac{882}{z^{1}}\right)\left(\frac{r^{q}}{b_{1}q}\right)H\Delta$		c
For incorporation of average pressure and seasonal average temperature [see Table 2.1]	For specific pressure and temperature cor rections (see Table 2.1)			m Hg (or 29.92 in.) . = "A :sıuzzsıq cirlemo = "I :sıulsısqməl sgars	18d seessy le	טריזם
(A) s	° ℃-7	Sorial No		ربز:رو	odli pis	10;50
		Soriol No.			011	10/50

Id . [5 alda T mon noissandra expression from Table 2] . D

14-Y) m/1 = X :seu guind ales How rale during use: X = 1/m (Y-b)

Lineau tegression of Y on X: Y = mX + b: Y = appropriate expression from Table 2.1. X = Q.

HICH VOLUME SAMPLER CALIBRATION WORKSHEET

		rable 2.1; X = مير ن Table 2.1; X = مير برفاقائون Coellicient (r	iale expression from	Least Aquares Calcular $Y = mX + b; Y = appropri $ $Z = nlercept (b) = Z$		
		1	l	T		
			(((-)	-	0.8	9
		2.3	25.5.1		0, 9	7
		& h	818.1		0.5	ε
		88	1.02		۶, ۶	7
		. Act	ከግረ'		('کر	1
$\frac{\binom{t_1}{1}\binom{t_d}{t_d}}{\binom{t_d}{t_d}} \bigwedge_{i}$	$\frac{\left(\frac{\epsilon_I}{86Z}\right)\left(\frac{\epsilon_J}{\epsilon_J}\right)}{IO} / I \qquad \Box$	h I woil angme <i>2</i> noilealbri eler (yealidae)	(X) E One onlice (Irom orilice certilication sid	$\left \frac{89\underline{\zeta}}{\left(\frac{1}{2}\right)} \left(\frac{I_{q}^{Q}}{\log q}\right) H\Delta \right $	I Pressure drop AH (in) or (cm)	611
$\frac{\binom{i_1}{i_1}\binom{i_d}{i_d}}{\binom{i_d}{i_d}} / \bigwedge_{\square}$	$\frac{\left(\frac{2}{862}\right)\left(\frac{n}{12}\right)}{1}$					
r incorporation of average pressure and assonal average temperature	and temperature cor.			m Hg (or 29.92 in.) .= . ^q :sucssuce: P. = . erege tempereture: T. =	16d arraya le	nendO
	2-1	. Serial No.		25.7.		างไล้เกิดใ
***********	Suro, P (mm 49-701 in.) 25 6		اصد ک		120	
•	Soure, P. (mm Haror in.)		100-81	\	7530 W	esol es.S

Osis = 1/m (appropriate expression from Table 2) - b)

To describing subsequent flow rate during use: X * 1/m (Y-b)

HIGH VOLUME SAMPLER CALIBRATION WORKSHEET

Ste ion	nin Nory	hipco	#1512-0	001		
2	7/13/	92		//	(K) 295, 2 V-2	
Οριιοι	nal. Average bai	nm Hg (or 29.92 in.) rometric pressure: P. ' rerage temperature: T.			For specific pressure and temperature cor- rections (see Table 2.1)	5 (Y) For incorporation of average pressure and seasonal average temperature (see Table 2.1)
, no	1 AH Pressure drop across orilice (in) or (cm)	$\sqrt{\Delta H \left(\frac{P_2}{P_{\text{sld}}}\right) \left(\frac{298}{T_2}\right)}$	(X) 3 Qua (Irom orilice certilicetion std. m³/min	4 I Sampler llow rate indication (arbitrary)	$ \begin{array}{ccc} & Of \\ & \sqrt{I\left(\frac{P_2}{P_{std}}\right)\left(\frac{298}{T_2}\right)} \\ & Of \\ $	$ \begin{array}{ccc} & I & of \\ & \sqrt{I\left(\frac{P_1}{P_*}\right)\left(\frac{I_*}{I_*}\right)} \\ & of \\ & I\sqrt{\left(\frac{P_2}{P_*}\right)\left(\frac{I_*}{I_*}\right)} \end{array} $
2	1·5 3·5 5·0		0.764 1-172 1.398	a 2 3 छ 4 ष्ट्र		
5	3,0		1.777	50 62		

Least Aquares Calculations

Linear regression of Y on X: Y = mX + b; Y = appropriate expression from Table 2.1; X = Qin

Slope (m) = 37, 23434 Intercept (b) = -4.53625 Correlation Coefficient (r) =

To determine subsequent flow rate during use: X = 1/m (Y-b)

Q_{std} = 1/m [appropriate expression from Table 2] - b)

HIGH VOLUME SAMPLER CALIBRATION WORKSHEET

Site loca	nion <u>No.</u>	-dr: pcc	# 1512 -00	o (
Colleged by: P. Slicher /E. Poose				_ (1) Baromatric pros _ (2) Temperature, T	ssuro, P2 (mm Hg)(or in.) 754 2(K) 295, 2	
Sampler Transler	sid type:	orifice		Serial No	<u></u> ∪-a	
						5 (Y)
Option	asl. Average ba	nm Hg (or 29.92 in.) rometric pressure: P. = verage temparature: T.			For specific pressure and temperature cor- rections (see Table 2.1)	For incorporation of average pressure and seasonal average temperature (see Table 2.1)
	······································				py 1 or	□ or
			נאן		$ \sqrt{I\left(\frac{P_1}{P_{\text{site}}}\right)\left(\frac{298}{T_2}\right)} $	
.tio	1	$\sqrt{\Delta H \left(\frac{\rho_2}{\rho_{\text{std}}}\right) \left(\frac{298}{r_2}\right)}$	3 Que (from orilice certification std. (m³/min	4 Sampler flow rate indication (arbitrary)	$\square \qquad \sqrt[l]{\left(\frac{P_2}{P_{\text{eld}}}\right)\left(\frac{298}{T_2}\right)}$	$\sqrt{\left(\frac{\rho_2}{\rho_*}\right)\left(\frac{I_*}{I_*}\right)}$
1	1.5		0,764	<i>સ</i> ર		
2	3,5		1.172	39		
3	5		1.398	48		
4	<u> </u>		1,539	50		
5	8		1,777			
		1			L	

Least Aquares Calculations

Linear regression of Y on X: Y = mX + b; Y = appropriate expression from Table 2.1; X = Q.w

Street = 37.24351 Intercept (b) = -4.29497 Correlation Coallicient (r) =

To determine subsequent flow rate during use: X = 1/m (Y-b)

Que = 1/m (appropriate expression from Table 2) - b)

Summary of Sampler Calibrations

Orifice	Delta	Sampler	Sampler	Sampler	Sampler	Sampler	
Qstd	Н	CAE-2945	1	$\overline{2}$	3	4	5
0.764	1.5	20	20	22	22	24	30
1.172	3.5	34	36	39	38	38	43
1.398	5	46	47	48	48	48	53
1.536	6	52	53	50	50	53	58
1.777	8				62		67
	Y Intercept (b	-12.3032	-12.7681	-4.29697	-4.53625	-5.19079	1.560376
	Slope (m)	41.99606	42.75841	37.24351	37.23434	38.06825	37.03243

HIGH VOLUME SAMPLER CALIBRATION WORKSHEET

Sie location Norshipe -#1512-00 Date				(2) Temperature, T	ssuro, P. (mm Hg) (or in.)	
Option	isl. Average ba	nm Hg (or 29.92 in.) rometric pressure: P. = rerage temperature: T.			For specific pressure and temperature cor- rections (see Table 2.1)	For incorporation of average pressure and seasonal average temperature (see Table 2.1)
110	1 AH Pressure drop across orilice (in) or (cm)	$\sqrt{\Delta H \left(\frac{\rho_2}{\rho_{\rm sid}}\right) \left(\frac{298}{T_2}\right)}$	(X) 3 Qua (from orilica cartilication std. m³/min	4 Sampler llow rate indication (arbitrary)	$ \begin{array}{ccc} \square & \sqrt{I\left(\frac{P_2}{P_{\text{sld}}}\right)\left(\frac{298}{I_2}\right)} \\ & \text{or} \\ \square & I\sqrt{\left(\frac{P_2}{P_{\text{sld}}}\right)\left(\frac{298}{I_2}\right)} \end{array} $	$ \begin{array}{ccc} & I & \text{or} \\ & \sqrt{I\left(\frac{P_2}{P_*}\right)\left(\frac{I_*}{I_2}\right)} \\ & \text{or} \\ & I\sqrt{\left(\frac{P_2}{P_*}\right)\left(\frac{I_*}{I_2}\right)} \end{array} $
1 2 3 4 5 6	7.5 3.5 5.0 6.0 8.0	1.22 1.87 2.24 2.45 2.83	0,764 1.172 1.398 1.536 1.777	20 34 47 53		

Least Aquares Calculations

Linear regression of Y on X: Y = mX + b; Y = appropriate expression from Table 2.1; X = Q_{bd}

Siage (m) = 42,7584 | Intercept (b) = -12,768 | Correlation Coefficient (r) =

To determine subsequent flow rate during use: X = 1/m (Y-b)

Q_{eld} = 1/m [appropriate expression from Table 2] - b)

EMISSION TESTING FIELD PROJECT SUMMARY LOG

C' ENT NO	shipco PROJECT NO. 15/2-001
_	dripco : CITY Norfolk STATE UA
DATE/TIME # 4.1	ACTION TAKEN AND AND AND AND AND AND AND AND AND AN
7/15/92 2:00am	Returned to Location 4 and started runs 4C and
	4P.
2:10 am	Completed runs 4C \$ 40. Check PM10 for
	partiele trailing (none observed). Moved samples
	to Location 6.
2;20 am	Started runs 5A \$ 5 B
2:25am	Completed runs 5A & 5.B
2:45am	Started runs 6A & 6A
2:50 am	
·	Disassembled filter consettes. Checked data sheets
	Chain of Custody log. Loaded equipment
4:00 am	Left site.
,	
·	
	·
Page <u>3</u> of <u>3</u>	SIGNATURE Flore