

Click here to return to USGS publications

WATER QUALITY OF RUNOFF TO THE CLARKSVILLE MEMORIAL HOSPITAL DRAINAGE WELL AND OF MOBLEY SPRING CLARKSVILLE, TENNESSEE, FEBRUARY-MARCH 1988

Prepared in cooperation with the

TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT DIVISION OF CONSTRUCTION GRANTS AND LOANS

U.S. GEOLOGICAL SURVEY

Open-File Report 88-310

	Report Docume		Form Approved OMB No. 0704-0188							
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering a maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlingt VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if does not display a currently valid OMB control number.										
1. REPORT DATE 1988		3. DATES COVERED								
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER					
		ville Memorial Hos		5b. GRANT NUM	1BER					
Well and of Moble	y Spring Clarksville	e, Tennessee, Februa	ry-March 1988	5c. PROGRAM E	LEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT NU	JMBER					
				5e. TASK NUMBER						
				5f. WORK UNIT NUMBER						
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Department of the Interior 1849 C Street, NW Washington, DC 20240										
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)						
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	ion unlimited								
13. SUPPLEMENTARY NO	DTES									
14. ABSTRACT										
15. SUBJECT TERMS										
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	ABSTRACT SAR	OF PAGES 31	RESPONSIBLE PERSON						

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 WATER QUALITY OF RUNOFF TO THE CLARKSVILLE MEMORIAL HOSPITAL DRAINAGE WELL AND OF MOBLEY SPRING, CLARKSVILLE, TENNESSEE, FEBRUARY - MARCH 1988

۰.

By Anne B. Hoos

Ì.

ĝ

.

U.S. GEOLOGICAL SURVEY

Open-File Report 88-310

Prepared in cooperation with the TENNESSEE DEPARTMENT OF HEALTH AND ENVIRONMENT DIVISION OF CONSTRUCTION GRANTS AND LOANS

Nashville, Tennessee 1988

,

DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director

۰.

For additional information write to:

District Chief U.S. Geological Survey A-413 Federal Bldg. U.S. Courthouse Nashville, Tennessee 37203 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, Colorado 80225

CONTENTS

.

î

...

	Page
Abstract	1
Introduction	1
Purpose and scope	3
Previous studies	3
Acknowledgments	3
Collection of hydrologic data	3
Data-collection program	3
Site selection and description	3
Dye-trace investigation	4
Methods of data collection	7
Sampling equipment	7
Precipitation measurement	7
Stage measurement	7
Sample collection	8
Sample handling and analyses	8
Results of water-quality analyses	8
Drainage-well site (Hospital sinkhole)	13
Mobley Spring site	13
Comparison with drinking-water standards	22
Summary	22
References	23
	24
Appendix: Methylene chloride extractable compounds	24

ILLUSTRATIONS

Figures	1-3.	Maps showing location of:	
		1. Study area in Clarksville, Tennessee	2
		2. Drainage well with associated watershed boundary,	
		springs, and well Mt:M-13	5
		3. Drainage well and land-use features in the watershed	6
	4-7.	Chromatograms and estimates of concentrations of organic	
		compounds for the sample from:	
		4. The drainage-well site for storm 1, February 2, 1988.	14
		5. The drainage-well site for Storm 2, February 14, 1988	16
		6. Mobley Spring for storm 1, February 2, 1988	18
		7. Mobley Spring for normal flow conditions,	
		February 29, 1988	20

TABLES

Table	1.	Summary of hydrologic conditions and sampling schedule	
		at test sites for each sampling event	9
	2.	Temperature, specific conductance, pH, total organic carbon, potassium, major anion, and alkalinity data	
		for samples from storms 1-4 and from normal flow conditions	10
	3.	Selected trace-metal and oil-grease concentration data	
		from storms 1-4 and from normal flow conditions	11

CONVERSION FACTORS

.

î

ĩ

.

For use of readers who prefer to use International System (SI) units, rather than the inch-pound terms used in this report, the following conversion factors any be used:

	Multiply	<u>By</u>	<u>To obtain</u>
inch (in.)		25.40	millimeter (mm)
foot (ft)		0.3048	meter(m)
gallon		.003785	cubic meter (m ³)
gallon per	minute (gal/min)	0.0630	liter per second (L/s)
microsieme at 25 °C	ns per centimeter (uS/cm)	1	micromhos per centimeter at 25 °C (umhos/cm)

Use of the brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

WATER QUALITY OF RUNOFF TO THE CLARKSVILLE MEMORIAL HOSPITAL DRAINAGE WELL AND OF MOBLEY SPRING, CLARKSVILLE, TENNESSEE, FEBRUARY - MARCH 1988

÷

By Anne B. Hoos

ABSTRACT

A drainage-well and a spring site in Clarksville, Tennessee, have been instrumented to collect storm-related data in order to define the types and concentrations of water-quality characteristics in stormwater runoff and in the receiving ground-water basin. Water-quality samples of storm runoff at the drainage well at Clarksville Memorial Hospital and of nearby Mobley Spring were collected during four storms and during normal flow conditions during the period February to March 1988.

Samples were analyzed for major inorganic water-quality constituents, selected trace metals, and organic compounds. Several samples from the drainage well and the spring had trace-metal concentrations that exceeded maximum contaminant levels for State drinking-water standards. Organic compounds including phenols, polynuclear aromatic hydrocarbons, and other baseneutral extractable organic substances are present in samples from both the drainage well and spring.

INTRODUCTION

Stormwater runoff from urban areas has been recognized for the past decade as a source of contamination to receiving surface- and ground-water bodies. Urban runoff can enter the ground-water system either by diffuse infiltration, or, in karst areas, at discrete points through conduits in the bedrock. In the karst areas, the direct entry of runoff through surface features such as sinkholes and sinking streams, and the rapid movement of ground water through the well-developed subsurface drainage network cause slug transport of contaminants through the aquifer, which in turn may create acute and periodic water-quality problems. These problems are compounded by the practice of constructing drainage wells to reduce flooding in areas with no surface drainage. Removal of the unconsolidated material from the mouth of the sinkhole increases the peak contaminant levels in ground water following storm events, and may actually increase the overall load of contaminants to the system.

The U.S. Geological Survey, in cooperation with the Division of Construction Grants and Loans of the Tennessee Department of Health and Environment, has begun an investigation of the impacts to ground-water quality from diverting urban runoff to drainage wells. The rapidly urbanizing area of Clarksville, Tennessee (fig. 1), was selected as the site for this investigation because of its location in a well-developed karst terrane, and because a number of drainage wells are currently in use in this area to reduce the considerable surface-flooding problem.

ĩ

ł

Figure 1.--Location of study area near Clarksville, Tennessee

Purpose and Scope

۰.

ĩ

Ŧ

The purpose of this investigation is to characterize the quality of urban runoff entering a drainage well in Clarksville, Tennessee, and of the receiving ground-water body. This report describes the data-collection program currently in operation for this investigation and reports water-quality constituent concentration data collected during four storm events and normal flow conditions in February and March 1988.

Previous Studies

Milligan and others (1984) examined urban runoff quality and quantity in an area underlain by carbonate rock near Knoxville, Tennessee. Although their results suggest the possibility of aquifer contamination by urban runoff flowing into sinkholes, the ground-water quality data needed to confirm this were not available. The Federal Highway Administration (1981) monitored the quality of highway runoff during a 12-month period from Interstate 40 in Nashville, Tennessee. Crawford and Groves (1984) inventoried stormwater drainage wells in karst areas throughout Kentucky and Tennessee.

Acknowledgments

The author wishes to thank Mr. Charles Mobley, Mr. Jack Uffelman, and the staff of the Clarksville Memorial Hospital for their permission to install hydrologic stations and instrumentation on their property. Dr. Phillip Kemmerly shared his knowledge of the hydrogeology of the Clarksville area. D.S. Mull provided guidance and assistance in the dye-trace investigation.

COLLECTION OF HYDROLOGIC DATA

Data-Collection Program

Site Selection and Description

The following criteria were used in the selection of the monitoring site:

- (1) The drainage well drains a high density commercial or residential area.
- (2) Watershed boundaries for the drainage well are well defined, so that all influences to the quality of runoff can be identified. An area in which point sources of contamination are known to contribute to the runoff is deemed unsuitable.
- (3) Priority was given to sites with existing wells and springs along the proven path of ground-water flow from the drainage well, providing sampling points of the receiving ground-water body. Springs estimated to drain large (greater than 10 square miles) ground-water basins were considered unsuitable sampling points because of the probable dilution of constituents introduced and measured at the drainage well by unaffected ground water.

(4) Travel time of ground-water flow between the drainage well and ground-water sampling points should be of sufficient length to permit observation of any physical or chemical reactions modifying concentrations of constituents. However, distance between the drainagewell and ground-water sampling points should not be so great as to allow a significant volume of recharge to enter the aquifer along the flow path and dilute the system.

7

÷

The selected drainage-well site and its watershed boundary are shown in figures 2 and 3. The watershed boundary was delineated by the Soil Conservation Service (1986). The 12-acre watershed consists of approximately 90 percent paved parking lots and rooftops of the Clarksville Memorial Hospital complex, with the remaining area residential (fig. 3). Two drainage wells (fig. 3), approximately 5 feet apart, have been installed at the bottom of a depression and are the only outlet for runoff from the drainage area. The wells are estimated to be 10 and 30 feet in depth, with corrugated steel casing and raised metal grates.

Karst topography is well developed in the study area, with numerous topographic depressions, or sinkholes, resulting from settlement of surface materials into solution openings beneath the surface (Kemmerly, 1980). Sinkhole density is estimated to range between 5 and 40 per square miles (Kemmerly, 1980). The residual soil is a clay matrix with nodules of dense chert, ranging in thickness from 0 to 30 feet. The bedrock (Mississippian age St. Louis and underlying Warsaw Limestones) is deeply weathered, with numerous openings developed by solution along bedding planes. The contact between the St. Louis and Warsaw Limestones is exposed in some of the draws adjacent to the Red River (fig. 1), and is the origin of several springs in the area.

Dye-trace Investigation

Flow direction from the drainage well was determined using a fluorescein dye-trace test. Approximately 0.8 pound of fluorescein dye (Acid Yellow 73) was mixed with 5 gallons of water and poured into the deep (30 feet) drainage well at 12:50 PM, January 21, 1988. The sink was dosed with approximately 20,000 gallons of water (released from a nearby fire hydrant at a flow rate of 480 gal/min) just prior to injection, in order to wet the subsurface conduit surfaces (Mull, Liebermann, Smoot, and Woosley, written commun., 1988). Three springs (fig. 2) judged to be possible resurgent points for ground water flowing below the drainage-well site were monitored for a 7-day period for the presence of dye. Two of the springs (Mobley Spring and Chip'n'Dale Road Spring) issue from the contact between the St. Louis and Warsaw Limestones. Dye-monitoring apparatus consisted of a nylon mesh bag containing activated coconut charcoal suspended in the flow below each resurgence.

Dye recovery below Mobley Spring was verified by elutriating the exposed charcoal in a basic alcohol solution (Mull, Liebermann, Smoot, and Woosley, written commun., 1988). Because the dye cloud passed this site during the night following the injection (between 7:30 PM January 21 and 7:20 AM January 22), the time of travel between the drainage-well site and Mobley Spring is estimated to range from 6.7 to 18.5 hours. Dye was not detected at the other monitoring sites (Gary Court and Chip'n'Dale Road) during the 7-day period following injection.

ĩ

.

Following verification of the direct connection between surface drainage at the drainage-well site with the ground-water system flowing to Mobley Spring, the two sites were instrumented to collect storm-related data in order to define the water quality of stormwater runoff and in the receiving groundwater basin. Sampling equipment and stage gages were installed at both sites in February 1988. Water samples from storm events and from normal flow conditions were collected during February and March.

7

5

Water samples will be collected during April and May 1988 from watertable wells along the ground-water flow line intersecting the drainage-well site and spring, both upgradient and downgradient from the site. The upgradient water sample will be obtained from an existing well (Mt:M-13) located approximately 1,200 feet east of the drainage-well site (fig. 2) and will provide information on the quality of ground water unaffected by the runoff entering the drainage well. Drilling has been planned for late April in order to provide a downgradient ground-water sampling point between the drainagewell site and the spring.

Methods of Data Collection

Sampling Equipment

Sample collection was automated to permit collection of samples at the beginning of a runoff event, before monitoring personnel could reach the site. Water-quality samplers (ISCO Models 1680 and 2100) were installed at the drainage-well site and spring to collect discrete samples at intervals of 5 and 10 minutes, respectively. Each sampler was wired to a stage recorder through a contact closure that was activated when a preset liquid level was reached.

Precipitation Measurement

Precipitation data were obtained from a tipping-bucket rain gage operated by the U.S. Army Corps of Engineers on the Red River near Clarksville. The gage is located approximately 3.5 miles northwest of the study site.

Stage Measurement

Stage at the drainage-well site (gaging station Hospital Sink Hole at Clarksville, Tennessee, 03436138) is measured with a Stacom manometer and recorded on a digital recorder at 5-minute intervals. A stage-volume relation was estimated from elevation data provided by the Soil Conservation Service (Larry Hasty, Soil Conservation Service, written commun., 1988). A relation between stage in the sinkhole basin and discharge through the sink outlet (drainage wells) was developed by pairing each stage value on the receding limb of the stage hydrograph with the corresponding incremental volume change calculated from the stage-volume relation.

Stage in the channel immediately downstream of the spring outlet (gaging station Mobley Spring at Clarksville, Tennessee, 03436139) was measured with a

stilling well and recorded on a digital recorder at 5-minute intervals. Discharge from the spring was estimated from stage data through a stage-discharge rating developed for the channel.

Sample Collection

The schedule of sampling during a storm varied for each of the four storm events (table 1). Samples from storm 1, February 5, 1988, which predated installation of the automated sampling equipment, were collected as a single grab sample at each site. The objective of operating the automated sampling equipment is to collect samples before, during, and after the storm hydrograph peak at both sites. The sample sets from storms 2 and 3 are not complete, however, because of initial difficulty in establishing proper settings of equipment controls. At least one sample from each event was analyzed for major constituents, total organic carbon, selected trace metals, oil and grease, and presence of organic compounds.

A water sample from Mobley Spring was collected during normal flow conditions on February 29, 1988, to obtain information on background levels of constituents in ground water.

Sample Handling and Analysis

Samples were retrieved from the automatic samplers and placed in insulated containers as soon as monitoring personnel could reach the site following the storm, then transported to the Nashville field office. Measurements of specific conductance were performed either at the sampling site or shortly after transport to the field office. Samples were composited when necessary to achieve sufficient volume for analyses. The samples were packed with ice and sent to the U.S. Geological Survey laboratories in Arvada, Colorado and Ocala, Florida for analysis.

Analytical methods for the determination of major constituents and selected trace metals are described in Fishman and Friedman (1985). Analytical methods for total organic carbon and oil and grease determination, and for screening for the presence of organic compounds by gas chromatography and flame ionization detection (GC/FID) are described in Wershew and others, 1987). The GC/FID analysis provides semi-quantitative data on the presence and levels of organic substances. Although individual compounds cannot be identified, retention times on the GC column and concentrations [with variable minimum detection limits ranging from 1 to 50 micrograms per liter (ug/L)] for each compound are determined, providing a 'fingerprint' of the organic substances in the water sample. Seven groups of organic compounds, the methylene chloride-extractable compounds (listed in the Appendix), may be detected by this method.

Results of Water-Quality Analyses

Results of analyses of samples collected from the drainage-well site and spring during three storms and from the spring during normal flow conditions are given in tables 2 and 3. Trace-metal analyses of samples from the spring

Table 1.--Summary of hydrologic conditions and sampling schedule at test sites for each sampling event

[S = standard analysis (major constituents, specific conductance, total organic carbon) (see table 2);

T = selected trace-metal analysis (see table 3); D = oil and grease analysis (see table 3);

G = gas chromatograph flame ionization screening of organic compounds (see figures 4-7);

NR = no record]

			Rain-	level			
			fall	rise	Sample		
Site	Storm	Date	(in)	(ft)	type	Analyses	
		1					
bley Spring		02/29/88	0.00	0.00	Single	5,T,O,G	
ainage well	1	02/02/88	1.47	NR	Single	\$,T,O,G	
ley Spring	1			NR	Single	\$,T,O,G	
					2		
ainage well	2	02/14/88	1.04	NR	Time-composite • 1 sample	T,G	
bley Spring	2			0.53	Time composite - 1 sample	T,G	
					2		
rainage well	3	02/19/88	0.28	NR	Time-composite - 1 sample	s	
bley Spring	3			0.06	None		
rainage well	4	03/25/88	0.15	0.27	Time series - 28 samples	S,T,O,G	
obley Spring	4			0.04	Time series - 28 samples	S,T,O,G	

1

7

٠,

.

Samples were taken during normal flow conditions

2

Insufficient volume in each sample bottle required compositing to a single sample.

Table 2.--Temperature, specific conductance, pH, total organic carbon, potassium, major anion, and alkalinity data for samples from storms 1-4 and from normal flow conditions

.

.

.

÷

-

STORM	DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH LAB (STAND- ARD UNITS) (00403)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)
			0343613	8	· HOSPITA	L SINKHOL	E AT CLAR	KSVILLE,	TN		
	FEB										
1	02 FEB	1630	8.0	65	7.10	2.8	0.60	3.8	5.4	0.20	22
2	14-14	1515	••	650	••		••	••	••		-
	FEB										
3	19-19	0700	7.5	122	7.50	••	••		••	••	
	MAR							,			
4	25	0700	20.0	155							-
	25	0710	20.0	115	••	••					-
	25	0720	20.0	96							-
	25	0730	20.0	9 9	••	••		••		••	-
	25	0740	20.0	100	••						
	25	0750	20.0	105	••	••			••		
	25	0805	20.0	108	••		••	••			
	25	0820	20.0	112						••	
	25	0840	20.0	110	••	••	••		••	••	
	25	0900	20.0	120				••			
			0343	5139	- MOBL	EY SPRING	AT CLARK	SVILLE, T	N		
	FEB										
1	02	1700	14.5	358	7.00	2.1	1.3	14	15	0.20	127
2	14 - 14	1515		684						• -	
	29	1030	15.0	500	7.80	2.5	1.3	19	18 .	0.20	217
	MAR	·									
4	25	0520	17.0	460			••	••		••	
	25	0540	17.0			•-		••			
	25	0600	17.0	550			••				
	25	0620	17.0				••		••		
	25	0640	17.0					• •		••	
	25	0700	17.0				••	••	••	••	
	25	0730	17.0	549	,	••					
	25	0800	17.0			••	••	••		• •	
	25	0840	17.0				••		•-		
	25	0910	17.0	554							

-

Table 3Selected tr	race-metal and	d oil-grease	concentration	data fro	m storms	1-4			
and from normal flow conditions									

۰.

;

-

•

-

					MAGNE -		SODIUM		BERYL-		CHRO-		
STORM	DATE	TIME	HARD- NESS (MG/L AS CACO3)	CALCIUM TOTAL RECOV. (MG/L AS CA)	SIUM, TOTAL RECOV. (MG/L AS MG)	SODIUM, TOTAL RECOV. (MG/L AS NA)	AD- SORP- TION RATIO	BARIUM, TOTAL RECOV. (UG/L AS BA)	LIUM, TOTAL RECOV. (UG/L AS BE)	CADMIUM TOTAL RECOV. (UG/L AS CD)	MIUM, TOTAL RECOV. (UG/L AS CR)	COBALT, TOTAL RECOV. (UG/L AS CO)	COPPER, TOTAL RECOV. (UG/L AS CU)
			(00900)	(00915)	(00925)	(00930)	(00931)		(01010)	(01025)	(01030)	(01035)	(01040
				0343613	8	- HOSPITA	L SINKHOL	E AT CLAR	KSVILLE,	TN			
	FEB												
1	02 FEB	1630	27	9.8	0.68	2.5	0.2	20	<0.5	3	<5	<3	<1(
2	14-14 FEB	1515	180	39	19	30	1	83	<0.5	<1	<5	<3	<1
3	19-19	0700	65	23	1.7	11	0.6	39	<0.5	2	10	<3	4
				03436	5139	- MOBLE	Y SPRING	AT CLARKS	SVILLE, TH	ı			
	FEB												
1	02 FEB	1700	150	52	5,3	7.8	0.3	49	<0.5	2	<5	<3	<1
2	14 - 14	1515	210	47	23	28	0.9	11	<0.5	<1	<5	<3	<1
••	29	1030	••		••	••					• -	• •	

.

.

-

.

Table 3Selected trace-metal and oil-grease concentration data from storms 1-4	
and from normal flow conditions (continued)	

.

.-

-

STORM	DATE	JRON, TOTAL RECOV. (UG/L AS FE) (01046)	LEAD, TOTAL RECOV. (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV. (UG/L AS MN) (01056)	MOLYB- DENUM, TOTAL RECOV. (UG/L AS MO) (01060)	NICKEL, TOTAL RECOV. (UG/L AS NI) (01065)	SILVER, TOTAL RECOV. (UG/L AS AG) (01075)	STRON- TIUM, TOTAL RECOV. (UG/L AS SR) (01080)	VANA- DIUM, TOTAL RECOV. (UG/L AS V) (01085)	ZINC, TOTAL RECOV. (UG/L AS ZN) (01090)	LITHIUM TOTAL RECOV. (UG/L AS LI) (01130)	OIL AND GREASE, TOTAL RECOV. GRAV1- METRIC (MG/L) (00556)
			03	436138	- нс	SPITAL ST	NKHOLE AT	CLARKSVI	LLF. TN			
	FEB		•••			••••••••••••••			,			
1	02	820	<10	48	<10	<10		110	<6	130	33	<1
	FEB											
2	14-14	160	<10	95	10	<10	<1	220	<6	14	22	••
_	FEB											
3	19-19	3000	50	89	<10	<10		140	7	150	<4	2
				03436139	-	MOBLEY SP	RING AT C	LARKSVILL	E, TN			
	FEB											
1	02	2700	<10	9 9	<10	<10	••	200	<6	57	44	••
	FEB											
2	14 - 14	13	<10	4	10	<10	<1	350	28	65	12	••
••	29				••				•••			<1
			:									

.

during normal flow conditions, and all analyses of samples from the fourth storm have not been completed by the lab. Results from the GC/FID screening technique are presented as chromatograms (figs. 4-7) showing retention time versus magnitude of detector response (equivalent to concentration). Organic compounds in samples collected during the planned April-May sampling program will be determined using the gas chromatographic-mass spectrometric (GC/MS) analytical method (Wershaw and others, 1987). This method provides absolute identification and quantification of phenols, polynuclear aromatic hydrocarbons, and other base-neutral extractable organic compounds.

.7

Drainage-Well Site (Hospital Sinkhole)

The samples of urban runoff at the drainage-well sites had specificconductance values ranging from 65 to 650 uS/cm (microsiemens per centimeter). Concentrations of total-recoverable metals in the samples from storms 1 to 3 varied; of the 19 metals sampled, all but three (beryllium, cobalt, and nickel) were present in concentrations above the detection level. Concentrations of 11 metals were highest in the sample from storm 2; however, iron (as Fe) and lead (as Pb) were present in highest concentrations (3,000 and 50 ug/L, micrograms per liter, respectively) in samples from storm 3. Concentration of total recoverable oil and grease in the storm 1 sample was below the detection limit of 1 (milligrams per liter (mg/L), and in the storm 3 sample was 2 mg/L.

GC/FID screening of samples from the drainage-well site, storms 1 and 2 (figs. 4 and 5), indicate the presence of phenols, polynuclear aromatic hydrocarbons, and other base-neutral extractable organic compounds. Concentrations are low, ranging from 1 to 21 ug/L.

Mobley Spring Site

The samples collected from Mobley Spring during storms 1 and 2 had specific-conductance values of 358 and 684 uS/cm, respectively, compared to a value of 500 uS/cm in the sample collected during normal flow conditions. Total-recoverable concentrations of metals in the samples from storms 1 and 2 varied; of the 19 metals sampled, all but seven (beryllium, chromium, cobalt, copper, lead, nickel, and silver) were present in concentrations above the detection limit. Iron (as Fe) and manganese (as Mn) were present in high concentrations (2,700 and 99 ug/L, respectively) in samples from storm 1. The total-recoverable concentration of oil and grease was below the detection limit of 1 mg/L in the sample from normal flow conditions.

Organic compounds from all seven groups of methylene chloride-extractable organic compounds were present in the storm 1 sample. Concentrations could not be estimated because of interference by sample compounds with detection of internal standards and calculation of recovery rates. The concentrations for each compound reported in figure 6, ranging up to 730 ug/L, may therefore be lower than the actual values.

The sample from normal flow conditions contained phenols, polynuclear aromatic hydrocarbons, and other base-neutral extractable organic compounds

Figure 4.--Chromatogram and estimates of concentration of organic compound

NAME	UGZL	RT	AREA	БC	RF	RRT
9 10 11 2,2-DFB. 1,1-PIPHEN 2,4,6-TBP. 15 16 17 18 19 20 21 22 23	12.851 1.984 20.968 53.101 INTERNAL STD 144.9 2.153 7.524 6.096 4.746 4.051 2.308 6.041 7.402 3.284	$\begin{array}{c} 5.05\\ 5.94\\ 6.92\\ 14.95\\ 15.45\\ 15.45\\ 20.8\\ 23.26\\ 23.26\\ 25.65\\ 25.65\\ 26.69\\ 26.69\end{array}$	1969322 866834	01 01 01 01 01 01 02 02 02 02 02	1.471 1.471 1.471 1.381 5.487 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471 1.471	0.387 0.451 0.975 1.204 1.204 1.308 1.487 1.519 1.576 1.654 1.654 1.672 1.709
TOTALS	277.409		5879064			
SUMMARY REF	OFT INDEX	1 F.	ILE 1.	CH=	"B" PS	= 1.
NAME 4-PICCLINE 2-MP. 2,4-DMP. 2,5-DMP. NAPHTHALEN QUINOLINE 2,2-DFB. 1,1-BIPHEN DIPENZOFUR 2,4,6-TBP. UNKNOWNS	UG/L 8. 9. 9. 9. 9. 53.101 9. 53.101 9. 144.9 79.408					
TOTAL	277.489		-			

۰.

•

.

•

Figure 4.--Chromatogram and estimates of concentration of organic compounds for the sample from the drainage-well site for storm 1, February 2, 1988 (continued).

DETECTOR RESPONSE

Figure 5.--Chromatogram and estimates of concentrations of organic compounds for the sample from the drainage-well site for storm 2, February 14, 1988.

RETENTION TIME

MAME	UG. L	RT	AREA	BC	RF	RRT
10 2,2-PFB. 1,1-BIPHEN INTE DIBENZOFUR 14 2,4,6-TBP. 16 17 18 19 20 21 22 23	7.24 98.346 98.346 RNAL STD 6.308 281.094 6.723 3.188 10.694 5.777 3.732 10.832 4.9 7.506	$\begin{array}{c} 15.04\\ 15.2\\ 15.58\\ 16.69\\ 18.15\\ 18.72\\ 19.86\\ 20.56\\ 21.99\\ 23.09\\ 23.59\\ 24.\\ 26.52\\ 26.96\end{array}$	85084 1631425 1710307 146286 74131 1177604 79098 37468 125680 67894 43853 127311 57586 88208	02 03 01 02 03 01 03 01 01 01 01	1.937 1.37 1.37 1.97 1.99 1.99 1.99 1.99 1.99 1.99 1.9	73 0.976 1. 1.071 38 1.165 37 1.202 38 1.275 38 1.32 38 1.411 38 1.514 38 1.54 38 1.702
TOTALS	456.549		5451845			
SUMMARY REPORT	INDEX	1 F	ILE 1.	CI	H= "A"	PS= 1.
MAME 4-PICOLINE 2-MP. 2:4-DMP. 2:5-DMP. NAPHTHALEN GUINOLINE 2:2-DFB. 1:1-BIPHEN DIBENZOFUR 2:4:6-TBP. UNINGUNS	UG/L 0. 0. 0. 0. 98.346 0. 10.21 281.094 65.899					

,"

.

-

Figure 5.--Chromatogram and estimates of concentrations of organic compounds for the sample from the drainage-well site for storm 2, February 14, 1988. (continued).

Figure 6.--Chromatogram and estimates of concentrations of organic compound for the sample from Mobley Spring for storm 1, February 2, 1988.

1(1)1	ՍՆ.Լ	<u></u>	HI EH	E'L	11	1
17 18 19 20 21 22 4-PICOLINE 24 25 26 27 28 20 20 21 22 28 20 20 21 22 28 20 20 21 22 28 20 20 21 22 28 20 20 21 23 24 25 26 27 28 20 21 24 25 26 27 28 20 21 27 28 20 20 21 23 24 25 26 27 28 20 20 21 23 24 25 26 27 28 20 20 21 23 24 25 26 27 28 20 20 21 23 24 25 27 28 20 20 21 23 24 25 27 28 20 20 20 20 20 20 20 20 20 20	11.491 1.491 1.574 1.574 1.574 1.574 1.574 1.574 1.574 1.574 1.574 1.574 1.574 1.576 1.576 1.576 1.576 1.57767777 1.5776 1.5776 1.57767777	898 94 7677 8981778888 57997448988 879878 8465222662 6 801424547495 1968 898 94 7864587579184949499988 579948498957 846827568477894449945419595 57555555555791849494494499988 579948498957 846827555555555555771799599919959 575555555555	554822 1245205 730102 8959567 12216577 12216577 1596129 12173547 208378 7736577 1596129 1217354 1295321 12173547 1295321 121735481 12956321 12147924 12252448 12056923 40182232 12411938 22034706 543847126 32507515 5726057515 5726057515 5726057515 5726057515 562531165178948 125464677 1655454639 1254546531 165775731 2636575474 1257454639 37825444 19775773 29037389 80688882 29017594 2512573 165178948 37825444 19775773 29037389 80688882 29017594 12516475 2902739 2512594 15114042 15114042 15114042 1512475 1527474 1527474 152747 102195	06 06 06 06 06 06 06 06 06 06 06 06	$\begin{array}{c} 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
TOTPLS	5352, 575		500044022			
SUMMARY REP	PORT INDEX	1	FILE 1.	CH=	"B" PS:	= 1.
NA 4 4-Produline 2-MP. 2:4-DMP. 3:5-DMP. NAPHTHALEN 00INOLINE 2:2-DFB. 1:1-BIPHEM 1:BENZOFUR 2:4:6-TBP. 0MPNONNS	UG/L 8.191 60.834 135.269 595.833 30.473 13.492 22.517 8. 11.002 46.627 4427.337			·		
TOTAL	5352.575		•			

.

Figure 6.--Chromatogram and estimates of concentrations of organic compounds for the sample from Mobley Spring for storm 1, February 2, 1988 (continued).

Figure 7.--Chromatogram and estimates of concentration, of organic compounds for the sample from Mobley Spring for normal flow conditions, February 29, 1988.

RETENTION TIME

INFIE	UG/L	F: T	FREA	EIC:	FF	FET
4-PICOLINE 20 21 22 22 24 25 26 27 28 2-MP. 31 3,5-DMP. 32 MAPHTHALEN 25 QUINOLINE 37 38 39 2,2-DFE. 1,1-BIPHEN 42 42 2,4,6-TBP. 46 47	9.571 21.735 1.732 1.272 INTERNAL STD 50.122 1.122	6.7738 9.992479788 9.9924739788 9.999247387616164 112247856164 11223566164 11223566164 11444 15	83426 264196 64191 90256 91442 36082 148677 136481 446578 446578 420564 291284 94020 887726 321648	60000000000000000000000000000000000000	1.938998968968948338893 1.93798968848338893 1.9479968849338893 1.947968849338883 1.499358883 1.49935 1.9935 1.49955 1.49955 1.49955 1.499555 1.499555 1.499555 1.49955555555555555555555555555555555555	0.000000000000000000000000000000000000
TDIPLS	266.094		13605688			
SUMMARY REP	ORT INDEX	1 F	ILE 1.	CH=	"A" PS	= 1.
NAME 4-PICOLINE 2-MP. 2,4-DMP. 3,5-DMP. NAPHTHALEN QUINOLINE 2,2-DFB. 1,1-BIPHEN DIBENZOFUR 2,4,6-TBP. UNKNOWNS	UG/L 6.791 1.647 0.687 15.551 4.31 19.802 1.273 0. 0.935 5.482 209.616					

,

+.- - - .

3

•

.

Figure 7.--Chromatogram and estimates of concentrations of organic compounds for the sample from Mobley Spring for normal flow conditions, February 29, 1988 (continued). (fig. 7). Although reported concentrations are probably low for this analysis as well, because of interference with recovery of the internal standard, they appear to be lower (less than 51 ug/L) than the levels in the storm 1 sample.

ł

Comparison with Drinking-Water Standards

Analyses of the samples are compared with the State primary and secondary drinking-water standards (Tennessee Division of Water Management, 1977). Comparison of levels for trace-metal data is not straightforward because samples were analyzed for total levels (dissolved and suspended), whereas drinkingwater standards apply to the dissolved phase only. The primary maximum contaminant level of 50 ug/L for lead (as Pb) was exceeded by the drainage-well site sample from storm 1. The secondary maximum contaminant level of 300 ug/L for iron (as Fe) was exceeded by drainage-well site and spring samples, and the secondary maximum contaminant level of 50 ug/L for manganese (as Mn) was equaled by one drainage-well site sample.

SUMMARY

A drainage-well and a spring site in Clarksville, Tennessee, have been instrumented to collect storm-related data in order to define the water quality of stormwater runoff and receiving ground water. A dye-trace test verified the direct connection between surface drainage at the drainage well at Clarksville Memorial Hospital with the ground-water system flowing to Mobley Spring. Automated water-quality samplers collect discrete samples at selected time intervals throughout a storm event, and stage is recorded at each site. Samples of storm runoff and spring flow were collected during four storms and during normal flow conditions during February and March 1988.

Samples were analyzed selectively for major water-quality constituents, selected trace metals, and organic compounds. Several samples from the drainage well and the spring had trace-metal concentrations that exceeded maximum contaminant levels for State drinking-water standards. Phenols, polynuclear aromatic hydrocarbons, and other base-neutral extractable organic compounds were present in samples from both the drainage well and spring. The highest concentrations of these compounds occurred in samples collected at Mobley Spring during a storm event.

REFERENCES

- Crawford, N.C., and Groves, C.G., 1984, Storm water drainage wells in the karst areas of Kentucky and Tennessee: Extended inventory of drainage wells in Kentucky and Tennessee: Center for Cave and Karst Studies, Western Kentucky University, 50 p.
- Federal Highway Administration, 1981, Constituents of Highway Runoff: Report No. FHWA/RD-81/042-047.
- Fishman, M.J., Friedman, L.C., 1985, Methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Al, 709 p.
- Kemmerly, P.R., 1980, Sinkhole collapse in Montgomery County, Tennessee: State of Tennessee Division of Geology, Environmental Geology Series No. 6.
- Milligan, J.D., Wallace, I.E., and Betson, R.P., 1984, The relationship of urban runoff to land use and groundwater resources, Knoxville, Tennessee, 1981-1982: Tennessee Valley Authority Division of Air and Water Resources Technical Report, 171 p.
- Tennessee Division of Water Quality Control, 1977, Public Water System in Rules of Tennessee Department of Health and Environment - Bureau of Environment, Division of Water Management: Chapter 1200-5-1, 33 p.
- U.S. Soil Conservation Service, 1986, Clarksville Memorial Hospital flood prevention RC&D measure plan, Measure #47-6002-125-032: Nashville, Tennessee, Department of Agriculture, 14 p.
- Wershaw, R.L., Fishman, M.J., Grabbe, R.R., and Lowe, L.E., 1987, Methods for the determination of organic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 80 p.

-	APPENDIX
4	*************
	*
	* METHYLENE CHLORIDE EXTRACTABLE COMPOUNDS *
	* (Priority Pollutant Organic Compounds and other Hazardous Organic *
	* Substances; Prepared from Supelpreme-HC Standards from SUPELCO, Inc.) *
	* *

[RRT - retention time on gas chromatigraphic column relative to internal standard]

Group: 1 PHENOLS

RRT	Compound Names Det	ection Limit Range (ug/L)
	· · · · · · · · · · · · · · · · · · ·	
0.59	2-Chlorophenol	1-5
0.58	Phenol	1-5
0.75	2-Nitrophenol	5-10
0.77	2,4-Dimethylphenol	1-5
0.79	2,4-Dichlorophenol	5-10
0.91	4-Chloro-3-methylphenol	5-10
0.97	2,4,6-Trichlorophenol	5-10
1.11	2,4-Dinitrophenol	10-20
1.13	4-Nitrophenol	10-20
1.19	2-Methyl-4,6-dinitrophen	ol 5-10
1.31	Pentachlorophenol	10-20

Group: 2 BASE-NEUTRAL # 1

.

RRT	Compound Names Detection	Limit Range (ug/L
0.23	N-Nitrosodimethylamine	1-5
0.58	Bis (2-Chloroethyl) Ether	1-5
0.66	Bis (2-Chloroisopropyl) Ether	1-5
0.68	N-Nitrosodi-n-Propylamine	1-5
0.78	Bis (2-Chloroethoxy) Methane	1-5
1.06	Dimethyl Phthalate	1-5
1.18	Diethyl Phthalate (Coeluted)	1-5
1.18	4-Chlorophenylphenyl Ether (Coe	eluted)
1.20	N-Nitrosodiphenylamine	1-5
1.26	4-Bromophenylphenyl Ether	1-5
1.44	Di-n-Butyl Phthalate	1-5
1.68	Butyl Benzyl Phthalate	1-5
1.79	Bis (2-Ethylhexyl) Phthalate	1-5
1.88	Di-n-Octyl Phthalate	1-5

-

•		
• 	APPENDIX (continued)	
_*************************************	*****	*******
7 *		*
	THYLENE CHLORIDE EXTRACTABLE COMP	
<pre>* (Priority Po * Substances*</pre>	llutant Organic Compounds and oth	ner Hazardous Organic *
* Substances;	Prepared from Supelpreme-HC Star	ndards from SUPELCO, Inc.) *
****	****	******
[KKI = retention]	time on gas chromatigraphic column relat	tive to internal standard]
Group: 3 BASE-NE	UTRAL # 2	
RRT	Compound Namos Dot	
	Compound Names Det	cection Limit Range (ug/L)
0.61	1,4-Dichlorobenzene	1-5
0.62	1,3-Dichlorobenzene	1-5
0.64	-,	1-5
0.69	Hexachloroethane	10-20
0.70	Nitrobenzene	1-5
0.74	Isophorone	1-5
0.80	1,2,4-Trichlorobenzene	1-5
0.84	Hexachlorobutadiene	10-20
	Hexachlorocyclopentadier	ne 10-20
1.00	2-Chloronaphthalene(Coel	luted w IS) 1-5
1.07	2,6-Dinitrotoluene	1-5
1.13	2,4-Dinitrotoluene	1-5
1.21	Azobenzene	1-5
1.28	Hexachlorobenzene	5-10

Group: 4 HAZARDOUS SUBSTANCES # 1

RRT ···	Compound Names	Detection Limit Range (ug/L)
0.67	2-Mathulahanal	E.10
0.69	2-Methylphenol 4-Methylphenol	5-10 5-10
0.79	Benzoic acid	10-20
0.98	2,4,6-Trichloropheno	1 5-10

Group: 5 HAZARDOUS SUBSTANCES # 2

	RRT	Compound Names	Detection Limit Range (ug/L)
		- **	
	0.57	Aniline	5-10
	0.64	Benzyl Alcohol	5-10
	0.83	3-Nitroaniline	5-10
	0.92	4-Chloroaniline	1-5
	1.02	2-Methylnaphthalene	5-10
	1.09	2-Nitroaniline	5-10
•	1.12	Dibenzofuran	1-5
	1.19	4-Nitroaniline	5-10

.

a •	APPENDIX (continued)
<u>₹</u> ***** *	* * * * * * * * * * * * * * * * * * * *
* * *	METHYLENE CHLORIDE EXTRACTABLE COMPOUNDS (Priority Pollutant Organic Compounds and other Hazardous Organic Substances; Prepared from Supelpreme-HC Standards from SUPELCO, Inc.)
*****	***************************************

[RRT — retention time on gas chromatigraphic column relative to internal standard]

Group: 6 POLYNUCLEAR AROMATIC HYDROCARBONS (PAH)

RRT	Compound Names Detection 1	imit Range (ug/L)
0.81	Naphthalene	1-5
1.06	Acenaphthylene	1-5
1.09	Acenaphthene	1-5
1.18	Fluorene	1-5
1.33	Phenanthrene (Coeluted)	1-5
1.33	Anthracene (Coeluted)	1-5
1.52	Fluoranthene	1-5
1.55	Pyrene	1-5
1.75	Benzo(a) Anthracene (Coeluted)	1-5
1.75	Chrysene (Coeluted)	1-5
1.92	Benzo(b) Fluoranthene (Coeluted)	1-5
1.92	Benzo(k) Fluoranthene (Coeluted)	1-5
1.96	Benzo(a) Pyrene	1-5
2.15	Dibenzo(a,h) Anthracene (Coelute	ed) 5-10
2.15	Indeno(1,2,3-cd) Pyrene (Coelute	
2.19	Benzo(g,h,i) Perylene	5-10

Group: 7 PESTICIDES

RRT	Compound Names Det	tection Limit Range (ug/L)
1.26	∝-bhc	5-10
1.30	(°-BHC	5-10
1.31	γ -BHC	5-10
1.34	6-BHC	5-10
1.41	Heptachlor	5-10
1.46	Aldrin	5-10
1.51	Heptachlor Epoxide	5-10
1.56	Endosufan I	5-10
1.59	Dieldrin (Coeluted)	5-10
1.59	4,4-DDE (Coeluted)	5-10
1.62	Endrin	5-10
1.63	Endosufan II	5-10
1.64	4,4-DDD	5-10
1.65	Endrin Aldehyde	5-10
1.69	Endosufan Sulfate (Coelu	uted) 5-10
1.69	4,4-DDT (Coeluted)	5-10

.