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Abstract

Nonmonotonic logics are meant to be a formalization of nonmonotonic rea-
soning. However, for the most part they fail to embody two of the most
important aspects of such reasoning: the explicit computational nature of
nonmonotonic inference, and the assignment of preferences among compet-
ing inferences. We propose a method of nonmonotonic reasoning in which
the notion of inference from specific bodies of evidence plays a fundamen-
tal role. The formalization is based on autoepistemic logic, but introduces
additional structure, a hierarchy of evidential spaces. The method offers a
natural formalization of many different applications of nonmonotonic rea-
soning, including reasoning about action, speech acts, belief revision, and
various situations involving competing defaults.
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1 Introduction

The nonmonotonic character of commonsense reasoning in various domains
of concern to Al is well established. Recent evidence, especially the work
connected with the Yale Shooting Problem (see [4]) has illuminated the often
profound mismatch between nonmonotonic reasoning in the abstract and
the logical systems proposed to formalize it. This is not o say that we
should abandon the use of formal nonmonotonic systems; rather, it argues
that we should seek ways to make them model our intuitive conception of
nonmonotoni¢ reasoning more closely. Generally speaking, current formal
nonmonotonic systems suffer from two shortcomings:

1. They have no computationally realizable implementation.

2. They have only limited means for adjudicating among competing non-
monotonic inferences.

- Reviewing the current major formalisms in this regard: Circumscription
[11] and related model-preference systems [17], default logic [15], and au-
toepistemic (AE) logics [13; 7] are computationally intractable. The various
proposals based on the notion of defeasible rules (see, for example, [14]) have
yet to be given an implementation. The standard means of arriving at an
“implementation is to restrict the formal language, which restricts the expres-
sivity of the resulting system, often to a rather severe extent.

The importance of having a flexible means for deciding among compet-
ing nonmonotonic inferences has become clear in the recent debate over the
Yale Shooting Problem. It also arises in other contexts, such as taxenomic
hierarchies [2] or speech act theory [1]. Prioritized circumscription [9] gives
‘circumscription the capability of assigning priorities to various default as-
_sumptions. To some extent, preferences among default inferences can be en-
coded in AE and default logics by introducing auxiliary information into the
statements of defaults. This method, however, does not always correspond
 satisfactorily with our intuitions. The most natural statement of preferences
~is with respect to the multiple extensions of a particular theory; that is, we
‘prefer certain extensions because the default rules used in them have a higher
priority than those used in alternative extensions. :

. Hierarchic autoepistemic logic, or HAEL, is a modlﬁca,tzon of a.utoepls—
'termc logic [13] that addresses issues of 1mp1ementat10n and priorities. In
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HAEL, the primary structure is not a single uniform theory, but rather, a
collection of spaces linked in a hierarchy. Spaces represent different sources
of information available to an agent, and the hierarchy expresses the way
in which this information is combined. For example, in representing taxo-
nomic defaults, more specific information would iake precedence over more
general attributes. HAEL thus permits a natural expression of preferences
among defaults and, in general, a more natural translation of our informal
conception of nonmonotonic reasoning into a formal system. Further, given
the hierarchic nature of the relation among spaces, there is a well-founded
constructive semantics for the autoepistemic operator, in contrast to the
usual self-referential fixedpoints. We can then easily arrive at computational
realizations that make use of resource-bounded inference methods.

HAEIL has been implemented and integrated with KADS, a resolution
theorem-proving system for commonsense reasoning [3]. We have developed
axiomatizations for reasoning about action, a preliminary form of belief revi-
sion, and speech-act theory. Currently, the resolution system and speech-act
axiomatization are being employed in a natural-language generation system
[1].

This paper has the following outline. The deficiencies of AE logic are
pointed out in Section 2. In Section 3, we present an informal overview
of HAEL, its relation to AE logic, and its applicability for nonmonotonic
reasoning. Section 4 contains the formal characterization of HAEL, including
its semantics and characterization in terms of stable sets. In Section 5, we
list several extensions and problematic issues for HAEL.



2 Autoepistemic Logic

Autoepistemic logic was originally developed by Moore {13] as a means of
- formalizing reasoning about one’s own beliefs. Other research, especially
[7; 5], suggests that default reasoning might also be represented in terms of
reasoning about self-belief. For example, consider the default statement

Bats normally fly. (1)
Recasting this in terms of self-belief, we might say something like

If I know that 2 is a bat, then I'll assume z flies unless I 2)
have information to the contrary. -
The key phrase here is the “unless” clause, which makes the rule inapplicable
in the presence of conflicting information.

In AE logic, self-belief is represented by using a modal operator L. The
construction L¢ is intended to mean: “the sentence ¢ is one of my beliefs.”
The AE logic version of sentence (2} above is the schema

LBx A-L-Fa D Frx . (3)

The predicate B is the property of being a bat, and the predicate ' the
property of flying. The astute reader will note that there 1s no L operator on
the conclusion of the implication; the reason for this is part of the technical
- subtleties of AE logic, and may be found in [5}.

The formalization of AE logic is a good approximation to default reason-
ing: in [6], we show how the correct representational scheme can embody
some of the main features of this reasoning. However, as we mentioned in
the introduction, there are still significant problems, which we now discuss.

‘2.1 Priorities

Often defaults will conflict, and it is an important part of default reasoning to
be able to decide which of a conflicting pair should dominate. For example,
we might have a default that normally mammals do not fly. Since bats are
- mammals, an individual bat & has defaults for both flying and not flying. In

. this case, it is clear that we should choose the default that relies on the more

'specific information, since bats as a subclass of mammals generally do fly.
In AE logic, these defaults are represented as

5.



LBazA~-L-Fz D Fx (@)
LMxz AN=LFz D -Fa,

where M is the property of being a mammal. The usual way in which pri-
orities are specified for defaults is to modify the mammal default by adding
an extra part to the =LFx atom (see [16]). This becomes:

LMz A-L{(FazV Bz) D ~Fz. (5)

The presence of Bx under the self-belief operator means that if an individual
@ is known to be a bat, the default rule for mammals will not be applicable.

In cases where the conflict between defaults is evident, as in this exam-
ple, this modification will work. However, consider the case of complicated
domain knowledge in which it is difficult to predict whether or not two prop-
erties (call them P and @) conflict. Suppose that bats normally have property
P, and mammals property :

LBx AN—=L-Pzx D Pz (6)
LMz A-L-Qz D Qu .

Now we have a dilemma. If P and @Q actually do conflict for an individual bat
x, then we should rewrite the second sentence to disable the default for , or
else there is an unresolved conflict. But if we do this, and the properties do
not conflict, then we give up concluding that z has property ¢. So without
explicit knowledge about the relationship of P and @, it is impossible to tell
how the default for property @ should be written.

So far, we have been unable to find a simple solution to this problem,
although by complicating the representation of defaults it may be possible.
But priorities on default rules are only part of the problem: more generally,
we will have priorities on the evidence that we use as the input to defaults.
Consider, for example, the classic Nixon diamond:

Republicans are normally Hawks.

LRx A—L-Hz D Hz

Quakers are normally Pacifists. 1)
LQx A-L-Pz D Pz

Nixon is a Quakef and Republican.
Qn A\ Rn



It is a commmon intuition that these defaults truly conflict, that is, it is im-
possible to decide on this basis whether an individual like Nixon is a hawk
or a pacifist.

Now suppose that we have uncertain information about Nixon: we are
absolutely sure that he is a Republican, but have only weak positive support
for him being a Quaker. In this case, we would have a preference for applying
the default for Republicans, since its inputs are so much more certain. What
this example suggests is that preferences or support among different bodies
of input evidence is just as important as the defaults themselves in deciding
which of a conflicting pair of defaults to apply. In fact, we can treat the
taxonomic example in terms of priorities among evidence: we prefer applying
a rule whose evidence is more specific. Several systems have been proposed in
which general rules of evidence preference are used to guide the adjudiction of
conflicting defaults [10; 14]. However, there is no explicit formal mechanism
in AE logic (or in any of the other main nonmonotonic formalisms) to support
even a basic theory of evidence.

2.2 Computational Issues

Autoepistemic logic, when based on a first-order language, is not even semide-
cidable [8]. Given this, there are two ways in which we might find an au-
tomatable proof theory for the logic.

1. Use a weaker language.
2. Use an incomplete inference procedure.

The first solution, weakening the language, has been investigated only to the
extent that the propositional case is known to be decidable {12]. However,
this alternative is undesireable because it can severly limit the expressivity
“of the language, and the ability to formalize default statements in a simple
manner.

The second alternative, a sound but incomplete inference procedure, is
one that has been used with success in many automated reasoning systems
* for Al that employ a first-order language. Generally we are interested in only
- a small fraction of the consequences of a set of proper axioms, and we can
" use heuristic procedures to guide the construction of the appropriate proofs.
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Heuristic proof methods for first-order logic depend on the fact that sound
local rules of inference exist. By local we mean that the input to these
rules is a fixed number of sentences that have been established as provable.
- For example, modus ponens is a local inference rule which takes two input
sentences of the form A and A D B, and returns the sentence B. For Al
logic, however, there cannot be any local rules for many sentences involving
the L operator. The reason is that the definition of an AE theory (called
an exlension) involves a fixedpoint construction. In effect, it is generally
impossible to tell whether an arbitrary sentence of the form —~L¢ is a theorem
without having already determined the complete set of theorems. In effect,
this precludes us in the general case from having local rules of inference that
are sound.



L

Figure 1: Auloepistemic semantics

3 Hierarchic Autoepistemic Theories

Hierarchic AE logic is derived from AE logic by splitting a uniform belief set
into components, called spaces. In AE logic, an agent is assumed to have an
initial set of premise sentences, A. The language of A contains an operator
L for talking about self-belief: L¢ is intended to mean that ¢ is one of the
agent’s beliefs. A belief set T that is derivable from the premises A by an
ideal agent will be stable with respect to self-belief, that is, a sentence ¢ is in
T if and only if L¢ is in T. This interpretation of L is clearly self-referential,
since it refers to the theory in which L itself is embedded (see Figure 1).

In the hierarchic modification of AE logic, the dependence of L on T is
broken by dividing T into a hierarchy of spaces, and indexing L so that it
refers to spaces beneath it in the hierarchy. For example, we might divide
T into two spaces, Ty and T3, with T) succeeding Ty in the hierarchy (see
Figure 2). Space T; may contain atoms of the form Lo¢, which refer to the
. presence of ¢ in the space Tp. The interpretation of L is constructive as long
as the hierarchy is well-founded (no infinite descending chains) and every
space contains only modal operators referring to lower spaces.

HAEL is still an autfoepistemic logic, because the spaces together com-
‘prise the agent’s belief set. In fact, HAEL could be considered a more natural
formalization of autoepistemic reasoning than AE logic, because of its hierar-

- chic structure. In A¥E logic, we found it necessary to characterize extensions

‘in terms of the groundedness of inferences used in their construction (see
[5]),in order to exclude those containing circular reasoning. No such device
is necessary for HAEL; circularity in the derivation of beliefs is impossible

9



TI:

Ty > To

Figure 2: Hierarchic autoepistemic semantics

by the nature of the logic.

Breaking the circularity of AE logic has other advantages. Given a fairly
natural class of closure conditions, every HAEL structure has exactly one
“extension,” or associated theory. So HAEL, although a nonmonotenic logic,
preserves many of the desirable properties of first-order logic, including a
well-defined notion of proof and theorem, and a well-founded, compositional

“semantics. Computationally, HAEL is still not even serni-decidable in the
general case; unlike AE logic, however, it lends itself readily to proof-theoretic
approximation.

The spaces of HAEL are meant to serve as bodies of evidence, as dis-
‘cussed in Section 2. Spaces lower in the hierarchy are considered to be
“stronger evidence, and conclusions derived in them take precedence over de-
" faults in spaces higher in the hierarchy. Priorities among defaults and bodies

of evidence are readily expressed in the structure of the hierarchy. ‘Many .
 different domains for nonmonotonic reasoning can be fruitfully conceptual-
ized in this fashion. The most natural case is taxonomic hierarchies with
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exceptions, because the structure of the spaces mimics the taxonomy (we
give an informal encoding of the bat in HAEL example just below). Speech
act theory is a very complex and interesting application domain, since the

* sources of information (agents’ mental states, the content and linguistic force
of the utterance) interact in complicated ways to induce belief revision after
the uilterance. In this case, we model the structure of the beliel revision
process with spaces that reflect the relative force of the new information on
old beliefs (see [1]).!

To illustrate the main features and use of the evidence hierarchy, we
present the default rules about bats and mammals flying before introducing
all of the necessary mathematical machinery in the next section. Figure 3
gives the basic HAEL structure for this example. There are three evidence
spaces, ordered 7o < 7; < 7. The sentences in 7y are stronger evidence than
those in the other spaces, and 7 is stronger than 7. In informal terms, 7o is
a base level of known facts, 7; contains knowledge about bats, and 7> about
mammals.

The information in the left-hand side of each space is the imtial proper
axioms that are supplied for the domain. It is known that the individual ¢
is a bat, that bats are mammals, and so on. Note that the default rules are
placed in their appropriate evidence spaces, and that they can refer to the
contents of spaces underneath themselves in the heirarchy.

On the right-hand side of each space is a list of some sentences that can
be concluded in the space. These conclusions come from three sources:

1. The proper axioms of the space.

9. The conclusions of any space below. All sentences about the world
which are asserted in a space are automatically inherited by all superior
spaces

3. Information about what is contained in other spaces. For example, in
71 it 1s possible to conclude that ~Fe is not in 7.

. As can be seen, the correct conclusion that e flies is inferred in 7, and is
“passed up to 72, preventing the derivation of a not flying.

4, should be noted that this is the first formalization of speech-act theory in a non-
“monotonic system that attempts to deal with a nontrivial belief-revision process.
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Mammals

T -

lws}
A
o
o

Facts

A mammal normally
does not fly,
unless it does in 7.

« is a bat.

@ 1s a mammal.
a flies.

‘o flies’ 1s In 1.

A bat normally flies,
unless it does not in 7.
Bats are mamimals.

@ is a bat.
« 1s a mammal.
‘a doesn’t fly’ is not in 7.

a flies.

a is a bat.

Ty =Ty 7/ To

Figure 3: A taxonomic example in HAEL
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4 HAEL Structures and their Semantics

We now present the formal definition of HAEL structures and two indepen-
dent semantics for these structures. The first is based on the notion of a
stable set, an idea introduced by Stalnaker [18] and used extensively in the
development of AE logic [13; 5. Stable sets are defined using closure condi-
tions that reflect the end result of introspection of an ideal agent on his own
heliefs. The second semantics is a classical approach: first-order valuations
modified to account for the intended interpretation of the L;-operators. This
semantics is taken directly from AE logic and shows many of the same prop-
erties. However, the hierarchical nature of HAEL structures produces some
significant, differences. In AE logic, a belief set that follows from a given
assumption set A via the semantics is called an extension of A. There may
be no, one, or many mutually conflicting extensions of A. HAEL structures
always have exactly one extension, and thus a well-defined notion of theorem.

There is also a mismatch in AE logic between stable-set semantics and
autoepistemic valuations. A stable set for A which is minimal (in an ap-
propriate sense) is a good candidate for a belief set; yet minimal stable sets
for A exist that are not extensions of A. In HAEL, we show that the two
semantics coincide: the unique minimal stable set of an HAEL structure is
the extension of that structure given by its autoepistemic valuations.

4.1 HAEL Structures

In AE logic, one starts with a set of premise sentences A, representing the
initial beliefs or knowledge base of an agent. The corresponding object in
HAEL is an HAEL structure. A structure 7 consists of an indexed set of
evidence spaces 7;, together with a well-founded, irreflexive partial order on
the set. We write 7; < 7; il 7; precedes 7; in the order. The partial order
of spaces reflects the relative strength of the conclusions reached in them,
 with preceding spaces having stronger conclusions. The condition of well-
foundedness means that there is no infinite descending chain in the partial
order; the hierarchy always bottoms out.

 Each space 7; contains an initial premise set A;, and also an associated
first-order deduction procedure I;. The deduction procedures are sound {with
respect to first-order logic) but need not be complete. The idea behind pa-
rameterizing HAEL structures by inference procedures in the spaces is that

13



ideal reasoning can be represented by complete procedures, while resource-
bounded approximations can be represented by incomplete but efficient pro-
cedures. In the rest of this paper, we shall assume complete first-order de-
duction in each space; HAEL structures of this form are called complete.
The language £ of HAEL consists of a standard first-order language,
augmented by a indexed set of unary modal operators, L;. If ¢ is any sentence
{no free variables) of the first-order language, then L;¢ is a sentence of L.
Note that neither nesting of modal operators nor quantifying into a modal
context is allowed. Sentences without modal operators are called ordinary.
The intended meaning of L;¢ is that the sentence ¢ is an element of space

Ti.

Within each space, inferences are made from the assumption set, together
with information derived from spaces lower in the hierarchy. Because spaces
are meant to be downward-looking, the language £; C £ of a space 7; need
contain only modal operators referring to spaces lower in the hierarchy. We
formalize this restriction with the following statement:?

The operator L; occurs in L; if and only f 7; < 7. (8)

Here is the bat example from the last section formalized as an HAEL
structure.

To < T1 < T2

Ao = {Bl(a)}

A, = {Va.Bx D M«z, (9)
LoB(a) A ~Log—F(a) D F(a)}

Ay = {LiM(a) A =L1F(a) D —~F(a)}.

There are three spaces, with a strict order (heritable) between them. Space
7o is the lowest in the hierarchy, and contains the most specific information
(based on the taxonomy). In the assumption set A;, there is a default rule
- about bats fiying: if it is known in 7; that « is a bat, and unknown in 7 that
.« does not fly, then it will be inferred that « flies. The assumption set A,

‘is similar to Ay; it also permits the deduction that bats are mammals. The

2We can relax this restriction so that L; can occur in £; under certain circumstances.
Because it is simpler to present the semantics without this complication, we will not defer
considering it until Section 5.
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information that a is a bat and a mammal will be passed up to 75, along with
any inferences aboutl its ability to fiy.

Because the partial order of an HAEL structure is well-founded, we can
perform inductive proofs using it. At times we will need to refer to unions
of sets derived from the spaces preceding some space 7,.; to do this, we use
Uj«n Xj, where j ranges over all indices for which 7; < 7.

4.2 Complex Stable Sets

Stalnaker considered a belief set T' that satisfied the following three condi-
tions:

1. T is closed under first-order consequence.?
2. Héel, then Lo €T,
3.1¢gl, then-LoeT.

He called such a set stable, because an agent holding such a belief set could
not justifiably deduce any further consequences of his beliefs. In HAEL, these
conditions must be modified to reflect the nature of the L;-operators, as well
as the inheritance of sentences among spaces.

DEFINITION 4.1 A complex stable set for a siructure 7 s a sequence of sets
of sentences Tg,T1,..., corresponding to the spaces of 7, that satisfies
the following five conditions:

1. Every T; contains the assumption set A;.

2. Every T; is closed under the inference rules of 7;. In ihe case of
an ideal agent, the closure is first-order logical consequence.

3. If ¢ is an ordinary sentence of I';, and 7; < 7;, then ¢ isin I'i.
4. If¢ely, and 7; <7, then Lid € 1.
L5 Ifé ¢ T;, and 7; < 7, then —~L;é eT;.

3Stalnaker considered propositional languages and so used tautological consequence.
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To illustrate complex stable sets. consider the previous example of flying
bats. Let Cn;[X] stand for the first-order closure of X using language L,
and define the set 5 = 55,51,--- by

So = CnelB(a)]
Sy = Cm|B(a), LoBla), ~Lo—B(a), ~Lo—F{a},

Vz.Bx D Mz, M(a), F(a), -] (10)
Sy = Cny[B(a), M(a), F{a), LoB(e), L1 B(a),
LF(a),---].

The set S is a complex stable set for the HAEL structure 7 as defined in
Equations (9). The lowest set Sy contains just the first-order consequences
of B(a). S inherits this sentence, and has the additional information M(a)
from its assumption set. Modal atoms of the form Lg¢ and —Lg¢ are also
present, reflecting the presence or absence of sentences in So; the sentence
F(a) is derived from these plus the assumption set. Finally, 57 inherits all
ordinary sentences from 51, as well as L1 F'(a).

The subsets 5; of S are minimal in the sense that we included no more
than we were forced to by the conditions on complex stable sets. For example,
another stable set S’ might have S) = Cng[B(a), ~F{(a)}, with the other
spaces defined accordingly. The sentence =F(«) in Sj is not justified by the
original assumption set Ag, but there is nothing in the definition of complex
stable sets that forbids it from being there. So, a complex stable set is a
candidate for the extension of an HAEL structure only if it is minimal. But
what is the appropriate notion of minimality here? For simple stable sets,
minimality can be defined in terms of set inclusion of the ordinary sentences of
the stable sets. Complex stable sets have multiple spaces, and the definition
of minimality must take into account the relative strength of information in
these spaces.

DEFINITION 4.2 A stable set S for the HAEL structure T ts minimal ¢f for
each subset S; of S, there is no stable set S' for 7 that agrees with S
 on all 7; < 7, and for which S C S;.

_ A cbﬁiplé'x stable set for T is minimal if each of its subsets is minimal,
given that the preceding subsets (those of higher priority) are considered

fixed.
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There is exactly one minimal complex stable set for an HAEL structure.
We now prove this fact, and give an inductive definition of the set.

PROPOSITION 4.1  Every HAEL structure v has a unique minimal complex
stable sei, which can be determined by the following inductive procedure:

Define
Cn;[X] = the first-order closure of X in L;
Ord(X) = the ordinary sentences of X
Li{X) = {Li¢|de X and ¢ ordinary}
M;(X) = {-Li¢|¢¢& X and ¢ ordinary}

For leaf 7; (that is, theve is no 7; such that 7; < 7;), let
S; = Ci[Ad] -
For nonleaf 7, define

Sp = Cn,{A. U U Ord(S;)UL;(S;)UM(S;)] .
T =

i = Tn
S is the unique minimal complex stable set for 7.

Proof. All of the conditions of Definition 4.1 that S is a com-
plex stable set. To show that S is minimal, we show that the
conditions of Definition 4.2 are satisfied for 5.

Assume that S’ is a stable set for 7 with a subset 5 differing
from S;, such that S’ agrees with S on all 7; < 7;. Because 5" is
a complex stable set, it must contain A;, and for each 7; < 7, it
must also contain Ord(S;), L;(5;), and M;(5;). It is also closed
‘under first-order consequence. By the definition of S;, we must

* therefore have S; C 57, and since these two subsets differ, 5; C 5.
Hence S must be minimal. Further, S’ cannot itself be a minimal

“stable set, because this last subset relation violates the conditions

- of minimality for §’. Because S’ was chosen arbitrarily, there can
be no other minimal stable sets than S.
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The existence of a unique minimal complex stable set for every HAEL
structure gives us a means of defining the theorems of a structure. Let 5 be
the complex stable set for 7. We say that a senience ¢ is derivable in the
space 7; if and only if it is an element of 5;, and write 7 F; ¢ if this holds.
For the bat example, the following derivations exist, where 7 is the HAEL
structure of 9):

T to Bla)

T o ~F(a)

1+ Bla) A M(a) A =Lg—F(a) A Fla)
7y Bla) A M(a) AL F(a) A F(a) .

(11)

4.3 HAEL Semantics

We have used complex stable sets to give a proof-theoretic notion of theorem
to HAEL structures. An alternative approach is to develop a semantics for
these structures and define a notion of validity with respect to the seman-
tics. As with autoepistemic logic, the semantic picture is complicated by
the presence of self-referential elements, and validity must be determined by
use of a fixedpoint equation. Happily, validity turns out to be equivalent to
derivability for HAEL structures, so that the sentences that are valid logical
consequences of a structure are exactly those given by its minimal complex
stable set.

We start with the notion of a valuation of an HAEL structure 7. In clas-
sical logic, a valuation assigns true or false to each sentence of the language,
and a valuation is said to satisfy a theory if all the sentences of the theory
are assigned true. If the valuation v assigns true to the sentence ¢, we write
v £ ¢. Restrictions on valuations single out the intended semantics of the
theory, e.g., first-order valuations must respect the intended meaning of the
- quantifiers and boolean operators.

In autoepistemic logic, the interpretation of the modal operator L adds
an additional complication to valuations. Since the intended interpretation
~of L is that ¢ be in the belief set of the agent, an AE valuation consists of
a first-order valuation, v, and a ‘set of sentences (the belief set), T (see [13}).
We call ' the modal indez of the valuation. The interpretation rules for AE
valuations are as follows (we let ¢ stand for an arbitrary ordinary sentence):
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WD) ¢ if vEg 12)
(v,T) = Lo iff ¢el. <

The interpretation of the L-operator is completely decoupled from the first-
order valuation.

The autoepistemic extension of an assumption set A is a set of sentences
T that are the logical consequences of A under AE valuations. Because the
intended interpretation of L is self-belief, only those AE valuations that
respect this interpretation can be used. Let A = ¢ mean that every AE
valuation with modal index I' that satisfies the set A also satisfies ¢. An
extension T of A is defined by the following equation (see [5]):

T={élAEré}. (13)

By fixing the modal index as T, we are assured that the interpretation of
L is with respect to the belief set T itself. Of course, the equation defining
extensions is self-referential and, as we have pointed out, self-reference creates
problems from a computational point of view.

The semantics of HAEL structures is similar to AE assumption sets, but
is complicated by the presence of multiple spaces. The interpretation of the
indexed operators L; must be with respect to a sequence of belief subsets,
instead of a single belief set I'. So an HAEL valuation (v,T'y,---, T, )
- consists of a first-order valuation v, together with the indexed belief subsets
I';, which we call a complex belief set. The interpretation rules for HAEL
valuations are similar to those for AE valuations (again, ¢ stands for an
arbitrary ordinary sentence).

(v, L1, Tny )2 iff vi¢
(Uﬁ]-—‘lv"'3l~—‘n1"'>’:Li¢ iff ¢€F:

The interpretation of each L; is with respect to the appropriate belief subset.
Note that there is no necessary relation in valuations among the interpre-
tations of the modal operators, or between the modal operators and the
first-order valuation.

An autoepistemic extension of an HAEL structure, 7, consists of a se-
quence of a complex belief set, T = Ty,---,Ty,---, corresponding to the
- spaces of the structure. Again, we require that extensions be defined using
only those valuations that respect the nature of the L;-operators as self-belief.
Also, because each space inherits the ordinary sentences of preceding subsets,
the assumnption set must be augmented appropriately.

(14)
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DEFINITION 4.3 The complex belief set T is an extension of 7 if it satisfies
the equations

Ti={peli|Au |J Ord(T}) Fr o} .

T; = Ti

As with AE logic, the definition of extensions for HAEL appears to be self-
referential, since T; appears on both sides of the equation. However, this self-
reference is illusory from the point of view of the individual spaces, hecause
they contain L;-operators referring only to spaces lower in the hierarchy. In
fact, every HAEL structure has a unique extension, and that extension is the
minimal complex stable set.

PROPOSITION 4.2 Every HAEL structure 7 has a unique extension T', which
is the complex stable set for T.

Proof. By induction over the structure of 7, we can show that
there is a unique solution to these equations, and that this yields
the minimal stable set. For the base case, let 7; be a leaf space.
The language £; has no modal operators, and T; must be Cn;[A;].
For nonleaf 7;, assume that all T; with 7; < 77 are uniquely de-
fined and equal to the corresponding S; of the minimal stable set.
Then it is easy to show from the definitions that 5; and T; must
coincide.

Having a single extension is a nice feature of HAEL structures, because
there is a.single notion of theorem, and the problem of choosing among com-
peting multiple extensions (as in AE logic) does not exist. However, there is

_a price to pay. In AE logic, multiple extensions arise because there are con-
flicting defaults: the classic Nixon diamond is a well-known example, where
the default that Republicans are not pacifists conflicts with the default that
Quakers are. In HAEL, if both these defaults are placed in the same space, an

“inconsistency will occur (there will still be a single extension, but the space
will consist of all sentences because of closure under logical consequence}.
Thus the HAEL structure must be constructed so that conflicts of this sort
within the same space are avoided.
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4.4 Proof Theory

Proposition 4.1 is important in that it makes the notion of theorem well-
- founded for HAEL structures. It also is the basis for proof methods on HAIL
structures. Consider the previous example of the bat taxonomy [Equation
(9)]. We want to know whether « flies, that is, whether F(«) or =F(a) is
provable in T,. Suppose we set =F{a) as a goal in T,. There is only one axiom
which applies, and this gives the subgoal Ly M{a) A =L, F(a). To establish
the first conjunct, we set up M{a) as a goal in 7). Using the universal

implication, we arrive at the subgoal B{a)}, which matches with B(«) in T.
~ Hence we have shown that L; M{«a) holds in T.

In a similar manner, we set up F(«) as a subgoal in 75. Using the second
axiom of A;, we have the conjunctive goal LoB{a) A ~Lo—F(e). The first
subgoal is easily proven, since B(«a) is in Tp. Now we try to prove —f(a) in
‘To. This is not possible, so ~Lo—F{a) is proven in Ty. We have just shown
F(a) to be provable in 7}, so =Ly F'(a) is not provable in 7T,. Our attempt to
prove —[°(a) in T3 fails. On the other hand, along the way we have shown
- F(a) to be provable in 73; hence by inheritance it is also in T5.

In this example, we used backward chaining exclusively as a proof method.
Other methods are also possible, e.g., mixtures of forward and backward
chaining. Whenever there is a question as to the provability of a modal
atom, an appropriate subgoal is set up in a preceding space, and the proof
process continues.

It should be noted that no proof process can be complete when the non-
modal language is undecidable, because the inference of ~L;¢ requires that
we establish ¢ to be not provable in T;. However, a proof method can readily
approximate the construction of Proposition 4.2 by assuming that ¢ cannot
be proven after expending a finite amount of effort in attempting to prove
it. Given enough resources, a proof procedure of this sort will converge on
the right answer.

We have implemented HAEL on a resolution theorem-proving system,
modified to accept a belief logic of the sort described in Geissler and Konolige
13]. The implementation was straightforward, and involved adding a simple
negation-as-failure component to the prover. The implementation has been
successfully applied to reasoning about speech acts in a natural-language
understanding project {1}.



5 Extensions and Limitations

5.1 Extensions

There are several ways in which we can extend the utility of HAEL. The
first of these is to relax the restriction on the modal operator appearing in
the same space as its index. We note that it is only reasoning about the
non-provability of a sentence in its own space which is problematical. Hence
we may allow reasoning within a space about what is provable. We modify
the restriction on the language of spaces {(Equation 8) to be:

If L; occurs in 7;, then 7; = 7. (15)
We also restrict the occurrence of L; in the assumption set:
If L; occurs positively (negatively) in A;, then 7; <7 (1; < 7). (16)

The distinction between positive and negative occurrences is important when
the operator L; Is in its own theory 7;. If L; occurs pesitively in the assump-
tion set A;, it could be used to make inferences based on what is not in the
space. For example, in the sentence =L; P D @, L; occurs positively, and the
intended meaning of this sentence (when in the assumption set A;) is that
isin 7; if P is not in 7. If @ itself implies P through some chain of inference,
we get just the kind of self-referential reasoning we are trying to avoid.
On the other hand, a negative occurrence of L; in A; 1s not problematic,
“as long as we are careful about grounding all inferences. With the sentence
L;P D @ in Aj, for example, we have a statement that the presence of P in
7; allows the inference of §. If P could be inferred from €}, then we would
have a case of circular justifications, but only if we are allowed to assume
P or L;P in the first place. As long as P must be inferred independently
from the assumption set and information lower in the hierarchy, there is no
problem of circularity.

A second extension is to specify inheritance of ordinary sentences only for
a subset of the partial order. A subset of the partial order is distinguished
as being heritable, and we write these as 7; <, 7;. Heritable precedence is
used in cases such as the taxonomic example, where all of the facts of the
 lower space 7; are also meant to be facts inherited by the upper space 7;.
 Nonheritable precedence is more appropriate when the information in the
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spaces refers to different situations or incompatible views of the world, as we
might do in an axiomatization of the situation calculus. In any particular
structure, heritable and nonheritable relations could both be necessary, which
is why inheritance <, is a subrelation of the partial order <.

The presence of nonheritable precedence causes a minor change in the
definition of HALL stable sets and extensions, and also Proposition 4.1. The
changes are obvious: we just specify inheritance only for spaces which are in
the heritable hierarchy.

5.2 Limitations

The encouraging result of having a single extension of HAEL structures is
not without a penalty. In the {ace of conflicting defaults which are not prior-
itized, HAEL will yield an inconsistent extension, rather than two mutually
incompatible extensions. The simplest example comes from representing the
Nixon diamond. Suppose we encode the two defaults in the same space:

To < Ty

Ap = {Rn,Qn}

Ay = {LoRz A—=Ly—Ha D Hz, (17)
LoQz A =Lg—Pz D Pz}
Ye.Hz D -Px

Both defaults will apply, since 7o satisfies their premisses. Since both Pn
and —Pn are derivable in 73, the stable set 1s inconsistent in this space.

There are two ways to remedy this problem: always prioritize conflicting
defaults, or ameliorate the effects of contradicting defaults. The first choice
is unpalatable, for the same reason we criticized AE logic at the beginning
of the paper: we may not know when defaults conflict, and we shouldn’t be
forced to prioritize them if we don’t know which should take precedence.

The second choice is more interesting, since we already have some notion
of strength of evidence. If the evidence for a proposition is conflicting, then
~ we should just ignore it, rather than forming a contradiction. This strategy
~would involve changing the truthvalue semantics of the logic, and we are
starting to explore it.

- Another problematic feature of the logic is that the structure of spaces
must be given in a fixed form for any particular application. It would be nice
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to specify the structure in a more flexible way, perhaps having conditional
relations among the spaces. Such flexibility seems to require some sort of
metalevel capability for HAEL.
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