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Abstract: We study the stability with probability one of the
stochastic bilinear system dX = AX ds + BX dw, where A and B are
fixed matrices and w is a Brownian motion. Bounds for the
Lyapunov numbers associated with this equation are given.

Bilinear noise models are, after linear ones, the second simplest
case of stochastic systems; they may arise in many problems in
which linear noise models are inappropriate (many examples are
given in [6]).

The aim of this paper is to give a condition for the stability
with probability one of the d-dimensional Ito equation which
describes the behavior of such a system

dYs = AYs ds + BYsdws (1)
Yo=y

where A and B are two given dx d matrices and w is a scalar
Brownian motion (see also the more general equation (12) below).
I.e., we want to find whether or not Ys tends a.e. to zero as s tends to
infinity. Note that in the one dimensional case, we have an explicit
solution

Ys = Yo exp{t(A-B2/2) + Bwt},

and the stability with probability one is guaranteed iff 2A-B 2< 0. Note
also that

E[ (ys)2 ] = (Yo)2 exp2t(A+B 2/2)

1 Work supported by the Army Research Office under grant DAAL03-86-K-
0171,
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and the L 2 stability is guaranteed iff 2A+B2 < 0. This is a much
stronger condition whose generalisation in d dimensions is easy,
thanks to the following equations:

dYs®Ys = (I®A +A®I + B®B)Ys®Ys ds + (IOB + B®I)Ys®Ysdws

dE[Ys®Ys ]= (I®A +A®I + B®B) E[YsOYs] ds

(for the definition and the basic properties of ®, see [1]).The L 2

stability is then governed by Xmax(I ®A +A®I + B®B) (in this paper,
Xmax(M) denotes the largest real part of eigenvalues of the matrix M,
and- min(M) = -Xmax(-M) ).

We will give an upper bound for the largest Lyapunov number
?1 of (1) (the smallest y satisfying the bound of theoreml). Note that
the only existing expressions for the largest Lyapunov number of (1)
or (12) with general matrices are asymptotic expansions (B=eBo, e
tends to 0, A fixed) in dimension 2 ([5]). The following criterion will
be proved :

Theoreml. Setting

y = Xmax(I ®(A-B2) +(A-B2)®I + B®B),

then, for any value of Yo,

limsup tlog(llYtll) < Y a.e.
t- 0oo

Considering the matrix equation

dPs = APs ds + BPsdws
(2)
Po = I,

Ys can be expressed as

Ys = PsYO
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and the following basic theorem about Lyapunov numbers (the Xi's
below) is true:

Theorem2([2]): There exist d real numbers Xi > X2 > ....2 2-d such that

lim {PtT(o)Pt(co) } 1/2t = OT(co)AO( 0o) a.e.
t--oo

where 0(Xo) is an orthogonal matrix and A is the diagonal matrix
satisfying

Ai,i = exp(Xi).

Furthermore, if

Ei = span OT(co)ei, OT(co)ei+l, ..... OT(co)ed }

( (ei)i=l,d is the canonical basis of ]Rd) then, a.e., we have

Vu Ei(co)\Ei+l(co), lim - LogllPt(c)ull = Xi.
t-)oo

All the Xi are equal if and only if there exist a matrix M such that
1 1

the matrices M(A - d trace(A))M - 1 and M(B - d trace(B))M- 1 are
skew-symmetric.

Note that the Lyapunov numbers of Qs=Ps -T are (-Xd,....,-)l).
To prove theoreml, instead of trying to find upper bounds on the
Lyapunov numbers of Ps, we will get lower bounds for the ones of Qs.
Theorem2 shows that the smallest Lyapunov number is generally
attained on a random 1-dimensional space; this fact is at the origin of
all the difficulty of stepl below. The motivation of this method will
appear in step2, when the (non-quadratic) term (uTFu)2 in (3) will be
bounded from below by uTFTFu (dealing with Ps, we would have to
find an upper bound for (uTBu)2 ).

Proof of theoreml
c denotes a constant depending only on d and is allowed to change,
finitely often, during the calculation.

Note that Qs=Ps-T satisfies the equation
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dQs = EQs ds + FQsdws
where

E = -AT + B2T
F= -BT.

By virtue of theorem2 (and the following remark), the largest
Lyapunov number of Ps is a.e.

- lim inf tlog(llQtxll).
t--oo X

For any Xo, Xt=QtXo satisfies the equation

dXs = EXs ds + FXsdws

Using Ito's formula, and setting us=X s/llXsll, we obtain

T T T T T
dXsXs = XsX s( 2UsEus ds + 2usFus dws + usFTFus ds)

T u T T T
dlog(llXsll) = [ usEus + - usFTFus - (usFus)2 )ds + usFus dws.

This equation, due to Khas'minski ([3]), is basic for the study of
Lyapunov numbers, since it may be written

t

t- 1 { log(l IXtI) - log(llXo 11) =t - 1 (usTEus+ 2 usTFTFus-

0
t

(usTFus) 2)ds) + t-1 JusTFusdw
0

(3)
t

stepl: E[supl f usTFusdwsl ]= o(t), t integer >0.
Xo 0

The sup may be taken a over a dense subset of IRd (because the
stochastic integral is a.e. a continuous function of Xo) so that the
expectation is well defined.
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This is the most difficult step of the proof. All our efforts will
be focused on getting rid of the sup. We will suppose that the Xi are
not all equal (if they are, using theorem2, the expression above is wt
times a constant and the result is obvious).

The following lemma is needed

Lemma Let G be a uniform measure on the the unit sphere Sd-i of
R1d, x any vector of Rd, fe Ll(o), P an invertible matrix, and Q=P-T,the
following equalities are true:

Ilxll = cl sign((x,y)) y o(dy) cl = (C(lyll))-

(4)

f f(y)o(dy) = det(P) f(iP yl) 1IPyll-d o(dy)

(5)

xQTFQx 2 - cl2 Jsign((x,y))sign((x, z ))(zTPTFPy) IIPyll-d-l lPzli-d-1

(6) det(P) 2 o(dy)o(dz)

Proof of the lemma:
Observe that identity (4) has only to be proved for Ilxll=l, and

that, because of the rotational invariance of o, we can suppose
x=(1,0,0....0)), and we get cl.

The left-hand side of (5) is equal to

c(1yll) e-ellyI dy = cf(Pxll) e-llPxlldet(P) dxHlyllfI Px

= c det(P) ff(llpy11) e-rllPyll rd- 1 o(dy) dr

= c det(P) f(lPiyi ) IIPyll - d o(dy)

the constant c, independent of P, is identified by taking P=I.
In order to prove (6), use (4) and (5) to obtain

Qxl= c Jfsign((xQTy)) y o(dy)

= det(P) fsign((x,y))Py IIPyll-d-1 a(dy)

which implies (6).
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This lemma gives us

XOTQsTFQsX0
uF- IQsX012 = I f ((Xo,y,z)TP(Ps,y,z)o(dy)o(dz)

where

·D(x,y,z) = sign((x,y)) sign((x,z))

TW(P,y,z) = c (zTpTFPy) IIPyll-d-lllPzll -d -1 det(P) 2.

And

t t
f usFusTdws = f (Xo,y,z)T(Ps,y,z)a(dy)a(dz) dws

0o o

r'~~~ t

= ((Xo,y,z) fT(Ps,y,z)dws a(dy)a(dz)
0

t r
sup I J usFusTdwsl < I Jf(Ps,y,z)dwsl o(dy)o(dz)
XO 0Jo

t t
E4up J usFusTdwsl] < E[{ fJ2(Ps,y,z)ds }1/2 ] o(dy)G(dz)

Xo 0 0
t 

F4up I f usFusTdwsl ] < E[ {{J2(Psyz)ds }1/2 o(dy)o(dz)) ]
X0o 0

(7)

we will prove that for almost all (co,y,z),
00

Jf2(ps,y,z)ds < ° (8)
0

and that the integrals
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t

t ( 2(P sY ' z ) d s ) 1/2 (9)
0

are uniformly (on t) integrable (over (co,y,z)). And then (7), (8), and
(9) will imply the bound of step 1.

To prove (8), note that

IT(Ps,y,z)l = c (zTpTFPsy) IIPsyll-d-1 IPszll- d- 1 det(Ps) 2

<c IIFII IIPsyll-dIlPszll- d det(Ps) 2

<c IIFII expt(-2Xld+2yXi+ E(s))s}

where e(s)-< 0 as s- oo and the Xi are the Lyapounov numbers
associated with P. Since we are in a case where the Xi are not all
equal, we get the exponential decrease of the expression above, and
(8) is true.

To prove the uniform integrability of (9), we will show that
t

E[ a( t (fj2(Ps,yz)ds)l/2) c(dy)a(dz) ]< K
0

(10)
where K is a constant independent of t, and

a(x) = Ixl log1/2 (1+x 2 ).

Denoting
t

r(t,y,z) = fIT(Ps,y,z)l2ds,
0

equation (10) reduces to

E[J tV(t y,z)l/ 2 log1/ 2(1+Nv(t,y,z)/t 2) o(dy)o(dz) ] < K.

Stepl will be finished by proving

E[f V(t,y,z) 1/2 logl/2(1+f(t,y,z)) a(dy)a(dz) ] < Kt.

(11)
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An elementary calculation shows that the function x 1/210gl/ 2(1+x) is
concave; this implies

(x+y) 1/210gl/2(1+x+y) < x1/ 210g 1/2 (1+x) + yl/210g1/ 2 (1+y) for any
x,y >0

Defining N1 by
t+l

Vl(t,y,z) = N(t+l,y,z) - (l1,y,z) = JIfI(Ps,y,z)12ds
1

we obtain

E[f NI(t+1 ,y,z) 1/2 logl/2(1+f(t+1,y,z)) o(dy)o(dz) ]

< E[J N(l,y,z) 1/2 logl/2(1+V(1,y,z)) o(dy)o(dz) ] +

E[f l(t,y,z)l/ 2 logl/2(1+fl(t,y,z)) c(dy)a(dz) ].

We will now get the index 1 out of the last formula. The basic tool is
the following identity resulting from Markov property

PS+1 = (0 1Ps) P1

where 0 1 is the shift operator on the trajectories of Brownian motion.
Using this identity in

t

Vl(t,y,z) = JlI(Ps+l,y,z)12ds
0

and
J(P,y,z) = c (zTpTFPy) IIPyll-d-lllPz ll- d- l det(P) 2,

we get
t

l(t,y,z) = fIP(0OPsPy,PyPz)I 2 ds det(P1)2 .
0

The second term of the right-hand side may be rewritten as

E[f Nf(t,Ply,Plz) 1/2 logl/2 (1 +V(t,Ply,Plz)det(P1)4)

det(P 1)2o(dy)o(dz)]



9

where P 1 and W(t,y,z) are independent(i.e. constructed from two
independent Brownian motions and the expectation is taken over the
product space). Using lemmal we obtain, after some reductions (Q1 =

P-1 )

E[fJ (t,y,z)l/2 logl/2 (1 +(t,y,z)det(P1) 4 IIQlylI- 2d IIQlzl1-2d)

T(dy)u(dz)]

and with the inequalities (a,b>O)

log(1l+ab) < log(l+a) + log(l+b)
(a+b)1 / 2 < al/2 + b1 / 2

we get the upper bound

E[J a(v(t,y,z) 1/2) a(dy)a(dz) ] +

E[f logl/2(l+det(P1)4 IIQlyll-2d IIQlzll-2d ) Y(dy)a(dz)]

The last term is finite since log(llQsyll) satisfies equation (3) and
det(Ps) satisfies

dlog(det(Ps)) = {trace(A) -1/2 trace(B 2)} ds + trace(B) dws ).

Finally, we have

E[I a(r(t+l,y,z) 1/2 ) Y(dy)G(dz) ] < E[f a(f(t,y,z) 1/ 2) ](dy)G(dz) i
+K

where K is a constant. This ends the proof of (10), and the first step.

step2: end of the proof.
Using stepl, one can find a sequence tn such that

1 tn
lim -sup I usFusTdwsl] =0 a.e.
n-oo tn X 0 0

and obtain, with equation (3):
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1 1
lim inf 1 log(llXtnll) >inf uTEu+ uTFTFu-(uTFu)2.
n--oo X 0 tn uE Sdl 2

But
(Fu - u(uTFu))T(Fu - u(uTFu)) > 0

implies
uTFTFu > (uTFu) 2,

which gives the bound

1
lim inf tlog(llXtll) >inf uTEu -uTFTFu

t-oo Xo t ue Sd-l 2

> + inf uT(E-kI)u- uTFTFu
ueSd-1 2

for any real X.
Actually, we have still the choice of the basis of Rd we are working
in. A change of basis with a matrix R changes E into RER- 1 and F into
RFR-1 and then for any invertible matrix R, we have

1 1
lim inf -log(llIXtll) 2 X + inf uTR(E-_I)R-lu- uTR-TFTRTRFR -

t->o Xo t u Sd-1 2

lu

1
> X - sup vTS(-E+kI)v + vTFTSFv

Rve Sd-1 2

where S=RTR (u=Rv). One can prove ([4]) that, if

Xmax(I ®(-E+XI) + (-E+1I)®I + F®F) < 0,

then the equation

S(-E+%I) + (-ET+XI)S + FTSF = -I

has a unique solution which is positive definite. Then, for any X
smaller than Xmin(I GE + E®I - F(F)/2, we have



11

lim inf -log(llXtll) 2 X
t-oo X0 t

The smallest Lyapunov number of Qs is then larger than
Xmax(I ®E+EGI-FGF)/2. But

I GE + EGI - F®F = -[ I ®(A-B2) +(A-B2)GI + B®B }T

This ends the proof of the theorem.

We have just proved the following result

Theorem3: The smallest Lyapunov number of equation (1) is larger
than

6 = 2 min(I ®A + AGI - BOB).

If equation (1) is replaced by

dYs = AYs ds + y BiYsdw (12)
i=l

where B 1,...Bn, are n matrices and w l ,....,w n are n independent
Brownian motions, the proof can still be carried out in the same way
and we obtain

Theoreml(general form): If equation (12) is subsituted to equation
(1), theoreml and 3 are still valid with

1 n
Y = Xmax(IGA+AGI - I (Bi 2+Bi2GI-BiGBi)

6 = -Xmin(IGA+AGI BiGBi)
~2 ~~~i=l
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