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ABSTRACT 

In the course of designing or evaluating signal processing algorithms, we often must determine the 

computational workload needed to implement the algorithms on a digital computer. The floating-point 

operation (flop) counts for real versions of the most common signal processing kernels are well docu- 

mented. However, the flop counts for kernels operating on complex inputs are not as readily found. This 

report collects the flop count expressions for both real and complex kernels and also presents brief outlines 

of the derivations for the flop count expressions. These flop count expressions are summarized below. 

Signal Processing Kernel 
Computational Complexity 

Real Input Complex Input 

matrix-matrix multiplication 2mnp Smnp 

fast Fourier transform 5  . -n\o%2n 5n\og2n 

Householder QR decomposition *t-ö 8«2H) 
forward or back substitution 2 n An2 

eigenvalue decomposition: eigenvalues only 4   3 
3n 

16   3 

eigenvalue decomposition: eigenvalues and 
eigenvectors 

9n3 23n3 

singular value decomposition: singular values 
only 

A       2     4   3 4mn  - -n u       2     16   3 
lomn --r-n 

singular value decomposition: singular values 
and left singular vectors 

4m2« + 12m«2 2                     2 16m n + 24mn 

singular value decomposition: singular values 
and right singular vectors 

Amn  + 12n 16mn  + 24« 

singular value decomposition: singular values, 
left and right singular vectors 

4m n + \2mn  + \2m 16m2n + 24mn2 + 29n3 
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In the table above, the parameters in the computational complexity expressions are: 

• the dimensions of the two multiplicands - mxn and n x p - for the matrix-matrix multipli- 
cation 

• the length of the vector n for the fast Fourier transform 

• the size of the triangular system n for forward and back substitutions 

• the dimensions of the input matrix m x n for the Householder QR decomposition, eigen- 
value decomposition, and singular value decomposition. 
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1. INTRODUCTION 

In the course of designing or evaluating signal processing algorithms, we must often determine the 
computational workload needed to implement the algorithms on a digital computer. The floating-point 
operation (flop) counts for real versions of the most common signal processing kernels are well docu- 
mented. However, the flop counts for kernels operating on complex inputs are not as readily found. This 
report collects the flop count expressions for both real and complex kernels and also presents brief outlines 
of the derivations for the flop count expressions. Specifically, the following computational kernels will be 
treated: 

• matrix-matrix multiplication 
• fast Fourier transform (FFT) 
• Householder QR factorization 
• forward and back substitutions 
• eigenvalue decomposition 
• singular value decomposition 





2. MATRIX MULTIPLICATION 

2.1     REAL MATRIX MULTIPLICATION 

The elements of the product matrix Ce <Rm)" of real matrices A e <Rmxp and Be (Rpxn are 

given by ([4]): 

C = AB=*Cij= $>,A, (1) 
k= i 

Therefore, for each of the mn elements in C, we perform p multiplications and p additions, giving 
us a flop count of: 

flop count = 2mnp 

2.2    COMPLEX MATRIX MULTIPLICATION 

(2) 

The elements of the product matrix C e Cf1  " of complex matrices A e Cf  p and Be cpxn are 
given by ([4]): 

C = AB^>cu= ^aikbkj 

k= 1 

(3) 

For each of the mn elements in C, we perform p multiplications and p additions. However, these 
multiplications and additions are between complex numbers. 

The complex sum of two complex scalars requires two flop: one flop to add the real components, and 
another flop to add the imaginary components. 

The complex product z of two complex scalars x = a + jb and y = c + jd, where ayb, c, and d 

are all real scalars and j = J^l in this context, is: 

z = xy 

= (a + jb)x(c + jd) 

= (ac - bd) + j x (ad + be) 

and requires six flop: 

• four multiplications: ac, bd, ad, and be 

• two additions: (ac - bd) and (ad + be) 

(4) 



Therefore, for each of the mn elements in C, we perform Sp flop, giving us a flop count of: 

flop count = Smnp (5) 

2.3    ALTERNATIVE COMPLEX MATRIX MULTIPLICATION 

We can compute the product matrix Ce CT *" of complex matrices Ae CT p and Be cpxn in 

an alternative fashion that reduces the workload by approximately 25% ([10]). 

First, we separate the multiplicands A and B into their real and imaginary components. Let 

Are <Rmxp be the real part of A , Ake <Rmxp be the imaginary part of A , Br e <Rpxn be the real part of 

B, and Bi;e (Kpxn be the imaginary part of B: 

A = Ar + jAt (6) 

B = Br + jBi (7) 

Then, the product matrix C is: 

C = AB (8) 

=   (Ar + jAJXiBr + jBi) 

= (Aßr-Afld + JlAfti + Afl,) 

Now consider the real matrices G e <Rmxp and He *Rpxn, which we define thusly: 

G = Ar + A, (9) 

H = Br-Bt (10) 

Then 

GH = AA-A^ + A^-^,. (11) 

GH + Ar2?, - A,*r = ArBr - Aß, (12) 

G/f + Afii - Afir + MA + 4,Z?r) = Ari?r - AA + 7'MrB,- + Afir) 03) 

= C 

Computing G = Ar +J4, requires m/? flop. Computing H = Br-Bx requires pn flop. Computing 

the product GH requires 2mnp flop. Computing the product ArB, also requires 2mnp. Computing the 



product AjBr requires another 2mnp flop. Computing GH + ArBi-AiBr for the real portion of C 

requires 2mn flop. Computing ArBi-\-AiBr for the imaginary portion of C requires mn flop. The total 

flop count for computing C = AB using this alternative method is 

flop count = 6mnp + 3mn + (m + n)p (14) 

which is approximately three-quarters of the Smnp flop needed to compute the product using the straight- 
forward method. 





3. FAST FOURIER TRANSFORM 

3.1     COMPLEX FFT 

The discrete Fourier transform (DFT) X of a finite-length sequence x of length N is given by ([7]): 

N-l 

X[k] =  ^x[n]WN
k\k = 0,1,..„N-l 

n-0 

where 

WN = e-«2"/N) 

(15) 

(16) 

If we were to compute the DFT by explicitly evaluating the sums, the flop count would be 0(N ). 
We can dramatically reduce the workload by decomposing the original DFT into successively smaller DFT 
computations in decimation-in-time algorithms ([7]). Let us consider the case where N is a power of two: 

N - 2°, where \) is an integer. 

Since N is an even integer, we can separate x[n] into two sequences of length N/2: the first 

sequence consists of the even-numbered points in x[n], while the second sequence consists of the odd- 

numbered points in x[n]. We can now rewrite Equation 15 as: 

Xlk) =   ^x[n)WN
kn + 2>[n]Ww* 
kn       v~»      r   -,„,   kn 

n even n odd 

Let us substitute n = 2r for even n and n - 2r + 1 for odd n : 

(N/2)-\ (N/2)-1 

Xlk] «      £    *[2r]W^2r*+     X    *[2r+l]W„(2r+,)* 
r = 0 r = 0 

(N/2)-l (JV/2)-I 

=      £    *[2r](VVY*+WV*    X    x[2r+ll(^2)r* 
r = 0 r = 0 

We also note that WN   = W^ : 

w   2  _     -2j(2n/N) _     -j2n/(N/2) _   w 

We can therefore rewrite Equation 18: 

iV/2 

(17) 

(18) 

(19) 



(/V/2)-l (JV/2)-l 

X[k] =     2    xl2r]WN/2
rk+WN"   £   *[2r H-HIV^'* (20) 

Both G[Jfc] and H[k] are (N/2)-point DFTs, where G[k] is the DFT of the even-numbered points 
of x[n] and H[k] is the DFT of the odd-numbered points of x[n]. If the length of the original sequence 
N is a power of 2, we can use this technique to continue to further decompose the DFTs until we have only 
DFTs of length 2 (see Figure 1 for the case of N = 8). We would have a total of v = log2N stages. 

40] 

44] 

42] 

46] 

41] 
45]. 

43]. 
47]. 

1 *• 

ft 9-Q 
1 ™ t 

O 
c 
0 
OL 1 ** 

It 
9-Q 

1N -> 
Q 

C 
O 

lit -* 
9-Q 

1 ^ t a 
c 
0 
Q. lit 9-Q 

1 ^ 

.X[0] 

.X[l] 

.*[2] 

.X[3] 

.X[4] 

■ X[5] 

• X[6] 

■ X[7] 

log2 8 = 3 stages 
"W 

Figure 1: Decimation-in-time decomposition of an 8-point DFT into 2-point DFTs 

If we expand Figure 1 with the final expression in Equation 20, we arrive at the flow graph shown 
below in Figure 2 (for the case N = 8): 
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Figure 2: Flow graph of the complete decimation-in-time decomposition of an 8-point DFT ([7]) 

In Figure 2, we used a notation where branches (arrows) entering a node (circle) denotes the addition 
of the quantities from which the branches originated, and a coefficient next to the head of a branch denotes 
a scaling of the quantity by the coefficient. If no coefficient is indicated, the scaling factor is assumed to be 
unity by default. See Figure 3 for an illustration of this notation. 



Figure 3: Flow graph notation 

The fundamental operation at each pair of nodes, called a butterfly, is shown below in Figure 4. 

 -; 

^MD 

m th stage X 
wN"

N/2    ^° 

Figure 4: Flow graph of basic butterfly computation ([7]) 

At each non-input node, we perform a complex multiplication and a complex addition, which 
together require 8 flop. There are log2N stages of nodes, giving us a total flop count of SN\og2N. We can 

reduce this flop count further by noting that ([7]) 

W N/1 = e-J<2*/N)N/2 - e~J* _ _j 

and that therefore 

W 
r + N/2 N/2„,   r = w„*w„r = -wj 'N -   rr N fr N    -  ~Tr N 

The butterfly computation shown in Figure 4 can be simplified, as shown in Figure 5. 

(21) 

(22) 

10 



r\ - o k 

(m- 1) th stage 

°\ X - w r ^ -1                          P ̂ <J 

Figure 5: Simplified butterfly computation requiring only one complex multiplication ([7]) 

Using this identity, we will need to multiply by WN   half as many times, resulting in the flow graph 

shown below in Figure 6 (for the case N = 8). 

11 



1   *[ftl    n       ^n ^o   y[nl 1 

r[4]    n       ^rf /fcM3 Y[n 

r[">]     n         ^^ Y     /^n   yPl 

r[6]     0          ^CT Y Y^o y[^i -Pu,   ^ 

r[i]   r,      fcn Y YJi yid] 5^/*   X A A-i 

r[S]     n          ^cT Y \ ^ y[^i 1    J     °      ft^7 

"\/ v^1* / A   \-i 

rV\\     „         fc^. \ Jk yw 
\-FwJ     / \-i 

r[7]      n          ^TT Ji y\i\ 'I    J     O     o^Or 
-H^3 

-i 

Figure 6: An 8-point DFT using the butterfly computation in Figure 5 ([7]) 

For each pair of nodes, we perform one multiply, one add, and one subtract, for a total of 10 flop per 
pair of nodes or an average of 5 flop per node: 

flop count = 5N\og2N (23) 

Because WN depends only on N, it can be pre-computed, and its evaluation does not contribute to 

the workload. 

This technique is not limited to radix 2 FFTs; it may be applied to other radices. 

12 



3.2     REAL FFT 

First, we note that the DFT of a real vector is conjugate even: if x e ft  , the DFT X e C* of x has 
the properties that 

Re{X[k]} = Re{X[N-k]} 

Im{X[k]} = -Im{X[N-k]} 

(24) 

(25) 

If we take advantage of the resulting additional structure, we can reduce the workload necessary to evalu- 
ate the FFT of a real vector. 

The computation of the FFT of a real vector uses two algorithms. The first algorithm computes the 
DFT of two real vectors of equal length through a single FFT of a complex vector of the same length ([8]). 
This algorithm will be used to perform FFTs on the two halves of the input vector. 

Let / and g be two real vectors of length N, where / consists of samples /[0] through /[N - 1 ] 

and g consists of samples g[0] through g[N - 1 ]. Let F be the DFT of / and G be the DFT of g. 

The fact that / is real means that Re{F} (the real part of F) is an even function and Im{F} (the 

imaginary part of F) is an odd function. An even function Re{F} is defined as follows: 

Re{F[k)} = Re{F[N-k]} for**0 (26) 

An odd function lm{F] is defined as follows: 

Im{F[0]} = 0 (27) 

Im{F[k]} = -Im{F[N-k]} for**0 (28) 

If g is real, then jg is imaginary, Re{jG} is an odd function, and Im{jG} is an even function: 

Re{jG[0]} = 0 (29) 

Re{jG[k]} = -Re{jG[N-k]} for**0 

Im{jG[k]} = lm{jG[N-k]} for**0 

Let us define 

h = f + jg 

Then H, the DFT of h, is 

H = F + jG 

Let us first consider the real part of H: 

(30) 

(31) 

(32) 

(33) 

13 



Re{H} = Re{F} + Re{jG} (34) 

where Re{F} is even and Re{jG} is odd. Given these conditions, we can determine that 

Re{jG[0]} = 0^Re{F[0]} = Re{H[0)} (35) 

Re{F[UN-l]} = *'{Bll:N-l]} + Re{H[N-l:-l:l]} 
2 

Re{jG[\:N-l]} = *e{H[l:N-\]}-Re{H[N-\:-\:l]} 

Im{jG[l:N-\]} = Im{H[l :N" 1]} + lmWN ~ 1: ' 1:1^> 

or 

(36) 

(37) 

where H[N -\:-\:\] are elements 1 through N - 1 of // in reverse order. 

Next, let us consider the imaginary part of H: 

Im{H} = Im{F} + Im{jG} (38) 

where Im{F] is odd and Im{jG} is even. Given these conditions, we can determine that 

Im{F[0]} = 0->Im{jG[0]} = /m{//[0]} (39) 

/m{F[l:N-l]} = ^{fiU-N-\]}-Im{H[N-\:-\:\}} (40) 

(41) 
2 

Of course, once we have jG, we can compute G: 

G = -jGxj (42) 

G = Im{jG}-jxRe{jG} (43) 

A MATLAB implementation of this algorithm is shown below in Figure 7. 

14 



%   f  and g are  the real  input vectors 

h a   f   +  i*g; 
H  =   fft(h); 

F(l)   =  reaKH(D); 
F(2:N)   =   0.5   *   (real(H(2:N))   +  real(H(N:-1:2))); 
jG(2:N)   =   0.5   *   (real(H(2:N))   -  real(H(N:-1:2))); 

jG(l)   =  i   *   imag(H(l)); 
F(2:N)   =  F(2:N)   +   0.5i   *   (imag(H(2:N))   -   imag(H(N:-1:2))); 
jG(2:N)   =   jG(2:N)   +   0.5i   *    (imag(H(2:N))   +   imag(H(N:-1:2))) 

G  =   -jG   *   i; 

Figure 7: MÄTLAB code for computing the DFT of two real vectors using one complex FFT 

The workload for this algorithm is dominated by the FFT of the complex vector h, and is therefore 

approximately 5N\og2N flop. 

The second algorithm needed to compute a real FFT applies a conjugate-even butterfly to an input 
vector ([11]). This algorithm is used to combine the two conjugate-even half-length vectors produced by 

the first algorithm to produce a single conjugate-even full-length vector. Specifically, if JC € ft , where 

L = 2q and q > 1 , the algorithm in Figure 8 overwrites x with BL x, where BL is the conjugate- 

even butterfly matrix for an L -point ft'I. 

15 



if q -= 1 

L_star = L / 2; 

p = L / 4; 

tau = x(1); 
x(l) = tau + x(L_star + 1); 
x(L_star + 1) = tau - x(L_star + 1); 

x(3 * p + 1) = -x(3 * p + 1); 

for count = 2:p 

c = cos(2 * pi * (count - 1) / L); 
s = sin(-2 * pi * (count - 1) / L); 
u(count) = c * x(L_star + count) - s * x(L_star + p + count); 

v(count) = s * x(L_star + count) + c * x(L_star + p + count); 

end  % for count 

y(2:p) = x(2:p); 
x(2:p) ■ x(p + 2:L_star); 

for count = 2:p 
x(count) = y(count) + u (count); 
x(p + count) = y(p - count) - u(p - count); 
x(L_star + count) = z(count) + v(count); 
x(L_star + p + count) = -z(p - count) + v(p - count) 

end  % for count 

else 
tau = x(1); 
x(l) = tau + x(2); 
x(2) = tau - x(2); 

end  % if q -= 1 

Figure 8: MATLAB code to apply a conjugate-even butterfly ([11]) 

This algorithm requires approximately 5L/2 flop. 

To compute the FFT X of a single real vector x e lC ([11]), the input vector is first divided into two 

half-length vectors: let xodd = JC[1 :2:n] and xeven = x[2:2:n]. Next, we use the algorithm in Figure 7 to 

compute vodd 
Cl   and veven 

ce , which are the DFTs of xodd and xeven, respectively. Finally, we use the 

16 



algorithm in Figure 8 to compute X = Bn 
(ce) 

(ce) 
vodd 

(ce) 

Computing the DFTs of the half-length vectors requires 

flop count = 5Mlog2f^J 

= |n[(log2/i)-l] 

= (|nlog2n)-5|, 

(44) 

Applying the conjugate-even butterfly matrix requires an additional -n flop, bringing the total flop count 

for an FFT of a real vector to 

flop count = -nlog2n (45) 

17 





4. HOUSEHOLDER QR DECOMPOSITION 

4.1    REAL HOUSEHOLDER QR DECOMPOSITION 

The QR decomposition factors a real input matrix A e iC' " into an orthogonal matrix ge 'R'"5 

and an upper triangular matrix Re iC' " ([4]): 

/i = QR 

QTQ = l,QQT = / 

(46) 

(47) 

The Householder QR factorization algorithm entails the application of a series of orthogonal trans- 

formations Pi to the input matrix A so that the portion of the matrix below the diagonal will become zero: 

Pn...PtA = R 

where each matrix Pt has the form 

P = /-ßvv7 

(48) 

(49) 

To avoid explicitly computing the Householder reflection / - ßvv  , we use the following implemen- 
tation ([4]): 

define w = $A v 

(I-$vvT)A = A-$vvTA 

= A-v($vTA) 

= A - vw 

(50) 

(51) 

A MATLAB implementation of the real Householder QR decomposition, which overwrites the input 
matrix with the upper triangular factor (the Householder QR decomposition does not return the orthogonal 
factor), is shown below in Figure 9. 

19 



[num_rows/ num_cols] = size(A); 
for col = l:num_cols 

% Compute the Householder vector v 
[v, beta] = house(A(col:num_rows, col)); 

% Apply the Householder vector to the remainder of the matrix 
w = beta * v' * A(col:num_rows, col:num_cols); 
A(col:num_rows, col:num_cols) = A(col:num_rows, col:num_cols) - v * w; 

% Zero out the remainder of the column. 
A((col + 1):num_rows, col) = 0; 

end  % for col 

Figure 9: MATLAB code for a Householder QR decomposition ([4]) 

The function house (x)   (see Figure   10) computes a vector  v   and  a scalar  ß   such  that 

2_ 
T 

V   V 

P = /-ßvvr is orthogonal, where ß = -|-, and Px = |U||2£, (e, = [1,0, ...,0]r). 

20 



if (isreal(x)) 
n = length(x); 
sigma = x(2:n)' * x(2:n); 

v = [1; x(2:n)]; 

if sigma == 0 
beta = 0; 

else 
mu = sqrt(x(l)A2 + sigma); 

if x(l) <= 0 
v(l) = x(l) - mu; 

else 
v(l) = -sigma / (x(l) + mu); 

end  % if 
beta = 2 * v(l) A 2 / (sigma + (v(l) A 2)); 
v = v / v(l); 

end  % if 
else 
v = x; 
nx = norm(x); 
v(l) = x(l) + nx; 
beta = 1 / (nx * (nx + x(l))); 

end  % if 

Figure 10: MATLAB code for computing the Householder vector ([4]) 

In computing the flop count for a real Householder QR decomposition, we consider the application 
of the Householder reflections only: the flop count for the computation of the Householder vector is 
ignored, as it is much smaller than the flop count for the application of the Householder reflections. 

T T For the ith iteration, computing A v requires 2(m - i)(n - i) flop. Computing w = $A v requires 
T m - i flop, but is ignored as it is a secondary term. Computing vw   requires (m - i)(n - i) flop. Comput- 

T ing   A-vw     requires  another   (m-i)(n-i)   flop.  The  total  flop  count  for  the   ith  column  is 

4(m-/)(n-i) flop. 

Because we apply the Householder reflection to the portion of the input matrix that is on or to the 
right of the diagonal (see Figure 11), the length of the columns decrease by one as we operate on succes- 
sive columns. 
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a a a a a 

0 a a a a 

OObbb 

00b bb 

OObbb 

0 0 b bb 

Elements a have already been 
upper triangularized 

The Householder reflection is 
applied to elements b 

Figure 11: Portion of input matrix to which apply the Householder reflection 

The total flop count for the entire mxn input matrix can be computed as follows: 

n 

flop count = V4(m-i)(n-i) 
i = i 

(52) 

= 4 V [mn - (m + n)i + i ] 
i = i 

= 4 V mn - 4 V(m + «)/ + 4 V / 
i = 1 ifa 1 1=1 

.2 

n n 

= Amn -4(m + /i) V i + 4 V i .2 

i=l i = I 

= 4mn2-4(m + n)^L±l) + 4,'("-,-1)i2"+1) 

= Amn - 2(m + n)(n2 + n) + hin + 3n2 + n) 

2 23 24322 = 4m/i  - 2mn -2n - 2mn -In  + -n +2n + -n 

= 2«n2-|«3-2«n + |» 

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices: 
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flop count = 2mn --n (53) 

= In H) 
4.2    COMPLEX HOUSEHOLDER QR DECOMPOSITION 

If the input matrix A e cmxn is complex, the QR decomposition factors A into a unitary matrix 

Qe c"1 x w and an upper triangular matrix Re Cf1 

A = QR 

QHQ = /,ßß" = / 

([4]): 

(54) 

(55) 

A MATLAB implementation of the complex Householder QR decomposition, which overwrites the 
input matrix with the upper triangular factor (the Householder QR decomposition does not return the uni- 
tary factor), is the same as the implementation for a real Householder QR decomposition, which was given 
in Figure 9. 

In computing the flop count for a complex Householder QR decomposition, we consider the applica- 
tion of the Householder reflections only; the flop count for the computation of the Householder vector is 
ignored. 

H To avoid explicitly computing the Householder reflection / - ßvv   , we use the following implemen- 

tation: 

.« (56) 

(57) 

define w = ßA  v 

(I-ßwH)A = A-ßvv" A 

= A-v(ßvHA) 

A H = A-vw 

H H 
For the ith iteration, computing A  v  requires  8(m - z')(/i -/)   flop. Computing w = $A  v 

MM 

requires 2(m - /')   flop, but is ignored. Computing  vw     requires 6(m - i)(n - i)  flop. Computing 

A-vw requires 2(m - i)(n - i) flop. The total flop count for the i th column is 16(m - i){n - i) flop, or 
four times the flop count for the real Householder QR decomposition. The canonical total estimated flop 
count for the complex Householder QR decomposition is therefore 
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flop count = 8n2( m - ^ j (58) 
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5. FORWARD AND BACK SUBSTITUTIONS 

5.1    REAL FORWARD AND BACK SUBSTITUTIONS 

A forward substitution allows us to solve the lower triangular system Lx = b for x e ft" given 

lower triangular L € <Rn*n and b e ft". Fundamentally, the forward substitution process is as follows 

([4]). First, we solve for the first unknown JCJ : 

Lnxx = b{ 

X*=L 

Next, we use this value of xt to solve for x2: 

(59) 

(60) 

L2\Xl + £22*2  ~~     2 

L>22x2  ~~  ^2~^"l\x\ 

X-,  = 
^2 ~^2\x\ 

J22 

(61) 

(62) 

(63) 

Continuing forward, we can solve for all elements of the vector x. 

A MATLAB implementation of the forward substitution, which overwrites the input vector b with 

the solution vector x, is shown below in Figure 12. 

b(l) = b(l) / Ml, 1); 
for row = 2:num_rows 
b(row) = (b(row) - L(row, l:row 

end  % for row 
-   1)   *  b(l:row -   1))   /   L(row,   row); 

Figure 12: MATLAB code for a forward substitution ([4]) 

In computing the flop count for a forward substitution, we ignore the workload necessary to compute 

b, 
JC, = y^-, as it will be a secondary term. 

*jl 

For row i, computing the dot product Lt x.,_ I x xx .t■,_, requires 2(i - 1) flop. Subtracting this dot 
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product from b{ requires one flop, but is ignored as it is a secondary term. Multiplying the difference by 

1 /L, , also requires one flop and is also ignored. 

The flop count for all n elements of x can be computed as follows: 

n 

flop count = £2(/-l) (64) 
/= l 

n 

= -2n + 2]T; 

= -2n + n2 + n 

2 = n -n 

We then drop the lower order term to arrive at the canonical estimated flop count for a forward sub- 
stitution on real matrices: 

flop count = n (65) 

A back substitution is the analog of the forward substitution for upper triangular matrices, letting us 

solve the triangular system Ux = b for x e 9ln given upper triangular U e 'R"      and be *R" . Instead of 

starting with the first unknown and working forward, we start with the last unknown xn and work back. 

A MATLAB implementation of the back substitution, which overwrites the input vector b with the 

solution vector x, is shown below in Figure 13. 

b(num_rows ) = b(num_ rows) / U(num_rows, num_rows); 
for row = (num_rows - 1):-1 :1 

b( row) = (b(row) - 
/ U(row 

U(row, 
, row); 

row + 1: num. .rows) * b( row + 1 :num_ .rows )) ... 

end % for row 

Figure 13: MATLAB code for a back substitution ([4]) 

The derivation of the flop count for a back substitution is almost identical to the derivation for the 
forward substitution flop count, giving us the canonical estimated flop count for a back substitution: 
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flop count = n 

5.2    COMPLEX FORWARD AND BACK SUBSTITUTIONS 

(66) 

The algorithms used for real forward and back substitutions may be used for complex forward and 
back substitutions. 

In a forward substitution, for row i, computing the dot product L, j:i_| x Xj.j_| requires 8(i - 1) 

flop. Subtracting this dot product from bt requires two flop, but is ignored as it is a secondary term. Multi- 

plying the difference by 1 /L{ i also requires two flop and is also ignored. The flop count for row z is four 

times the flop count for the corresponding computation for a real forward substitution. The canonical total 
estimated flop count for a complex forward substitution is therefore 

2 
flop count = An (67) 

The derivation of the flop count for a complex back substitution is almost identical to the derivation 
for the complex forward substitution flop count, giving us the canonical estimated flop count for a back 
substitution: 

flop count = An (68) 
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6. EIGENVALUE DECOMPOSITION 

6.1     REAL EIGENVALUE DECOMPOSITION 

The symmetric Schur decomposition of a real symmetric matrix A e *Rn     computes an orthogonal 

matrix ße!Rnx" such that ([4]): 

QTAQ = A = diag(XI, .••>*„) (69) 

This decomposition of A results in the eigenvectors being the columns of Q and the corresponding 

eigenvalues being the diagonal elements of A ([2]): 

From the definition of eigenvectors and eigenvalues: 

7" T 
Aq = Xqy where qi q, = 1 and qt qj = 0 for r* / 

AQ = A<2, where QTQ = QQT = I 

QTAQ = QTAQ 

Let B = AQ 

n 

bij = X *"'***> 
*= 1 

= y^flij because Xik - 0 for i * k 

Let C = QTAQ = QTB 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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cij = X *"**> (76) 
* = 1 

=   ^Ikifrklkj) 
k = I 

n 

= ^Kikiikj 
* = i 

0 if i*j 

/.ß'i4ß = A (77) 

As the first step in the implementation of the symmetric Schur decomposition, we tridiagonalize the 
input matrix: 

x x x x x 
x x x x x 

x x x x x 
x x x x x 
X X X X X 

y y 000 
y y y 00 
0 y y y 0 

0 0 y y y 
0 00 y y 

(78) 

The tridiagonal matrix T is derived from the input matrix A through orthogonal Householder reflec- 

tions QT: 

QT'AQT = T (79) 

A MATLAB implementation of the real Householder tridiagonalization, which overwrites the input 

matrix with the tridiagonal matrix (if QT is desired, it must be separately formed), is shown below in Fig- 

ure 14. 
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for k = 1:(num_rows - 2) 
% Compute the Householder vector v. 
[v, beta] = house(A((k + 1):num_rows, k) ) ; 

% Apply the Householder reflection. 
p = beta' * A((k + 1):num_rows, (k + 1):nura_rows) * v; 
w = p - (beta *v*v' * p / 2) ; 

A((k +1), k) = -norm(A((k + 1):num_rows, k)); 
A(k, (k + 1)) = A((k + 1) , k); 
A((k + 1):num_rows, (k + 1):num_rows) ... 

« A((k + 1):num_rows, (k + 1) :num_rows) - v * w' - w * v' ; 

% Zero out remainder of row and column. 
A((k + 2):num_rows, k) = 0; 
A(k, (k + 2) :num_rows) = 0 ; 

end % for k 

% Apply phase-only correction to last super- and sub-diagonal elements to 
% make them real 
last_super_diag = A((num_rows -1), num_rows); 
A((num_rows -1), num_rows) = abs(last_super_diag); 
A(num_rows, (num_rows - 1)) = abs(last_super_diag); 

Figure 14: MATLAB code for a real Householder tridiagonalization ([4]) 

In computing the flop count for a real Householder tridiagonalization, we consider the application of 

the Householder reflections only: the flop count for the computation of the Householder vector v is 
ignored. 

For iteration k, computing the product of A(k+ 1 :num_rows, k + l:num_rows) and v requires 

2(n-k) flop. Scaling this product by ß to compute p requires n-k flop and is disregarded. Computing 

w requires 3(n - k) + 2 is also disregarded. Computing \\A(k + 1 :num_rows, £)||2 requires 2(n - k) flop 

and is also disregarded. 

7" 2 T T Computing vw   requires (n - k)   flop. The product wv   is the transpose of vw   and requires no 
T T additional computations. Taking advantage of the symmetry of the output, subtracting both vw   and wv 

2 2 from A requires (n-k)   flop. The total flop count for iteration k is 4(n - k)   flop. 

The total flop count for the entire nxn matrix can be computed as follows: 
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n-2 

flop count =  V 4(n - k) (80) 
* = 1 

n-2 n-2 n-2     > 
2     „ XT'     ,       ^»  »2 = 4x   X»-22«*+X*' 

v* = 1 * = 1 it = 1 

= 4x 
f     n-2 n-2 n-2     ^ 

n
2Xi-2«x*+X*2 

V    k=I *= 1        Jfc = I     J 

= 4x [n2(n-2)]-[2n{- 
(n-2)(n-\)l    [(n-2)(n-\)(2n-3Y M 

8/z3-12/?2 +4/1-24 

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices: 

(81) flop count = -n 

To evaluate the eigenvectors in addition to the eigenvalues, we will need to accumulate the House- 
holder reflections in QT. The product of the Householder reflection matrices is equal to 

QT = r\~Pn-2 (82) 

where each matrix Pk is the Householder reflection matrix for loop index k in the algorithm given in Fig- 

ure 14 above. Each matrix Pk has the form 

'*    o k 

Pk = _°      ?* _ n-k 

k    n-k 

where Ik is the k x k identity matrix and 

Pt = in-t-V™ 

for iteration k. 

(83) 

(84) 
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Noting that the Pk portion of Pk shrinks as k increases, we can reduce the workload needed to com- 

pute QT if we accumulate this product starting with Pn_2 (tne Householder transformation matrix with 

the smallest non-identity submatrix) rather than starting with P] (the Householder transformation matrix 

with the largest non-identity submatrix): instead of accumulating a product that is virtually completely 
non-identity from the beginning, we will slowly grow the submatrix that is non-identity ([6]). 

Let 

n-2 

e* = IP. 
i = k 

Then 

and 

Qk-i = Pk-iQk 

If we consider the non-identity portion of the product Qk _ , = Pk _ , Qk, we have 

Qk-i = Pk-\Qk 

where 

e* = /  0 

Given that the Householder reflection matrix Pk-\ is 

Pk-x = /-ßvv7 

we can express the product in Equation 88 thusly: 

Qk-x = (/-ßwr)ä 

= ß*-ßvv7ß, 

Let 

w = v Qk 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

Then 
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ß*-l = ß*-ßv>v (93) 

Computing the product w = v Qk requires 2{n-k)   flop. Scaling w by ß requires n-k flop and 

is disregarded. Computing ßvw requires (n - k)   flop. Computing g* - ßvw also requires (n-k) , for a 
2 

total of 4(/i - £)   flop for iteration k. The total flop count to accumulate QT for a real input matrix is 

4  3 flop count = -n (94) 

The rest of the work in the symmetric Schur decomposition is performed in a series of implicit sym- 
metric QR steps with Wilkinson shifts ([4]). This algorithm takes as an input an unreduced symmetric trid- 

iagonal matrix fe'R"  " and overwrites it with the quantity Z TZ. A matrix is said to be unreduced if it 

has no zero subdiagonal entries. The matrix Z is equal to the product of Givens rotations 

Z= G....G n-\ (95) 

and has the property that Z (T - \LI) is upper triangular. The scalar \i is the eigenvalue of the 2-by-2 prin- 

cipal submatrix of T that is closer to tnn (the element in the matrix T in the n th row and n th column). 

There is an easy way to compute the eigenvalues of a 2 x 2 matrix. First, we observe that the eigen- 

values X of a matrix A satisfy the characteristic polynomial ([4]) 

det(\I-A) = 0 (96) 

Expanding Equation 96: 

det\ xo 
ox 

a\l a\2 

a2l Ö22 
= 0 (97) 

det 
X-Q\\    -«12 

-a2]    X-a22 

= 0 (98) 

The determinant of a 2 x 2 matrix is given by 

det\ ab 
cd 

= ad-be (99) 

Therefore, Equation 98 is equivalent to 
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(k-au)(k-a12)-{-an){-a2^) = 0 

A. -{au+a22)X + {aua22-ana2X) = 0 

Solving for X, we have: 

X = 
(au+a22)±J(au+a22)

2-4(aua22-al2a2l) 

(100) 

(101) 

(102) 

The implicit symmetric QR step with Wilkinson shift uses the algorithm givens (a, b)y which 

returns two scalars c = cos (9) and s = sin (8) suchthat 

(103) 
r     ~i T r -i 

c s a — r 

\rs c. Pi OJ 

A MATLAB implementation of the givens algorithm is shown below in Figure 15. 

function:    [c,   s]   =  givens(a ,   b) 

if   b = 0 

c = 1 

j = 0 

else 

if   W>W 
T - -a/b 

m   1/Vl+X2 

C = JT 

else 

= 1/Vl+T2 

5 = CT 

end    %  if 
end    %   if 

Figure 15: MATLAB code for the givens algorithm ([4]) 

This algorithm requires five flop and a single square root. 

A shorthand notation is often used for a real Givens rotation matrix: 
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G(/,*,e) = (104) 

1   ...  0 ... 0 ... 0 

0    ...    C ... 5 ... 0 

0  ... -s ... c ... 0 

0  ...  0 ... 0 ... 1 

i k 

When applying a Givens rotation, we do not explicitly form this matrix; instead, we take advantage 
of the structure in the Givens rotation matrix. 

Let Ae tRmxn, c = cos(6), and s = sin(6). Then, the update A <- G(i, k, Q)TA affects just 

rows i and k of A : 

MU,k],:) = 
IT 

c s 

-s c 
i*([i,*],:) 

A MATLAB implementation of this update is shown below in Figure 16. 

(105) 

for j =   1: n 

h = A(i, j) 

*2 = A(k, 3) 

A(i .   j) = cx, -5T2 

A(k .   3) =  5T, + cx2 

end     %   for ; 

Figure 16: MATLAB code for pre-applying a Givens rotation ([4]) 

This update requires only 6n flop. 

Similarly, the update A <- AG(i, k, 6) affects only columns i and /: of A : 

c   5 

-5 c 
A(:,V,k]) = /*(:,[/,*]) 

A MATLAB implementation of this update is shown below in Figure 17. 

(106) 
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for j   =   1:m 

T, = A(j,    i) 

x2 = A(j,   k) 

A( j,    i)   • CXj-5X2 

A(j ,    k)   = 5T,+CT2 

end     %   for j 

Figure 17: MATLAB code for post-applying a Givens rotation ([4]) 

This update also requires only 6n flop. 

A MATLAB implementation of the implicit symmetric QR step with Wilkinson shift is shown below 
in Figure 18. 

d «(',_,,..,-W/2 

u = ^-Vn-,2/(^ + sign(J)>2 + r/,,I_1
2) 

X = /,,-u 

2 " <2\ 

for  k  =   l:n  -   1 
[c,   s]   =  givens (x,   z) ; 

7 = c/rC^ ,   where   Gk = G(k,k+\.Q) 

if  k <  n -  1 
x ~ lk+l,k 

Z =  '* + 2,Jt 

end     %   if 
end     %   for  k 

Figure 18: MATLAB code for an implicit symmetric QR step with Wilkinson shift ([4]) 

The bulk of the workload is found in the for loop. For each k, we need to perform: 

• five flop and one square root for the givens algorithm 

• 27 flop to compute Gk
TTGk (see below) 

for a total of 32 flop and one square root. 

The flop count for applying the Givens rotation Gk to T is only 27 and independent of the matrix 
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size n because we can take advantage of the fact that, within the for k loop, Gk TGk remains symmetric, 

7* and that most of the elements in rows k and k + 1 are zero. Consider the premultiplication of T by Gk 

(see Figure 19). 

a b c C 

b d e 0 

c e f 9j 
0     0     g     h 

' l 

a b c c 

b' d* e' A 

0 e' r 9' 

0 0 g h 

•m 

Figure 19: Premultiplication by the Givens rotation matrix 

T To form the product Gk T, we only need to compute b\ d, e\ f, g\ and A, even though we are 

updating a total of eight entries: we don't need to compute a value we know to be zero, and we only need to 

compute ex once. Computing these scalars requires three flop per scalar (to compute either cix -si2 or 

5T, + ci2), for a total of 18 flop. 

T We can similarly take advantage of the structure in the matrices to efficiently postmultiply Gk T by 

Gk (see Figure 20). 

a 0 a 0 b c b* 0 

b d' e' A b d" e" A 

0 e" r 9* ~* 0 e" r 9' 

0 0 9 h 0 A 9' h 

Figure 20: Postmultiplication by the Givens rotation matrix 

To compute the product Gk TGk, we only need to compute d", e", and /*', even though we are 

updating eight entries: we don't need to compute a value we know to be zero, and we can take advantage of 
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the symmetry in Gk TGk to avoid recomputing b', e", g', and A. Computing these scalars requires three 

flop per scalar, for a total of nine flop. 

For all k ranging from 1 to n - 1, we will need to perform 32(n - 1) flop and n - 1 square roots, 

which we round to 30n flop and n square roots to match the text ([4]). 

If we want to accumulate the Givens rotations by updating an input orthogonal matrix Q with 

QGl...Gn_i, we will require 6n flop to apply each Givens rotation to the running product, for a total of 
2 

6n(n - 1), or approximately 6/z   flop. 

A MATLAB pseudo-code implementation for the overall algorithm for computing the symmetric 
Schur decomposition of a real matrix A , which overwrites A with the tridiagonal matrix 7, is given below 
in Figure 21 (tol is a tolerance greater than the unit roundoff). 
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% Tridiagonalize the input matrix. 

Use the algorithm in Figure 14 to compute the tridiagonalization 

T = (Pv..Pn_2)TA(Px...Pn_2) 

Set D = T   and, if Q   is desired, form Q - Px.Pn_2 

until q = n 
for i = l:n - 1 

if K#*IJ-KI*IISI0,)C
<W*K*I.I*I|) 

*u+\   = 0; 

end  % if 

end % for i 

Find the largest q   and the smallest p   such that, if 

D = 

'II 
0 

0 

0 

D 22 
0 

p 
n-p-q 

9 "33] 

p n-p-q q 

then  £>33   is  diagonal  and  D22   is  unreduced 

if   q<n 

Use the algorithm in Figure 18 to update D^ : 

D22 = diag(/,,Z,//z>22diag(/p,Z,/9) 

If Q   is desired, then update Q : 

end  % if 
end  % until q = n 

Figure 21: MAIL AB pseudo-code for a real symmetric Schur decomposition ([4]) 

The matrix ln is the n x n identity matrix. 

The computational workload for the real symmetric Schur decomposition is found principally in the 

4  3 tridiagonalization of the input matrix, which requires approximately -n   flop. There are 0{n) calls to the 

implicit symmetric QR step with Wilkinson Shift, each with an O(n) flop count. Therefore, the flop count 

40 



for the implicit symmetric QR steps will be 0(n ). As it is an order smaller than the flop count for the trid- 
iagonalization, this flop count is ignored in the overall flop count, giving us the canonical flop count for the 
real symmetric Schur decomposition: 

flop count = -n (107) 

It should be noted here that the actual number of iterations through the algorithm in Figure 21 
needed to converge on a solution is not deterministic. We estimate this number of iterations to be approxi- 
mately n, but it may be several times larger than n. 

If we want to accumulate the orthogonal transformations Q, we will need to: 

• accumulate the Householder reflections during the tridiagonalization of the input matrix, at a 

cost of -n   flop 

• accumulate the Givens rotations during each of the 0{n) implicit symmetric QR steps at a 
2 3 cost of 6n   flop per iteration, for a total of approximately 6n   flop 

If we add to these two items to the workload for the symmetric Schur algorithm without accumulat- 
ing Q, we can compute the total workload: 

., 4   3,343 flop count = -n + 6/i  + -n F 3 3 

26 3 

(108) 

We round this figure to arrive at the canonical workload for the symmetric Schur algorithm if we 

accumulate Q: 

flop count = 9n 

62    COMPLEX EIGENVALUE DECOMPOSITION 

(109) 

The symmetric Schur decomposition of a complex symmetric matrix A e C"      computes a unitary 

matrix Qe <?*" such that: 

J¥ 
Q"AQ = A = diag(Ä.If ...,**) (110) 

This decomposition of A results in the eigenvectors being the columns of Q and the corresponding 

eigenvalues being the diagonal elements of A. 
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As the first step in the implementation of the symmetric Schur decomposition, we tridiagonalize the 

input matrix. The tridiagonal matrix T is derived from the input matrix A through unitary Householder 

reflections QT: 

QT
HAQT = T (111) 

A MATLAB implementation of the complex Householder tridiagonalization, which overwrites the 

input matrix with the tridiagonal matrix (if QT is desired, it must be separately formed), is shown below in 

Figure 22. 

for k = 1:num_rows - 2 
% Compute the Householder vector v. 
x = A(col:num_rows, col); 

i9 »0 
v = x±e  IUII2*, ; where JC, = re 

beta = 2 / (V * v) ; 

% Apply the Householder reflection. 
p = beta * A(k + l:n, k + l:n) * v; 
w = p - (beta * p' * v / 2) * v; 
A(k + 1, k) = norm(A(k + l:num_rows, k) ) ; 
A(k, k + 1) = A(k + 1, k); 
A(k + l:num_rows, k + l:num_rows) ... 

= A (k + 1:num_rows, k + 1:num_rows) - v * w' - w * v' ; 
end  % for k 

Figure 22: MATLAB code for a complex Householder tridiagonalization 

Even though the input matrix A is complex, the resultant tridiagonal matrix T is real. 

In computing the flop count for a complex Householder tridiagonalization, we consider the applica- 

tion of the Householder reflections only: the flop count for the computation of the Householder vector v is 
ignored. 

For iteration ky computing the product of A(k+ l:num_rows, k+ l:num_rows) and v requires 

8(n - k) flop. Scaling this product by ß to compute p requires 2(n - k) flop and is disregarded. Com- 

puting w requires \2(n-k) + 3 is also disregarded. Computing \\A(k + l:num_rows, k)\\2 requires 

4(n - k) flop and is also disregarded. 

H 5 H H 
Computing vw   requires 6(n - k)   flop. The product wv    is the transpose of vw    and requires no 
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H H 
additional computations. Taking advantage of the symmetry of the output, subtracting both vw    and wv 

2 2 
from A requires 2{n - k) flop. The total flop count for iteration k is 16(/i - k) flop, or four times the 
flop count for the real Householder tridiagonalization. The total estimated flop count for the complex 
Householder tridiagonalization is therefore 

flop count = —n (112) 

To evaluate the eigenvectors in addition to the eigenvalues, we will need to accumulate the House- 

holder reflections in QT. The product of the Householder reflection matrices is equal to 

ÜT = Pl-fn-2 (113) 

where each matrix Pk is the Householder reflection matrix for the loop index k in the algorithm given in 

Figure 22 above. We use the same technique for accumulating QT that was used for the real Householder 

tridiagonalization. For each iteration k, we are computing the quantity 

Qk-x = ß*-ßvw 

where 

w = v Qk (115) 

Computing the product w = v  Qk requires S(n-k)   flop. Scaling w by ß requires 2(n-k) flop 

2 — 2 
and is disregarded. Computing ßvw requires 6(n-k)   flop. Computing öjt-ßvw requires 2(n-k) , 

for a total of 16(n - k)   flop for iteration k, or four times the flop count for the real Householder tridiago- 

nalization. The total flop count to accumulate QT for a complex input matrix is 

flop count = -r-n (116) 

The rest of the work in the symmetric Schur decomposition is performed in a series of implicit sym- 
metric QR steps with Wilkinson shifts. This algorithm takes as an input an unreduced symmetric tridiago- 

nal matrix T e <jC*n and overwrites it with the quantity Z TZ. The matrix Z is equal to the product of 
Givens rotations 

Z=Gv..Gn_x (117) 

and has the property that Z (T - \LI) is upper triangular. Because the tridiagonal matrix T is real, the Giv- 

ens rotations G, are also real, and, therefore, the algorithm for implicit symmetric QR steps with Wilkin- 
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son shifts that was given in Figure 18 may be used here ([9]). The workload for this algorithm, as was 

previously indicated, is approximately 30n flop and n square roots. 

If we want to accumulate the Givens rotations by updating an input unitary matrix Q with 

QGX... Gn _,, we will require 6n flop to apply each Givens rotation to the running product for each of the 
2 

real and imaginary halves of Q, for a total of \2n(n - 1), or approximately 12n   flop. 

A MATLAB pseudo-code implementation for the overall algorithm for computing the symmetric 

Schur decomposition of a complex matrix A, which overwrites A with the tridiagonal matrix 7, is given 
below in Figure 23 (tol is a tolerance greater than the unit roundoff). 
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% Tridiagonalize the input matrix. 
Use the algorithm in Figure 22 to compute the tridiagonalization 

Set D - T   and, if Q   is desired, form Q = P]...Pn_2 

until q = n 
for i = l:n - 1 

if K>../| -K^il*rtx<M*ft*u*il> 
4*1.1 ■ 0; 

*U*i = 0; 

end  % if 
end % for i 

Find the largest q   and the smallest p   such that, if 

D = "22 

0 D 33 

P 
n-p-q 

9 

p n-p-q q 

then D33   is diagonal and D22   is unreduced 

if q<n 

Use the algorithm in Figure 18 to update D^ : 

D^ = diag(lp, Z, l/D22 diag(/p, Z, Iq) 

If Q   is desired, then update Q : 

Q = Qdiag(Ip,ZJq) 

end % if 
end  % until q = n 

Figure 23: MATLAB pseudo-code for a complex symmetric Schur decomposition 

The computational workload for the complex symmetric Schur decomposition is found principally 

in the tridiagonalization of the input matrix, which requires approximately — n   flop. There are O(n) 

calls to the implicit symmetric QR step with Wilkinson Shift, each with an O(n) flop count. Therefore, the 

flop count for the implicit symmetric QR steps will be 0(n ). As it is an order smaller than the flop count 
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for the tridiagonalization, this flop count is ignored in the overall flop count, giving us the flop count for the 
complex symmetric Schur decomposition: 

flop count = — n (118) 

If we want to accumulate the orthogonal transformations Q, we will need: 

• accumulate the Householder reflections during the tridiagonalization of the input matrix, at a 

cost of — n   flop 

• accumulate the Givens rotations during each of the 0{n) implicit symmetric QR steps at a 
2 3 cost of 12n   flop per iteration, for a total of approximately \2n   flop 

If we add to these two items the workload for the symmetric Schur algorithm without accumulating 

Q, we can compute the total workload: 

flop count = yn + \2n + y n3 (119) 

68 3 
= Tn 

We round this figure to arrive at the workload for the symmetric Schur algorithm if we accumulate 

Q- 

flop count = 23n3 (120) 
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7. SINGULAR VALUE DECOMPOSITION 

7.1     REAL SINGULAR VALUE DECOMPOSITION 

The singular value decomposition (SVD) of a real matrix Ae 'R      , where m>n, computes 

orthogonal matrices U e <Rmxm and V e <Rnxn such that ([4]): 

U AV = diag(a,,c2, ...,on) 

where 

(121) 

(122) a,>a2>...>a/1>0 

The scalars a, are the singular values of A . The matrix U contains the left singular vectors, while 

the matrix V contains the right singular vectors. 

As the first step in the implementation of the SVD algorithm, we upper bidiagonalize the input 
matrix: 

x x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
X X X X X 

X X X X X 

y y 0 0 0 

0 y y 0 0 
0 Oy y 0 

0 0 0 y y 
OOOOy 
00000 

00000 

(123) 

The nxn bidiagonal matrix B is derived from the input matrix A through the application of orthog- 

onal Householder reflections UB and VB: 

= UB'AVB (124) 

A MATLAB implementation of the real Householder bidiagonalization, which overwrites the input 

matrix with the bidiagonal matrix (if UB and VB are desired, they must be separately formed), is shown 

below in Figure 24. 
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for j = l:num_cols 
% Compute the Householder vector v. 
[v, beta] = house(A(j:num_rows, j)) ; 

% Apply the Householder reflection (premultiply). 
w = beta * v' * A(j:num_rows, j:num_cols); 
A(j:num_rows, j:num_cols) ... 

= A(j:num_rows, j:num_cols) - v * w; 

% Zero out the rest of the column. 
A((j + 1):num_rows, j) = 0; 

if (j <= (num_cols - 2)) 
% Compute the Householder vector v. 
[v, beta] = house((A(j, (j + 1):num_cols))'); 

% Apply the Householder reflection (postmultiply). 
w = beta' * A(j:num_rows, (j + 1):num_cols) * v; 
A(j:num_rows, (j + 1):num_cols) ... 

= A(j :num_rows, (j + 1) :num_cols) - w * v* ; 

% Zero out the rest of the row. 
A(j, j + 2:num_cols) = 0; 

end  % if (j <= (num_cols - 2)) 
end  % for j 

% Apply phase-only correction to last super-diagonal element to make it real 
last_super_diag = A((num_cols - 1), num_cols); 
A((num_cols - 1), num_cols) = abs(last_super_diag); 

Figure 24: MATLAB code for a Householder bidiagonalization ([4]) 

In computing the flop count for a real Householder bidiagonalization, we consider the application of 

the Householder reflections only: the flop count for the computation of the Householder vector v is 
ignored. 

For iteration ;, computing the product of the transpose of A(y':num_rows, y:num_cols) and v 

requires 2(m-j)(n - j) flop. Scaling this product by ß to compute w requires m- j flop and is disre- 
T T garded. Computing vw   requires (m-j)(n-j) flop. Subtracting vw   from A requires (m-j)(n-j) 

flop. 
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If    j < num_cols - 2,    there    are    additional    computations.    Computing    the    product    of 

y4(y':num_rows, j + 1 :num_cols) and v requires 2(m - j)(n - j - 1). Scaling this product by ß requires 
T T n-j-l flop and is disregarded. Computing wv   requires (m - j)(n -j -1). Subtracting wv   from A 

requires (m - j)(n - j -1). The total flop count for iteration ; is approximately 8(m - j)(n - j). 

The total flop count for the entire mxn can be computed as follows: 

flop count =  V 8(m - j)(n - j) 

= 8^[mn-(m + /i)y + /] 

HN /i 

= 8£mn-8£(m + /i)7 + 8£/ 
/-I y=> ;=i 

= 8m/i  -4m/i  -4n  + -(2«  + 3/i  +n) 

^      2.3    83.24 = 4mAz  -4/i  + -n   f4n   +-n 
3 3 

A     2    4 3 , A  2    4 
= 4m/i  --/!  +4/i  +-/i 

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices: 

2    4 3 flop count = 4//1/2 --n 

(125) 

(126) 

To compute the left and right singular vectors, we will need to accumulate the Householder reflec- 

tions in UB and VB. The bidiagonal matrix B is computed from the input matrix A through the following 

Householder reflections: 

* = QpK.n-Q^lAQpoX.l'Qpost.n-l (127) 

where ßpre -t is the Householder reflection matrix (by which we premultiply A ) used to zero out column /, 

and ßpost, j is the Householder reflection matrix (by which we postmultiply A) used to zero out row i, and 
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n is the number of columns in A . We accumulate all of the 0prc -x reflection matrices in UB, and all of the 

ßpost, i reflection matrices in VB: 

UB    =  ßpre.n-ßpre.l  0r UB =  ßpre, 1 • • ßpir,n 

*B =  ßpost, 1-" ßpost, n-2 

First, consider the computation of UB. Each matrix ßpre . e 'R        has the form 

(128) 

(129) 

\J       -° 

where /y is the j x y identity matrix and 

7 
m-j (130) 

ßprcj = /m-7-ßw7 (131) 

for iteration j. 

Noting that the ßpre,j portion of ßpre ; shrinks as y increases, we can reduce the workload neces- 

sary to compute UB if we accumulate this product starting with gprc n (the Householder transformation 

matrix with the smallest non-identity submatrix) rather than starting with Q , (the Householder trans- 

formation with the largest non-identity submatrix): instead of accumulating a product that is almost com- 
pletely non-identity from the beginning, we will slowly grow the submatrix that is non-identity. 

Let 

Prc.j        11 ßpre, i 
i-J 

Then 

and 

P = O        P pre,j-l   ""   »Spre.j-l1 pre.j 

UB  = V , 

(132) 

(133) 

(134) 

If we consider the non-identity portion of the product PVK yX = ßpre yi Ppn.i • we 'lave 
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* pre. j-1   —  i£pre,j-H prc.j 

where 

prc,j 

Ij    0 

0 P prc,l 

Given that the Householder reflection matrix ßprc,j-i is 

ßprc.j-l   =  /-ßwr 

we can express the product in Equation 135 thusly: 

V.J-. = (/-ßvvr)PprcJ 

(135) 

(136) 

(137) 

(138) 

7"ri = Pprcj-ßw  PpreJ 

Let 

W =  V  P. Prc.j 

Then 

*Wl   =  Vj-ß^ 

(139) 

(140) 

T-F. • x2 
Computing the product w = v /'prcj requires 2(m -7)   flop. Scaling w by ß requires m- j flop 

v2 and is disregarded. Computing ßvw  requires  (m-j)    flop. Computing  /'pre.j-ßvw  also requires 

2 2 (m - j)   flop, for a total of 4(m - y)   flop for iteration j. 

The total flop count to accumulate UB can be computed as follows: 
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flop count =  ]T4(m-;) (141) 

n 
2 = 4 ]£ (m - 2m/ + y ) 

= 4m n - 8m V y + 4 V j 

= 4m2.-8m^±I) + 4i»0»+Q(2i»+0 
2 6 

^2        „2. 43^22 
= 4m n-4mn -4mn + -n  + 2n  + -n 

We then drop the lower order terms to arrive at the estimated flop count for accumulating UB for real 

matrices1: 

2 2     4   3 
flop count = 4m n - Amn + -n (142) 

We can use a similar process to compute VB. By accumulating the product VB = Q^^ j... ßpoSt> n_2 

from Qposi n-2 and progressing backward, we can minimize the workload for computing VB. 

Let 

n-2 

*VJ = Ilßpos..* (»43) 
' = ; 

Then 

and 

^post.j-l   ~  ßposuj-l^postj (!44) 

^ = *Wi (145) 

If we consider the non-identity portion of the product Ppostj_, = op^tj.impost, j • we nave 

^post.j-l   =  öpostj-l^post.j (146) 

1.    This estimated flop count differs from those in the literature. See Appendix A for more details. 

52 



where 

post.j 
/     0 

OP post.jj 
(147) 

Given that the Householder reflection matrix ßpost, j-i >s 

ßpost, j-1   =   /-ßw 

we can express the product in Equation 146 thusly: 

JWl = (/-ßvvVpostj 

=   ^pos^j-ßw   PpostJ 

Let 

W   =   V   P 

(148) 

(149) 

posl,j 

Then 

(150) 

(151) Ppost.j-1 = ^post,j-ßvw 

ist,) requires '* 

and is disregarded. Computing ßvw  requires  (n-j)    flop. Computing Ppost.j~ßVH'  also requires 
2 2 (/i - y)   flop, for a total of 4(n - 7)   flop for iteration /. 

The total flop count to accumulate VB can be computed as follows: 

T — 2 
Computing the product w = v Ppostj requires 2(n-j)   flop. Scaling w by ß requires n-j flop 
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n-2 

flop count =  £4(n-y)2 (152) 

n-2 

= 4£(n2-2#i/ + /) 

n-2 n-2 

= 4n2(n-2)-8*£; + 4£/ 
7=1        y =i 

2 6 

= 4/i3 - 8/i2 - (4/i3 - 12/i2 + 8n) + hin - 9n2 + 13/i - 6) 

4 3    o 2^2       . = -/i -2n  +-n-4 

We then drop the lower order terms to arrive at the canonical estimated flop count for accumulating VB for 

real matrices: 

flop count ~-n (153) 

The rest of the work in the SVD is performed in a series of Golub-Kahan SVD steps ([4]). This algo- 

rithm takes as an input a bidiagonal matrix B e fRm' " that has no zeros on its diagonal or superdiagonal2 

and overwrites it with the bidiagonal matrix B = U BV, where U and V are orthogonal. A MATLAB 
pseudo-code implementation of the Golub-Kahan SVD step is shown below in Figure 25. 

2. The diagonal elements of a matrix are those elements whose row and column indices are equal; the superdiagonal 
elements of a matrix are those elements whose column index is exactly one greater than its row index. 
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Let u be the eigenvalue of the trailing 2-by-2 submatrix of T = BTB   that 

is closer to f__ nn 

y 'n-v 
z = tn 

for k = l:n - 1 

Determine c = cos(6) and s = sin(6) such that L J c s 

rs c. 
= [.o] 

B<^BG{k,k+\,Q) 

y ■ *** 

Z ■ **+l.l 
T 

Determine c = cos(6) and s = sin(6) such that c s 
-s c 

y 

z 
= 

_0 

B<-Ö{k,k+\,B)TB 

if (k < n - 1) 

y = bk,k+i 

* = bk.k + 2 

end  % if 
end  % for k 

Figure 25: MATLAB pseudo-code for the Golub-Kahan SVD step ([4]) 

We can determine c = cos(6) and s = sin(0) by using the givens algorithm shown in Figure 15. 

T 
Also, we can update B with either BG{k> k + 1, 0) or G(ky k + 1, 0) B without explicitly forming the 

rotation matrix by using the algorithms shown in Figure 17 or Figure 16, respectively. 

The bulk of the workload is found in the for loop. For each k, we need to perform: 

• ten flop and two square roots for two calls to the givens algorithm 

• 12 flop to postmultiply B by G(k, k + 1, 0) 

• 12 flop to premultiply B by G(k, k+\,Q)T 

for a total of 34 flop and two square roots. 

For all k ranging from 1 to n   -   1, we will need to perform 34(n - 1) flop and 2(n - 1) square 

roots, which we round to 30n flop and 2/i square roots to match the text [4]. 

If we want to accumulate the Givens rotations by updating input orthogonal matrices U and V with 
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Uö\...ön_ i and VG,...Gn_ j, respectively, we will require 6m flop to apply each Givens rotation to U 

and 6n flop to apply each Givens rotation to V. For all n - 1 iterations, we will require 6m(/i - 1) flop, or 
2 

approximately 6mn flop, to accumulate U, and 6n(n - 1) flop, or approximately 6n   flop, to accumulate 

V. 

A MATLAB pseudo-code implementation of the overall algorithm for computing the SVD of a real 

matrix A , which overwrites A with its singular values U AV = D + E, where E satisfies ||£||2 Ä u\\A\\2 

and u is the unit roundoff, is given below in Figure 26 (e is a small multiple of the unit roundoff). 

% Bidiagonalize the input matrix. 
Use the algorithm in Figure 24 to compute the bidiagonalization 

= (U]...Un)'A(V]...Vn_2) 

until q = n 

set   £>(I+I   to  zero  if   |/)<|+I| <e(\bh\ + |*l>u+,|)   for  any  ie(l,«-l) 

find the  largest   q   and  the  smallest  p   such  that,   if 

B = 

Bu 0 0 

0 B22 0 

0 0 B 33 

P 

n-p-q 

9 

p      n-p-q      q 

then ß33 is diagonal and B22   has a non-zero superdiagonal 

if q < n 

if any diagonal entry in B^   is zero 

zero the superdiagonal entry in the same row 
else 

apply the algorithm in Figure 25 to B^ 

B <r- diag*/,, U, Iq + m-n)TBdiagUp, V, lq) 

end    %  if any diagonal  entry in  B^   is  zero 

end    %  if q < n 
end     %  until q = n 

Figure 26: MATLAB pseudo-code for a real SVD ([4]) 
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The computational workload for the real SVD is found principally in the bidiagonalization of the 

2     4   3 input matrix, which requires approximately 4mn --n   flop. There are approximately In calls to the 

Golub-Kahan SVD step ([3]), each with a 30n flop count. Therefore, the flop count for the Golub-Kahan 
2 

SVD steps will be 60n . As it is an order smaller than the flop count for the bidiagonalization, this flop 
count is ignored in the overall flop count, giving us the canonical flop count for the real SVD: 

2     4   3 
flop count = 4mn --n (154) 

It should be noted here that the actual number of iterations through the algorithm in Figure 26 
needed to converge on a solution is not deterministic. We estimate this number of iterations to be approxi- 
mately 2/i, but it may be quite different, depending on the input matrix and e. 

If we want to accumulate the left singular vectors U, we will need to: 

• accumulate   UB   during   the   bidiagonalization   of  the   input   matrix,   at   a   cost   of 

A     2 A        2      4   3 Am n -4mn  + -n 

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost 

of 6mn flop per iteration. If we assume that we will require In Golub-Kahan SVD steps, 

accumulating the Givens rotations will require a total of approximately 12mn   flop3 

If we add these two items to the workload for the SVD algorithm without accumulating U, we can 
compute the canonical expression for the total workload: 

243 2 243 2 
flop count = 4mn --n + 4m n-4mn  + -n + \2mn 

= 4mn+ Ylmn 

Similarly, if we want to accumulate the right singular vectors V, we will need to: 

(155) 

4   3 
• accumulate VB during the bidiagonalization of the input matrix, at a cost of -n 

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost 
2 

of 6n   flop per iteration. If we assume that we will require In Golub-Kahan SVD steps, 

accumulating the Givens rotations will require a total of approximately 12n   flop4 

3. This estimated flop count differs from those in the literature. See Appendix A for more details. 
4. This estimated flop count differs from those in the literature. See Appendix A for more details. 
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If we add these two items to the workload for the SVD algorithm without accumulating V, we can 

compute the canonical expression for the total workload: 

flop count = Amn --n + -n + \2n (156) 

= Amn  + 12n 

Finally, we can determine the canonical expression for the workload for the SVD algorithm includ- 

ing accumulating both U and V: 

flop count = 4mn2 -^n3 + 4m2n-4mn2 + ^n3 + \2mn2+ ^n3 + 12M3 (157) 

A    2     ,   10       2 , 40   3 = 4m n + Ylmn  + — n 

= 4m n+ \2mn + 13n 

7.2    COMPLEX SINGULAR VALUE DECOMPOSITION 

The SVD of a complex matrix Ae (f1 x ", where m>ny computes unitary matrices U e Cmxm and 

Ve C"xn suchthat: 

UHAV = diag(c„a2,...,an) (158) 

where 

ol>G2>...>on>0 (159) 

The scalars o, are the singular values of A . The matrix U contains the left singular vectors, while 

the matrix V contains the right singular vectors. 

As the first step in the implementation of the SVD algorithm, we upper bidiagonalize the input 

matrix. The bidiagonal matrix B is derived from the input matrix A through the application of unitary 

Householder reflections UB and VB: 

= UB
HAVB (160) 

A MATLAB implementation of the complex Householder bidiagonalization, which overwrites the input 

matrix with the bidiagonal matrix (if UB and VB are desired, they must be separately formed), is the same 

58 



as the implementation for a real Householder bidiagonalization, which was given in Figure 24. Even 

though the input matrix A is complex, the resultant bidiagonal matrix B is real. 

In computing the flop count for a complex Householder bidiagonalization, we consider the applica- 

tion of the Householder reflections only: the flop count for the computation of the Householder vector v is 
ignored. 

For iteration ;', computing the product of the transpose of i4(y:num_rows, y:num_cols) and v 

requires 8(m - j)(n - j) flop. Scaling this product by ß to compute w requires 2(m - j) flop and is dis- 
T T regarded.   Computing   vw     requires   6(m- j)(n- j)    flop.   Subtracting   vw      from   A    requires 

2(m-j)(n-j) flop. 

If    j < num_cols - 2,    there    are    additional    computations.    Computing    the    product    of 

AO':num_rows, j + 1 :num_cols) and v requires 8(m - j)(n -j-\). Scaling this product by ß requires 
T T 2(n -j-l) flop and is disregarded. Computing wv requires 6(m - j)(n - j - 1). Subtracting wv from 

A requires 2(m- j)(n- j -1). The total flop count for iteration j is approximately 32 (m - j)(n - j), or 
four times the flop count for the real Householder bidiagonalization. The total estimated flop count for the 
complex Householder bidiagonalization is therefore 

flop count = \6mn - — n (161) 

To compute the left and right singular vectors, we will need to accumulate the Householder reflec- 

tions in UB and VB. The bidiagonal matrix B is computed from the input matrix A through the following 

Householder reflections: 

*  =  ßpre.n    •ßprc.l^ßpost.|-.ßpost.n-2 0«) 

where Q -x is the Householder reflection matrix (by which we premultiply A ) used to zero out column i, 

and ßpoj^ j is the Householder reflection matrix (by which we postmultiply A) used to zero out row /', and 

n is the number of columns in A . We accumulate all of the ßpre i reflection matrices in V B> and all of the 

ßpost i reflection matrices in VB: 

H 
UB     =  ßprc,n-ßprc,l  

or UB =  ßprcl-ßp«., 

VB =  Qpost, I • • • ß|x>st, n-2 

Each matrix ßpre j has the form 

(163) 

(164) 
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Q pre.j 

0 

L° ßp«e.il     m~J 

j        m-j 

where /   is the j x j identity matrix and 

(165) 

ßprc,j = /m-,-ßvv 
H (166) 

for iteration /. 

Noting that the ßprc,j portion of Q re : shrinks as j increases, we can reduce the workload neces- 

sary to compute UB if we accumulate this product starting with gpre n (the Householder transformation 

matrix with the smallest non-identity submatrix) rather than starting with Q , (the Householder trans- 

formation with the largest non-identity submatrix): instead of accumulating a product that is virtually com- 
pletely non-identity from the beginning, we will slowly grow the submatrix that is non-identity. 

Let 

pre.j        ll^prc.i 
i=J 

Then 

' pre. j-1        *^pre,j-l * prc.j 

and 

v, = V.. 
If we consider the non-identity portion of the product Ppre j.! = ßpre, j_i Pprc, j, we have 

' pre.j-l   =  öpre.j-1* prej 

where 

pre.J 

/     0 

OP prc.lJ 

(167) 

(168) 

(169) 

(170) 

(171) 

Given that the Householder reflection matrix ßpre, j.j is 
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ßpre.j-i = /-ßw" 

we can express the product in Equation 170 thusly: 

*Wl =(/-ßw//)Ppre,j 

= PprcJ-ßvv,/PpreJ 

Let 

HD W  =  V   P. prc.J 

Then 

^prc.j-l  = ^prc,j-ßvw 

(172) 

(173) 

(174) 

(175) 

//« •x2 Computing the product w = v  Ppre,j requires 8(m-y)   flop. Scaling w by ß requires 2(m-j) 

flop and is disregarded. Computing ßvw  requires 6(m-j)    flop. Computing Ppre j-ßvvv requires 

2 2 2(m-j) flop, for a total of \6(m-j) flop for iteration /, or four times the flop count for the real 

Householder bidiagonalization. The estimated flop count for accumulating UB for complex matrices is 

therefore 

flop count = 16m n - \6mn~ + — n (176) 

By accumulating the product VB = ßpost, i • • • ßpost, n-2 from ßpost,n-2 and progressing backward, 

we can minimize the workload for computing VB. 

Let 

n-2 

^postj = rißposui (177) 

Then 

and 

'■; 

* post, j-1  == v^post.j-r post,j 

Vß  -  ^post. 1 

If we consider the non-identity portion of the product Pp^^ = ßpost. j-i ''post, j» we nave 
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^post.j-1   -   Qpost.j-l^postJ (180) 

where 

p 
post.j 

/     0 

0Pn 

(181) 
post. |j 

Given that the Householder reflection matrix ßpost j-i *s 

ßpostj-i = /-ßw" (182) 

we can express the product in Equation 180 thusly: 

JWj-i = (/-ßwVpostj (183) 

= ^post.j-ßvv//Ppost.j 

Let 

w = vHPpostJ (184) 

Then 

^postj-i ■ ^poiLj-ßvw (185) 

Computing the product w = v  Ppost.j requires S(n-j)   flop. Scaling w by ß requires 2{n- j) 

flop and is disregarded. Computing ßvw  requires 6(n-j)    flop. Computing ?Post.j-ßVVi'  requires 

2(n - j) flop, for a total of 16(n - j) flop for iteration j, or four times the flop count for the real House- 

holder bidiagonalization. The total flop count to accumulate VB for complex matrices is therefore 

flop count = —n (186) 

The rest of the work in the S VD is performed in a series of Golub-Kahan S VD steps. This algorithm 

takes as an input a bidiagonal matrix B e "R     n that has no zeros on its diagonal or superdiagonal and 

overwrites it with the bidiagonal matrix B = V B V, where V and V are orthogonal. Because the bidiag- 

onal matrix B is real, the Givens rotations G are also real, and, therefore, the algorithm for the Golub- 
Kahan SVD steps that was given in Figure 25 may be used here ([9]). The workload for this algorithm, as 
was previously indicated, is approximately 30n flop and 2n square roots. 

If we want to accumulate the Givens rotations by updating input unitary matrices U and V with 
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UÖ\...ön.\ and VG, ...Gn_,, respectively, we will require 6m flop to apply each Givens rotation to 

each of the real and imaginary halves of U, and 6n flop to apply each Givens rotation to the real and 

imaginary halves of V. For all n - 1 iterations, we will require \2m(n - 1) flop, or approximately \2mn 
2 

flop, to accumulate U, and \2n(n - 1) flop, or approximately \2n   flop, to accumulate V. 

A MATLAB pseudo-code implementation of the overall algorithm for computing the SVD of a com- 

plex matrix A, which overwrites A with its singular values U AV = £> + £, is given below in Figure 27 

(E is a small multiple of the unit roundoff). 

% Bidiagonalize the input matrix. 
Use the algorithm in Figure 24 to compute the bidiagonalization 

= (U]...Un)"A(Vi...Vn_2) 

until q = n 

set   *u+|   to  zero  if   \biUl\ ^E(|^.,| + |*>I+M+ ,|)   for  any  ie(l.n-l) 

find the  largest   q   and  the  smallest  p   such  that,   if 

B = 
0        B 

0 

22 

0 B 33 

P 

n-p-q 

1 

p     n-p-q      q 

then B33   is diagonal and B22   has a non-zero superdiagonal 

if q < n 

if any diagonal entry in B22   is zero 

zero the superdiagonal entry in the same row 
else 

apply the algorithm in Figure 25 to B22 

B <- diag(/p, U, lg + m_n)"Bdiag(Ip, V, lq) 

end  % if any diagonal entry in B^   is zero 

end  % if q < n 
end  % until q = n 

Figure 27: MATLAB pseudo-code for a complex SVD 
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The computational workload for the complex SVD is found principally in the bidiagonalization of 

the input matrix, which requires approximately \6mn - — n   flop. There are approximately 2n calls to 

the Golub-Kahan SVD step ([3]), each with a 30n flop count. Therefore, the flop count for the Golub- 

Kahan SVD steps will be 60n . As it is an order smaller than the flop count for the bidiagonalization, this 
flop count is ignored in the overall flop count, giving us the flop count for the complex SVD: 

flop count = \6mn --r-n (187) 

If we want to accumulate the left singular vectors V, we will need to: 

• accumulate   UB   during   the   bidiagonalization   of  the   input   matrix,   at   a  cost   of 

16m2„-16mn
2 + fn3 

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost 

of 12mn flop per iteration. If we assume that we will require In Golub-Kahan SVD steps, 
2 

accumulating the Givens rotations will require a total of approximately 24mn   flop 

If we add these two items to the workload for the SVD algorithm without accumulating U, we can 
compute the total workload: 

flopcount = \6mn --~-n  + \6m n-\6mn  + —n  + 24mn (188) 

2 2 = 16m n + 24mn 

Similarly, if we want to accumulate the right singular vectors V, we will need to: 

• accumulate VB during the bidiagonalization of the input matrix, at a cost of — n 

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost 

of 12/i flop per iteration. If we assume that we will require 2n Golub-Kahan SVD steps, 

accumulating the Givens rotations will require a total of approximately 24 n   flop 

If we add these two items to the workload for the SVD algorithm without accumulating V, we can 
compute the total workload: 
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flop count = 16mn  --r-fl  +-rn  + 24M 

2 3 = 16mn  + 24n 

(189) 

Finally, we can determine the workload for the SVD algorithm including accumulating both U and 

V: 

^ .        ML       2     16   3      .,    2 t,       2      16   3     0„       2  ,   16   3  ,  ~A   3 flop count = 16/nw  -~^n  + 16m /i-16mn  + —w  + 24mn  + —n  + 24n 

.,    2        -.       2     88   3 = lorn rt + 24mn  + —n 

2 2 3 = 16m n + 16mn  + 29n 

(190) 
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8. SUMMARY 

The workload expressions for the real and complex signal processing kernels are summarized below. 

Table 1: Flop Count Summary 

Signal Processing Kernel 
Computational Complexity 

Real Input Complex Input 

matrix-matrix multiplication Imnp Smnp 

fast Fourier transform 
-n\og2n 5n\og2n 

Householder QR decomposition 2»'H) 8»2H) 
forward or back substitution 2 n 4„2 

eigenvalue decomposition: eigenvalues only 4   3 
3" 

16   3 

eigenvalue decomposition: eigenvalues and 
eigenvectors 

9n3 23n3 

singular value decomposition: singular values 
only 

A       2     4   3 \6mn  --r-n 

singular value decomposition: singular values 
and left singular vectors 

4m n + \2mn 
2                    2 

16m n + 24m/i 

singular value decomposition: singular values 
and right singular vectors 

4mn  + \2n 2             3 16mn  +24/2 

singular value decomposition: singular values, 
left and right singular vectors 

4m n + \2mn  + 13/i 16m2n+16m/z2 + 29n3 

In the table above, the parameters in the coi nputational complexity expr essions are: 

the dimensions of the two multiplicands - mxn and nx p - for the matrix-matrix multipli- 
cation 
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the length of the vector n for the fast Fourier transform 

the size of the triangular system n for forward and back substitutions 

the dimensions of the input matrix mxn for the Householder QR decomposition, eigen- 
value decomposition, and singular value decomposition. 
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APPENDIX A. DIFFERENCES IN FLOP COUNTS 

Some of the flop counts given in this document differ from those found in the literature. These differ- 
ences are discussed in greater detail here. 

A.1    BroiAGONALIZATIONINTHESVD 

In Section 7.1, we estimated flop count for accumulating VB for the bidiagonalization of a real 

matrix to be 

2 2     4   3 
flop count = 4m n- 4mn  + -n (191) 

2        4   3 
Golub and Van Loan ([4]) estimate this flop count to be 4m n - -n . This expression would be the 

estimated flop count if the summation given in Equation 125 was instead 

n 

2      .2, flop count =  Y4(m - j ) 

.2 
= 4m n-4y  j 

= 4m2n-4^n+])Pn+l) 

= 4m »        f4   3^0   2     2   > 

2       4   3 
which would then be rounded off to 4m n - -n . 

(192) 

Chan ([1]) estimates this workload to be mn - — multiplies. If we assume that there is one addition 

2    2n3 

operation for every multiplication operation, this workload would be equivalent to 2mn —-- flop. 

The different flop counts for accumulating UB for the bidiagonalization of a real matrix are summa- 

rized below in Table 2. 
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Table 2: Workload to Accumulate UB During the Bidiagonalization of a Real Matrix 

Source Flop Count 

Arakawa 
4m2n-4mn2 + */ 

Chan 
0       2     2   3 2mn  --n 

Golub and Van Loan A    2        4   3 4m n--n 

A.2   ACCUMULATION OF THE LEFT SINGULAR VECTORS IN THE SVD 

In Section 7.1, we estimated the flop count for accumulating U during the Golub-Kahan steps for 
the SVD of a real matrix to be 

flop count = 12mn 

Golub and Van Loan ([4]) estimate this flop count to be 4mn + -n . 

(193) 

Chan ([1]) estimates this workload to be 2mn   multiplies. If we assume that there is one addition 

operation for every multiplication operation, this workload would be equivalent to 4mn   flop. 

The different flop counts for accumulating U during the Golub-Kahan steps for the SVD of a real 
matrix are summarized below in Table 3. 

Table 3: Workload to Accumulate U During the SVD of a Real Matrix 

Source Flop Count 

Arakawa \2mn 

Chan 4mn 

Golub and Van Loan 
4mn  +-n 
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A.3   ACCUMULATION OF THE RIGHT SINGULAR VECTORS IN THE SVD 

In Section 7.1, we estimated the flop count for accumulating V during the Golub-Kahan steps for the 
SVD of a real matrix to be 

flop count = \2n 

3 
Golub and Van Loan ([4]) estimate this flop count to be Sn . 

(194) 

Chan ([1]) estimates this workload to be 2/z   multiplies. If we assume that there is one addition 

operation for every multiplication operation, this workload would be equivalent to 4/i   flop. 

The different flop counts for accumulating V during the Golub-Kahan steps for the SVD of a real 

matrix are summarized below in Table 4. 

Table 4: Workload to Accumulate V During the SVD of a Real Matrix 

Source Flop Count 

Arakawa I2„3 

Chan 4*3 

Golub and Van Loan 8*3 
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