
ESC-TR-2006-071

Project Report
SPR-9

Computational Workloads for Commonly
Used Signal Processing Kernels

M. Arakawa

28 May 2003
Reissued: 30 November 2006

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Office of the Secretary of Defense under Air Force Contract FA8721-05-C-0002.

Approved for public release; distribution is unlimited.

ADAws-jf

This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. This work was
sponsored by the Office of the Secretary of Defense under Air Force Contract
FA8721-05-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Gar^Thtungian
Administrative ContractingfOfficer
Plans and Programs Directorate
Contracted Support Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission has been given to destroy this
document when it is no longer needed.

Massachusetts Institute of Technology

Lincoln Laboratory

Computational Workloads for Commonly Used
Signal Processing Kernels

Af. Arakawa
Group 102

Project Report SPR-9

28 May 2003

Reissued: 30 November 2006

Approved for public release; distribution is unlimited.

Lexington Massachusetts

ABSTRACT

In the course of designing or evaluating signal processing algorithms, we often must determine the

computational workload needed to implement the algorithms on a digital computer. The floating-point

operation (flop) counts for real versions of the most common signal processing kernels are well docu-

mented. However, the flop counts for kernels operating on complex inputs are not as readily found. This

report collects the flop count expressions for both real and complex kernels and also presents brief outlines

of the derivations for the flop count expressions. These flop count expressions are summarized below.

Signal Processing Kernel
Computational Complexity

Real Input Complex Input

matrix-matrix multiplication 2mnp Smnp

fast Fourier transform 5 . -n\o%2n 5n\og2n

Householder QR decomposition *t-ö 8«2H)
forward or back substitution 2 n An2

eigenvalue decomposition: eigenvalues only 4 3
3n

16 3

eigenvalue decomposition: eigenvalues and
eigenvectors

9n3 23n3

singular value decomposition: singular values
only

A 2 4 3 4mn - -n u 2 16 3
lomn --r-n

singular value decomposition: singular values
and left singular vectors

4m2« + 12m«2 2 2 16m n + 24mn

singular value decomposition: singular values
and right singular vectors

Amn + 12n 16mn + 24«

singular value decomposition: singular values,
left and right singular vectors

4m n + \2mn + \2m 16m2n + 24mn2 + 29n3

111

In the table above, the parameters in the computational complexity expressions are:

• the dimensions of the two multiplicands - mxn and n x p - for the matrix-matrix multipli-
cation

• the length of the vector n for the fast Fourier transform

• the size of the triangular system n for forward and back substitutions

• the dimensions of the input matrix m x n for the Householder QR decomposition, eigen-
value decomposition, and singular value decomposition.

IV

ACKNOWLEDGMENTS

In pulling all of this material together, I learned a fair bit about linear algebra. I would like to thank

Charlie Rader for sharing his knowledge on and insight into this topic and for his review of this document.

I also benefited from many conversations with James Lebak on this subject. I would also like to thank Ed

Baranoski and Bob Bond for giving me the time to write this report.

TABLE OF CONTENTS

Abstract
Acknowledgments
List of Illustrations
List of Tables

111

V

ix
xi

I. INTRODUCTION

MATRIX MULTIPLICATION

2.1. Real Matrix Multiplication
2.2. Complex Matrix Multiplication
2.3. Alternative Complex Matrix Multiplication

3
3
4

FAST FOURIER TRANSFORM

3.1. Complex FFT
3.2. Real FFT

7
13

4. HOUSEHOLDER QR DECOMPOSITION

4.1. Real Householder QR Decomposition
4.2. Complex Householder QR Decomposition

19

19
23

5. FORWARD AND BACK SUBSTITUTIONS

5.1. Real Forward and Back Substitutions
5.2. Complex Forward and Back Substitutions

25

25
27

EIGENVALUE DECOMPOSITION

6.1. Real Eigenvalue Decomposition
6.2. Complex Eigenvalue Decomposition

29

29
41

7. SINGULAR VALUE DECOMPOSITION

7.1. Real Singular Value Decomposition
7.2. Complex Singular Value Decomposition

47

47
58

8. SUMMARY 67

Vll

A. DIFFERENCES IN FLOP COUNTS 69

A.l. Bidiagonalization in the SVD 69
A.2. Accumulation of the Left Singular Vectors in the SVD 70
A.3. Accumulation of the Right Singular Vectors in the SVD 71

REFERENCES 73

Vlll

LIST OF ILLUSTRATIONS

Figure
No. Page

1 Decimation-in-time decomposition of an 8-point DFT into 2-point DFTs 8

2 Row graph of the complete decimation-in-time decomposition of an 8-point DFT ([7]) 9

3 Row graph notation 10

4 Flow graph of basic butterfly computation ([7]) 10

5 Simplified butterfly computation requiring only one complex multiplication ([7]) 11

6 An 8-point DFT using the butterfly computation in Figure 5 ([7]) 12

7 MATLAB code for computing the DFT of two real vectors using one complex FFT 15

8 MATLAB code to apply a conjugate-even butterfly ([11]) 16

9 MATLAB code for a Householder QR decomposition ([4]) 20

10 MATLAB code for computing the Householder vector ([4]) 21

11 Portion of input matrix to which apply the Householder reflection 22

12 MATLAB code for a forward substitution ([4]) 25

13 MATLAB code for a back substitution ([4]) 26

14 MATLAB code for a real Householder tridiagonalization ([4]) 31

15 MATLAB code for the givens algorithm ([4]) 35

16 MATLAB code for pre-applying a Givens rotation ([4]) 36

17 MATLAB code for post-applying a Givens rotation ([4]) 37

18 MATLAB code for an implicit symmetric QR step with Wilkinson shift ([4]) 37

19 Premultiplication by the Givens rotation matrix 38

20 Postmultiplication by the Givens rotation matrix 38

21 MATLAB pseudo-code for a real symmetric Schur decomposition ([4]) 40

22 MATLAB code for a complex Householder tridiagonalization 42

23 MATLAB pseudo-code for a complex symmetric Schur decomposition 45

24 MATLAB code for a Householder bidiagonalization ([4]) 48

25 MATLAB pseudo-code for the Golub-Kahan SVD step ([4]) 55

IX

Figure
No. Page

26 MATLAB pseudo-code for a real SVD ([4]) 56

27 MATLAB pseudo-code for a complex SVD 63

LIST OF TABLES

Table
No. Page

1 Flop Count Summary 67

2 Workload to Accumulate UB During the Bidiagonalization of a Real Matrix 70

3 Workload to Accumulate U During the SVD of a Real Matrix 70

4 Workload to Accumulate V During the SVD of a Real Matrix 71

XI

1. INTRODUCTION

In the course of designing or evaluating signal processing algorithms, we must often determine the
computational workload needed to implement the algorithms on a digital computer. The floating-point
operation (flop) counts for real versions of the most common signal processing kernels are well docu-
mented. However, the flop counts for kernels operating on complex inputs are not as readily found. This
report collects the flop count expressions for both real and complex kernels and also presents brief outlines
of the derivations for the flop count expressions. Specifically, the following computational kernels will be
treated:

• matrix-matrix multiplication
• fast Fourier transform (FFT)
• Householder QR factorization
• forward and back substitutions
• eigenvalue decomposition
• singular value decomposition

2. MATRIX MULTIPLICATION

2.1 REAL MATRIX MULTIPLICATION

The elements of the product matrix Ce <Rm)" of real matrices A e <Rmxp and Be (Rpxn are

given by ([4]):

C = AB=*Cij= $>,A, (1)
k= i

Therefore, for each of the mn elements in C, we perform p multiplications and p additions, giving
us a flop count of:

flop count = 2mnp

2.2 COMPLEX MATRIX MULTIPLICATION

(2)

The elements of the product matrix C e Cf1 " of complex matrices A e Cf p and Be cpxn are
given by ([4]):

C = AB^>cu= ^aikbkj

k= 1

(3)

For each of the mn elements in C, we perform p multiplications and p additions. However, these
multiplications and additions are between complex numbers.

The complex sum of two complex scalars requires two flop: one flop to add the real components, and
another flop to add the imaginary components.

The complex product z of two complex scalars x = a + jb and y = c + jd, where ayb, c, and d

are all real scalars and j = J^l in this context, is:

z = xy

= (a + jb)x(c + jd)

= (ac - bd) + j x (ad + be)

and requires six flop:

• four multiplications: ac, bd, ad, and be

• two additions: (ac - bd) and (ad + be)

(4)

Therefore, for each of the mn elements in C, we perform Sp flop, giving us a flop count of:

flop count = Smnp (5)

2.3 ALTERNATIVE COMPLEX MATRIX MULTIPLICATION

We can compute the product matrix Ce CT *" of complex matrices Ae CT p and Be cpxn in

an alternative fashion that reduces the workload by approximately 25% ([10]).

First, we separate the multiplicands A and B into their real and imaginary components. Let

Are <Rmxp be the real part of A , Ake <Rmxp be the imaginary part of A , Br e <Rpxn be the real part of

B, and Bi;e (Kpxn be the imaginary part of B:

A = Ar + jAt (6)

B = Br + jBi (7)

Then, the product matrix C is:

C = AB (8)

= (Ar + jAJXiBr + jBi)

= (Aßr-Afld + JlAfti + Afl,)

Now consider the real matrices G e <Rmxp and He *Rpxn, which we define thusly:

G = Ar + A, (9)

H = Br-Bt (10)

Then

GH = AA-A^ + A^-^,. (11)

GH + Ar2?, - A,*r = ArBr - Aß, (12)

G/f + Afii - Afir + MA + 4,Z?r) = Ari?r - AA + 7'MrB,- + Afir) 03)

= C

Computing G = Ar +J4, requires m/? flop. Computing H = Br-Bx requires pn flop. Computing

the product GH requires 2mnp flop. Computing the product ArB, also requires 2mnp. Computing the

product AjBr requires another 2mnp flop. Computing GH + ArBi-AiBr for the real portion of C

requires 2mn flop. Computing ArBi-\-AiBr for the imaginary portion of C requires mn flop. The total

flop count for computing C = AB using this alternative method is

flop count = 6mnp + 3mn + (m + n)p (14)

which is approximately three-quarters of the Smnp flop needed to compute the product using the straight-
forward method.

3. FAST FOURIER TRANSFORM

3.1 COMPLEX FFT

The discrete Fourier transform (DFT) X of a finite-length sequence x of length N is given by ([7]):

N-l

X[k] = ^x[n]WN
k\k = 0,1,..„N-l

n-0

where

WN = e-«2"/N)

(15)

(16)

If we were to compute the DFT by explicitly evaluating the sums, the flop count would be 0(N).
We can dramatically reduce the workload by decomposing the original DFT into successively smaller DFT
computations in decimation-in-time algorithms ([7]). Let us consider the case where N is a power of two:

N - 2°, where \) is an integer.

Since N is an even integer, we can separate x[n] into two sequences of length N/2: the first

sequence consists of the even-numbered points in x[n], while the second sequence consists of the odd-

numbered points in x[n]. We can now rewrite Equation 15 as:

Xlk) = ^x[n)WN
kn + 2>[n]Ww*
kn v~» r -,„, kn

n even n odd

Let us substitute n = 2r for even n and n - 2r + 1 for odd n :

(N/2)-\ (N/2)-1

Xlk] « £ *[2r]W^2r*+ X *[2r+l]W„(2r+,)*
r = 0 r = 0

(N/2)-l (JV/2)-I

= £ *[2r](VVY*+WV* X x[2r+ll(^2)r*
r = 0 r = 0

We also note that WN = W^ :

w 2 _ -2j(2n/N) _ -j2n/(N/2) _ w

We can therefore rewrite Equation 18:

iV/2

(17)

(18)

(19)

(/V/2)-l (JV/2)-l

X[k] = 2 xl2r]WN/2
rk+WN" £ *[2r H-HIV^'* (20)

Both G[Jfc] and H[k] are (N/2)-point DFTs, where G[k] is the DFT of the even-numbered points
of x[n] and H[k] is the DFT of the odd-numbered points of x[n]. If the length of the original sequence
N is a power of 2, we can use this technique to continue to further decompose the DFTs until we have only
DFTs of length 2 (see Figure 1 for the case of N = 8). We would have a total of v = log2N stages.

40]

44]

42]

46]

41]
45].

43].
47].

1 *•

ft 9-Q
1 ™ t

O
c
0
OL 1 **

It
9-Q

1N ->
Q

C
O

lit -*
9-Q

1 ^ t a
c
0
Q. lit 9-Q

1 ^

.X[0]

.X[l]

.*[2]

.X[3]

.X[4]

■ X[5]

• X[6]

■ X[7]

log2 8 = 3 stages
"W

Figure 1: Decimation-in-time decomposition of an 8-point DFT into 2-point DFTs

If we expand Figure 1 with the final expression in Equation 20, we arrive at the flow graph shown
below in Figure 2 (for the case N = 8):

40]

44]

42]

46]

41]

45]

43]

47]

X[0]

X[\)

X[2)

X13]

X[4)

X[5]

X[6]

Xll]

Figure 2: Flow graph of the complete decimation-in-time decomposition of an 8-point DFT ([7])

In Figure 2, we used a notation where branches (arrows) entering a node (circle) denotes the addition
of the quantities from which the branches originated, and a coefficient next to the head of a branch denotes
a scaling of the quantity by the coefficient. If no coefficient is indicated, the scaling factor is assumed to be
unity by default. See Figure 3 for an illustration of this notation.

Figure 3: Flow graph notation

The fundamental operation at each pair of nodes, called a butterfly, is shown below in Figure 4.

 -;

^MD

m th stage X
wN"

N/2 ^°

Figure 4: Flow graph of basic butterfly computation ([7])

At each non-input node, we perform a complex multiplication and a complex addition, which
together require 8 flop. There are log2N stages of nodes, giving us a total flop count of SN\og2N. We can

reduce this flop count further by noting that ([7])

W N/1 = e-J<2*/N)N/2 - e~J* _ _j

and that therefore

W
r + N/2 N/2„, r = w„*w„r = -wj 'N - rr N fr N - ~Tr N

The butterfly computation shown in Figure 4 can be simplified, as shown in Figure 5.

(21)

(22)

10

r\ - o k

(m- 1) th stage

°\ X - w r ^ -1 P ̂ <J

Figure 5: Simplified butterfly computation requiring only one complex multiplication ([7])

Using this identity, we will need to multiply by WN half as many times, resulting in the flow graph

shown below in Figure 6 (for the case N = 8).

11

1 *[ftl n ^n ^o y[nl 1

r[4] n ^rf /fcM3 Y[n

r[">] n ^^ Y /^n yPl

r[6] 0 ^CT Y Y^o y[^i -Pu, ^

r[i] r, fcn Y YJi yid] 5^/* X A A-i

r[S] n ^cT Y \ ^ y[^i 1 J ° ft^7

"\/ v^1* / A \-i

rV\\ „ fc^. \ Jk yw
\-FwJ / \-i

r[7] n ^TT Ji y\i\ 'I J O o^Or
-H^3

-i

Figure 6: An 8-point DFT using the butterfly computation in Figure 5 ([7])

For each pair of nodes, we perform one multiply, one add, and one subtract, for a total of 10 flop per
pair of nodes or an average of 5 flop per node:

flop count = 5N\og2N (23)

Because WN depends only on N, it can be pre-computed, and its evaluation does not contribute to

the workload.

This technique is not limited to radix 2 FFTs; it may be applied to other radices.

12

3.2 REAL FFT

First, we note that the DFT of a real vector is conjugate even: if x e ft , the DFT X e C* of x has
the properties that

Re{X[k]} = Re{X[N-k]}

Im{X[k]} = -Im{X[N-k]}

(24)

(25)

If we take advantage of the resulting additional structure, we can reduce the workload necessary to evalu-
ate the FFT of a real vector.

The computation of the FFT of a real vector uses two algorithms. The first algorithm computes the
DFT of two real vectors of equal length through a single FFT of a complex vector of the same length ([8]).
This algorithm will be used to perform FFTs on the two halves of the input vector.

Let / and g be two real vectors of length N, where / consists of samples /[0] through /[N - 1]

and g consists of samples g[0] through g[N - 1]. Let F be the DFT of / and G be the DFT of g.

The fact that / is real means that Re{F} (the real part of F) is an even function and Im{F} (the

imaginary part of F) is an odd function. An even function Re{F} is defined as follows:

Re{F[k)} = Re{F[N-k]} for**0 (26)

An odd function lm{F] is defined as follows:

Im{F[0]} = 0 (27)

Im{F[k]} = -Im{F[N-k]} for**0 (28)

If g is real, then jg is imaginary, Re{jG} is an odd function, and Im{jG} is an even function:

Re{jG[0]} = 0 (29)

Re{jG[k]} = -Re{jG[N-k]} for**0

Im{jG[k]} = lm{jG[N-k]} for**0

Let us define

h = f + jg

Then H, the DFT of h, is

H = F + jG

Let us first consider the real part of H:

(30)

(31)

(32)

(33)

13

Re{H} = Re{F} + Re{jG} (34)

where Re{F} is even and Re{jG} is odd. Given these conditions, we can determine that

Re{jG[0]} = 0^Re{F[0]} = Re{H[0)} (35)

Re{F[UN-l]} = *'{Bll:N-l]} + Re{H[N-l:-l:l]}
2

Re{jG[\:N-l]} = *e{H[l:N-\]}-Re{H[N-\:-\:l]}

Im{jG[l:N-\]} = Im{H[l :N" 1]} + lmWN ~ 1: ' 1:1^>

or

(36)

(37)

where H[N -\:-\:\] are elements 1 through N - 1 of // in reverse order.

Next, let us consider the imaginary part of H:

Im{H} = Im{F} + Im{jG} (38)

where Im{F] is odd and Im{jG} is even. Given these conditions, we can determine that

Im{F[0]} = 0->Im{jG[0]} = /m{//[0]} (39)

/m{F[l:N-l]} = ^{fiU-N-\]}-Im{H[N-\:-\:\}} (40)

(41)
2

Of course, once we have jG, we can compute G:

G = -jGxj (42)

G = Im{jG}-jxRe{jG} (43)

A MATLAB implementation of this algorithm is shown below in Figure 7.

14

% f and g are the real input vectors

h a f + i*g;
H = fft(h);

F(l) = reaKH(D);
F(2:N) = 0.5 * (real(H(2:N)) + real(H(N:-1:2)));
jG(2:N) = 0.5 * (real(H(2:N)) - real(H(N:-1:2)));

jG(l) = i * imag(H(l));
F(2:N) = F(2:N) + 0.5i * (imag(H(2:N)) - imag(H(N:-1:2)));
jG(2:N) = jG(2:N) + 0.5i * (imag(H(2:N)) + imag(H(N:-1:2)))

G = -jG * i;

Figure 7: MÄTLAB code for computing the DFT of two real vectors using one complex FFT

The workload for this algorithm is dominated by the FFT of the complex vector h, and is therefore

approximately 5N\og2N flop.

The second algorithm needed to compute a real FFT applies a conjugate-even butterfly to an input
vector ([11]). This algorithm is used to combine the two conjugate-even half-length vectors produced by

the first algorithm to produce a single conjugate-even full-length vector. Specifically, if JC € ft , where

L = 2q and q > 1 , the algorithm in Figure 8 overwrites x with BL x, where BL is the conjugate-

even butterfly matrix for an L -point ft'I.

15

if q -= 1

L_star = L / 2;

p = L / 4;

tau = x(1);
x(l) = tau + x(L_star + 1);
x(L_star + 1) = tau - x(L_star + 1);

x(3 * p + 1) = -x(3 * p + 1);

for count = 2:p

c = cos(2 * pi * (count - 1) / L);
s = sin(-2 * pi * (count - 1) / L);
u(count) = c * x(L_star + count) - s * x(L_star + p + count);

v(count) = s * x(L_star + count) + c * x(L_star + p + count);

end % for count

y(2:p) = x(2:p);
x(2:p) ■ x(p + 2:L_star);

for count = 2:p
x(count) = y(count) + u (count);
x(p + count) = y(p - count) - u(p - count);
x(L_star + count) = z(count) + v(count);
x(L_star + p + count) = -z(p - count) + v(p - count)

end % for count

else
tau = x(1);
x(l) = tau + x(2);
x(2) = tau - x(2);

end % if q -= 1

Figure 8: MATLAB code to apply a conjugate-even butterfly ([11])

This algorithm requires approximately 5L/2 flop.

To compute the FFT X of a single real vector x e lC ([11]), the input vector is first divided into two

half-length vectors: let xodd = JC[1 :2:n] and xeven = x[2:2:n]. Next, we use the algorithm in Figure 7 to

compute vodd
Cl and veven

ce , which are the DFTs of xodd and xeven, respectively. Finally, we use the

16

algorithm in Figure 8 to compute X = Bn
(ce)

(ce)
vodd

(ce)

Computing the DFTs of the half-length vectors requires

flop count = 5Mlog2f^J

= |n[(log2/i)-l]

= (|nlog2n)-5|,

(44)

Applying the conjugate-even butterfly matrix requires an additional -n flop, bringing the total flop count

for an FFT of a real vector to

flop count = -nlog2n (45)

17

4. HOUSEHOLDER QR DECOMPOSITION

4.1 REAL HOUSEHOLDER QR DECOMPOSITION

The QR decomposition factors a real input matrix A e iC' " into an orthogonal matrix ge 'R'"5

and an upper triangular matrix Re iC' " ([4]):

/i = QR

QTQ = l,QQT = /

(46)

(47)

The Householder QR factorization algorithm entails the application of a series of orthogonal trans-

formations Pi to the input matrix A so that the portion of the matrix below the diagonal will become zero:

Pn...PtA = R

where each matrix Pt has the form

P = /-ßvv7

(48)

(49)

To avoid explicitly computing the Householder reflection / - ßvv , we use the following implemen-
tation ([4]):

define w = $A v

(I-$vvT)A = A-$vvTA

= A-v($vTA)

= A - vw

(50)

(51)

A MATLAB implementation of the real Householder QR decomposition, which overwrites the input
matrix with the upper triangular factor (the Householder QR decomposition does not return the orthogonal
factor), is shown below in Figure 9.

19

[num_rows/ num_cols] = size(A);
for col = l:num_cols

% Compute the Householder vector v
[v, beta] = house(A(col:num_rows, col));

% Apply the Householder vector to the remainder of the matrix
w = beta * v' * A(col:num_rows, col:num_cols);
A(col:num_rows, col:num_cols) = A(col:num_rows, col:num_cols) - v * w;

% Zero out the remainder of the column.
A((col + 1):num_rows, col) = 0;

end % for col

Figure 9: MATLAB code for a Householder QR decomposition ([4])

The function house (x) (see Figure 10) computes a vector v and a scalar ß such that

2_
T

V V

P = /-ßvvr is orthogonal, where ß = -|-, and Px = |U||2£, (e, = [1,0, ...,0]r).

20

if (isreal(x))
n = length(x);
sigma = x(2:n)' * x(2:n);

v = [1; x(2:n)];

if sigma == 0
beta = 0;

else
mu = sqrt(x(l)A2 + sigma);

if x(l) <= 0
v(l) = x(l) - mu;

else
v(l) = -sigma / (x(l) + mu);

end % if
beta = 2 * v(l) A 2 / (sigma + (v(l) A 2));
v = v / v(l);

end % if
else
v = x;
nx = norm(x);
v(l) = x(l) + nx;
beta = 1 / (nx * (nx + x(l)));

end % if

Figure 10: MATLAB code for computing the Householder vector ([4])

In computing the flop count for a real Householder QR decomposition, we consider the application
of the Householder reflections only: the flop count for the computation of the Householder vector is
ignored, as it is much smaller than the flop count for the application of the Householder reflections.

T T For the ith iteration, computing A v requires 2(m - i)(n - i) flop. Computing w = $A v requires
T m - i flop, but is ignored as it is a secondary term. Computing vw requires (m - i)(n - i) flop. Comput-

T ing A-vw requires another (m-i)(n-i) flop. The total flop count for the ith column is

4(m-/)(n-i) flop.

Because we apply the Householder reflection to the portion of the input matrix that is on or to the
right of the diagonal (see Figure 11), the length of the columns decrease by one as we operate on succes-
sive columns.

21

a a a a a

0 a a a a

OObbb

00b bb

OObbb

0 0 b bb

Elements a have already been
upper triangularized

The Householder reflection is
applied to elements b

Figure 11: Portion of input matrix to which apply the Householder reflection

The total flop count for the entire mxn input matrix can be computed as follows:

n

flop count = V4(m-i)(n-i)
i = i

(52)

= 4 V [mn - (m + n)i + i]
i = i

= 4 V mn - 4 V(m + «)/ + 4 V /
i = 1 ifa 1 1=1

.2

n n

= Amn -4(m + /i) V i + 4 V i .2

i=l i = I

= 4mn2-4(m + n)^L±l) + 4,'("-,-1)i2"+1)

= Amn - 2(m + n)(n2 + n) + hin + 3n2 + n)

2 23 24322 = 4m/i - 2mn -2n - 2mn -In + -n +2n + -n

= 2«n2-|«3-2«n + |»

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices:

22

flop count = 2mn --n (53)

= In H)
4.2 COMPLEX HOUSEHOLDER QR DECOMPOSITION

If the input matrix A e cmxn is complex, the QR decomposition factors A into a unitary matrix

Qe c"1 x w and an upper triangular matrix Re Cf1

A = QR

QHQ = /,ßß" = /

([4]):

(54)

(55)

A MATLAB implementation of the complex Householder QR decomposition, which overwrites the
input matrix with the upper triangular factor (the Householder QR decomposition does not return the uni-
tary factor), is the same as the implementation for a real Householder QR decomposition, which was given
in Figure 9.

In computing the flop count for a complex Householder QR decomposition, we consider the applica-
tion of the Householder reflections only; the flop count for the computation of the Householder vector is
ignored.

H To avoid explicitly computing the Householder reflection / - ßvv , we use the following implemen-

tation:

.« (56)

(57)

define w = ßA v

(I-ßwH)A = A-ßvv" A

= A-v(ßvHA)

A H = A-vw

H H
For the ith iteration, computing A v requires 8(m - z')(/i -/) flop. Computing w = $A v

MM

requires 2(m - /') flop, but is ignored. Computing vw requires 6(m - i)(n - i) flop. Computing

A-vw requires 2(m - i)(n - i) flop. The total flop count for the i th column is 16(m - i){n - i) flop, or
four times the flop count for the real Householder QR decomposition. The canonical total estimated flop
count for the complex Householder QR decomposition is therefore

23

flop count = 8n2(m - ^ j (58)

24

5. FORWARD AND BACK SUBSTITUTIONS

5.1 REAL FORWARD AND BACK SUBSTITUTIONS

A forward substitution allows us to solve the lower triangular system Lx = b for x e ft" given

lower triangular L € <Rn*n and b e ft". Fundamentally, the forward substitution process is as follows

([4]). First, we solve for the first unknown JCJ :

Lnxx = b{

X*=L

Next, we use this value of xt to solve for x2:

(59)

(60)

L2\Xl + £22*2 ~~ 2

L>22x2 ~~ ^2~^"l\x\

X-, =
^2 ~^2\x\

J22

(61)

(62)

(63)

Continuing forward, we can solve for all elements of the vector x.

A MATLAB implementation of the forward substitution, which overwrites the input vector b with

the solution vector x, is shown below in Figure 12.

b(l) = b(l) / Ml, 1);
for row = 2:num_rows
b(row) = (b(row) - L(row, l:row

end % for row
- 1) * b(l:row - 1)) / L(row, row);

Figure 12: MATLAB code for a forward substitution ([4])

In computing the flop count for a forward substitution, we ignore the workload necessary to compute

b,
JC, = y^-, as it will be a secondary term.

*jl

For row i, computing the dot product Lt x.,_ I x xx .t■,_, requires 2(i - 1) flop. Subtracting this dot

25

product from b{ requires one flop, but is ignored as it is a secondary term. Multiplying the difference by

1 /L, , also requires one flop and is also ignored.

The flop count for all n elements of x can be computed as follows:

n

flop count = £2(/-l) (64)
/= l

n

= -2n + 2]T;

= -2n + n2 + n

2 = n -n

We then drop the lower order term to arrive at the canonical estimated flop count for a forward sub-
stitution on real matrices:

flop count = n (65)

A back substitution is the analog of the forward substitution for upper triangular matrices, letting us

solve the triangular system Ux = b for x e 9ln given upper triangular U e 'R" and be *R" . Instead of

starting with the first unknown and working forward, we start with the last unknown xn and work back.

A MATLAB implementation of the back substitution, which overwrites the input vector b with the

solution vector x, is shown below in Figure 13.

b(num_rows) = b(num_ rows) / U(num_rows, num_rows);
for row = (num_rows - 1):-1 :1

b(row) = (b(row) -
/ U(row

U(row,
, row);

row + 1: num. .rows) * b(row + 1 :num_ .rows)) ...

end % for row

Figure 13: MATLAB code for a back substitution ([4])

The derivation of the flop count for a back substitution is almost identical to the derivation for the
forward substitution flop count, giving us the canonical estimated flop count for a back substitution:

26

flop count = n

5.2 COMPLEX FORWARD AND BACK SUBSTITUTIONS

(66)

The algorithms used for real forward and back substitutions may be used for complex forward and
back substitutions.

In a forward substitution, for row i, computing the dot product L, j:i_| x Xj.j_| requires 8(i - 1)

flop. Subtracting this dot product from bt requires two flop, but is ignored as it is a secondary term. Multi-

plying the difference by 1 /L{ i also requires two flop and is also ignored. The flop count for row z is four

times the flop count for the corresponding computation for a real forward substitution. The canonical total
estimated flop count for a complex forward substitution is therefore

2
flop count = An (67)

The derivation of the flop count for a complex back substitution is almost identical to the derivation
for the complex forward substitution flop count, giving us the canonical estimated flop count for a back
substitution:

flop count = An (68)

27

6. EIGENVALUE DECOMPOSITION

6.1 REAL EIGENVALUE DECOMPOSITION

The symmetric Schur decomposition of a real symmetric matrix A e *Rn computes an orthogonal

matrix ße!Rnx" such that ([4]):

QTAQ = A = diag(XI, .••>*„) (69)

This decomposition of A results in the eigenvectors being the columns of Q and the corresponding

eigenvalues being the diagonal elements of A ([2]):

From the definition of eigenvectors and eigenvalues:

7" T
Aq = Xqy where qi q, = 1 and qt qj = 0 for r* /

AQ = A<2, where QTQ = QQT = I

QTAQ = QTAQ

Let B = AQ

n

bij = X *"'***>
*= 1

= y^flij because Xik - 0 for i * k

Let C = QTAQ = QTB

(70)

(71)

(72)

(73)

(74)

(75)

29

cij = X *"**> (76)
* = 1

= ^Ikifrklkj)
k = I

n

= ^Kikiikj
* = i

0 if i*j

/.ß'i4ß = A (77)

As the first step in the implementation of the symmetric Schur decomposition, we tridiagonalize the
input matrix:

x x x x x
x x x x x

x x x x x
x x x x x
X X X X X

y y 000
y y y 00
0 y y y 0

0 0 y y y
0 00 y y

(78)

The tridiagonal matrix T is derived from the input matrix A through orthogonal Householder reflec-

tions QT:

QT'AQT = T (79)

A MATLAB implementation of the real Householder tridiagonalization, which overwrites the input

matrix with the tridiagonal matrix (if QT is desired, it must be separately formed), is shown below in Fig-

ure 14.

30

for k = 1:(num_rows - 2)
% Compute the Householder vector v.
[v, beta] = house(A((k + 1):num_rows, k)) ;

% Apply the Householder reflection.
p = beta' * A((k + 1):num_rows, (k + 1):nura_rows) * v;
w = p - (beta *v*v' * p / 2) ;

A((k +1), k) = -norm(A((k + 1):num_rows, k));
A(k, (k + 1)) = A((k + 1) , k);
A((k + 1):num_rows, (k + 1):num_rows) ...

« A((k + 1):num_rows, (k + 1) :num_rows) - v * w' - w * v' ;

% Zero out remainder of row and column.
A((k + 2):num_rows, k) = 0;
A(k, (k + 2) :num_rows) = 0 ;

end % for k

% Apply phase-only correction to last super- and sub-diagonal elements to
% make them real
last_super_diag = A((num_rows -1), num_rows);
A((num_rows -1), num_rows) = abs(last_super_diag);
A(num_rows, (num_rows - 1)) = abs(last_super_diag);

Figure 14: MATLAB code for a real Householder tridiagonalization ([4])

In computing the flop count for a real Householder tridiagonalization, we consider the application of

the Householder reflections only: the flop count for the computation of the Householder vector v is
ignored.

For iteration k, computing the product of A(k+ 1 :num_rows, k + l:num_rows) and v requires

2(n-k) flop. Scaling this product by ß to compute p requires n-k flop and is disregarded. Computing

w requires 3(n - k) + 2 is also disregarded. Computing \\A(k + 1 :num_rows, £)||2 requires 2(n - k) flop

and is also disregarded.

7" 2 T T Computing vw requires (n - k) flop. The product wv is the transpose of vw and requires no
T T additional computations. Taking advantage of the symmetry of the output, subtracting both vw and wv

2 2 from A requires (n-k) flop. The total flop count for iteration k is 4(n - k) flop.

The total flop count for the entire nxn matrix can be computed as follows:

31

n-2

flop count = V 4(n - k) (80)
* = 1

n-2 n-2 n-2 >
2 „ XT' , ^» »2 = 4x X»-22«*+X*'

v* = 1 * = 1 it = 1

= 4x
f n-2 n-2 n-2 ^

n
2Xi-2«x*+X*2

V k=I *= 1 Jfc = I J

= 4x [n2(n-2)]-[2n{-
(n-2)(n-\)l [(n-2)(n-\)(2n-3Y M

8/z3-12/?2 +4/1-24

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices:

(81) flop count = -n

To evaluate the eigenvectors in addition to the eigenvalues, we will need to accumulate the House-
holder reflections in QT. The product of the Householder reflection matrices is equal to

QT = r\~Pn-2 (82)

where each matrix Pk is the Householder reflection matrix for loop index k in the algorithm given in Fig-

ure 14 above. Each matrix Pk has the form

'* o k

Pk = _° ?* _ n-k

k n-k

where Ik is the k x k identity matrix and

Pt = in-t-V™

for iteration k.

(83)

(84)

32

Noting that the Pk portion of Pk shrinks as k increases, we can reduce the workload needed to com-

pute QT if we accumulate this product starting with Pn_2 (tne Householder transformation matrix with

the smallest non-identity submatrix) rather than starting with P] (the Householder transformation matrix

with the largest non-identity submatrix): instead of accumulating a product that is virtually completely
non-identity from the beginning, we will slowly grow the submatrix that is non-identity ([6]).

Let

n-2

e* = IP.
i = k

Then

and

Qk-i = Pk-iQk

If we consider the non-identity portion of the product Qk _ , = Pk _ , Qk, we have

Qk-i = Pk-\Qk

where

e* = / 0

Given that the Householder reflection matrix Pk-\ is

Pk-x = /-ßvv7

we can express the product in Equation 88 thusly:

Qk-x = (/-ßwr)ä

= ß*-ßvv7ß,

Let

w = v Qk

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

Then

33

ß*-l = ß*-ßv>v (93)

Computing the product w = v Qk requires 2{n-k) flop. Scaling w by ß requires n-k flop and

is disregarded. Computing ßvw requires (n - k) flop. Computing g* - ßvw also requires (n-k) , for a
2

total of 4(/i - £) flop for iteration k. The total flop count to accumulate QT for a real input matrix is

4 3 flop count = -n (94)

The rest of the work in the symmetric Schur decomposition is performed in a series of implicit sym-
metric QR steps with Wilkinson shifts ([4]). This algorithm takes as an input an unreduced symmetric trid-

iagonal matrix fe'R" " and overwrites it with the quantity Z TZ. A matrix is said to be unreduced if it

has no zero subdiagonal entries. The matrix Z is equal to the product of Givens rotations

Z= G....G n-\ (95)

and has the property that Z (T - \LI) is upper triangular. The scalar \i is the eigenvalue of the 2-by-2 prin-

cipal submatrix of T that is closer to tnn (the element in the matrix T in the n th row and n th column).

There is an easy way to compute the eigenvalues of a 2 x 2 matrix. First, we observe that the eigen-

values X of a matrix A satisfy the characteristic polynomial ([4])

det(\I-A) = 0 (96)

Expanding Equation 96:

det\ xo
ox

a\l a\2

a2l Ö22
= 0 (97)

det
X-Q\\ -«12

-a2] X-a22

= 0 (98)

The determinant of a 2 x 2 matrix is given by

det\ ab
cd

= ad-be (99)

Therefore, Equation 98 is equivalent to

34

(k-au)(k-a12)-{-an){-a2^) = 0

A. -{au+a22)X + {aua22-ana2X) = 0

Solving for X, we have:

X =
(au+a22)±J(au+a22)

2-4(aua22-al2a2l)

(100)

(101)

(102)

The implicit symmetric QR step with Wilkinson shift uses the algorithm givens (a, b)y which

returns two scalars c = cos (9) and s = sin (8) suchthat

(103)
r ~i T r -i

c s a — r

\rs c. Pi OJ

A MATLAB implementation of the givens algorithm is shown below in Figure 15.

function: [c, s] = givens(a , b)

if b = 0

c = 1

j = 0

else

if W>W
T - -a/b

m 1/Vl+X2

C = JT

else

= 1/Vl+T2

5 = CT

end % if
end % if

Figure 15: MATLAB code for the givens algorithm ([4])

This algorithm requires five flop and a single square root.

A shorthand notation is often used for a real Givens rotation matrix:

35

G(/,*,e) = (104)

1 ... 0 ... 0 ... 0

0 ... C ... 5 ... 0

0 ... -s ... c ... 0

0 ... 0 ... 0 ... 1

i k

When applying a Givens rotation, we do not explicitly form this matrix; instead, we take advantage
of the structure in the Givens rotation matrix.

Let Ae tRmxn, c = cos(6), and s = sin(6). Then, the update A <- G(i, k, Q)TA affects just

rows i and k of A :

MU,k],:) =
IT

c s

-s c
i*([i,*],:)

A MATLAB implementation of this update is shown below in Figure 16.

(105)

for j = 1: n

h = A(i, j)

*2 = A(k, 3)

A(i . j) = cx, -5T2

A(k . 3) = 5T, + cx2

end % for ;

Figure 16: MATLAB code for pre-applying a Givens rotation ([4])

This update requires only 6n flop.

Similarly, the update A <- AG(i, k, 6) affects only columns i and /: of A :

c 5

-5 c
A(:,V,k]) = /*(:,[/,*])

A MATLAB implementation of this update is shown below in Figure 17.

(106)

36

for j = 1:m

T, = A(j, i)

x2 = A(j, k)

A(j, i) • CXj-5X2

A(j , k) = 5T,+CT2

end % for j

Figure 17: MATLAB code for post-applying a Givens rotation ([4])

This update also requires only 6n flop.

A MATLAB implementation of the implicit symmetric QR step with Wilkinson shift is shown below
in Figure 18.

d «(',_,,..,-W/2

u = ^-Vn-,2/(^ + sign(J)>2 + r/,,I_1
2)

X = /,,-u

2 " <2\

for k = l:n - 1
[c, s] = givens (x, z) ;

7 = c/rC^ , where Gk = G(k,k+\.Q)

if k < n - 1
x ~ lk+l,k

Z = '* + 2,Jt

end % if
end % for k

Figure 18: MATLAB code for an implicit symmetric QR step with Wilkinson shift ([4])

The bulk of the workload is found in the for loop. For each k, we need to perform:

• five flop and one square root for the givens algorithm

• 27 flop to compute Gk
TTGk (see below)

for a total of 32 flop and one square root.

The flop count for applying the Givens rotation Gk to T is only 27 and independent of the matrix

37

size n because we can take advantage of the fact that, within the for k loop, Gk TGk remains symmetric,

7* and that most of the elements in rows k and k + 1 are zero. Consider the premultiplication of T by Gk

(see Figure 19).

a b c C

b d e 0

c e f 9j
0 0 g h

' l

a b c c

b' d* e' A

0 e' r 9'

0 0 g h

•m

Figure 19: Premultiplication by the Givens rotation matrix

T To form the product Gk T, we only need to compute b\ d, e\ f, g\ and A, even though we are

updating a total of eight entries: we don't need to compute a value we know to be zero, and we only need to

compute ex once. Computing these scalars requires three flop per scalar (to compute either cix -si2 or

5T, + ci2), for a total of 18 flop.

T We can similarly take advantage of the structure in the matrices to efficiently postmultiply Gk T by

Gk (see Figure 20).

a 0 a 0 b c b* 0

b d' e' A b d" e" A

0 e" r 9* ~* 0 e" r 9'

0 0 9 h 0 A 9' h

Figure 20: Postmultiplication by the Givens rotation matrix

To compute the product Gk TGk, we only need to compute d", e", and /*', even though we are

updating eight entries: we don't need to compute a value we know to be zero, and we can take advantage of

38

the symmetry in Gk TGk to avoid recomputing b', e", g', and A. Computing these scalars requires three

flop per scalar, for a total of nine flop.

For all k ranging from 1 to n - 1, we will need to perform 32(n - 1) flop and n - 1 square roots,

which we round to 30n flop and n square roots to match the text ([4]).

If we want to accumulate the Givens rotations by updating an input orthogonal matrix Q with

QGl...Gn_i, we will require 6n flop to apply each Givens rotation to the running product, for a total of
2

6n(n - 1), or approximately 6/z flop.

A MATLAB pseudo-code implementation for the overall algorithm for computing the symmetric
Schur decomposition of a real matrix A , which overwrites A with the tridiagonal matrix 7, is given below
in Figure 21 (tol is a tolerance greater than the unit roundoff).

39

% Tridiagonalize the input matrix.

Use the algorithm in Figure 14 to compute the tridiagonalization

T = (Pv..Pn_2)TA(Px...Pn_2)

Set D = T and, if Q is desired, form Q - Px.Pn_2

until q = n
for i = l:n - 1

if K#*IJ-KI*IISI0,)C
<W*K*I.I*I|)

*u+\ = 0;

end % if

end % for i

Find the largest q and the smallest p such that, if

D =

'II
0

0

0

D 22
0

p
n-p-q

9 "33]

p n-p-q q

then £>33 is diagonal and D22 is unreduced

if q<n

Use the algorithm in Figure 18 to update D^ :

D22 = diag(/,,Z,//z>22diag(/p,Z,/9)

If Q is desired, then update Q :

end % if
end % until q = n

Figure 21: MAIL AB pseudo-code for a real symmetric Schur decomposition ([4])

The matrix ln is the n x n identity matrix.

The computational workload for the real symmetric Schur decomposition is found principally in the

4 3 tridiagonalization of the input matrix, which requires approximately -n flop. There are 0{n) calls to the

implicit symmetric QR step with Wilkinson Shift, each with an O(n) flop count. Therefore, the flop count

40

for the implicit symmetric QR steps will be 0(n). As it is an order smaller than the flop count for the trid-
iagonalization, this flop count is ignored in the overall flop count, giving us the canonical flop count for the
real symmetric Schur decomposition:

flop count = -n (107)

It should be noted here that the actual number of iterations through the algorithm in Figure 21
needed to converge on a solution is not deterministic. We estimate this number of iterations to be approxi-
mately n, but it may be several times larger than n.

If we want to accumulate the orthogonal transformations Q, we will need to:

• accumulate the Householder reflections during the tridiagonalization of the input matrix, at a

cost of -n flop

• accumulate the Givens rotations during each of the 0{n) implicit symmetric QR steps at a
2 3 cost of 6n flop per iteration, for a total of approximately 6n flop

If we add to these two items to the workload for the symmetric Schur algorithm without accumulat-
ing Q, we can compute the total workload:

., 4 3,343 flop count = -n + 6/i + -n F 3 3

26 3

(108)

We round this figure to arrive at the canonical workload for the symmetric Schur algorithm if we

accumulate Q:

flop count = 9n

62 COMPLEX EIGENVALUE DECOMPOSITION

(109)

The symmetric Schur decomposition of a complex symmetric matrix A e C" computes a unitary

matrix Qe <?*" such that:

J¥
Q"AQ = A = diag(Ä.If ...,**) (110)

This decomposition of A results in the eigenvectors being the columns of Q and the corresponding

eigenvalues being the diagonal elements of A.

41

As the first step in the implementation of the symmetric Schur decomposition, we tridiagonalize the

input matrix. The tridiagonal matrix T is derived from the input matrix A through unitary Householder

reflections QT:

QT
HAQT = T (111)

A MATLAB implementation of the complex Householder tridiagonalization, which overwrites the

input matrix with the tridiagonal matrix (if QT is desired, it must be separately formed), is shown below in

Figure 22.

for k = 1:num_rows - 2
% Compute the Householder vector v.
x = A(col:num_rows, col);

i9 »0
v = x±e IUII2*, ; where JC, = re

beta = 2 / (V * v) ;

% Apply the Householder reflection.
p = beta * A(k + l:n, k + l:n) * v;
w = p - (beta * p' * v / 2) * v;
A(k + 1, k) = norm(A(k + l:num_rows, k)) ;
A(k, k + 1) = A(k + 1, k);
A(k + l:num_rows, k + l:num_rows) ...

= A (k + 1:num_rows, k + 1:num_rows) - v * w' - w * v' ;
end % for k

Figure 22: MATLAB code for a complex Householder tridiagonalization

Even though the input matrix A is complex, the resultant tridiagonal matrix T is real.

In computing the flop count for a complex Householder tridiagonalization, we consider the applica-

tion of the Householder reflections only: the flop count for the computation of the Householder vector v is
ignored.

For iteration ky computing the product of A(k+ l:num_rows, k+ l:num_rows) and v requires

8(n - k) flop. Scaling this product by ß to compute p requires 2(n - k) flop and is disregarded. Com-

puting w requires \2(n-k) + 3 is also disregarded. Computing \\A(k + l:num_rows, k)\\2 requires

4(n - k) flop and is also disregarded.

H 5 H H
Computing vw requires 6(n - k) flop. The product wv is the transpose of vw and requires no

42

H H
additional computations. Taking advantage of the symmetry of the output, subtracting both vw and wv

2 2
from A requires 2{n - k) flop. The total flop count for iteration k is 16(/i - k) flop, or four times the
flop count for the real Householder tridiagonalization. The total estimated flop count for the complex
Householder tridiagonalization is therefore

flop count = —n (112)

To evaluate the eigenvectors in addition to the eigenvalues, we will need to accumulate the House-

holder reflections in QT. The product of the Householder reflection matrices is equal to

ÜT = Pl-fn-2 (113)

where each matrix Pk is the Householder reflection matrix for the loop index k in the algorithm given in

Figure 22 above. We use the same technique for accumulating QT that was used for the real Householder

tridiagonalization. For each iteration k, we are computing the quantity

Qk-x = ß*-ßvw

where

w = v Qk (115)

Computing the product w = v Qk requires S(n-k) flop. Scaling w by ß requires 2(n-k) flop

2 — 2
and is disregarded. Computing ßvw requires 6(n-k) flop. Computing öjt-ßvw requires 2(n-k) ,

for a total of 16(n - k) flop for iteration k, or four times the flop count for the real Householder tridiago-

nalization. The total flop count to accumulate QT for a complex input matrix is

flop count = -r-n (116)

The rest of the work in the symmetric Schur decomposition is performed in a series of implicit sym-
metric QR steps with Wilkinson shifts. This algorithm takes as an input an unreduced symmetric tridiago-

nal matrix T e <jC*n and overwrites it with the quantity Z TZ. The matrix Z is equal to the product of
Givens rotations

Z=Gv..Gn_x (117)

and has the property that Z (T - \LI) is upper triangular. Because the tridiagonal matrix T is real, the Giv-

ens rotations G, are also real, and, therefore, the algorithm for implicit symmetric QR steps with Wilkin-

43

son shifts that was given in Figure 18 may be used here ([9]). The workload for this algorithm, as was

previously indicated, is approximately 30n flop and n square roots.

If we want to accumulate the Givens rotations by updating an input unitary matrix Q with

QGX... Gn _,, we will require 6n flop to apply each Givens rotation to the running product for each of the
2

real and imaginary halves of Q, for a total of \2n(n - 1), or approximately 12n flop.

A MATLAB pseudo-code implementation for the overall algorithm for computing the symmetric

Schur decomposition of a complex matrix A, which overwrites A with the tridiagonal matrix 7, is given
below in Figure 23 (tol is a tolerance greater than the unit roundoff).

44

% Tridiagonalize the input matrix.
Use the algorithm in Figure 22 to compute the tridiagonalization

Set D - T and, if Q is desired, form Q = P]...Pn_2

until q = n
for i = l:n - 1

if K>../| -K^il*rtx<M*ft*u*il>
4*1.1 ■ 0;

*U*i = 0;

end % if
end % for i

Find the largest q and the smallest p such that, if

D = "22

0 D 33

P
n-p-q

9

p n-p-q q

then D33 is diagonal and D22 is unreduced

if q<n

Use the algorithm in Figure 18 to update D^ :

D^ = diag(lp, Z, l/D22 diag(/p, Z, Iq)

If Q is desired, then update Q :

Q = Qdiag(Ip,ZJq)

end % if
end % until q = n

Figure 23: MATLAB pseudo-code for a complex symmetric Schur decomposition

The computational workload for the complex symmetric Schur decomposition is found principally

in the tridiagonalization of the input matrix, which requires approximately — n flop. There are O(n)

calls to the implicit symmetric QR step with Wilkinson Shift, each with an O(n) flop count. Therefore, the

flop count for the implicit symmetric QR steps will be 0(n). As it is an order smaller than the flop count

45

for the tridiagonalization, this flop count is ignored in the overall flop count, giving us the flop count for the
complex symmetric Schur decomposition:

flop count = — n (118)

If we want to accumulate the orthogonal transformations Q, we will need:

• accumulate the Householder reflections during the tridiagonalization of the input matrix, at a

cost of — n flop

• accumulate the Givens rotations during each of the 0{n) implicit symmetric QR steps at a
2 3 cost of 12n flop per iteration, for a total of approximately \2n flop

If we add to these two items the workload for the symmetric Schur algorithm without accumulating

Q, we can compute the total workload:

flop count = yn + \2n + y n3 (119)

68 3
= Tn

We round this figure to arrive at the workload for the symmetric Schur algorithm if we accumulate

Q-

flop count = 23n3 (120)

46

7. SINGULAR VALUE DECOMPOSITION

7.1 REAL SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) of a real matrix Ae 'R , where m>n, computes

orthogonal matrices U e <Rmxm and V e <Rnxn such that ([4]):

U AV = diag(a,,c2, ...,on)

where

(121)

(122) a,>a2>...>a/1>0

The scalars a, are the singular values of A . The matrix U contains the left singular vectors, while

the matrix V contains the right singular vectors.

As the first step in the implementation of the SVD algorithm, we upper bidiagonalize the input
matrix:

x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
X X X X X

X X X X X

y y 0 0 0

0 y y 0 0
0 Oy y 0

0 0 0 y y
OOOOy
00000

00000

(123)

The nxn bidiagonal matrix B is derived from the input matrix A through the application of orthog-

onal Householder reflections UB and VB:

= UB'AVB (124)

A MATLAB implementation of the real Householder bidiagonalization, which overwrites the input

matrix with the bidiagonal matrix (if UB and VB are desired, they must be separately formed), is shown

below in Figure 24.

47

for j = l:num_cols
% Compute the Householder vector v.
[v, beta] = house(A(j:num_rows, j)) ;

% Apply the Householder reflection (premultiply).
w = beta * v' * A(j:num_rows, j:num_cols);
A(j:num_rows, j:num_cols) ...

= A(j:num_rows, j:num_cols) - v * w;

% Zero out the rest of the column.
A((j + 1):num_rows, j) = 0;

if (j <= (num_cols - 2))
% Compute the Householder vector v.
[v, beta] = house((A(j, (j + 1):num_cols))');

% Apply the Householder reflection (postmultiply).
w = beta' * A(j:num_rows, (j + 1):num_cols) * v;
A(j:num_rows, (j + 1):num_cols) ...

= A(j :num_rows, (j + 1) :num_cols) - w * v* ;

% Zero out the rest of the row.
A(j, j + 2:num_cols) = 0;

end % if (j <= (num_cols - 2))
end % for j

% Apply phase-only correction to last super-diagonal element to make it real
last_super_diag = A((num_cols - 1), num_cols);
A((num_cols - 1), num_cols) = abs(last_super_diag);

Figure 24: MATLAB code for a Householder bidiagonalization ([4])

In computing the flop count for a real Householder bidiagonalization, we consider the application of

the Householder reflections only: the flop count for the computation of the Householder vector v is
ignored.

For iteration ;, computing the product of the transpose of A(y':num_rows, y:num_cols) and v

requires 2(m-j)(n - j) flop. Scaling this product by ß to compute w requires m- j flop and is disre-
T T garded. Computing vw requires (m-j)(n-j) flop. Subtracting vw from A requires (m-j)(n-j)

flop.

48

If j < num_cols - 2, there are additional computations. Computing the product of

y4(y':num_rows, j + 1 :num_cols) and v requires 2(m - j)(n - j - 1). Scaling this product by ß requires
T T n-j-l flop and is disregarded. Computing wv requires (m - j)(n -j -1). Subtracting wv from A

requires (m - j)(n - j -1). The total flop count for iteration ; is approximately 8(m - j)(n - j).

The total flop count for the entire mxn can be computed as follows:

flop count = V 8(m - j)(n - j)

= 8^[mn-(m + /i)y + /]

HN /i

= 8£mn-8£(m + /i)7 + 8£/
/-I y=> ;=i

= 8m/i -4m/i -4n + -(2« + 3/i +n)

^ 2.3 83.24 = 4mAz -4/i + -n f4n +-n
3 3

A 2 4 3 , A 2 4
= 4m/i --/! +4/i +-/i

We then drop the lower order terms to arrive at the canonical estimated flop count for real matrices:

2 4 3 flop count = 4//1/2 --n

(125)

(126)

To compute the left and right singular vectors, we will need to accumulate the Householder reflec-

tions in UB and VB. The bidiagonal matrix B is computed from the input matrix A through the following

Householder reflections:

* = QpK.n-Q^lAQpoX.l'Qpost.n-l (127)

where ßpre -t is the Householder reflection matrix (by which we premultiply A) used to zero out column /,

and ßpost, j is the Householder reflection matrix (by which we postmultiply A) used to zero out row i, and

49

n is the number of columns in A . We accumulate all of the 0prc -x reflection matrices in UB, and all of the

ßpost, i reflection matrices in VB:

UB = ßpre.n-ßpre.l 0r UB = ßpre, 1 • • ßpir,n

*B = ßpost, 1-" ßpost, n-2

First, consider the computation of UB. Each matrix ßpre . e 'R has the form

(128)

(129)

\J -°

where /y is the j x y identity matrix and

7
m-j (130)

ßprcj = /m-7-ßw7 (131)

for iteration j.

Noting that the ßpre,j portion of ßpre ; shrinks as y increases, we can reduce the workload neces-

sary to compute UB if we accumulate this product starting with gprc n (the Householder transformation

matrix with the smallest non-identity submatrix) rather than starting with Q , (the Householder trans-

formation with the largest non-identity submatrix): instead of accumulating a product that is almost com-
pletely non-identity from the beginning, we will slowly grow the submatrix that is non-identity.

Let

Prc.j 11 ßpre, i
i-J

Then

and

P = O P pre,j-l "" »Spre.j-l1 pre.j

UB = V ,

(132)

(133)

(134)

If we consider the non-identity portion of the product PVK yX = ßpre yi Ppn.i • we 'lave

50

* pre. j-1 — i£pre,j-H prc.j

where

prc,j

Ij 0

0 P prc,l

Given that the Householder reflection matrix ßprc,j-i is

ßprc.j-l = /-ßwr

we can express the product in Equation 135 thusly:

V.J-. = (/-ßvvr)PprcJ

(135)

(136)

(137)

(138)

7"ri = Pprcj-ßw PpreJ

Let

W = V P. Prc.j

Then

*Wl = Vj-ß^

(139)

(140)

T-F. • x2
Computing the product w = v /'prcj requires 2(m -7) flop. Scaling w by ß requires m- j flop

v2 and is disregarded. Computing ßvw requires (m-j) flop. Computing /'pre.j-ßvw also requires

2 2 (m - j) flop, for a total of 4(m - y) flop for iteration j.

The total flop count to accumulate UB can be computed as follows:

51

flop count =]T4(m-;) (141)

n
2 = 4]£ (m - 2m/ + y)

= 4m n - 8m V y + 4 V j

= 4m2.-8m^±I) + 4i»0»+Q(2i»+0
2 6

^2 „2. 43^22
= 4m n-4mn -4mn + -n + 2n + -n

We then drop the lower order terms to arrive at the estimated flop count for accumulating UB for real

matrices1:

2 2 4 3
flop count = 4m n - Amn + -n (142)

We can use a similar process to compute VB. By accumulating the product VB = Q^^ j... ßpoSt> n_2

from Qposi n-2 and progressing backward, we can minimize the workload for computing VB.

Let

n-2

VJ = Ilßpos.. (»43)
' = ;

Then

and

^post.j-l ~ ßposuj-l^postj (!44)

^ = *Wi (145)

If we consider the non-identity portion of the product Ppostj_, = op^tj.impost, j • we nave

^post.j-l = öpostj-l^post.j (146)

1. This estimated flop count differs from those in the literature. See Appendix A for more details.

52

where

post.j
/ 0

OP post.jj
(147)

Given that the Householder reflection matrix ßpost, j-i >s

ßpost, j-1 = /-ßw

we can express the product in Equation 146 thusly:

JWl = (/-ßvvVpostj

= ^pos^j-ßw PpostJ

Let

W = V P

(148)

(149)

posl,j

Then

(150)

(151) Ppost.j-1 = ^post,j-ßvw

ist,) requires '*

and is disregarded. Computing ßvw requires (n-j) flop. Computing Ppost.j~ßVH' also requires
2 2 (/i - y) flop, for a total of 4(n - 7) flop for iteration /.

The total flop count to accumulate VB can be computed as follows:

T — 2
Computing the product w = v Ppostj requires 2(n-j) flop. Scaling w by ß requires n-j flop

53

n-2

flop count = £4(n-y)2 (152)

n-2

= 4£(n2-2#i/ + /)

n-2 n-2

= 4n2(n-2)-8*£; + 4£/
7=1 y =i

2 6

= 4/i3 - 8/i2 - (4/i3 - 12/i2 + 8n) + hin - 9n2 + 13/i - 6)

4 3 o 2^2 . = -/i -2n +-n-4

We then drop the lower order terms to arrive at the canonical estimated flop count for accumulating VB for

real matrices:

flop count ~-n (153)

The rest of the work in the SVD is performed in a series of Golub-Kahan SVD steps ([4]). This algo-

rithm takes as an input a bidiagonal matrix B e fRm' " that has no zeros on its diagonal or superdiagonal2

and overwrites it with the bidiagonal matrix B = U BV, where U and V are orthogonal. A MATLAB
pseudo-code implementation of the Golub-Kahan SVD step is shown below in Figure 25.

2. The diagonal elements of a matrix are those elements whose row and column indices are equal; the superdiagonal
elements of a matrix are those elements whose column index is exactly one greater than its row index.

54

Let u be the eigenvalue of the trailing 2-by-2 submatrix of T = BTB that

is closer to f__ nn

y 'n-v
z = tn

for k = l:n - 1

Determine c = cos(6) and s = sin(6) such that L J c s

rs c.
= [.o]

B<^BG{k,k+\,Q)

y ■ ***

Z ■ **+l.l
T

Determine c = cos(6) and s = sin(6) such that c s
-s c

y

z
=

_0

B<-Ö{k,k+\,B)TB

if (k < n - 1)

y = bk,k+i

* = bk.k + 2

end % if
end % for k

Figure 25: MATLAB pseudo-code for the Golub-Kahan SVD step ([4])

We can determine c = cos(6) and s = sin(0) by using the givens algorithm shown in Figure 15.

T
Also, we can update B with either BG{k> k + 1, 0) or G(ky k + 1, 0) B without explicitly forming the

rotation matrix by using the algorithms shown in Figure 17 or Figure 16, respectively.

The bulk of the workload is found in the for loop. For each k, we need to perform:

• ten flop and two square roots for two calls to the givens algorithm

• 12 flop to postmultiply B by G(k, k + 1, 0)

• 12 flop to premultiply B by G(k, k+\,Q)T

for a total of 34 flop and two square roots.

For all k ranging from 1 to n - 1, we will need to perform 34(n - 1) flop and 2(n - 1) square

roots, which we round to 30n flop and 2/i square roots to match the text [4].

If we want to accumulate the Givens rotations by updating input orthogonal matrices U and V with

55

Uö\...ön_ i and VG,...Gn_ j, respectively, we will require 6m flop to apply each Givens rotation to U

and 6n flop to apply each Givens rotation to V. For all n - 1 iterations, we will require 6m(/i - 1) flop, or
2

approximately 6mn flop, to accumulate U, and 6n(n - 1) flop, or approximately 6n flop, to accumulate

V.

A MATLAB pseudo-code implementation of the overall algorithm for computing the SVD of a real

matrix A , which overwrites A with its singular values U AV = D + E, where E satisfies ||£||2 Ä u\\A\\2

and u is the unit roundoff, is given below in Figure 26 (e is a small multiple of the unit roundoff).

% Bidiagonalize the input matrix.
Use the algorithm in Figure 24 to compute the bidiagonalization

= (U]...Un)'A(V]...Vn_2)

until q = n

set £>(I+I to zero if |/)<|+I| <e(\bh\ + |*l>u+,|) for any ie(l,«-l)

find the largest q and the smallest p such that, if

B =

Bu 0 0

0 B22 0

0 0 B 33

P

n-p-q

9

p n-p-q q

then ß33 is diagonal and B22 has a non-zero superdiagonal

if q < n

if any diagonal entry in B^ is zero

zero the superdiagonal entry in the same row
else

apply the algorithm in Figure 25 to B^

B <r- diag*/,, U, Iq + m-n)TBdiagUp, V, lq)

end % if any diagonal entry in B^ is zero

end % if q < n
end % until q = n

Figure 26: MATLAB pseudo-code for a real SVD ([4])

56

The computational workload for the real SVD is found principally in the bidiagonalization of the

2 4 3 input matrix, which requires approximately 4mn --n flop. There are approximately In calls to the

Golub-Kahan SVD step ([3]), each with a 30n flop count. Therefore, the flop count for the Golub-Kahan
2

SVD steps will be 60n . As it is an order smaller than the flop count for the bidiagonalization, this flop
count is ignored in the overall flop count, giving us the canonical flop count for the real SVD:

2 4 3
flop count = 4mn --n (154)

It should be noted here that the actual number of iterations through the algorithm in Figure 26
needed to converge on a solution is not deterministic. We estimate this number of iterations to be approxi-
mately 2/i, but it may be quite different, depending on the input matrix and e.

If we want to accumulate the left singular vectors U, we will need to:

• accumulate UB during the bidiagonalization of the input matrix, at a cost of

A 2 A 2 4 3 Am n -4mn + -n

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost

of 6mn flop per iteration. If we assume that we will require In Golub-Kahan SVD steps,

accumulating the Givens rotations will require a total of approximately 12mn flop3

If we add these two items to the workload for the SVD algorithm without accumulating U, we can
compute the canonical expression for the total workload:

243 2 243 2
flop count = 4mn --n + 4m n-4mn + -n + \2mn

= 4mn+ Ylmn

Similarly, if we want to accumulate the right singular vectors V, we will need to:

(155)

4 3
• accumulate VB during the bidiagonalization of the input matrix, at a cost of -n

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost
2

of 6n flop per iteration. If we assume that we will require In Golub-Kahan SVD steps,

accumulating the Givens rotations will require a total of approximately 12n flop4

3. This estimated flop count differs from those in the literature. See Appendix A for more details.
4. This estimated flop count differs from those in the literature. See Appendix A for more details.

57

If we add these two items to the workload for the SVD algorithm without accumulating V, we can

compute the canonical expression for the total workload:

flop count = Amn --n + -n + \2n (156)

= Amn + 12n

Finally, we can determine the canonical expression for the workload for the SVD algorithm includ-

ing accumulating both U and V:

flop count = 4mn2 -^n3 + 4m2n-4mn2 + ^n3 + \2mn2+ ^n3 + 12M3 (157)

A 2 , 10 2 , 40 3 = 4m n + Ylmn + — n

= 4m n+ \2mn + 13n

7.2 COMPLEX SINGULAR VALUE DECOMPOSITION

The SVD of a complex matrix Ae (f1 x ", where m>ny computes unitary matrices U e Cmxm and

Ve C"xn suchthat:

UHAV = diag(c„a2,...,an) (158)

where

ol>G2>...>on>0 (159)

The scalars o, are the singular values of A . The matrix U contains the left singular vectors, while

the matrix V contains the right singular vectors.

As the first step in the implementation of the SVD algorithm, we upper bidiagonalize the input

matrix. The bidiagonal matrix B is derived from the input matrix A through the application of unitary

Householder reflections UB and VB:

= UB
HAVB (160)

A MATLAB implementation of the complex Householder bidiagonalization, which overwrites the input

matrix with the bidiagonal matrix (if UB and VB are desired, they must be separately formed), is the same

58

as the implementation for a real Householder bidiagonalization, which was given in Figure 24. Even

though the input matrix A is complex, the resultant bidiagonal matrix B is real.

In computing the flop count for a complex Householder bidiagonalization, we consider the applica-

tion of the Householder reflections only: the flop count for the computation of the Householder vector v is
ignored.

For iteration ;', computing the product of the transpose of i4(y:num_rows, y:num_cols) and v

requires 8(m - j)(n - j) flop. Scaling this product by ß to compute w requires 2(m - j) flop and is dis-
T T regarded. Computing vw requires 6(m- j)(n- j) flop. Subtracting vw from A requires

2(m-j)(n-j) flop.

If j < num_cols - 2, there are additional computations. Computing the product of

AO':num_rows, j + 1 :num_cols) and v requires 8(m - j)(n -j-\). Scaling this product by ß requires
T T 2(n -j-l) flop and is disregarded. Computing wv requires 6(m - j)(n - j - 1). Subtracting wv from

A requires 2(m- j)(n- j -1). The total flop count for iteration j is approximately 32 (m - j)(n - j), or
four times the flop count for the real Householder bidiagonalization. The total estimated flop count for the
complex Householder bidiagonalization is therefore

flop count = \6mn - — n (161)

To compute the left and right singular vectors, we will need to accumulate the Householder reflec-

tions in UB and VB. The bidiagonal matrix B is computed from the input matrix A through the following

Householder reflections:

* = ßpre.n •ßprc.l^ßpost.|-.ßpost.n-2 0«)

where Q -x is the Householder reflection matrix (by which we premultiply A) used to zero out column i,

and ßpoj^ j is the Householder reflection matrix (by which we postmultiply A) used to zero out row /', and

n is the number of columns in A . We accumulate all of the ßpre i reflection matrices in V B> and all of the

ßpost i reflection matrices in VB:

H
UB = ßprc,n-ßprc,l

or UB = ßprcl-ßp«.,

VB = Qpost, I • • • ß|x>st, n-2

Each matrix ßpre j has the form

(163)

(164)

59

Q pre.j

0

L° ßp«e.il m~J

j m-j

where / is the j x j identity matrix and

(165)

ßprc,j = /m-,-ßvv
H (166)

for iteration /.

Noting that the ßprc,j portion of Q re : shrinks as j increases, we can reduce the workload neces-

sary to compute UB if we accumulate this product starting with gpre n (the Householder transformation

matrix with the smallest non-identity submatrix) rather than starting with Q , (the Householder trans-

formation with the largest non-identity submatrix): instead of accumulating a product that is virtually com-
pletely non-identity from the beginning, we will slowly grow the submatrix that is non-identity.

Let

pre.j ll^prc.i
i=J

Then

' pre. j-1 *^pre,j-l * prc.j

and

v, = V..
If we consider the non-identity portion of the product Ppre j.! = ßpre, j_i Pprc, j, we have

' pre.j-l = öpre.j-1* prej

where

pre.J

/ 0

OP prc.lJ

(167)

(168)

(169)

(170)

(171)

Given that the Householder reflection matrix ßpre, j.j is

60

ßpre.j-i = /-ßw"

we can express the product in Equation 170 thusly:

*Wl =(/-ßw//)Ppre,j

= PprcJ-ßvv,/PpreJ

Let

HD W = V P. prc.J

Then

^prc.j-l = ^prc,j-ßvw

(172)

(173)

(174)

(175)

//« •x2 Computing the product w = v Ppre,j requires 8(m-y) flop. Scaling w by ß requires 2(m-j)

flop and is disregarded. Computing ßvw requires 6(m-j) flop. Computing Ppre j-ßvvv requires

2 2 2(m-j) flop, for a total of \6(m-j) flop for iteration /, or four times the flop count for the real

Householder bidiagonalization. The estimated flop count for accumulating UB for complex matrices is

therefore

flop count = 16m n - \6mn~ + — n (176)

By accumulating the product VB = ßpost, i • • • ßpost, n-2 from ßpost,n-2 and progressing backward,

we can minimize the workload for computing VB.

Let

n-2

^postj = rißposui (177)

Then

and

'■;

* post, j-1 == v^post.j-r post,j

Vß - ^post. 1

If we consider the non-identity portion of the product Pp^^ = ßpost. j-i ''post, j» we nave

61

(178)

(179)

^post.j-1 - Qpost.j-l^postJ (180)

where

p
post.j

/ 0

0Pn

(181)
post. |j

Given that the Householder reflection matrix ßpost j-i *s

ßpostj-i = /-ßw" (182)

we can express the product in Equation 180 thusly:

JWj-i = (/-ßwVpostj (183)

= ^post.j-ßvv//Ppost.j

Let

w = vHPpostJ (184)

Then

^postj-i ■ ^poiLj-ßvw (185)

Computing the product w = v Ppost.j requires S(n-j) flop. Scaling w by ß requires 2{n- j)

flop and is disregarded. Computing ßvw requires 6(n-j) flop. Computing ?Post.j-ßVVi' requires

2(n - j) flop, for a total of 16(n - j) flop for iteration j, or four times the flop count for the real House-

holder bidiagonalization. The total flop count to accumulate VB for complex matrices is therefore

flop count = —n (186)

The rest of the work in the S VD is performed in a series of Golub-Kahan S VD steps. This algorithm

takes as an input a bidiagonal matrix B e "R n that has no zeros on its diagonal or superdiagonal and

overwrites it with the bidiagonal matrix B = V B V, where V and V are orthogonal. Because the bidiag-

onal matrix B is real, the Givens rotations G are also real, and, therefore, the algorithm for the Golub-
Kahan SVD steps that was given in Figure 25 may be used here ([9]). The workload for this algorithm, as
was previously indicated, is approximately 30n flop and 2n square roots.

If we want to accumulate the Givens rotations by updating input unitary matrices U and V with

62

UÖ\...ön.\ and VG, ...Gn_,, respectively, we will require 6m flop to apply each Givens rotation to

each of the real and imaginary halves of U, and 6n flop to apply each Givens rotation to the real and

imaginary halves of V. For all n - 1 iterations, we will require \2m(n - 1) flop, or approximately \2mn
2

flop, to accumulate U, and \2n(n - 1) flop, or approximately \2n flop, to accumulate V.

A MATLAB pseudo-code implementation of the overall algorithm for computing the SVD of a com-

plex matrix A, which overwrites A with its singular values U AV = £> + £, is given below in Figure 27

(E is a small multiple of the unit roundoff).

% Bidiagonalize the input matrix.
Use the algorithm in Figure 24 to compute the bidiagonalization

= (U]...Un)"A(Vi...Vn_2)

until q = n

set *u+| to zero if \biUl\ ^E(|^.,| + |*>I+M+ ,|) for any ie(l.n-l)

find the largest q and the smallest p such that, if

B =
0 B

0

22

0 B 33

P

n-p-q

1

p n-p-q q

then B33 is diagonal and B22 has a non-zero superdiagonal

if q < n

if any diagonal entry in B22 is zero

zero the superdiagonal entry in the same row
else

apply the algorithm in Figure 25 to B22

B <- diag(/p, U, lg + m_n)"Bdiag(Ip, V, lq)

end % if any diagonal entry in B^ is zero

end % if q < n
end % until q = n

Figure 27: MATLAB pseudo-code for a complex SVD

63

The computational workload for the complex SVD is found principally in the bidiagonalization of

the input matrix, which requires approximately \6mn - — n flop. There are approximately 2n calls to

the Golub-Kahan SVD step ([3]), each with a 30n flop count. Therefore, the flop count for the Golub-

Kahan SVD steps will be 60n . As it is an order smaller than the flop count for the bidiagonalization, this
flop count is ignored in the overall flop count, giving us the flop count for the complex SVD:

flop count = \6mn --r-n (187)

If we want to accumulate the left singular vectors V, we will need to:

• accumulate UB during the bidiagonalization of the input matrix, at a cost of

16m2„-16mn
2 + fn3

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost

of 12mn flop per iteration. If we assume that we will require In Golub-Kahan SVD steps,
2

accumulating the Givens rotations will require a total of approximately 24mn flop

If we add these two items to the workload for the SVD algorithm without accumulating U, we can
compute the total workload:

flopcount = \6mn --~-n + \6m n-\6mn + —n + 24mn (188)

2 2 = 16m n + 24mn

Similarly, if we want to accumulate the right singular vectors V, we will need to:

• accumulate VB during the bidiagonalization of the input matrix, at a cost of — n

• accumulate the Givens rotations during each of the O(n) Golub-Kahan SVD steps at a cost

of 12/i flop per iteration. If we assume that we will require 2n Golub-Kahan SVD steps,

accumulating the Givens rotations will require a total of approximately 24 n flop

If we add these two items to the workload for the SVD algorithm without accumulating V, we can
compute the total workload:

64

flop count = 16mn --r-fl +-rn + 24M

2 3 = 16mn + 24n

(189)

Finally, we can determine the workload for the SVD algorithm including accumulating both U and

V:

^ . ML 2 16 3 ., 2 t, 2 16 3 0„ 2 , 16 3 , ~A 3 flop count = 16/nw -~^n + 16m /i-16mn + —w + 24mn + —n + 24n

., 2 -. 2 88 3 = lorn rt + 24mn + —n

2 2 3 = 16m n + 16mn + 29n

(190)

65

8. SUMMARY

The workload expressions for the real and complex signal processing kernels are summarized below.

Table 1: Flop Count Summary

Signal Processing Kernel
Computational Complexity

Real Input Complex Input

matrix-matrix multiplication Imnp Smnp

fast Fourier transform
-n\og2n 5n\og2n

Householder QR decomposition 2»'H) 8»2H)
forward or back substitution 2 n 4„2

eigenvalue decomposition: eigenvalues only 4 3
3"

16 3

eigenvalue decomposition: eigenvalues and
eigenvectors

9n3 23n3

singular value decomposition: singular values
only

A 2 4 3 \6mn --r-n

singular value decomposition: singular values
and left singular vectors

4m n + \2mn
2 2

16m n + 24m/i

singular value decomposition: singular values
and right singular vectors

4mn + \2n 2 3 16mn +24/2

singular value decomposition: singular values,
left and right singular vectors

4m n + \2mn + 13/i 16m2n+16m/z2 + 29n3

In the table above, the parameters in the coi nputational complexity expr essions are:

the dimensions of the two multiplicands - mxn and nx p - for the matrix-matrix multipli-
cation

67

the length of the vector n for the fast Fourier transform

the size of the triangular system n for forward and back substitutions

the dimensions of the input matrix mxn for the Householder QR decomposition, eigen-
value decomposition, and singular value decomposition.

68

APPENDIX A. DIFFERENCES IN FLOP COUNTS

Some of the flop counts given in this document differ from those found in the literature. These differ-
ences are discussed in greater detail here.

A.1 BroiAGONALIZATIONINTHESVD

In Section 7.1, we estimated flop count for accumulating VB for the bidiagonalization of a real

matrix to be

2 2 4 3
flop count = 4m n- 4mn + -n (191)

2 4 3
Golub and Van Loan ([4]) estimate this flop count to be 4m n - -n . This expression would be the

estimated flop count if the summation given in Equation 125 was instead

n

2 .2, flop count = Y4(m - j)

.2
= 4m n-4y j

= 4m2n-4^n+])Pn+l)

= 4m » f4 3^0 2 2 >

2 4 3
which would then be rounded off to 4m n - -n .

(192)

Chan ([1]) estimates this workload to be mn - — multiplies. If we assume that there is one addition

2 2n3

operation for every multiplication operation, this workload would be equivalent to 2mn —-- flop.

The different flop counts for accumulating UB for the bidiagonalization of a real matrix are summa-

rized below in Table 2.

69

Table 2: Workload to Accumulate UB During the Bidiagonalization of a Real Matrix

Source Flop Count

Arakawa
4m2n-4mn2 + */

Chan
0 2 2 3 2mn --n

Golub and Van Loan A 2 4 3 4m n--n

A.2 ACCUMULATION OF THE LEFT SINGULAR VECTORS IN THE SVD

In Section 7.1, we estimated the flop count for accumulating U during the Golub-Kahan steps for
the SVD of a real matrix to be

flop count = 12mn

Golub and Van Loan ([4]) estimate this flop count to be 4mn + -n .

(193)

Chan ([1]) estimates this workload to be 2mn multiplies. If we assume that there is one addition

operation for every multiplication operation, this workload would be equivalent to 4mn flop.

The different flop counts for accumulating U during the Golub-Kahan steps for the SVD of a real
matrix are summarized below in Table 3.

Table 3: Workload to Accumulate U During the SVD of a Real Matrix

Source Flop Count

Arakawa \2mn

Chan 4mn

Golub and Van Loan
4mn +-n

70

A.3 ACCUMULATION OF THE RIGHT SINGULAR VECTORS IN THE SVD

In Section 7.1, we estimated the flop count for accumulating V during the Golub-Kahan steps for the
SVD of a real matrix to be

flop count = \2n

3
Golub and Van Loan ([4]) estimate this flop count to be Sn .

(194)

Chan ([1]) estimates this workload to be 2/z multiplies. If we assume that there is one addition

operation for every multiplication operation, this workload would be equivalent to 4/i flop.

The different flop counts for accumulating V during the Golub-Kahan steps for the SVD of a real

matrix are summarized below in Table 4.

Table 4: Workload to Accumulate V During the SVD of a Real Matrix

Source Flop Count

Arakawa I2„3

Chan 4*3

Golub and Van Loan 8*3

71

REFERENCES

[I] T. F. Chan, "An Improved Algorithm for Computing the Singular Value Decomposition*', ACM
Transactions on Mathematical Software, Vol. 8, 1982, pp. 72-83

[2] D. F. Drake and N. B. Pulsone, private communication, 22 August 2001

[3] G. H. Golub and C. Reinsch, "Singular Value Decomposition and Least Squares Solutions",
Numerische Mathematik, Vol. 14, 1970, pp. 403-420

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, Baltimore and London: The
Johns Hopkins University Press (1996)

[5] J. M. Lebak, private communication, 1 October 2001

[6] R. S. Martin, C. Reinsch, and J. H. Wilkinson, "Householder's Tridiagonalization of a Symmetric
Matrix", Numerische Mathematik, Vol. 11, 1968, pp. 181-195

[7] A. V. Oppenheim and R. W. Schäfer, Discrete-Time Signal Processing, Englewood Cliffs, New Jer-
sey: Prentice Hall (1989)

[8] C. M. Rader, private communication, 2001

[9] C. M. Rader, private communication, 9 April 2002

[10] C. M. Rader, private communication, 11 April 2002

[II] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Philadelphia: Society for
Industrial and Applied Mathematics (1992)

73

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comment» regarding this burden estimate or any other aspect of this collection of Infomatjon. Including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0168). 1215 Jefferson Davis Highway. Suite 1204. Arlington. VA 22202-
4302 Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for falling to comply with a collection of reformation If rt does not display a currently
valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
28 May 2003

2. REPORT TYPE
Project Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8721-05-C-0002

Computational Workloads for Commonly Used Signal Processing Kernels 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

M. Arakawa

5d. PROJECT NUMBER
2222

5«. TASK NUMBER
06111

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION REPORT
NUMBER

Project Report SPR-9

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ESC/XPK

10. SPONSOR/MONITORS ACRONYM(S)

11. SPONSOR/MONITORS REPORT
NUMBER(S)

ESC-TR-2006-071
12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

In the course of designing or evaluating signal processing algorithms, we often must determine the computational workload needed to
implement the algorithms on a digital computer. The floating-point operation (flop) counts for real versions of the most common signal
processing kernels are well documented. However, the flop counts for kernels operating on complex inputs are not as readily found. This
report collects the flop count expressions for both real and complex kernels and also presents brief outlines of the derivations for the flop
count expressions.

15. SUBJECT TERMS

computational throughput
digital signal processing

complex linear algebra
complex matrix computations

floating-point operation workload

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

None

18. NUMBER
OF PAGES

86

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z3fl.1l

