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ABSTRACT

The application of multiscale and stochastic techniques to the solution of linear inverse problems is presented.
This approach allows for the explicit and easy handling of a variety of difficulties commonly associated with
problems of this type. Regularization is accomplished via the incorporation of prior information in the form of a
multiscale stochastic model. We introduce the relative error covariance matrix (RECM) as a tool for quantitatively
evaluating the manner in which data contributes to the structure of a reconstruction. In particular, the use of
a scale space formulation is ideally suited to the fusion of data from several sensors with differing resolutions
and spatial coverage (eg. sparse or limited availability). Moreover, the RECM both provides us with an ideal
tool for understanding and analyzing the process of multisensor fusion and allows us to define the space-varying
optimal scale for reconstruction as a function of the nature (resolution, quality, and coverage) of the available
data. Examples of our multiscale maximum a posteriori inversion algorithm are demonstrated using a two channel
deconvolution problem.

1 INTRODUCTION

The objective of a linear inverse problem is the recovery of an underlying quantity given a collection of noisy,
linear functionals of this unknown. This type of problem arises in fields as diverse as geophysical prospecting,
medical imaging, image processing, groundwater hydrology, and global ocean modeling. While it is not difficult
to find practical instances of linear inverse problems, it is often quite challenging to generate their solutions. In
many instances, regularization is required to overcome problems associated with the poor conditioning of the
linear system relating the observations to the underlying function. Even if the problem is not ill-conditioned, a
regularizer may be incorporated as a means of constraining the reconstruction to reflect prior knowledge concerning
the behavior of this function. For example, it is common practice to regularize a problem so as to enforce a degree
of smoothness in the reconstruction. Also, in disciplines such as geology, the phenomena under investigation are
fractal in nature in which case a prior model with a 1/f-type power spectrum is used as a regularizer.

In addition to the regularization issue, characteristics of the data set available to the inversion algorithm
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can create difficulties. In many inverse problems, a large quantity of data from a suite of sensors is available
for the inversion; however, the information conveyed by each measurement process may be far from complete
so that one is confronted with the problem of fusing data from several sources to achieve the desired level of
performance in the inversion. Hence, there is a need for understanding precisely how data contributes information
to a reconstruction and the manner in which measurements from different sources are merged by the inversion
routine. Alternatively, the availability of the data often is limited. For example, one may be constrained to
collecting measurements on the boundary of a region while the quantity of interest is to be estimated over the
interior. Here, one requires flexible inversion algorithms capable of processing data possessing sparse or limited
spatial distributions. Additionally, one must compensate for errors present in the data which may arise from
noise in the measurement apparatus, unknown quantities associated with the experimental conditions, modeling
errors induced by the simplification of physics and the presence of nuisance parameters in the model. Finally,
one must be concerned with the computational complexity of the inversion algorithm. Typically, the inversion
requires the solution of a large system of linear equations so that advantage must be taken of any structure or
sparseness present in the matrices associated with the problem.

In this paper we develop a frairmework for inversion based upon a multiscale description of the data, the
operators, and the function to be reconstructed. The inversion algorithm used here is drawn from the theory of
statistical estimation. Such an approach allows for the explicit modeling of the errors in the data as sample paths
from random processes. All prior information regarding the structure of the underlying function is summarized
in the form of a statistical model which also acts as a regularizer. Moreover, these techniques compute not only
the estimate of the function of interest, but also provide a built-in performance indicator in the form of an error
covariance matrix. This matrix is central to an understanding of the manner in which information from a set of
observations is propagated into a reconstruction.

We utilize a 1/If fractal prior model specified in the wavelet transform domain for the purposes of regularization.
While clearly not the only multiscale model available for this purpose, the 1/f model is useful for a number of
reasons. First, as noted in [3], this model produces the same effects as the more traditional smoothness regularizers.
Hence, its behavior and utility are well understood. Second, as noted previously, it is appropriate to use a model
of this type in many applications where the underlying process possesses a fractal or self-similar structure. Finally,
1/f-type processes assume a particularly simple form, easily implemented in the wavelet transform domain.

The inversion algorithms developed in this paper are unique in their ability to overcome many of the data-
oriented difficulties associated with spatial inverse problems. Specifically, our techniques are designed for the
processing of information from a suite of sensors where the sampling structure of each observation process may be
sparse or incomplete. For problems with a shift invariant structure, processing such data via traditional Fourier
techniques typically requires the use of some type of space-domain windowing or interpolation method which tend
to cause distortion in the frequency domain. By using the multiscale approach developed here, such preprocessing
is unnecessary thereby avoiding both the cost of the operation and the distortion in the transform domain.

Given this ability to merge data from a variety of sources, we develop a quantitative theory of sensor fusion by
which we are able to understand how information from a suite of observations is merged to form the reconstruction.
The insight provided by our analysis can be used to control signal processing "greed" by defining the space-varying,
optimal scale of reconstruction as a function of (1) the physics relating the unknown quantity to the measurements
and (2) the spatial coverage and measurement quality of the data each observation source provides. In general,
this approach allows for the recovery of fine scale detail only where the data supports it while at other spatial
locations, a coarser approximation to the function is generated.



3

0.35,

o.~t

0.2

0.15

0.1

0.05

0 50 100 150 200 250 300

Figure 1: Convolutional Kernel Functions

2 PROBLEM FORMULATION

2.1 The observations processes

In this paper, the the data upon which the inversion is to be based, yi, are related to the function to be
reconstructed, g, via a system of linear equations embedded in additive noise. Hence the observation model to
be considered is

yi = Tig + ni i=1,2,...K (1)
with yi, ni E RlN4 and g E IRN, . Each vector yi represents the measurements associated with the ith sensor whose
transfer function is defined by the matrix Ti. The components of yi are assumed to be samples of an underlying
continuous observations process, yi(z), where x represents one space dimension.

A key feature of the modeling structure of (1) is its flexibility. By specifying the structure of the kernels,
multisensor fusion problems can be described wherein the data from individual sources conveys information
about g at a variety of spatial scales. In Section 4, a two channel deconvolution problem is considered. The kernel
functions in this case are denoted Tf and TC and are plotted in Figure 1. The kernel labeled Tf gives essentially
pointwise observations thereby supplying fine scale data for the inversion. Alternatively, Tc performs a local
averaging of the function g so that Yc provides coarse scale information regarding the structure of g. Throughout
this paper, the subscript f and c are used to denote quantities associated with the fine and coarse scale processes
respectively.

2.2 A wavelet representation of g(z)

A multiscale representation of g is obtained via the use a wavelet expansion. The elements of the vector g
are taken to be a collection of scaling coefficients at shifts n = 1, 2,...Ng at some finest scale of representation,
Mg. The wavelet transform of g, denoted -, is composed of a coarsest set of scaling coefficients, g(Lg), at scale
L, < Mg and vectors of wavelet coefficients y(m) for scales m = Lg, Lg + 1,..., Mg- 1 [1,2]. Each y(m) then is
comprised of the wavelet coefficients at all shifts of interest at scale m with an analogous interpretation holding
for the elements of g(Lg). Moreover, y is obtained from g via the orthonormal transformation

7 = Wgg (2)
where Wg is the wavelet transform matrix associated with a particular compactly supported wavelet [5]. We
choose to subscript the wavelet transform operator here as Wg to make explicit that this is the transform for g.
In general, we may use different wavelet transforms for the various data sets, yi.
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Figure 2: A sample lattice structure corresponding to a D4 wavelet transform. The finest scale is taken as Mg
while the coarsest is Lg.

The relationships among the scale space component in the decomposition of g are graphically represented in
the form of a lattice as shown in Figure 2 for the case of a wavelet decomposition based upon the Daubechies
4-tap wavelet [2]. At the finest scale, the nodes represent the finest set of scaling coefficients. Each node at all
other scales contains one wavelet and one scaling coefficient. A coarse scale node is said to impact a finer scale
if there exists a strictly downward path on the lattice from the former to the latter. For m : Mg, we define the
downward impact set, VD(m, i), associated with the node (m, i) (i.e. the node at scale m and shift i) as the set of
finest scale nodes which this n de ultimately impacts. Thus in Figure 2, D(VE) is comprised of all nodes marked
with the symbol "M."

2.3 Transformation of the observation equations to wavelet space

Equation (1) relates the finest scale scaling coefficients, g, and the samples of the noise processes to the samples
of the observation process yi. For the purposed of the inversion, we desire a relationship between the wavelet
transform, y, of g and a multiscale representation of ni to a multiscale representation of the data. Toward this
end, we define a discrete wavelet transform operator that takes the vector of sampled measurements, yi, into its
wavelet decomposition

7i = WiYi = Wi TWTy + Wini

= Oi + vi (3)

where, r7i consists of a coarsest scale set of scaling coefficients, yi(Li), at scale Li and a complete set of finer scale
wavelet coefficients r7i(mn), Li < m < Mi - 1, where Mi is the finest scale of representation.

In Table 1, we summarize the notation that we will use. For example, for the data yi, the corresponding
wavelet transform P7i = iyi consists of wavelet coefficients 7ri(m), Li < m < Mi - 1, and coarsest scale scaling
coefficients yi(Li). Also, if we form only partial wavelet approximations from scale Li through scale m, the
corresponding scaling coefficients (which are obtained from yi(Li) and 7i(k), Li < k < m- 1 [5]) are denoted by
yi(m). We adopt the analogous notation for the function g and the noise ni.

Finally, it is often useful to work with the "stacked" system of data y = Tg+n where y contains the information
from all sensors and is given by

y= [yT T ... T T
T = [TT TT .. T Tf

n = [nnT ... nT T.

In the transform domain, the corresponding equation is
77 = Eo + v (4)

with r7, 0, and v are defined in the obvious manner.
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Quantity Wavelet Transform Wavelet Coefficients Scaling Coefficients
Data y,7i = WiYi 77(m) yi(m)

Function g(z) 7 = W1gg (m) g(m)
Noise ni i = Wini vi(m) ni (m)

Table 1: Notation for wavelet and scaling coefficient vectors

3 Multiscale, Statistical Inversion Algorithms

3.1 A maximum a posteriori approach to inversion

In this paper, we consider the maximum a posteriori (MAP) estimate of 7 under the conditions that n -
A(0o, R) and the prior model for y is. of the form y - AJ(O, Po). For PO positive definite, the MAP estimate is [9]

iMAP = (OT R - 1e + POl )-lGTR1, (5)

We utilize a fractal-type of prior model recently developed by Wornell and others [10]. The wavelet coefficients
of g are independent and distributed according to y(m, n) _ '(0, cr2 2- " m ) where 7(m, n) is the coefficient at
scale m and shift n. The parameter a2 controls the overall magnitude of the process while ~p determines the
fractal structure of sample paths. The case / = 0, corresponds to g being white noise while as / increases, the
sample paths of g show greater long range correlation and smoothness. In addition to defining the scale-varying
probabilistic structure of the wavelet coefficients, we also must provide a statistical model for the coarsest scale
scaling coefficients, g(Lg, n). Roughly speaking, these coarse scale coefficients describe the DC and low-frequency
structure of g. In the applications we consider here, we assume that we have little a priori knowledge concerning
the long-term average value of g(z). Consequently, we take g(L,, m) - .V(O, PL,) where PL, is some sufficiently
large number. By choosing pL, in this manner, we avoid any bias in the estimator of the low frequency structure
of g(a). Thus, we have that 7 .A/(O, Po) where

Po = block diag(Po(Mg - 1), ... , Po(Lg), Po(Lg))

Po(m) = a2 2-tmIN,(,) -PO(m) = PLIN,(L,)

with In an n x n identity matrix and Ng(m) the number of nonero coefficients in the wavelet transform of g at
scale m.

3.2 The relative error covariance matrix

A key advantage of the use of statistical estimation techniques is the ability to produce not only the estimate
but also an indication as to the quality of this reconstruction. Associated with the MAP estimator is the error
covariance matrix, P, which under the Gaussian models defined in Section 3.1 takes the form

P = (e TR-1e + P'o) -1 (6)

The diagonal components of P, the error variances, are commonly used to judge the performance of the estimator.
Large values of these quantities indicate a high level of uncertainty in the estimate of the corresponding component
of 7 while small error variances imply that greater confidence may be placed in the estimate.

While the information contained in P is important for evaluating the absolute level of uncertainty associated
with the estimator, in many cases, it is more useful to understand how data serves to reduce uncertainty relative
to some reference level. That is, we have some prior level of confidence in our knowledge of 7, and we seek to
comprehend how the inclusion of additional data in our estimate of 7 alters our uncertainty relative to this already
established level. Toward this end, we define the relative error covariance matriz (RECM) as
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ll(A, B) = I - P T/ 2 PP (7)

which is the matrix analog of the scalar 1 - b/a i.e. the relative difference between two real number a and b. Here
A and B are index sets with A, B C {1, 2,..., K}. The quantity PA (resp. PB) is the error covariance matrix
associated with the MAP estimate j(A) (resp. '(B)) where j(A) (resp. j(B)) is the estimate of y based upon
data from all observation processes m7i with i E A (resp. i E B.) Finally, we define the error covariance matrix
associated with no observations, P{0}, as the prior covariance matrix Po.

In the event PA is diagonal, the diagonal components of II(A, B) are particularly easy to interpret. Let ? 2(A)
be the error-variance of the ith component of y arising from an estimate based upon data from set A. Then,
the ith component of the diagonal of H(A, B) is just 1 - or(B)/oi2(A) which is nothing more than the relative
size difference of the error-variance in the i th component of 7 based upon data from sets A and B. Note that
the diagonal condition of PA is met in this paper when PA = PO. Thus, the diagonal elements of II({0}, B)
represent the decrease in uncertainly due to the data from set B relative to the prior model. Where there will be
no confusion, we shall abuse notation and write II({0}, B) as II(B).

The quantity II(A, B) represents a useful tool for quantitatively analyzing the relationship between the char-
acteristics of the data (as defined by O and R) and the structure of the estimate y. Consider, for example,
the case in which we wish to assess the overall value of a set of sensors. That is, suppose that A = 0 and
B = {any set of sensors} so that HI(A, B) = 11(B) measures the contribution of the information provided by this
set of sensors relative to that of the prior model. We begin by defining 1'(B) as the value of the element on the
diagonal of the matrix 1H(B) corresponding to the wavelet coefficient at scale/shift (m, n). To avoid ambiguity,

we use the notation HInf' to refer to the RECM information for the coarsest scaling coefficient of g at shift n. If
HII(B) is large then the data provides considerable information regarding the structure of g at (m, n). In partic-
ular, this quantity provides us with a natural way in which to define the scale to which g should be reconstructed.
Consider the finest scale of our representation, the scaling coefficients g(Mg, j). Using the terminology introduced
in Section 2.2, we say that the data supports a reconstruction of g(Mg, j) at scale m if there exists some node in
the wavelet lattice of g at scale m which satisfies the following

1. The node impacts g(Mg, j) (i.e. for some shift n, g(Mg, j) E D(m, n)).

2. The data provides a sufficiently large quantity of information regarding the structure of g at node (m, n)
(i.e. HI (B) is in some sense large).

Clearly, the finest level of detail supported by a data set at shift j, denoted m+(j), is the finest scale for which
a node (m, n) may be found that satisfies the above two criteria and in general is a function of position (i.e.
a function of the shift j at scale Mg.) The precise quantification of "sufficiently large" will depend upon the
particular application and on the structure of the particular inverse problems under investigation.

In addition to its use is assessing the scale of reconstruction supported by the information from a set of sensors,
if we consider the case where neither A nor B is empty, we find that there are several ways in which 1H(A, B) may
be of use in assessing the value of fusing information from multiple sensors and in identifying how this fusion takes
place. For example, if A C B, then II(A, B) provides us with a measure of the value of augmenting sensor set A to
form sensor set B. Roughly speaking, if HI(A, B) is significantly larger than 0, there is a benefit in the additional
information provided by the sensors in B - A. Moreover, we can use the quantities I' (A, B) to pinpoint the
scales and locations at which this fusion has significant benefit i.e., those scales and shifts at which active sensor
fusion is taking place. Furthermore, by varying the sets A and B, we can identify which sensors are actively
used to obtain that estimate. That is, for each (m, n), we can in principal find the set A C {1, ... , K} so that
HII(A, {1, ... , K}) is small (so that sensors not in A provide little additional information to the reconstruction
of wavelet coefficient (m, n)) and so that for any C C A, H11 (C, A) is of significant size (so that all of the sensors
actively contribute to the reconstruction at this scale and shift.)
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Figure 3: The finest scale approximation coefficients of g and the parameter values for this function.

4 Examples

As described previously, our multiscale, stochastic methodology provides a natural framework for addressing
a variety of issues arising in the study of linear inverse problems including

* Regularization
* Multisensor data fusion
* The processing of data possessing sparse or irregular sampling patterns
* Defining the optimal, space varying scale of reconstruction

In this section, we analyze one example demonstrating may of the above points. A more extensive set of illustra-
tions may be found in [5] and in the talk accompanying this paper. Here, we consider a two channel deconvolution
problem with kernel function Tc and T! shown in Figure 1. The function to be reconstructed is a sample path of
1/f type of process defined by the parameters in Figure 3(a) and is displayed in Figure 3(b).

A common characteristic of linear inverse problems is the desire to estimate g over some closed and bounded
region based upon measurements some of which are available only at or near the boundary of this region. As
discussed in Section 1 for problems with a convolutional structure, such a distribution of data points makes the
use of Fourier-based techniques problematic. In contrast, the multiscale, statistical MAP inversion algorithm we
have described is ideally suited to handling such problems. To illustrate this, we consider a configuration of the
two channel deconvolution problem in which yf is available only near both ends of the interval while Yc is sampled
over the entire interval. In this case, the noiseless and noisy data sets are shown in Figure 4. The signal-to-noise
ratio (SNR) for each process is 3. The SNR of the vector 7i = Oity + vi with vi -. ' A(O, r2I) and 7y A(0O, PO) is
defined as

SNR2 = Power per pixel in i7 _ tr(eiPooT)
Power per pixel in vi Ngr2

where Ng is the length of the vector y and tr is the trace operation.

The sampling structure associated with yf is handled quite easily using wavelet transforms. Specifically, we
split yj into its left and right components and treat each separately. In effect, this is equivalent to windowing
yf and applying Wf individually to each windowed version of the data. We note that unlike Fourier techniques
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where space-domain windowing can cause significant distortion of the signal in the frequency domain, no significant
distortion is present here1 .

The estimates of g are displayed in Figure 5. We see that over the middle of the interval, §({f, c}) is roughly the
same as 0({c}) while at either end, information from yf is used almost exclusively in the inversion. Additionally,
Figure 5 shows that given only yf, the estimator does make an attempt to recover g over the interior of the
interval, but such an estimate is increasingly in error the farther one proceeds toward the middle.

In Figure 6(a)-(d), the diagonal components of H1(B) are plotted for B C {{f}, {c}, {f, c}} and for scales2

3 and 4. We observe that for scale-shift pairs (m, n) interior to the boundary region in which fine scale data
are available, HI'({f}) is essentially zero indicating the almost complete lack of information in yf about g over
these shifts. However, for pairs (m, n) corresponding to locations near either boundary, information in yf almost
completely dominates that in y,. In Figures 6(d), the utility of adding Yc to an estimate based upon yf is
illustrated by displaying HI ({f}, {f, c}). Again the contribution of the coarse scale data is greatest away from
the end of the interval. In Figures 6(b) and (c), we observed the presence of active sensor fusion over selected
shifts at these scale. That is for certiin n and for j E {3, 4}, HII({f, c}) is significantly larger that both Hi ({c})
and II ({f}). Thus, the RECM is able to localize both in scale and in shift the precise locations where the
presence of both data sets yields significantly more information than either alone. Finally, for scales other than
3 and 4, the two observation :sources provide little if any significant information to the reconstruction of g.

For the case considered here, define the shift-varying optimal scale of reconstruction given both Yc and y! in
the following manner. The diagonal structure of PO implies that 0 < HII'(A) < 1 so that determining whether
II7 (A) is "sufficiently large" is accomplished by comparing this quantity to some threshold, r, between zero and
one. Thus, m*(j), the finest scale of detail supported in a reconstruction at scale Mg and shift j, is the largest
m such that there exists a shift j for which (1) g(Mg, n) E V(m, j) and (2) HIj (A) > r. Given this procedure for
determining the optimal scale of reconstruction. we are led to define %, a truncated version of A, as follows:

[7r]¢m,.) = { 0 n (A) < r(8)
[i](m,) ( ,n, ) otherwise

where [i](,,,,) is the component in the vector - at scale m and shift n. Defining y. in this way ensures that
gT = WT'T is in fact the reconstruction of g which at each shift j contains detail information at scales no finer
than m*(j).

In Figure 7(a), we plot m*(j) using the noisy data sets of Figure 4 for r = 0.45. Here we see that near
the boundaries, the presence of fine scale data allows for higher resolution in the reconstruction of g while in
the middle of the interval, we must settle for a coarser estimate. From Figure 7(b) we see that there is little
difference between the optimal estimate, §, and its truncated version, go.45. Thus, the relative error covariance
matrix analysis can be used to evaluate a particular parameterization of g. Given the structure of the observation
processes, we see that g is overparameterized as the data provide little useful fine scale information relative to
that found in the prior model. Any attempt to recover these components of g is effectively a waste of time and
computational resources. Rather, the RECM suggests that a more parsimonious description of g is warranted
and even indicates how such a model should be constructed based upon the information available in the data.
That is, given the structure of the observation processes, the original parameterization of g involving 256 degrees
of freedom is clearly excessive. Rather, the data dictates that for r = 0.45 at most only 24 parameters (i.e. the
number of nonzero elements of §0.45) need be estimated.

1 The only distortion is caused by the edge effects arising from the circulant implementation of the wavelet transform as discussed
in Section 2.2 and as we have discussed, these effects are generally negligible or can be overcome completely through the use of
modified wavelet transforms obtained over compact intervals

2 The unusual activity at the right hand edge of these plots is an artifact of the circulant implementations of wavelet transform
operator Wi [5]
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Figure 4: Data sets for use in reconstruction with the SNR! = SNRC = 3 and y! available only near the end of
the interval.
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Figure 5: Estimates of g using various combinations of yf and yc for the case where SNRf = SNRC = 3 and yf
is available only near the edges of the interval. We see that at the boundaries, the estimate given both Yc and
yf essentially makes use only of yf. Over the center of the interval where y! is absent, §({f, c}) follows O({c})
closely.
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Figure 6: Relative error covariance information for the case of SNRf = SNRc = 3 with yf available only near
the ends of the interval. For scales 3 and 4, (a)-(c) indicate that at the ends of the interval, the variance reduction
given both yf and Yc is equal to that given only yf. Alternatively, Yc impacts the RECM data primarily in the
middle of the interval. In (a)-(c), there is some active sensor fusion taking place as there exists shifts at these

scales for which II3({ff, c}) dominates both II3({f}) and II({c}). From (d), it is observed that Yc has significant
impact relative to y! in lowering the variance of the coarsest scaling coefficient estimates at shifts away from
either end of the interval.
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5 Conclusions and Future Work

In this paper, we have presented an approach to the solution of linear inverse problems based upon techniques
drawn from the fields of multiscale modeling, wavelet transforms, and statistical estimation. This formulation is
particularly useful in describing the situation where there exists a suite of measurements each of which conveys
information about the behavior of g on different scales. We utilize wavelet methods to transform the problem
from real-space to scale-space. A maximum a posteriori (MAP) estimator serves as the inversion algorithm and
produces an estimate not of g, but of its wavelet transform, 7. Regularization is achieved via a statistical model
of y which also provides a means of capturing any available prior information regarding the structure of g.

Our approach makes extensive use of scale-space in the analysis of linear inverse problems. By introducing the
notion of a relative error covariance matriz (RECM), we have developed a quantitative tool for understanding
quite precisely the various ways in which data from a multitude of sensors contribute to the final reconstruction of
g. Via our two channel deconvolution example, we have demonstrated a method for determining the optimal level
of detail to include in the estimate of g as a function of spatial location. The incremental benefits associated with
the addition of data from another sensor was readily explored using the RECM. Also, we have shown the utility
of this quantity in describing the process of multisensor data fusion in a wavelet setting and in evaluating the the
level of complexity supported in a representation of g based upon the information content of the observations.
Finally, in addition to performing the RECM analysis, our examples highlight the ability of a wavelet-based
approach to handle non-full data sets. Specifically, we have considered the case where one source of information
was available only near the boundaries of the interval.

We note that the general methodologies presented here are not restricted to the iD deconvolution problems.
Our techniques can be used without alteration for one dimensional problems involving non-convolutional kernels.
Also, the extension of our approach to multidimensional inversions can be accomplished quite easily and should
be of great use in the analysis and solution of 2D and 3D problems which typically exhibit more severe forms of
all the difficulties found in the iD case. Indeed, in [6], we consider a non-convolutional 2D inverse conductivity
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problem similar to those found in geophysical exploration.

Although not considered extensively in this work, the multiscale, statistically based inversion algorithms
admit highly efficient implementations. As discussed by Beylkin et. al in [1], wavelet transforms of many operator
matrices, 9, contain very few significant elements so that zeroing the remainder lead to highly efficient algorithms
for applying O to arbitrary vectors. These sparseness results imply that the least-squares problems defined by
the wavelet-transformed normal equations also have a sparse structure. Thus computationally efficient, iterative
algorithms such as LSQR [7] can be used to determine 5. In [4], we utilize the theory of partial orthogonalization [8]
in the development of a modified form of LSQR. Our algorithm is designed for the efficient and stable computation
of ' as well as arbitrary elements in the error covariance and relative error covariance matrices.
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