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Preface
This issue of Acta Materialia comprises a set of select
contributions from the meeting ‘‘Micromechanics and
Microstructure Evolution: Modeling, Simulation and
Experiments’’, held in Madrid, Spain, September 11–16,
2005. The aim of this conference was to bring together scien-
tists who are working on the modeling and simulation of
deformation behavior and microstructural evolution in
materials. The focus was on the interplay between behaviors
at different length scales, in particular the atomistic, nano-
scale, and continuum descriptions of processes that lead to
changes in microstructure. Of particular interest were inves-
tigations that discussed the bridging of length scales, and the
prediction of material properties from theory and computa-
tion. Papers dealing with the experimental validation of the
approaches were also important to differentiate between
competing theories, including novel experimental tech-
niques, to guide or verify the modeling and simulation
efforts.

The meeting brought in over 150 researchers from indus-
try and academia from 27 countries. A total of 15 plenary lec-
tures, 25 invited lectures, 60 oral communications and over
30 posters were presented during the five days of the confer-
ence. We, the organizers, were honored by the great response
and by the quality of the presentations, which exceeded our
expectations. The papers in this issue are representative of
the depth and high quality of the work presented at the meet-
ing. The conference was followed by a Satellite Workshop on
‘‘Ductile Fracture and Damage’’, organized by Professors
D. Wilkinson and D. Embury (McMaster University) and
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2006.03.001
Professors C. González and J. Segurado (Polytechnic
University of Madrid) on September 16th–17th.

Most of all, we would like to thank the participants for
making the meeting a success. We would like to thank
Günter Gottstein for his assistance in editing and publish-
ing these articles. The meeting would also not have been
possible without our sponsors, including the Acta Materia-
lia board, the Spanish Ministry of Science and Education,
the Polytechnic University of Madrid, the Office of Naval
Research Global (ONRG) and the European Office of
Aerospace Research and Development (EOARD). Organi-
zational support was provided by Engineering Conferences
International.
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Abstract

We present atomic-scale simulations of screw dislocation glide in bcc iron. Using two interatomic potentials that, respectively, predict
degenerate and non-degenerate core structures, we compute the static 0 K dependence of the screw dislocation Peierls stress on crystal
orientation and show strong boundary condition effects related to the generation of non-glide stress components. At finite temperatures
we show that, with a non-degenerate core, glide by nucleation/propagation of kink-pairs in a {110} glide plane is obtained at low tem-
peratures. A transition in the twinning region, towards an average {112} glide plane, with the formation of debris loops is observed at
higher temperatures.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Molecular dynamics; Dislocation mobility; Iron
1. Introduction

The origin for the specific plastic behavior of bcc metals
at low temperatures can be traced down to the non-planar
extended core configuration of the screw dislocations in
these materials [1]. The latter configuration implies a large
value for the lattice-friction Peierls stress, overcome by the
gliding screw dislocations with the help of thermal activa-
tion. In the present paper, bcc a-Fe is of specific interest.

At the macroscopic scale, plastic properties of bcc met-
als have been extensively studied, mostly by means of uni-
axial tension/compression tests (for a review, see Ref. [2];
for a-Fe, see Refs. [3–5]). A key observation is that, at
low temperature, bcc metals do not follow the Schmid
law, which states that glide on a given slip system starts
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2006.03.044
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E-mail address: david.rodney@inpg.fr (D. Rodney).
when the Resolved Shear Stress (RSS) on that system
reaches a critical value. There are two types of deviations
[6]: first, the critical RSS depends on the sign of the applied
stress (which is a consequence of the twinning/antitwinning
asymmetry of the bcc lattice), and second, the critical RSS
is influenced by non-glide components of the applied stress
tensor. The latter are of two types [7]: shear stresses in the
Burgers vector direction acting on planes other than the
glide plane, and shear stresses perpendicular to the Burgers
vector.

At the atomic scale, the study of bcc screw dislocations
was one of the first applications of atomistic simulations to
plasticity (see [8]; for a recent review, see [9]). However, one
has to be cautious about the results of these simulations for
several reasons. First, different interatomic potentials may
predict different core structures, even for the same material
[6,10,11]. In the case of a-Fe, earlier simulations using pair
potentials [8] and later calculations with many-body
embedded atom method (EAM) potentials [12,13] pre-
dicted a degenerate core, spread asymmetrically on the
three {110} planes of the [111] zone, yielding two distinct
rights reserved.
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and equivalent configurations related by a diadic symmetry
around a Æ11 0æ axis normal to the dislocation line. How-
ever, more recent and accurate structure calculations based
on the density functional theory (DFT) yielded a non-

degenerate core [14], spread symmetrically into the three
{11 0} planes. This structure is now predicted by the latest
EAM potentials [15].

Second, most atomic-scale simulations in a-Fe [12,13]
cannot be reconciled with experiments because they predict
average {112} glide planes, while experimentally at low
temperature, glide is observed on {110} planes (except
when the Maximum Resolved Shear Stress Plane (MRSSP)
is close to {112}) [3]. In particular with degenerate cores,
even if in most simulations the MRSSP is a {110} plane,
the screw dislocations glide on an average {112} plane
by elementary steps on two {11 0} planes.

Finally, dynamic simulations at finite temperature are
computationally expensive because accurate results require
large 3D simulation cells, with long dislocation segments in
order to capture double-kink nucleation/propagation
events, which are the finite temperature glide mechanism.
Most simulations are therefore static and quasi-2D. Only
recently [13] were large 3D simulations performed, with a
potential yielding a degenerate core. This study confirmed
the double-kink mechanism with an average {112} twin-
ning glide plane.

In the present article, we employ two EAM potentials
[15,16] that predict the two types of dislocation cores,
and characterize both the static and dynamic properties
of the screw dislocations modeled by these potentials. In
the static case (Section 3), we compute the Peierls stress
as a function of crystal orientation and show strong bound-
ary condition effects. In the dynamical case (Section 4), we
perform a series of large 3D MD simulations for a range of
temperatures and applied stresses and show in particular
that, with a non-degenerate core, the glide plane is the
{11 0} MRSSP at low temperatures, with a transition
towards the {112} twinning plane at higher temperatures
and stresses. The relevance of the present simulations to
experimental data and previous works published in the lit-
erature is finally discussed (Section 5).

2. Computational model

2.1. Crystallography

The simulation cell used here is schematically shown in
Fig. 1(a). Its orientation around the Y = [11 1] axis which
is the close-packed Burgers vector direction, is defined by
the angle v between the horizontal MRSSP of the cell
and the ð�10 1Þ plane, used as a reference (as will be detailed
below, the boundary conditions produce a rYZ shear stress
with horizontal MRSSP). The MD simulations were per-
formed in a cell with v = 0, i.e. horizontal ð�10 1Þ planes.
In the static simulations, we computed the dependence of
the Peierls stress on the crystal orientation by rotating
the cell around the Y-axis. Fig. 1(b) presents the plane
indexes of the [111] zone and recalls that three {11 0}
and three {11 2} planes intersect along the [111] direction
and that each {11 0} plane is bordered by two {112}
planes and vice versa. Because of the symmetries of the
bcc lattice, all orientations are considered if v is varied
between ±30�, but because of the asymmetry of shear par-
allel to {112} planes, positive and negative v angles are not
equivalent. In the simulations, only positive rYZ shear
stresses are applied, such that the ð�211Þ planes are sheared
in the twinning sense, while the ð�1�12Þ planes in the antit-
winning sense (see Ref. [10] for more details). We will refer
to the region v < 0 (resp. v > 0) as the twinning (resp. antit-
winning) region and will use subscripts T and AT to recall
to which region the planes belong. Each {110} plane is
thus bordered by two {112} planes, one sheared in the
twinning sense, the other, in the antitwinning sense.

2.2. Boundary conditions

The cell dimensions used here are LX = 25.2 nm,
LZ = 13.1 nm in the X and Z directions, respectively.
Along the dislocation line, the static simulations were
quasi-2D with LY = 2.5 nm while for the dynamic simula-
tions, in order to capture the double-kink mechanism, we
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Fig. 2. Differential displacement maps of screw dislocation cores showing
(a) the non-degenerate structure of Mendelev et al. potential [15] and (b)
the degenerate structure of Simonelli et al. potential [16].
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needed long dislocation segments and employed
LY = 64.2 nm.

We tested different types of boundary conditions. In all
cases, periodic boundary conditions were applied in the
Y-direction along the dislocation line and free boundary
conditions in the X-direction. In the Z-direction, we applied
either full or modified free boundary conditions. In the lat-
ter case, referred to as 2D-dynamics, atoms lying in slabs of
width equal to the potential cut-off distance from the upper
and lower Z surfaces are fixed in the Z-direction and free to
move in the X and Y directions. This type of boundary con-
ditions has been used in fcc metals (see Ref. [17,18] and ref-
erences therein). It can be viewed as Rigid in the Z-direction
but allows to apply stress-controlled boundary conditions.
An a/2[111] screw dislocation is introduced in the center
of the cell, along the Y-direction, by means of its elastic dis-
placement field.

In order to force the screw dislocation to glide, we apply
stress-controlled boundary conditions by superimposing to
the atoms in the upper and lower slabs (as defined above)
constant and opposite forces in the Y-direction, in order
to produce a rYZ external shear stress. As said in previous
section, only positive shear stresses were applied.

Atomic configurations are visualized either by differen-
tial displacement maps [8] where first-neighbor [11 1]
atomic columns are linked by arrows of length propor-
tional to their relative displacement in the Burgers vector
direction, or by a first-neighbor analysis [18] where are
shown only those atoms which do not have 8 first neigh-
bors close to perfect bcc positions. The latter atoms are
called core atoms in the following.

2.3. Interatomic potentials

We employ two iron interatomic EAM potentials. One
potential was developed by Simonelli et al. [16] in order to
describe a-Fe crystals and has been used for example to
study twin nucleation at crack tips [19]. The other more
recent potential was developed by Mendelev et al. [15]
(Potential 2 in the reference) in order to describe crystal-
line as well as liquid iron by including in the fitting proce-
dure first-principle forces obtained on a model liquid
configuration. In the following, the potential developed
by Simonelli et al. (resp. Mendelev et al.) will be noted
potential S (resp. M).

We computed the kink-pair formation energy predicted
by both potentials and found very contrasted results.
Potential M predicts high values of 0.67 eV for the
vacancy-type kink and 1.02 eV for the interstitial-type
kink, while potential S predicts a low and identical value
for both kinks, equal to 0.2 eV. The value extrapolated
from experimental data is 0.8 eV for the kink pair [12],
i.e. about twice that of potential S and half that of poten-
tial M.

Fig. 2 presents the differential displacement maps of the
screw dislocation cores obtained with both potentials. As
can be seen, potential S predicts a degenerate core, asym-
metrically spread in the three {110} of the [111] zone.
Potential M predicts a non-degenerate symmetric core
(close to the elastic solution) in close agreement with recent
DFT calculations [14]. We will use this fundamental differ-
ence to study the influence of the core structure both on the
static and dynamic properties of a screw dislocation. Note
also for later use that the stable configuration (called soft)
of the dislocation cores shown here is centered on a triangle
pointing downward in this [111] projection. There exists
also an unstable configuration (called hard) where the core
is centered on an upward triangle (see Ref. [8] for details).

3. Static properties and boundary effects

We consider here the dependence of the Peierls stress of
the a/2[111] screw dislocation on crystal orientation. We
performed static simulations by increasing the applied
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stress incrementally and relaxing the configuration between
each increment. The energy-minimization algorithm used
here is based on zeroing atomic velocities whenever their
dot product with the atomic force is negative.

With potential M, the Peierls stress is well defined since,
when the applied stress is increased, there is a critical stress
below which the dislocation is stable, and above which dis-
location motion is unbounded. By way of contrast, there
are two critical stresses with potential S: when the applied
stress reaches a lower critical stress, the dislocation
advances by one atomic distance, adopts a metastable con-
figuration and remains fixed until a second upper critical
stress is reached, above which the motion becomes
unbounded. Double critical stresses were found with other
potentials (see, for example, Ref. [20]). Whenever Peierls
stresses are shown with potential S, both critical stresses
are shown.

Fig. 3(a) shows the evolution of the Peierls stress as a
function of the crystal orientation v obtained with potential
M employing either free boundary conditions or 2D
dynamics in the Z-direction. The plane on which the dislo-
cation glided is noted in the figure.

We see a strong influence of the boundary conditions
both on the numerical values of the Peierls stress and on
the glide plane selection. For v < 0 with 2D dynamics,
the dislocation glides on a ð�211ÞT plane (empty symbols
in Fig. 3(a)), while with free boundary conditions, the dis-
location glides on a ð�101Þ plane for all orientations plain
symbols in Fig. 3(a)) except when v is close to �30�, i.e.
when the MRSSP is close to ð�211ÞT. Numerically, in the
region v > 0 where in both cases the dislocation glides on
ð�101Þ, the Peierls stress with 2D dynamics is about
300 MPa lower than that obtained with free boundary con-
ditions. Note also that the Peierls stress is discontinuous
when the glide plane changes from ð�1 01Þ to ð�211ÞT. The
Peierls stress for v = +30�, i.e. when the MRSSP is
ð�1�12ÞAT, is not reported on the figure because it is unreal-
istically high (about 5.4 GPa) and in that case, the plastic
deformation is not due to a dislocation but rather to a plate
of intense shear.

This strong influence of the boundary conditions is due
to a shear/tension coupling associated to the twinning/
antitwinning asymmetry of shear on {112} planes. Indeed,
the bcc lattice is not symmetrical with respect to {112}
planes: the [111] atomic columns are shifted by b/3 with
respect to each other, with reference positions �b/3, 0,
b/3, . . . When the lattice is sheared parallel to a {112} plane,
the reference positions of the columns become �b/3 � e, 0,
b/3 + e, with e > 0 (resp. e < 0) when the crystal is sheared
in the twinning (resp. antitwinning) sense and thus, the dis-
tance between atoms in the neighboring [111] columns
increases (resp. decreases). Correspondingly, in the twin-
ning case, the lattice tends to compress perpendicularly to
the {11 2} plane, while in the antitwinning case, it expands.
The 2D dynamical boundary conditions forbid these
expansion and contraction because they are rigid in the
Z-direction and no out-of-plane motion is allowed in the
upper and lower crystal surfaces. Tensile stresses in the
Z-direction are thus generated which in turn produce shear
components perpendicular to the Burgers vector of the
screw dislocation. As said in Section 1, these non-glide
components are known to affect the Peierls stress [7] and
are at the origin of the differences observed between the
two boundary conditions. In Fig. 3(a), the 2 curves cross
at v = 0, i.e. when the MRSSP is ð�10 1Þ because it is the
only orientation for which shear is symmetrical and no
stress is generated in the Z-direction with 2D dynamics.
Note also that the shear/tension coupling is volumic and
its effect is therefore independent of the size of the simula-
tion cell. In fact, this coupling is found in any crystal with
cubic symmetries: a shear deformation �YZ with Y = [111]
and Z ¼ ½�1�12� applied to a crystal with cubic symmetries
(and elastic constants c11, c12, c44) produces a stress tensor
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with a component rZZ ¼
ffiffiffi

2
p

=3ð�c11 þ c12 þ 2c44Þ�YZ , thus
showing the coupling between the shear �YZ and the ten-
sion rZZ in the direction perpendicular to the plane of
application of the shear.

Fig. 3(b) shows the evolution of the Peierls stress
obtained with potential S and free boundary conditions.
Both the lower and upper Peierls stresses are noted on
the figure, the lower stress being about 600 MPa below
the upper one. The latter is close to the Peierls stress
obtained with potential M. The glide plane is ð�101Þ in
the antitwinning region and ð�21 1ÞT in the twinning region.
Note that with the present potential, the Peierls stress is
continuous at the transition between glide planes. Also,
the Peierls stress is almost constant in the twinning region.

Fig. 4 illustrates the well-known fact that the Peierls
stress in bcc crystals does not obey the v-dependence of
Schmid law. Fig. 4 reproduces the data obtained with
potential M in the region where the dislocation glides on
ð�101Þ. First, the twinning/antwinning asymmetry is clearly
visible when comparing the regions v > 0 and v < 0. Sec-
ond, the dashed curve is Schmid law ðro

P= cosðvÞÞ fitted
on the Peierls stress at v = 0. We see in particular that
the Peierls stress in the region v > 0 decreases much faster
than Schmid law and does not increase for v < 0. The solid
curve is the fit obtained using the effective yield stress crite-
rion proposed by Vitek et al. [21], who suggested that the
effect of non-glide resolved shear stresses on planes other
than the glide plane should be accounted for in the form
of a linear combination. Based on their simulations, they
found that the important shear stress is that acting on
ð�110ÞT. With our notations, the Peierls stress is then
expressed as:

rP ¼
ro

P

cos ðvÞ þ a � cos ð60þ vÞ ð1Þ
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Peierls stress relation (solid curve) [21].
Fig. 4 shows that this fit with ro
P ¼ 1604 MPa and a = 0.61

improves greatly the prediction of the Peierls stress, except
in the region close to 30�, which could be due to the unre-
alistic Peierls stress for v = 30�.

4. Dynamic properties

We performed a series of large 3D MD simulations with
a 64 nm-long screw dislocation in a cell with ð�101Þ
MRSSP. In this section, we will focus mainly on simula-
tions performed with potential M. The duration of the sim-
ulations was set to 100 ps. The temperature was varied in
the range 50–150 K, i.e. within the experimental range
where plasticity is dominated by the thermally activated
motion of screw dislocations. No temperature control
was used, because the dislocation glides over limited dis-
tances and the temperature raises by less than 2 K. The
applied stress was varied in the range 200–700 MPa, i.e.
well below the Peierls stress, which is 1210 MPa for this
v = 0 orientation (see Fig. 3(a)). Free boundary conditions
are applied in X and Z directions (see Fig. 1(a)). From the
energy of the dislocation as a function of its position in the
cell, we found that the image stress on the dislocation pro-
duced by the free surfaces is below 50 MPa for glide dis-
tances below 25 Peierls valleys. The results presented
hereafter are thus computed within this range. The disloca-
tion is first relaxed at 0 K under the desired stress before
the target temperature is set and the MD simulation
started.

Fig. 5 is a map of the dislocation average velocity and
average glide-plane angle w with respect to the horizontal
ð�101Þ MRSSP. A similar velocity map was obtained by
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Marian et al. [13] with an EAM potential that predicts a
degenerate core structure.

The glide mechanism is the nucleation and propagation
of kink pairs in {110} planes, as illustrated in Fig. 6 which
displays dislocation core positions at different times for dif-
ferent stress and temperature conditions. The core was
determined by taking the center of gravity of the core
atoms (as defined by the first-neighbor analysis presented
in Section 2) in slices of width 2b along the dislocation line.

At low temperatures and stresses, there is a Single Kink-

Pair (SKP) regime where glide is intermittent with waiting
times separated by the nucleation of kink pairs that appear
one-by-one and annihilate with themselves through the
periodic boundary conditions along the dislocation line.
The process, illustrated in Fig. 6(a), occurs by the succes-
sive nucleation and propagation of two kink pairs of height
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Fig. 6. Dislocation core motion in (a) the single-kink pair regime (300 MPa, 1
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b=3 is the distance between Peierls val-
leys. The first kink pair brings the dislocation from a stable
soft position to an unstable hard position, while the second
kink pair brings the dislocation back into a stable soft posi-
tion, in the next Peierls valley. The hard dislocation seg-
ment is metastable presumably because of the line tension
effect of the edge kinks. The kinks expand with high satu-
rated velocities, of the order of 4.5 nm ps�1, mostly inde-
pendent of the temperature and stress in the range
considered here. Also, vacancy-type and interstitial kinks
have similar velocities although their formation energies
are very contrasted with potential M. In the map of
Fig. 5, the points corresponding to this SKP regime are
noted as squares. This figure shows that the glide plane
angle w is 0� at 50 K and reaches �14� at 100 K. The
reason is the activation of cross-slip with temperature
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Fig. 7. Core structures obtained with a first-neighbor analysis in (a) the
single-kink pair regime (400 MPa, 50 K), (b) the rough multiple-kink pair
regime (500 MPa, 150 K).
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(see Section 5) that leads to an increasing proportion of
double kinks nucleated in inclined ð�110ÞT planes at
v = �60� in the twinning region (see Fig. 1(b)). The glide
plane is therefore the ð�101Þ MRSSP only at low tempera-
tures and rotates towards the twinning region at higher
temperatures. In the simulations, as illustrated in
Fig. 6(b), we often observe that a new kink pair nucleates
within less than a ps at the position where two kinks anni-
hilated, which is due to the energy locally released by the
annihilation.

If temperature and/or stress are increased, the kink-pair
nucleation rate increases and we observe a transition to a
multiple kink-pair (MKP) regime where several kink-pairs
coexist on the dislocation line. First, there is an intermedi-
ate regime where dislocation motion is characterized by
waiting times separated by avalanches, i.e. rapid succes-
sions of kink-pairs, mostly in horizontal ð�101Þ planes.
An example of such an avalanche is shown in Fig. 6(c).
A kink pair first nucleates and, while it expands along
the dislocation line, several other kink pairs appear on this
initial kink-pair and also propagate along the dislocation
line. Usually, the avalanches comprise 2–3 kink pairs. In
this intermediate regime, noted as right triangles in
Fig. 5, the glide angle is again mostly a function of the tem-
perature and does not exceed �15�.

At even higher temperatures and/or stresses, the kink-
pair nucleation rate as well as the number of kink pairs
in inclined ð�11 0ÞT planes increase. At 150 K, the latter
becomes almost equal to the number of kink pairs in
horizontal ð�1 01Þ planes and consequently, the angle w
approaches �30� (see Fig. 5) and the average glide plane
rotates to ð�211ÞT. Fig. 6(d) shows the almost simulta-
neous nucleation of two kink pairs in different {110}
planes, leading to a self-pinning of the dislocation by a
mechanism that was described in details by Marian
et al. [13]: when kink pairs on different {110} planes
intersect, they lock each other and become pinning points
for the dislocation, called cross-kinks [22]. The dislocation
may then unlock by two mechanisms. One was reported
by Marian et al. [13] and involves a combination of kink
pairs in both {110} planes which allows the dislocation
to reconnect in a single {110} plane. This mechanism
results in the formation of two closed loops, one of
vacancy-type, the other interstitial. In the present simula-
tions, we observed another mechanism: when the disloca-
tion velocity is slow enough, we see that the cross-kinks
are mobile, glide along the dislocation line and annihilate
with one another. No debris loops are formed in this
case. The driving force of the motion of the cross-kinks
can have two origins: (1) the difference in RSS between
the kinks in the inclined and the horizontal {110} planes
and (2) a possible difference in the length of the two
kinks [22]. No waiting times are observed in this regime,
that was called rough by Marian et al. [13] and, as illus-
trated in Fig. 7(b), a large density of debris loops is left
in the wake of the dislocation. As shown in Fig. 6(d),
atomic-scale kinks are no more visible, but are more
rounded with heights equal to several interatomic
distances.

5. Discussion

We identified three regimes: single kink-pair (SKP)
regime, multiple kink-pair (MKP) regime with avalanches,
and rough multiple kink pair regime, in a window of
temperatures and stresses primarily determined by the
duration of the simulations: the simulations can be carried
out only with temperatures and stresses for which the
dislocation advances by several Peierls valleys within
100 ps, which limits us to stress levels higher than in trac-
tion/compression tests on single crystals, leading to rela-
tively high dislocation velocities. Such stresses can
however easily be reached near heterogeneities, such as
cracks, and in small-scale microstructures. Also, note that
since the MKP regimes require several kink-pairs along
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Fig. 8. Average differential displacements of screw dislocation cores at
150 K and (a) 500 MPa, (b) 200 MPa.
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the dislocation, the stress to enter these regimes will
decrease if a longer dislocation line length is used. Finally,
the observations made here remain mostly qualitative since
we could not perform the number of runs required for
accurate statistics due to the computational load of the
simulations.

5.1. Glide plane predictions for potentials M and S

It is known experimentally that in a-Fe single crystals,
slip takes place on ð�101Þ planes over the whole tempera-
ture range when these planes are MRSSP [3]. Such slip
plane is possible if kink-pairs are systematically nucleated
in this plane, or if they nucleate in all three {110} planes
of the [111] zone such that, on average, the dislocation
glides on ð�101Þ. At the atomic scale, the first case is
compatible only with a non-degenerate core that retains
the same configuration after each atomic move and can
systematically emit kink pairs in a ð�101Þ plane. The
present simulations show that indeed, with potential M

which predicts a non-degenerate core, glide on ð�10 1Þ is
possible.

The second option, pencil glide on an average ð�101Þ
plane, is impossible at least with potential M, because we
never observed any kink pair nucleating in a ð0�11ÞAT plane
in the antitwinning region. The glide plane can deviate only
towards the twinning region, with no possibility for the
dislocation to glide back towards the central ð�1 01Þ plane.
To our knowledge, kink pairs on ð0�11ÞAT planes have
never been observed in atomic-scale simulations.

With a degenerate core such as that predicted by
potential S, the asymmetry of the two core variants
implies that for a given sign of the applied stress and a
ð�101Þ MRSSP, one variant will emit kink pairs only in
a ð�101Þ plane (case of the variant shown in Fig. 2(a) if
the stress drives the dislocation to the right) while the
other variant will emit kink pairs in a ð�110ÞT plane. With
degenerate cores, no ð0�11ÞAT-kink pair have either ever
been observed in atomic-scale simulations. The flip from
one variant to the other each time the dislocation moves
by one Peierls valley implies the nucleation of kink pairs
alternatively on ð�1 01Þ and ð�110ÞT, resulting on an aver-
age ð�211ÞT-glide plane, as described in earlier publications
[12,13].

5.2. Rotation of the glide plane

The map of Fig. 5 shows that the glide plane angle w is
mostly a function of the temperature and results from the
activation with temperature of kink pairs in ð�110ÞT planes.
This effect can be understood as least qualitatively from a
simple cross-slip model [25] where one assumes that kink
pairs nucleate in ð�101Þ and ð�11 0ÞT planes with thermally
activated probabilities that depend on the RSS in these
planes: E0 � V Æ r and E0 � V Æ r/2, respectively (we thus
neglect all non-glide effects). The glide plane angle then fol-
lows the relation:
tanð�wÞ ¼
ffiffiffi

3
p

1þ 2 expðV � r=2kBTÞ
ð2Þ

With an activation volume V = 0.45b3, we obtain a varia-
tion of w with temperature of the same order, though less
rapid, than observed in the simulations. The cross-slip
events may be helped by a change of dislocation core struc-
ture. Fig. 8(a) shows the differential displacement map ob-
tained at 500 MPa and 150 K, using atomic positions
averaged over 10 ps. We can see in this figure a dissymme-
try between the two arrows just above the core triangle,
corresponding to an extension of the dislocation core in
the inclined ð�1 10ÞT, which favors the nucleation of kink
pairs in this plane. The effect is favored by higher stresses
since as seen in Fig. 8(b), at 200 MPa and 150 K, the core
dissymmetry is much less pronounced.
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The activation with temperature of kink pairs in ð�110ÞT
planes is in agreement with the experimental observation
that in a-Fe, slip takes place on {11 0} at low temperatures
(77 K) over the whole orientation range but at higher tem-
peratures, only if the crystal is stressed in the antitwinning
region; if the stress is in the twinning region, slip becomes
non-crystallographic with an average glide plane parallel to
the MRSSP [2,10]. Indeed, combinations of ð�101Þ- and
ð�110ÞT-kink pairs can yield any average glide plane in
the twinning region, while, in the absence of ð0�11ÞAT-kink
pairs, slip in the antitwinning region can only take place in
ð�101Þ planes. Similarly, at low temperatures, in absence of
ð�110ÞT-kink pairs, slip can also take place only in ð�101Þ
planes. This point should be verified by 3D MD simula-
tions at different temperatures with different crystal
orientations.

The present simulations also predict that the slip plane
in a crystal oriented with ð�1 01ÞMRSSP should rotate from
ð�101Þ towards ð�211ÞT when the temperature is increased,
which has not been observed experimentally to our knowl-
edge. However, the experimental determination of slip
planes [3] was performed on single crystals with low yield
stresses below 300 MPa where the evolution of the core
structure is not pronounced. An analysis of slip traces in
high stress environments, as obtained in small-scale micro-
structures (for example bainitic steels [24]) would be very
informative.

5.3. Rough MKP regime

The rough MKP regime requires two conditions: several
kinks have to expand simultaneously and in different
{11 0} planes. The first condition is controlled by the nucle-
ation probability, while the second depends on the core
structure.

In the case of a degenerate core, the fact that the vari-
ants emit kink pairs in distinct planes makes the coexis-
tence of such kinks difficult and restricts the rough
MKP regime (if any) to very high temperatures and stres-
ses. Indeed, using potential S, we observed no rough
regime over the entire stress and temperature ranges con-
sidered here. With this potential, at high stresses, the dis-
location core is nearly planar, extended in a ð�211ÞT plane,
and the motion appears continuous, with no visible
atomic-scale kinks. Marian et al. [13] observed a rough
regime with a degenerate core, that can have two reasons:
either a change in dislocation core allowing the simulta-
neous formation of kinks in two {11 0} planes or the acti-
vation of flips between core variants along the dislocation,
as considered by Duesberry [23]. Interestingly, the applied
stress for the transition to the rough regime obtained by
these authors at low temperature (50 K) is the same as
in the present simulations. But, in their case, this transi-
tion stress is mostly independent of the temperature while
in our case, it is strongly dependent. Also, in agreement
with the observations of Marian et al., the interstitial
debris loops tend to have large sizes while the vacancies
are released one-by-one or in small clusters. Such debris
loops were observed in TEM in high yield stress bainitic
steels [24], where the RSS is about 450 MPa at 77 K, indi-
cating that in these alloys, the deformation may be in the
rough MKP regime, as opposed to single crystals where
the applied stress is lower and the deformation is in the
SKP regime.

5.4. Influence of the boundary conditions

Boundary conditions have a strong influence on the
Peierls stress at 0 K as shown in Section 3, when the crys-
tal is sheared in an orientation different from v = 0,
because of the shear–tension coupling associated with
the twinning/antitwinning asymmetry. This effect is due
to the rigid boundary conditions imposed in the Z-direc-
tion when 2D dynamics are used. The boundary condi-
tions also affect the selection of the glide plane at finite
temperatures. We used 2D-dynamics in the Z-direction
in MD simulations and found ð�211ÞT glide planes over
most of the temperature and stress ranges. In addition,
we tested periodic boundary conditions in the X-direction
and found that these boundary conditions also favor slip
in ð�211ÞT planes. Great care must therefore be taken in
the choice of the boundary conditions and, from the pres-
ent simulations, free boundary conditions in both X and
Z directions seem to be the most adapted and rigid
boundary conditions should not be used outside the ori-
entation v = 0.

6. Conclusion

The present simulations show that if a potential pre-
dicting a non-degenerate core is used, glide at finite tem-
perature on a {110} plane can be stabilized, in
agreement with experimental data and in contrast with
MD simulations performed with degenerate cores that
predict {112}T average glide planes. For this reason,
we believe that, although neither potential M nor S are
physically based models for bcc iron because they do
not account for magnetism, potential M is more realistic
because it stabilizes {110} glide planes. Also, a transition
to a rough regime is obtained with a stronger tempera-
ture dependence than with degenerate cores. Finally, the
simulation results appear to be very dependent on the
boundary conditions, mainly because the latter may pro-
duce non-glide stress components that affect dislocation
glide.
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2004;70:054111.
[18] Rodney D. Acta Mater 2004;52:607.
[19] Farkas D. Philos Mag 2005;85:387.
[20] Duesberry MS, Vitek V, Bowen DK. Proc R Soc A 1973;332:85.
[21] Vitek V, Mrovec M, Bassani JL. Mat Sci Eng A 2004;365:31.
[22] Louchet F, Viguier B. Philos Mag A 2000;80:765.
[23] Duesberry M. Acta Mater 1984;31:1759.
[24] Obrtlik K, Robertson CF, Marini B. J Nucl Mat 2005;342:35.
[25] The authors thank V.V. Bulatov for this suggestion.



www.actamat-journals.com

Acta Materialia 54 (2006) 3417–3427
Dual role of deformation-induced geometrically necessary
dislocations with respect to lattice plane misorientations

and/or long-range internal stresses q

H. Mughrabi *

Institute fur Werkstoffwissenschaften, Universität Erlangen-Nürnberg, Martensstr. 5, 91058 Erlangen, Germany

Received 21 October 2005; received in revised form 13 January 2006; accepted 23 March 2006
Available online 15 June 2006
Abstract

This work is part of a continuing effort to develop a unified picture of the role of geometrically necessary dislocations (GNDs) in the
evolution of the dislocation distribution of unidirectionally and cyclically deformed crystals. In particular, the dual role of the GNDs in
the development of long-range internal stresses and lattice plane misorientations which arise because of the heterogeneity of the dislo-
cation substructure is explored. Available experimental data of cyclically and tensile-deformed copper single crystals were evaluated as
quantitatively as possible in the framework of the composite model. Valuable complementary information to TEM was obtained from
well-designed X-ray diffraction experiments (line broadening, broadening of rocking curves, Berg–Barrett X-ray topography). The evo-
lution of the long-range internal stresses and of the density of the GNDs with increasing deformation could be determined quantitatively
as a function of deformation for cases of both single and multiple slip. In all cases studied, the GND density was found to be small and
amounted only to some per cent of the total dislocation density. From the rate of evolution of the misorientations of different types of
dislocation boundaries, the latter could be classified either as so-called geometrically necessary boundaries or incidental dislocation
boundaries. A number of semi-empirical relationships between the microstructural parameters on a mesoscale and the parameters of
deformation that were derived in this study can provide valuable guidance in future modelling.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Dislocation distribution; Deformed crystals; Geometrically necessary dislocations; Long-range internal stresses; Lattice plane misorientations
1. Introduction

1.1. Motivation, general remarks on geometrically necessary

dislocations in deformed crystals

The characteristic features of the dislocation microstruc-
tures in unidirectionally plastically deformed face-centred
cubic (fcc) crystals have been studied extensively in the
past, as reviewed in Refs. [1–5]. In many of these studies,
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2006.03.047
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transmission electron microscopy (TEM) was the most fre-
quently employed observational technique. In most cases,
quantitative analysis concentrated on features such as the
dislocation density and the spacings between the disloca-
tion cell walls. For a more complete quantitative character-
ization of the dislocation patterns, it is important to
consider that, even in macroscopically homogeneous defor-
mation, e.g. in a simple tensile test, deformation is micro-
scopically non-homogeneous as a consequence of the
heterogeneity of the deformation-induced dislocation
microstructure (e.g. a cell structure). Hence, those promi-
nent microstructural features which arise on a larger scale
as a consequence of the microstructural heterogeneity of
the dislocation pattern such as long-range internal stresses
and lattice plane misorientations should also be assessed as
rights reserved.
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quantitatively as possible. The evolution of these two
important features is intimately related to the formation
of specific arrays of geometrically necessary dislocations
(GNDs); compare Ref. [6].1 Hence, the study of internal
stresses and misorientations is in fact considered as the
key to understand better the important role played by the
GNDs in the evolution of the dislocation microstructure,
irrespective of the fact that the GND density represents
only a few per cent of the total dislocation density; com-
pare Refs. [7–9]. Ideally, all microstructural features named
above should of course be integral parts of work-hardening
theories.

These questions are addressed in this study, which is
complementary to a parallel paper [6] as part of an attempt
to develop a unified picture of the special role played by
GNDs in the plastic deformation of crystals. For this pur-
pose, some earlier experimental studies of plastic deforma-
tion in which relevant information on long-range internal
stresses and/or lattice plane misorientations had been
obtained are reconsidered. Emphasis is laid on the dual
role of GNDs as sources of both internal stresses and mis-
orientations, as exemplified in terms of simple models. In
the present context, the particularly promising experimen-
tal approach of X-ray diffraction techniques as comple-
mentary tools to TEM is recalled briefly (Section 1.2).
Available data are analysed as quantitatively as possible
in terms of microstructurally based models with the goal
of extracting semi-empirical relationships between the
microstructural parameters and the parameters of
deformation.

1.2. X-ray diffraction: a complementary tool to TEM

While TEM does reveal lattice plane misorientations
giving rise to changes in the background intensity, this
information remains qualitative and is hampered by the
fact that partial relaxation of lattice plane bending and
twisting cannot be avoided in thin TEM foils. Long-range
internal stresses are not directly measurable by TEM
except through the tedious evaluation of radii of curvature
of dislocations which must, however, have been pinned
before by some means in order to prevent dislocation rear-
rangement; compare Refs. [5,10]. Moreover, the small field
of view of TEM does not allow easy access to microstruc-
tural variations over larger distances of some 10 lm, which
are known to exist and which have been evidenced by other
techniques such as, in particular, surface observations [11]
or X-ray topography [12–14]. For these reasons, it is
important to recall the usefulness of a combination of X-
ray diffraction techniques that allows one to obtain a more
global and a more quantitative picture of the deformation-
induced dislocation substructure.
1 In the present work, the term GNDs refers to local arrays of excess
dislocations of one sign, irrespective of whether they are geometrically
necessary or not, as elaborated elsewhere [6].
In order to investigate those microstructural features
that are considered in the present study, the following three
X-ray diffraction techniques, used in combination with
TEM, are considered particularly suitable:

(1) X-ray line broadening.
(2) Broadening of X-ray rocking curve.
(3) Berg–Barrett X-ray topography.

The first two diffraction techniques are based on the
broadening of the X-ray diffraction peaks of plastically
deformed crystals. In the picture of the Ewald sphere in
reciprocal space (compare Refs. [9,15]) the diffraction spots
are broadened in all three dimensions. The broadening of
the X-ray linewidth originates from the elastic distortions
due to the strain fields of the dislocations which cause a
spread of lattice parameters. Hence, the Bragg equation
is fulfilled over an accordingly broadened range of glancing
(Bragg) angles h ± Dh or, equivalently, lattice plane spac-
ings d ± Dd. Typically, the halfwidths Dh1/2 of broadened
intensity line profiles, measured on the scale of the glancing
angle, is of the order of minutes, corresponding to rather
small lattice parameter variations Dd/d of the order of
some 10�4. For our purpose, Wilkens’ theory of X-ray line
broadening [15,16] is considered most suitable, since it con-
siders explicitly characteristic properties of real dislocation
patterns in the form of so-called restrictedly random dislo-
cation distributions. The analysis yields the total disloca-
tion density and a so-called arrangement factor which
allows one to distinguish between dislocation distributions
of high and low internal stresses. In deformed crystals with
high internal stresses, asymmetric X-ray line broadening is
sometimes observed [17–21] and can be analysed to yield
the local dislocation densities and the internal back (for-
ward) stresses in the cell interior (cell wall) regions.

The broadening of the so-called rocking curve is caused
by the deformation-induced lattice plane misorientations
(mean angle of misorientation b) which can be character-
ized by tilt and/or twist axes. In order to bring mutually
misorientated areas into Bragg reflection, the specimen
must be rotated appropriately through the so-called rock-
ing angle; compare Refs. [9,22,23]. The rocking curve is
obtained as a plot of the diffracted intensity versus the
rocking angle. Maximum broadening occurs when the axis
of misorientation lies perpendicular to the plane of inci-
dence [13,14,23]. Typically, the halfwidths of broadened
rocking curves, Db1/2, are of the order of a degree and thus
exceed the halfwidths of line profiles by one to two orders
of magnitude. By rotating the specimen in steps through
the so-called azimuthal angle u around the normal to the
reflecting lattice plane and recording a series of rocking
curves for different azimuthal angles u, the axes of misori-
entation can be determined, and a rather complete charac-
terization of the misorientations can be achieved [13,14,23].

Berg–Barrett X-ray topography is performed by record-
ing a diffraction spot on a film (or with a position-sensitive
detector) and blowing up the ‘‘image’’ by a factor of �50;



Fig. 2. Schematic of the formation of ‘‘nucleus’’ of kink bands. (After
Ref. [11], courtesy of the authors.)
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compare Refs. [12–14,23]. The image of the blown-up dif-
fraction spot contains a fine structure which can be inter-
preted in terms of extinction contrast from regions of
high local dislocation density and/or orientation contrast
from misorientated regions fulfilling the Bragg condition
for the given glancing angle. The axes of misorientation
can be obtained in a similar way as in the case of rock-
ing-curve broadening by probing in a series of topographs
the dependence of the contrast observed on the azimuthal
angle. While the resolution of the technique is much lower
(�5 lm) than in TEM, it is particularly suited to detect
long-range microstructural features with a periodicity of,
typically, some tens of micrometres, which are not easily
accessible by TEM.

With today’s possibilities of high-energy high-intensity
synchrotron radiation [24–26], all the X-ray diffraction
techniques described above can be applied with better res-
olution and higher degree of accuracy than in the classic
experiments that have been performed with standard labo-
ratory equipment hitherto. In addition, as shown by Bor-
bély recently, the electron backscattering diffraction
(EBSD) technique available today in scanning electron
microscopes can be used elegantly to measure the broaden-
ing of rocking curves in dependence on the azimuthal angle
[27].
2. Dislocation pile-ups and kink walls: exemplifications of the

dual role of GNDs

Although it is now clear that dislocation pile-ups in the
classic sense [28] are only observed occasionally in
deformed metals [1–5], a discussion of dislocation pile-
ups is suitable to illustrate the dual role that GNDs can
play as sources of both long-range internal stresses and lat-
tice plane misorientations. Dislocation pile-ups are associ-
ated with local deformation gradients and represent a
Fig. 1. Schematic of edge dislocations piling up against an obstacle.
(a) Fully constrained, internal stresses unrelaxed, with no misorientations.
(b) Constraints and internal stresses (partially) relaxed, with tilt bending.
characteristic GND array. A group of edge dislocations
of one sign piling up against an obstacle, as shown sche-
matically in Fig. 1(a), would give rise to long-range internal
stresses; compare, for example, Ref. [29]. When the pile-up
is heavily constrained by the neighbouring material, bend-
ing will be negligible. In contrast, once the constraints are
relaxed (partially), e.g. in a thin foil or near a free surface,
then the glide plane will be expected to assume a curvature,
as shown in Fig. 1(b), and at the same time the internal
stresses would relax to some extent. Hence, the example
shown in Fig. 1(b) shows that one and the same GNDs
can in general give rise to both long-range internal stresses
and lattice plane misorientations.

More generally, groups of dislocations, piling up against
obstacles on both sides of the dislocation sources, would
have to be considered, e.g. in the form of the array shown
schematically in Fig. 2, as proposed by Mader and Seeger
[11] long ago to illustrate the formation of the nucleus of
so-called kink bands in work-hardened fcc crystals. Here,
again, one and the same GND arrays act simultaneously
as sources of long-range internal stresses and misorienta-
tions. In Section 4.2, a recently proposed simple micro-
structural model which relates the density of GNDs to
the misorientations in kink bands [9] is discussed.
3. Long-range internal stresses and geometrically necessary

dislocations in the composite model of crystal plasticity

In order to take into account the heterogeneity of the
deformation-induced dislocation pattern, the author has
developed the so-called composite model [8,18,30] which
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has been thoroughly reviewed recently [31]. Hence, only
those features will be summarized briefly that are essential
for the present work. In the composite model, the deforma-
tion of a crystal containing, for example, a dislocation wall
or cell structure, is controlled by the local flow stresses of
the hard dislocation-rich cell walls and the softer disloca-
tion-poor cell interiors. An important ingredient of the
model is the natural building up of deformation-induced
long-range internal forward stresses in the hard phase
and back stresses in the soft phase. These internal stresses
can be determined either by the analysis of asymmetrically
broadened X-ray diffraction line profiles [8,17–21,31] or by
measuring the local variations of dislocation curvatures in
TEM micrographs [5,8,10,31,32]. In the present context, it
is important that these internal stresses arise as a conse-
quence of the formation of GNDs at the interfaces between
the hard dislocation walls and the softer regions between
the walls.
Fig. 3. Composite model for single slip deformation in PSB wall structure
of cyclically deformed fcc single crystals. (a) Dislocation glide mechanisms
in channels and interfacial GNDs (bold). (After Refs. [8,30].) (b) GNDs
compensating unequal plastic shear deformations in PSB walls and
channels. Fully constrained configuration. (After Ref. [8].) (c) Same as (b),
but now with constraints and internal stresses (partially) relaxed by
bending.
3.1. Composite model of single slip deformation

The composite model for single slip was proposed to
describe the plastic deformation of the dipolar dislocation
wall structure in persistent slip bands (PSBs) in cyclically
deformed fcc crystals; compare Fig. 3(a). GND arrays of
one sign at the interfaces between the walls and the chan-
nels between the walls, as illustrated in Fig. 3(b), give rise
to long-range internal stresses that superimpose on the
applied stress. The local shear flow stresses sw and sc in
the dislocation walls and cell interiors are then given by

sw ¼ sþ Dsw ð1Þ
and

sc ¼ sþ Dsc ð2Þ
where Dsw (>0) and Dsc (<0) are the deformation-induced
long-range internal forward and back stresses. The macro-
scopic shear flow stress s then follows by a rule of mixtures:

s ¼ fcsc þ fwsw ð3Þ
where fc and fw are the volume fractions occupied by the
channels and the walls, respectively.

The mean density qGND of the GNDs, averaged over the
wall spacing d, is easily derived [6,8,18,31] and can be
expressed as

qGND ¼
2n
d
¼ 2ðsw � scÞ

bdG
ð4Þ

where n is the line density of the GNDs, measured perpen-
dicular to the glide plane, d is the wall spacing, b is the
modulus of the Burgers vector and G is the shear modulus.
Alternatively, qGND can also be written in terms of the
long-range internal forward and back stresses [6]:

qGND ¼
2ðDsw � DscÞ

bdG
ð5Þ
The quantity (Dsw � Dsc) or, equivalently, the term
(sw � sc), compare Eqs. (4) and (5), represent the sum of
the long-range internal forward and back stresses and are
therefore suitable measures of the magnitude of the inter-
nal stresses.

In spite of their low density, the GNDs give rise to
appreciable internal stresses. They would not, however,
lead to the development of misorientations, unless the con-
straints of the PSB slab were allowed to relax. In the latter
case, the lattice planes would be expected to undergo some
to-and-fro bending, as indicated schematically in Fig. 3(c),
which would, at the same time, lead to a partial relaxation
of the internal stresses, as discussed in Section 4.1.
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3.2. Composite model of symmetrical multiple slip

The composite model for multiple slip [8,18,30,31]
describes the symmetrical operation of intersecting glide
systems; compare Fig. 4(a). Pairs of dislocations of
Burgers vectors b1 and b2 are held up at the interfaces
between the cell walls and the cell interiors. These
pairs of interface dislocations are equivalent to resul-
tant interfacial dislocations with Burgers vectors ±bres

lying parallel to the stress axis. They take the role of
GNDs and give rise to axial long-range internal for-
ward and back stresses Drw and Drc, respectively; com-
pare Fig. 4(b). Similar to the case of single slip, the
mean density qGND of the GNDs can be formulated
as [6,8,18,31]

qGND ¼
2n
d
¼ 2ðrw � rcÞ

bresEd
ð6Þ

or as

qGND ¼
2ðDrw � DrcÞ

bresEd
ð7Þ

where rw and rc are the local axial flow stresses of the cell
walls and cell interiors, respectively, d is the transverse dis-
location cell diameter and E is Young’s modulus. With an
appropriate Schmid orientation factor /, the model can be
formulated equally well in terms of resolved shear stresses
sw and sc. The macroscopic flow stress is again given by a
rule of mixtures.
Fig. 4. Composite model for symmetrical multiple slip in a dislocation cell struc
dislocation cell walls. (b) Representation of held-up dislocations by ‘‘resultant
Ref. [8].)
4. Assessment of long-range internal stresses, lattice plane

misorientations and GNDs

4.1. Cyclically deformed fcc specimens

In the case of PSBs in cyclically deformed copper crys-
tals of single slip orientation (primary slip system
½�1 01�ð111Þ), all quantities that relate to the internal stres-
ses and the local shear flow stresses (Eqs. (3)–(5)) have been
determined experimentally [8,30–32]. Regarding the inter-
nal stresses and the local flow stresses and their relation
to the shear flow stress sPSB of the PSBs, it has recently
been shown that these quantities are related by the follow-
ing approximate linear relations [6]:

sc � 0:63sPSB; Dsc � �0:37sPSB ð8Þ
and

sw � 2:3sPSB; Dsw � þ1:3sPSB ð9Þ
Typical values of the density qGND of those GNDs respon-
sible for the long-range internal stresses were obtained
according to Eqs. (6) or (7) [6,8,9,18,31] and were found
to be small (�7 · 1012 m�2), i.e. just a few per cent of the
total dislocation density of �1015 m�2.

TEM observations and Berg–Barrett X-ray topography
have indicated that, on the average, the misorientations
occurring on the scale of the PSB wall spacings are very
small [33]. However, the surprising observation has been
made by both techniques that appreciable misorientations
exist with a long-range wavelength extending over some
ture. (a) Symmetric intersecting glide systems; glide dislocations held up at
’’ interfacial GNDs, illustrating the generation of internal stresses. (After



Fig. 6. Berg–Barrett X-ray topographs of ð1�21Þ section of copper single
crystal deformed cyclically at a shear strain amplitude of cpl = 1.45 · 10�2

for two azimuthal positions. (a) Primary Burgers vector perpendicular to
plane of incidence, strong contrast from horizontal ‘‘kink bands’’, weak
contrast from vertical dislocation layers corresponding to PSB-like layer
structures parallel to primary glide planes with superimposed secondary
slip. (b) Same as (a), but with primary Burgers vector lying in the plane of
incidence; strong contrast from kink bands (vertical), weak contrast from
PSB-like layer structures. (After Ref. [33].)
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10 walls [6], reminiscent of the kink-band-like features
observed on the surface pattern of cyclically deformed cop-
per single crystals [34]. Similar long-range misorientations
are also apparent in the (low-magnification) scanning elec-
tron microscopy (SEM)/electron channelling contrast
(ECC) work of Hecker et al. [35] on cyclically deformed
nickel single crystals, of Li et al. [36] on cyclically deformed
copper single crystals and of Buque et al. [37] in individual
grains of cyclically deformed nickel polycrystals. In copper
single crystals, deformed cyclically in the so-called plateau
regime of PSB formation, a kink-band-like to-and-fro tilt
(misorientation angle b � 20 0) around the line direction
½1�21� of the primary edge dislocations [6,33] with a wave-
length extending over some 10 wall spacings was observed.
Examples of similar observations made after cyclic defor-
mation at a higher plastic shear strain amplitude at which
increasing secondary slip superimposes [33] are shown in
Figs. 5 and 6. Fig. 5 shows a low-magnification TEM
micrograph of a foil cut parallel to the ð1�21Þ plane, show-
ing a rather strong orientation contrast with a wavelength
of some 10 lm. The Berg–Barrett X-ray topographs shown
in Fig. 6(a) and (b) provide complementary information.
Altogether, it can be concluded from contrast experiments
that, at the higher plastic strain amplitude, these misorien-
tations with rather long wavelengths have major twist and
tilt components around axes roughly parallel to the normal
[111] to the glide plane and the line direction of the edge
dislocations ½1�21�, respectively. The twist component is
reminiscent of the twist misorientations around the normal
[111] to the primary glide plane which are observed in the
layer-like so-called sheets/grids which develop in tensile
stage II work hardening (for more details, see Section
4.2). A characteristic feature of the dislocation patterns in
both cases is the increasing interaction of secondary slip
Fig. 5. Low-magnification TEM micrograph of ð1�21Þ foil from copper
single crystal deformed cyclically at a shear strain amplitude of
cpl = 1.45 · 10�2, showing strong orientation contrast with long-range
periodicity. (After Ref. [33].)
systems with the primary slip system. However, the origin
of the rather long wavelengths of these misorientations in
cyclic deformation is still unclear, since it is generally
believed that, in contrast to tensile deformation, the to-
and-fro dislocation glide paths are rather short and do
not extend over many wall spacings [6]. The local plastic
strain amplitude in the (PSB) wall structure is much larger
than the imposed plastic strain amplitude which could
mean that the dislocation glide events do extend over cor-
respondingly larger distances.

Under the (unrealistic) assumption that the PSB wall
structure is completely unconstrained and would be able
to relax in such a way that all GNDs contribute exclusively
to the tilt misorientation as in Fig. 3(c), one obtains a value
for the tilt angle b � 9 0, based on the GND line density n

(estimated as n � 107 m�1 via Eq. (4), from the value
qGND � 7 · 1012 m�2 stated above, using d � 1.4 lm
[8,31]). The value b � 9 0 is at least a factor of two smaller
than the measured misorientations [38]. Hence, it is consid-
ered much more probable that the measured misorienta-
tions are largely due to the long-range ‘‘kink-band-like’’
walls. This would imply that the local GND densities at
the ‘‘kink walls’’ is about a factor of two to three larger
than the value estimated on the basis of the internal stresses
according to Eqs. (4) and (5).
4.2. Copper single crystals deformed in tension in single slip

It appears that so far the only systematic quantitative
studies of lattice plane misorientations in deformed single



Fig. 8. Berg–Barrett X-ray topograph of ð�101Þ section of copper single
crystal deformed into stage II at 4.2 K. Note to-and-fro twist orientation
contrast between neighbouring layers lying horizontally parallel to the
trace of the primary glide plane (111). (After Refs. [13,14], courtesy of the
authors.)
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crystals are those that were made mainly on copper single
crystals by X-ray diffraction by the former research group
of the late Manfred Wilkens [6,9,13–15,38–40]. In the fol-
lowing, some of these rather old data will be reassessed
in the light of further recent developments of the composite
model with respect to the role of the GNDs [6].

The dislocation microstructures in fcc single crystals
deformed in single slip into work-hardening stage II exhibit
two dominant features extending over larger distances,
namely kink walls/bands, as mentioned previously in Sec-
tion 3, and the so-called sheets/grids [1–5,31] in the form
of layer-like networks which are composed of primary
and secondary dislocations and their reaction products
and which lie roughly parallel to the primary glide plane
(111). Fig. 7(a) shows an example of a TEM micrograph
of the sheets/grids in a deformed copper crystal from the
work of Essmann [41], viewed in a section perpendicular
to the primary glide plane. Fig. 7(b) illustrates schemati-
cally how the network is built up of primary and secondary
(conjugate) dislocations and their reaction products
(Lomer–Cottrell dislocations). The main misorientation
introduced by these planar networks consists of to-and-
fro twist misorientations around the normal [111] to the
primary glide plane (and a to-and-fro tilt misorientation
around the axis ½1�21�); compare Refs. [14,41]. The twist
misorientation is recognized best in Berg–Barrett X-ray
topographs. The example shown in Fig. 8 refers to a copper
single crystal that had been deformed into the stage I/stage
II transition at which secondary glide is just beginning to
operate. To-and-fro displacements of the Cu Ka1 line show
clearly the twist misorientations around the axis [111],
caused by the formation of the sheets/grids with spacings
of the order of 100 lm.

In a recently proposed model, the misorientations
originating from both kink bands and sheets/grids in
stage II work hardening were related to characteristic
microstructural parameters, parameters of deformation
and the density of the GNDs [9]. The following relation-
ships were obtained for the maximum halfwidths of the
rocking curves
Fig. 7. Sheet/grid microstructure of copper single crystal deformed into stage I
Burgers vector, showing layer-like sheet/grid structure with alternating contras
(b) Schematic view of dislocation reactions in sheet/grid network. View on pr
Kink walls; tilt axis ½1�21� :

Db1=2 � 0:0169
qGND

q
� s with s in MPa ð10Þ

Sheets=grids; twist axis ½111� :

Db1=2 � 0:00189
qGND

q
� s with s in MPa ð11Þ

In both cases, the numerical constants contain only fairly
well-known quantities. The analysis of available experi-
mental data on the relation between Db1/2 and the flow
stress s obtained for copper single crystals deformed into
stage IIa allows the following conclusions.

Kink walls. In this case (compare Refs. [6,9]), a linear
increase of Db1/2 with increasing flow stress s is found, in
accord with Eq. (10), implying that the ratio qGND/q
remains constant in stage II work hardening and in fact
assumes a value qGND/q � 0.045. Thus, the density of
GNDs is found to be quite small, although the GNDs play
I at 4.2 K. (a) TEM micrograph of ð�101Þ section perpendicular to primary
t between neighbouring regions. (From Ref. [40], courtesy of the author.)

imary glide plane (111) (After Ref. [5]).



Fig. 10. Composite TEM micrograph of dislocation cell structure in (010)
section of [001]-orientated copper single crystal deformed to a resolved
shear flow stress of s = 75.6 MPa. (From Refs. [17,18].)

Fig. 9. Halfwidths Db1/2 of X-ray rocking curves measured on ð�101Þ and
ð0�22Þ sections of copper single crystals deformed into stage II at 293 K
(filled symbols) and 78 K (open symbols). (From Ref. [9].)
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a very important role in the evolution of important features
of the dislocation distribution.

Sheets/grids. Fig. 9 shows that the rocking-curve half-
widths Db1/2 of copper single crystals which had been
deformed into stages I and II, first increase steeply as a
function of the flow stress s. Subsequently, Db1/2 increases
more or less linearly with s (and hence also with the
resolved shear strain c). It follows that, whereas the kink
walls start to develop almost from the start of deformation,
the sheets/grids begin to evolve only after secondary slip
has been initiated. A more detailed analysis with some
additional considerations [9] shows that, once the deforma-
tion enters into the stage I/stage II transition range, the
density of GNDs ‘‘jumps’’ rapidly to an ‘‘early’’ value of
qGND � 6.4 · 1010 m�2, whereupon the ratio qGND/q
approaches a constant value of only a few percent in the
range in which Db1/2 increases linearly. Thus, it is found
again that the density qGND of the GNDs is relatively low.

The finding that, in both cases discussed, the magnitude
of the misorientations increases linearly as a function of the
resolved shear strain c has important consequences. Statis-
tical considerations by Pantleon [42,43] have shown that a
linear relationship between the misorientations and the
shear strain c implies that the dislocation structures respon-
sible for the misorientations are so-called geometrically
necessary boundaries (GNBs) in the terminology of
Kuhlmann-Wilsdorf and Hansen [44]. These latter authors
distinguish between GNBs and incidental dislocation
boundaries (IDBs). In the case of IDBs, as shown by Pant-
leon and previously, in less detail, by others [45,46], the
misorientations are expected to increase with

ffiffiffi

c
p

and not
linearly with c. An example for this behaviour is presented
in the following section.

4.3. [001]-Orientated copper single crystals deformed in

multiple slip

In the following, the case of deformed [001]-orientated
copper single crystals [17,18] that develop a typical disloca-
tion cell structure during deformation, as shown in the
example of Fig. 10, is discussed. For this purpose, use is
made of the relevant values of the macroscopic axial flow
stresses r, the internal stresses Drw and Drc and, corre-
spondingly, the local axial flow stresses rw and rc (equiva-
lent to the sums of r and the internal stresses Drw and Drc,
respectively) that had been obtained by the evaluation of
asymmetrically broadened intensity line profiles [18], tak-
ing into account the corrections stated in an erratum [47].
With the value of Young’s modulus in the [001] direction,
E[0 0 1] = 67,000 MPa, and with the values d from the
detailed TEM studies of Göttler [48], the values qGND (of
those GNDs responsible for the internal stresses) were then
evaluated according to Eqs. (6) or (7). It should be noted
that these values refer to ‘‘resultant’’ GNDs whose Burgers
vector bres is larger by a factor of about 1.5 than the usual
Burgers vector. The GND values obtained are only quan-
titatively correct within a factor of �2, because the simple
dislocation glide geometry assumed in the composite model
of multiple slip (Fig. 4) does not correspond in detail to the
crystallography of multiple slip in [001]-orientated fcc
crystals.

All the data are presented in Table 1, together with the
values q of the total dislocation densities obtained by X-ray
diffraction [17,18]. The ratios qGND/q are also included in
Table 1. It should be noted that the GND density qGND

is found to be relatively small and increases with increasing
deformation at such a rate that the ratio qGND/q remains
approximately constant at a value of only about 1–1.5%.

Next, the evolution of the local flow stresses sw and sc

and the internal stresses Dsw and Dsc as a function of defor-
mation are considered. For this purpose all axial stresses
were converted into resolved shear stresses (using the



Fig. 11. Plot of local shear flow stresses sw and sc of tensile-deformed
[001]-orientated copper single crystals against the macroscopic resolved
shear flow stress s. The faint line under 45� would correspond to the
equality of local stresses and applied stresses. Note linear relationships and
linear increase of (sw � sc) = (Dsw � Dsc).

Fig. 12. Plot of halfwidths Db1/2 of X-ray rocking curves, measured on
tensile-deformed [001]-orientated copper single crystals with (002) or
(020) reflections for two different azimuthal positions as a function of

ffiffiffi

c
p

.
Note linear relationships and intercepts with abscissa at

ffiffiffi

c
p � 0:12. See

text for further details.

Table 1
Parameters of deformation (axial stresses r, resolved shear strains c were calculated from the axial strains e, using the Schmid factor / = 0.408), local flow
stresses rc and rw, determined from asymmetric X-ray line broadening [17,18,47], cell wall spacings d (interpolated values from the TEM work of Göttler
[48]), GND densities qGND, calculated according to Eqs. (6) or (7) and the ratio qGND/q

r (MPa) c = e// rc (MPa) rw (MPa) d (lm) q (1014 m�2) qGND (1012 m�2) qGND/q

64.2 0.068 57.11 94.12 2.3 0.68 1.36 0.02
91.42 0.11 83.58 125.0 1.85 1.1 1.89 0.017

147.3 0.24 130.15 204.9 1.015 2.48 6.21 0.025
185.3 0.52 164.2 248.3 0.807 3.46 8.79 0.025
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Schmid factor / = 0.408 for glide on eight equivalent octa-
hedral slip systems in fcc [001]-orientated single crystals) in
order to obtain the local shear flow stresses sw and sc (and
the internal stresses Dsw and Dsc) as a function of the mac-
roscopic shear flow stress s, as shown in Fig. 11. The most
important result is that the local shear flow stresses (and
hence also the internal stresses) increase linearly with
increasing macroscopic shear flow stress. As indicated in
the diagram, the differences (sw � sc) and (Dsw � Dsc) are
identical and reflect simply the relationships sw = s + Dsw

and sc = s + Dsc. The results can be expressed to a good
approximation as

sc � 0:9s; Dsc � �0:1s ð12Þ
and

sw � 1:4s; Dsw � þ0:4s ð13Þ
We note that these linear relationships are qualitatively
similar to the results obtained for PSBs (Eqs. (8) and (9))
and that Hieckmann has obtained similar relationships
also for both cyclically and tensile-deformed nickel single
crystals [49]. As discussed elsewhere [50], the above linear
relationships have the interesting implication in the frame-
work of the composite model that the ratio of the local
dislocation densities in the dislocation cell interiors and cell
walls must remain constant.

The density qGND of those GNDs that are responsible
for the internal stresses (seventh column of Table 1) follows
with little scatter a linear relationship with the square of the
macroscopic flow stress (expressed as s2 or r2) as follows:

qGND � 2:62� 108r2 m�2 with r in MPa ð14aÞ
or

qGND � 15:74� 108s2 m�2 with s in MPa ð14bÞ
Since the cell wall spacing d can be assumed to vary inver-
sely with the stress, this result is in accord with Eqs. (4) and
(5), supplemented by Eqs. (12) and (13). Moreover, assum-
ing that r2 and s2 are proportional to the total dislocation
density q (Taylor flow-stress law), this result is also consis-
tent with the earlier finding that qGND/q � constant (Table 1,
seventh column).

Fortunately, X-ray rocking curve data also exist for the
same [001]-orientated copper single crystals discussed
above. The relation between the rocking curve halfwidths
Db1/2, reported earlier by Wilkens et al. [40], and the
resolved shear strain c (see Table 1) is plotted in Fig. 12.
in the form Db1/2 versus

ffiffiffi

c
p

. The figure refers to the max-
imum and minimum halfwidths that were observed for
the two azimuthal angles u = 0� and u = 90�, respectively.
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These two azimuthal angles correspond to the [001] direc-
tion lying either perpendicular to or in the plane of
incidence, respectively. A remarkably good linear relation-
ship with

ffiffiffi

c
p

is found in both cases. It is interesting that,
for both azimuthal positions, the data points fall precisely
on straight lines that do not go through the origin but
intersect the abscissa at the same value of

ffiffiffiffi

c0

p � 0:12,
corresponding to a resolved shear strain c0 � 0.014.
Hence, both straight lines can be defined by relations of
the form

Db1=2 � constant� ð ffiffifficp � ffiffiffiffi

c0

p Þ ð15Þ

This result is interesting, since misorientations would not
be expected to develop in ideally symmetric multiple slip.
Hence, the misorientations observed must have resulted
from deviations from symmetric multiple slip. More spe-
cifically, it is proposed that the value c0 � 0.014 is that
shear strain up to which multiple slip is symmetric and
beyond which increasing deviations occur. Another
important conclusion follows from the linear increase
of Db1/2 with

ffiffiffi

c
p

. According to Pantleon [42,43], Argon
and Haasen [45] and Nabarro [46], this evolution law
is characteristic of a pure stochastic process of disloca-
tion accumulation in IDBs. Presently, no microstructural
model of the evolution of the misorientations and of the
responsible GNDs in deformed [001]-orientated single
crystals exists. The model proposed by Wilkens et al.
[40] to explain the observed rather unexpected azimuthal
dependence of the broadening of the rocking curves is
quite intricate. Hence, it will probably not be as easy
to derive a model for multiple slip (with deviations from
symmetry) as it was in the case of the kink walls and
sheets/grids observed in single slip.
5. Concluding remarks

The novel aspects of this study can be summarized as
follows:

� The evolution of internal stresses and lattice plane mis-
orientations in deformed crystals has been analysed for
the first time in a unified approach which relates in sim-
ple semi-quantitative models these long-range features
of the dislocation pattern to the arrangement and den-
sity of geometrically necessary dislocation (GNDs).
� Important new insights could be gained from a system-

atic analysis of available experimental TEM data and, in
particular, X-ray data of internal stresses and misorien-
tations in unidirectionally and cyclically deformed
copper crystals.
� Rather simple relationships were found to exist between

the macroscopic flow stress and the long-range internal
stresses, the local flow stresses in hard and soft regions,
the lattice plane misorientations and the related densities
of GNDs.
� In spite of the fact that the density of the GNDs is usu-
ally only a few per cent of the total dislocation density,
they play an important dual role in giving rise to the
deformation-induced long-range internal stresses and/
or the lattice plane misorientations.

It has so far not been possible to incorporate the long-
range features of the deformation-induced dislocation dis-
tribution studied in the present work in current theories
of plastic deformation and work hardening. On the other
hand, some aspects discussed here such as the development
of internal stresses have also been revealed qualitatively in
discrete dislocation dynamics (DDD) studies of plastic
deformation [51]. Current DDD work is limited in the size
of the volumes studied and confined to rather small defor-
mations, whereas the long-range features of the dislocation
distribution which are of interest here evolve mainly at lar-
ger strains. Nonetheless, it is hoped that the current work
will stimulate more systematic DDD studies of the long-
range correlations of the dislocation pattern, as greater
computing power becomes available and as the DDD tech-
niques are developed further. At the same time, compre-
hensive analytical modelling of the evolution of internal
stresses and misorientations is desirable. The results
obtained in this study can provide valuable guidelines in
both kinds of future work.
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Abstract

Dislocation structures in polycrystalline X10CrAl24 ferritic stainless steel cyclically strained with constant plastic strain amplitude to
failure at room temperature were studied using transmission electron microscopy. The spatial arrangement of dislocations in the indi-
vidual grains was determined using the oriented foil technique. The characteristic types of dislocation structures for plastic strain ampli-
tudes from 10�5 to 10�2 were determined. The typical dislocation structures consisted of a random arrangement of mostly screw
dislocations for the lowest plastic strain amplitudes (eap < 5 · 10�5), veins and walls intersected by ladder-like structure for medium plas-
tic strain amplitudes (5 · 10�5 < eap < 2 · 10�3) and predominantly wall, labyrinth and cellular structures for the highest plastic strain
amplitudes (eap > 2 · 10�3). Their relative fractions dependent on the applied plastic strain amplitude were quantitatively evaluated. Spe-
cial attention was paid to cyclic softening which is discussed in terms of specific properties of dislocations in a body-centered cubic struc-
ture and the localization of cyclic plastic strain to persistent slip bands.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The fatigue damage of material produced by cyclic load-
ing is closely related to the internal dislocation structure.
The initial stages of the fatigue of numerous structural
materials are characterized by the evolution of a heteroge-
neous dislocation configuration which becomes unstable
during cycling. Localized bands with a specific substructure
called persistent slip bands (PSBs) are formed. Due to the
localized deformation, a characteristic surface relief (persis-
tent slip markings, PSMs) develops and subsequently fati-
gue cracks are initiated within them [1,2]. Thus, in order
to understand the cyclic stress–strain response as well as
fatigue crack initiation and its modeling, it is essential to
know the dislocation structure, especially the structure of
localized bands.
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All
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Body-centered cubic (bcc) metals represent a very
important group of materials widely used in engineering
practice. Their cyclic plastic behavior is strongly dependent
on temperature, strain rate and amount of interstitial or
substitutional atoms [1,3–6]. This is caused by specific
properties of screw dislocations in the bcc lattice, which
possess a threefold symmetry and a high Peierls stress.
Due to these properties, the long-range motion of screw
dislocations is thermally assisted via the formation of kink
pairs which help to transfer the dislocation from one
Peierls valley into the next one [7]. Owing to the strong
temperature dependence of screw dislocation mobility, a
‘‘low-temperature regime’’ and a ‘‘high-temperature
regime’’ can be found in bcc metals. The transition or knee
temperature Tk depends on the strain rate and for iron-
based alloys and usual strain rates it is close to or slightly
above room temperature. Therefore, room temperature
cyclic straining corresponds to the intermediate or low-
temperature regime [1]. The high-temperature regime is
characterized by small effective stress (a thermally activated
component) and the dislocation arrangement is similar to
rights reserved.
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Table 1
The chemical composition (wt.%) of the X10CrAl24 ferritic stainless steel

C Si Mn P S Cr Ni Mo Al Fe

0.077 1.0 0.56 0.02 0.002 24.4 0.26 0.11 1.4 Balance
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that of face-centered cubic (fcc) metals. The main charac-
teristic of the low-temperature regime is large effective
stress, large stress asymmetry and easy activation of sec-
ondary slip systems. With increasing temperature the ther-
mal activation increases the mobility of screw dislocations
and at the transition temperature Tk it approximately
reaches the mobility of edge dislocations. Thus, above Tk

there is a similar situation as in fcc metals, while below
Tk the plastic deformation is controlled by the mobility
of screw dislocations [4,7].

Studies of the dislocation structures of cyclically
strained bcc materials are limited. a-iron or low-carbon
steel single crystals have been studied by Mughrabi et al.
[4,5]. Ferritic stainless steel single crystals with 13 wt.%
Cr have been studied by Šesták et al. [7], those with
26 wt.% Cr by Magnin et al. [8,9], those with 30 wt.% Cr
by Kaneko et al. [10] and those with 35 wt.% Cr containing
fine precipitates by Li and Umakoshi [11]. Ferritic Fe–Si
single crystals with 0.5–3 wt.% Si by Šesták et al. [12] and
those with 3 wt.% Si by Mori et al. [13].

The effect of the temperature and the carbon content on
the fatigue behavior of polycrystalline a-Fe has been stud-
ied by Sommer et al. [6]. The dislocation arrangement in
carbon steels has been studied by Pohl et al. [14,15] and
by Lloyd et al. [16], and in low-alloy polycrystalline ferritic
steel by Roven and Nes [17], Petersmeier et al. [18] and
Pohl et al. [19]. The only studies of the dislocation arrange-
ment in ferritic polycrystalline stainless steels have been
reported by Fielding and Stobbs [20] and Magnin et al.
[21]. Fielding and Stobbs analyzed the dislocation arrange-
ments produced in 25% Cr stainless steel cyclically strained
with a plastic strain amplitude of 3.5 · 10�3. Magnin et al.
showed an example of channel and wall structures pro-
duced with a plastic strain amplitude of 2 · 10�3 at the
early stage of cyclic straining.

Specific dislocation structures that could be responsible
for cyclic strain localization have thoroughly been studied
in fcc single and polycrystals [1–3,22–25] in which the PSBs
typically have a ladder structure. This ladder-like structure
of PSBs in bcc metals has been observed only in polycrys-
talline low-carbon steel [14,15], polycrystalline Fe–25% Cr
[20] and Fe–30% Cr alloy single crystals [26]. Most struc-
tures ascribed to PSBs were the walls [12,17,27,28], cells
[7,12] or dislocation-poor channels [4–6,15,29]. There have
been no systematic studies of the internal dislocation struc-
ture and its relation to the cyclic stress–strain response over
a wide interval of constant plastic strain amplitude loading
in polycrystalline stainless ferritic steel.

The aim of the study reported in the present paper was
to investigate the internal dislocation structures in poly-
crystalline X10CrAl24 ferritic stainless steel cyclically
strained up to fracture with plastic strain amplitudes in a
wide interval. Our attention is focused on the documenta-
tion of a three-dimensional picture of the dislocation
arrangement by means of the technique of oriented foils
and on the quantitative evaluation of the different types
of dislocation structures present in the specimens that were
cycled with different amplitudes. The fatigue softening
observed is discussed in relation to the production of
low-energy dislocation configurations.

2. Experimental

Ferritic X10CrAl24 stainless steel in the form of a bar of
30 mm in diameter was supplied by Thyssen (Germany). Its
chemical composition is shown in Table 1. The material
was hot rolled in the temperature interval from 1100 to
800 �C and annealed at 800 �C. The average grain size
was 38 lm (found using the linear intercept method);
strings of carbides (M23C6) lying parallel to the longitudi-
nal direction and aluminum nitride inclusions were
detected in metallographic sections. The texture analysis
was performed using a Philips XL30 scanning electron
microscope equipped with an electron backscatter diffrac-
tion (EBSD) facility. From the pole figures (Fig. 1) the con-
centration of (001) planes in three perpendicular directions
(RD, parallel to the bar axis; TD, transverse; and ND, nor-
mal) is apparent. These results clearly indicate rolling tex-
ture in which the cross-section of the specimen is nearly
parallel with {001} planes. The concentrations of the
{001} pole planes have statistical significance which is nine
times as high as the significance corresponding to random
distribution (the upper limit of the last category in
Fig. 1). The orientation of the major fraction of grains is
towards a multiple slip. The monotonic tensile properties
of X10CrAl24 ferritic steel are characterized as follows:
r0.2 = 488 MPa, rUTS = 588 MPa, A5 = 28.2% and the
reduction of the area 65.6%.

Cylindrical specimens of 8 mm in diameter and 12 mm
in gauge length were produced with the axis parallel to
the axis of the bar by machining and final grinding. They
were cycled in a computer-controlled MTS 880 electrohy-
draulic machine. A symmetrical strain cycle with a strain
rate of _e ¼ 2:5� 10�3 s�1 was applied at room temperature.
The plastic strain amplitude equal to the half-width of the
hysteresis loop was kept constant by using the computer
‘‘outer loop’’. Using this control several initial cycles were
necessary to achieve the desired plastic strain amplitude
(3–100 cycles). More details concerning the testing proce-
dure are given elsewhere [27,28].

The fatigued specimens were sectioned in the gauge area
either parallel to or at an angle of 45� to the specimen axis
using a spark-cutting machine. Slices with a thickness of
0.8 mm were ground mechanically to a thickness of about
80 lm. Discs with a diameter of 3 mm were cut from the
slices (marking the direction of the specimen axis) and then
thinned using the double-jet technique until a perforation
appeared. An electrolyte consisting of 90% acetic acid



Fig. 1. Pole figures of a texture analysis for ferritic X10CrAl24 steel as obtained using EBSD.

Fig. 2. Cyclic hardening–softening curves for ferritic X10CrAl24 steel in
constant plastic strain amplitude cycling (the dotted curve separates the
initial region before the desired strain amplitude was reached).
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and 10% perchloric acid was used for electrolytic thinning
at 90–110 V at a temperature of 12–14 �C.

The internal dislocation structures were observed using
a Philips CM-12 scanning transmission electron micro-
scope operating at 120 kV using a double tilt holder and
a MegaView II digital camera. Special care was taken to
preserve the direction of the specimen axis so that the ori-
entation of each grain relative to the loading axis could be
determined [30]. Mostly bright-field imaging conditions
were adopted and the diffraction patterns and Kikuchi lines
were used to determine the grain orientation (stress axis,
SA, and foil plane, FP).

The dislocation structures were examined in the speci-
mens cyclically strained with plastic strain amplitudes of
10�5, 5 · 10�5, 10�4, 2 · 10�3 and 10�2 up to the end of
the specimen life. Another specimen was subjected to a
constant stress amplitude of 360 MPa (saturation plastic
strain amplitude of 5 · 10�5) up to fracture [27,28].

3. Results

3.1. Cyclic stress–strain response

A thorough study of the stress–strain relation under
constant plastic strain amplitude loading was reported ear-
lier [27,28,31]. In order to be able to compare the disloca-
tion structures with the cyclic stress–strain response, two
characteristic results are presented here. Fig. 2 shows the
cyclic hardening–softening curves corresponding to the
specimens from which thin foils for a dislocation structure
study were prepared. Initial cyclic hardening for the med-
ium and high plastic strain amplitudes is followed by cyclic
softening for all amplitudes. The cyclic stress–strain curve
in Fig. 3 was plotted using the stress amplitudes at half-life



Fig. 3. Cyclic stress–strain curve for ferritic X10CrAl24 steel.
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of all specimens. Two different regimes denoted as I and II
are seen for this curve. In regime I the slope of the curve is
lower than that in regime II.

3.2. Dislocation structures

In order to obtain information on the typical dislocation
arrangement in three dimensions, the foil plane was ori-
ented in relation to the externally applied stress and in rela-
tion to the characteristic crystallographic planes of the
grain. We have adopted the usual notation, in which the
stress axis is located within the basic stereographic triangle
[001], ½�111�, [011]. The analysis of the dislocation arrange-
ment in materials with a bcc structure is complicated by the
fact that dislocations can glide not only on {110} planes,
but also on {211} and {123} planes. The orientation of
the grain with respect to the stress axis does not unequivo-
cally determine which slip system is the primary one. The
analysis of the possible slip systems considering all three
types of slip planes and the simplified nomenclature is
shown in Table 2 and Fig. 4. Fig. 4 shows a map of the Sch-
mid factor in the basic stereographic triangle for the slip on
{11 0} planes, on {11 0} and {21 1} and on all three {110},
{21 1} and {123} planes. The Schmid factors of the pri-
mary slip systems are shown. The black lines in Figs. 4(b)
and (c) denote the lines where the Schmid factors of both
competing slip planes are equal. The white lines show the
Table 2
The description of the symbols used in Fig. 4

Slip planes Primary slip
systems

Secondary slip systems

a.. {110} ap as1 as2 as3

ð�101Þ (101) ð1�10Þ (011)
[111] ½�111� [111] ½�1�11�

b.. {211} bp1 bp2 bs1 bs2 bs3

ð1�12Þ ð�211Þ ð�1�12Þ (211) ð�121Þ
½�111� [111] [111] ½�111� ½�1�11�

c.. {123} cp1 cp2 cs1 cs2 cs3 cs4 cs5

ð2�13Þ ð�312Þ ð�2�13Þ ð1�23Þ (312) ð�321Þ ð�132Þ
½�111� [111] [111] ½�111� ½�111� [111] ½�1�11�
boundaries of the areas where the Schmid factors of the
primary and secondary systems differ by less than 5%. This
delimits the orientation of the grains where a secondary slip
is probable. If {110} planes were active, there is only one
primary slip system ð�10 1Þ [11 1] (denoted as ap) with the
maximum of the Schmid factor l = 0.5 for the orientation
of the stress axis ½�149� (see Fig. 4(a)). If the stress axis is
close to the sides of the triangle, the respective secondary
systems (denoted as as) could be active (see Fig. 4). In
the vertexes of the stereographic triangle further slip sys-
tems could be activated.

If the dislocations glide on {110} and {211} slip planes,
three domains are identified in the basic triangle (Fig. 4(b)).
The middle domain corresponds to the ap system and the
two new domains to bp1 and bp2 systems. Possible addi-
tional secondary systems are bs1, bs2 and bs3. Additional
secondary systems could be activated in the vertexes of
the triangle. If the dislocations glide on all three systems
of slip planes {110}, {211} and {123}, five domains could
be identified in the basic triangle (Fig. 4(c)). In comparison
with Fig. 4(b) two more domains appear. They correspond
to the slip systems cp1 and cp2. In the domain of cp1 the
secondary systems cs1 and cs2 could be active. On the
boundary of the domain cp2 the secondary slip systems
cs3, cs4 and cs5 could be active.

A further analysis is based on the assumption that the
slip is predominantly on the {110} planes. In order to
obtain the information on the dislocation arrangement in
three dimensions, only the sections that were close to the
three mutually perpendicular crystallographic planes
within a grain were chosen from numerous foils and indi-
vidual grains in these foils, as shown schematically in
Fig. 5: section A, the foil plane was close to the primary slip
plane ð�101Þ; section B, the foil plane was close to the plane
perpendicular to the primary Burgers vector; section C, the
foil plane was close to the plane perpendicular to the pri-
mary slip plane and parallel to the primary Burgers vector.
Using these three sections a true picture of the individual
dislocation structures and their proportions found at differ-
ent plastic strain amplitudes could be obtained.

3.3. Regime I

The material in an as-supplied state contained low, but
detectable density of dislocations belonging to various slip
systems. Most of them were screw in character and formed
subgrain boundaries [28]. Cycling at the lowest level
(eap = 10�5) did not change the initial dislocation arrange-
ment substantially and no specific spatial dislocation
arrangement was formed. The dislocation density was
rather high and the arrangement was qualitatively similar
to that in the virgin material. An example of subgrains,
which are disoriented ±1� in a specimen cycled with
eap = 10�5, is shown in Fig. 6(a). The dislocation density
is highly inhomogeneous. Fig. 6(b) shows another grain
with high dislocation density. Straight primary screw dislo-
cations in the primary slip plane ð�101Þ could be identified.



Fig. 4. Basic stereographic triangles showing the values of the Schmid factors of the primary slip systems for slip planes: (a) {110}, (b) {211} and (c)
{123}. The white lines demarcate the regions where the Schmid factor of the secondary slip system differs by less than 5%. (The symbol description is given
in Table 2.)
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In the specimens cycled with a higher plastic strain
amplitude (eap = 5 · 10�5) the dislocation arrangement in
most grains was similar to that at the lowest amplitude,
but in a small fraction of grains a distinctive spatial
arrangement was formed. Fig. 7(a) shows such an arrange-
ment in the grain oriented mainly towards a single slip. In
the section close to ð1�21Þ plane, long straight screw dislo-
cation segments running in the [111] direction together
with edge dislocations lying in the primary ð�101Þ planes
can be distinguished. The detail in Fig. 7(a) shows the sec-
ondary slip of screw dislocations with Burgers vector
a=2½�111�. This arrangement resembles the planar structure
in fatigued fcc austenitic steel since dislocations are
arranged in thin sheets separated by dislocation-free layers.
In the primary slip plane this arrangement corresponds to
irregular bundles or bands formed by the dislocation
dipoles and loops elongated in ½1�21� direction. The second
type of dislocation arrangement, though less frequent, is
the vein structure. This is shown in Fig. 7(b) in a grain ori-
ented mainly to a single slip. The foil plane was again close
to the ð1�21Þ plane. The detailed micrograph in Fig. 7(b)
shows that veins are formed predominantly by the edge dis-
location dipoles. In the primary slip plane the dislocation
network might condense into clusters and dislocation-free
channels are formed.

In the specimens fatigued with constant stress amplitude
of ra = 360 MPa up to fracture (saturated plastic strain
amplitude was eap = 5 · 10�5) most grains have the
arrangement that corresponds to the saturated plastic strain
amplitude (Fig. 7). However, some grains with a dislocation
arrangement resembling the ladder structure were also
found. In the overview low-magnification image in Fig. 8
one can see four ladders in the grain oriented for a single slip
in the section close to the ð1�21Þ plane and corresponding to
the slip plane ð�2 11Þ. Fig. 8(b) shows the end of a larger
grain (see Fig. 8(a)) with the detailed image of the ladder



Fig. 5. Schematic showing the approximate orientation of the foil planes
in sections A, B and C of an arbitrary grain.

Fig. 6. Dislocation structure in a specimen cycled with eap = 10�5: (a) subgrains
plane (section A).
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structure and part of the neighboring grains. The walls con-
sist of edge dipoles and between the neighboring walls par-
allel screw dislocation segments extend in the [111]
direction. The matrix is formed by high dislocation density.

In the specimen cycled with plastic strain amplitude of
10�4, besides the structures mentioned above, a character-
istic wall structure was observed in about 50% of the
grains. Most of these grains had higher density of screw
dislocations in the form of a network and dislocation walls
in the middle of the grains or directly at the grain bound-
aries. An example of a grain with high dislocation density
surrounded by walls is shown in Fig. 9(a). In Fig. 9(b) there
are well-developed dislocation walls separated by channels
of low dislocation density. The separation distance is about
0.8 lm. The detail of the walls in areas with high screw dis-
location density is shown in Fig. 9(c).
with varying dislocation density; (b) screw dislocations on the primary slip



Fig. 7. Dislocation structure (section C) in a specimen cycled with eap = 5 · 10�5: (a) planar and (b) vein arrangements.
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The dislocation structure in Fig. 10 corresponds to a
grain oriented for the double slip. The ladder-like structure
of a PSB is formed in the area with high screw dislocation
density having the directions of the primary [111] and sec-
ondary ½�1�11� Burgers vectors. Most of the developed PSB
running across the whole grain caused displacement of the
neighboring grain boundaries corresponding to an extru-
sion. The specific contrast producing a sharp tip image in
one system of dislocations arises in locations where the dis-
locations of the first slip system are traversed by disloca-
tions of the second slip system. The screw dislocations of
the primary system with Burgers vector a/2[11 1] are invis-
ible in Fig. 10(a) under the diffraction conditions used.
Fig. 10(b) shows detail of PSBs under a different diffraction
condition in which screw dislocations of the primary sys-
tem with Burgers vector a/2[111] are visible.

3.4. Regime II

Cycling with high plastic strain amplitudes results in the
formation of structures different from those formed at low
plastic strain amplitudes. In the specimens cycled with
eap = 2 · 10�3 the dominant types of structure were wall
structures (ladders, unidirectional walls and labyrinths).



Fig. 8. Ladder-like structures of PSBs and the matrix in section C in a specimen cycled with ra = 460 MPa (saturation plastic strain amplitude
eap = 5 · 10�5): (a) an overall view; (b) a detail of the band.
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Vein structure similar to that shown in Fig. 7(b) can occa-
sionally be found only in the matrix. The type of the struc-
ture is often dependent on the proximity to the grain
boundary. Close to the grain boundary more complicated
formations were found, while in the center of grains simple
walls were present.

Three ladder-like bands (PSB structures) passing
through the center of the grain surrounded by labyrinth
structure in the center and cell structure close to the bound-
ary are shown in Fig. 11(a). A detail of the ladder structure
is shown in Fig. 11(b). The thin foil producing images in
Fig. 11 was cut parallel to the specimen axis only 300 lm
under the surface. The grain is oriented for a single slip
with the tendency of a double slip and the foil plane is
nearly parallel to the ð1�21Þ plane. The ladders in
Fig. 11(b) are parallel to the primary slip plane ð�101Þ
and consist of alternating thin dislocation walls separated
by thick channels of low dislocation density. The primary
screw dislocations with Burgers vector a/2 [111] extend
in the channels between neighbors. Dislocation walls form-
ing the rungs of the ladders consist of high density of edge
dipoles with an identical Burgers vector. The typical sepa-
ration of the rungs was 0.8–1.1 lm and the width of the
lamellas was 0.6–1.1 lm. The Burgers vector analysis of
the dislocations running between or within the rungs of
the three ladders is shown in Figs. 11(c)–(e). Fig. 11(c)
shows the detail of the center of the three ladders under a
diffraction condition g ¼ �101. The screw dislocations par-
allel to the [111] direction are invisible while the edge dis-
locations display a residual contrast. The neighboring
matrix consists of the remnants of the vein structure
formed by the primary edge dipoles of the same type as



Fig. 9. Dislocation structure (section C) of grains oriented for a single slip in a specimen cycled with eap = 10�4: (a) an overall picture of the first grain;
(b) detail of the center part of the micrograph (a); (c) start of the wall formation in the second grain.
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in the rungs of the ladders. This is apparent in the dark-
field image (Fig. 11(e)) where the edge segments in the
rungs as well as in the veins are bright.

Fig. 12(a) provides a view of the section close to C plane
of another grain oriented for a single slip. The dislocation
arrangement of five ladders in Fig. 12(b) has a similar
structure to the case shown in Fig. 11(b), but the ladders
are not straight and the neighboring matrix is formed by
a random arrangement with higher dislocation density.
The formation of dislocation walls is often affected by the
dislocation arrangement in the neighboring subgrain.

Fig. 13 shows the labyrinth structure in a section parallel
to ð1�21Þ plane of the grain oriented for the double slip. An
overall view in Fig. 13(a) shows the labyrinth structure in
the center of the grain, the unidirectional walls at the bot-
tom of the image and the cells at the top of the image close
to the grain boundary. Figs. 13(b) and (c) show, under two
diffraction conditions, the central part of the labyrinth
structure consisting of two systems of perpendicular walls
separated by the channels in which screw dislocations of
both slip systems are present. The walls lie in the directions
that bisect the angles between the screw dislocations of
both active slip systems with the highest Schmid factors
(ð�101Þ½111� and ð101Þ½�1 11�). The screw dislocations paral-
lel to the ½�111� direction are invisible under the diffraction
condition with g = 110 (see Fig. 13(c)).

The dislocation arrangement in the specimen cycled with
the highest plastic strain amplitude (eap = 10�2) consists of
a mixture of wall and cell structures. At least two slip sys-
tems are active in all the grains. Therefore, in one grain two
to three types of dislocation arrangements may be found
(see Fig. 14). Fig. 14(a) shows a mixture of wall and



Fig. 10. Dislocation structure showing the early stages of PSB formation (section C) of a grain oriented for a double slip in a specimen cycled with
eap = 10�4: (a) screw dislocations of the secondary slip system (011) ½�1�11� are visible; (b) screw dislocations of the primary slip system ð�101Þ [111] are
visible.
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labyrinth structures with an average wall distance of
0.52 lm and cells with an average diameter of 0.47 lm with
a different contrast showing the cell disorientation. The
grain oriented for a multiple slip contains labyrinth and cell
structures (Fig. 14(a)) and the grain oriented for a single
slip consists only of cell structure (Fig. 14(b)). The diameter
of the cells varies from 0.32 to 0.85 lm and the cell disori-
entation is up to ±2�.

3.5. Fractions of individual dislocation structures

A number of thin foils were examined to obtain the sta-
tistics of the types of dislocation structures present in fer-
ritic stainless steel cycled with different plastic strain
amplitudes to the end of the fatigue life. Five basic types
of dislocation structures were identified: a random arrange-
ment of mostly screw dislocations (low dislocation density)
present at low eap, vein structures, unidirectional walls and
ladder-like structure (PSBs) for a medium eap and labyrinth
and cell structures for the highest eap. Table 3 shows the
average percentage of the dislocation structures evaluated
for different applied plastic strain amplitudes eap. For the
smallest eap the original dislocation distribution is slightly
modified with cyclic loading and partially transforms to
the vein and wall structures. For the medium eap the frac-
tion of the random arrangement decreases. Both wall and
vein structures intersected by ladder-like structures can be
found. For the highest eap the labyrinth and predominantly
cell structures are formed.

4. Discussion

Our observations of the fatigue dislocation structures in
ferritic stainless steel can be compared with the previous
results obtained for Fe–Cr single crystals [7–9,11,26] and
with the results for similar polycrystalline material
[4,14,17,20,21]. Observations of a dislocation arrangement
in single crystals were made for medium plastic strain
amplitudes for specific crystal orientations and for a low
number of cycles. All studies were carried out on single
crystals for a single slip on the {110} plane; only Magnin
et al. [9] and Yamasaki et al. [26] studied single crystals ori-
ented for double and single slip on one or two {11 2}
planes. The results for single crystals show that depending
on the crystal orientation the slip can be active either on
{110} or {11 2} planes. Several dislocation configurations
were recorded, namely loop patches and dislocation bun-
dles, wall structures and cell structures. Yamasaki et al.
[26] report wide ladders (alternating thin walls and thick
channels) parallel to the {112} plane.

Dislocation structures in polycrystalline 25% Cr steel
cycled with one plastic strain amplitude of 3.5 · 10�3 [21]
were described with reference to the Schmid factors of
the active slip systems of individual grains. Mostly laby-
rinth structures, condensed walls and cells were observed
and some areas of the labyrinth structure were interpreted
as ladder structures. No individual ladder-like structure
was reported. Magnin et al. [21] report regular wall and
channel structures in a large area of a single grain cycled
with a plastic strain amplitude of 2 · 10�3.

Our observations report structures in specimens cycled
to fracture (except the specimen cycled with eap = 10�5)
and comprise a wide interval of plastic strain amplitudes.
The specific observations of single crystals are in reason-
able agreement with our results, except that no wide
ladder-like structures were observed. The width of the
ladder was always around 1 lm. The specific results of
Fielding and Stobbs [20] and of Magnin et al. [21] are in
good agreement with our results corresponding to medium
plastic strain amplitudes.



Fig. 11. Dislocation structure (section C) of a grain oriented to the boundary between the single and double slip in a specimen cycled with eap = 2 · 10�3:
(a) coexistence of ladder, labyrinth and cell structures; (b) a detail of ladder structure of PSBs; (c) a detail of the same area as in (b), but in a different
diffraction condition ðg ¼ �101Þ the screw [111] dislocations are invisible; (d) a detail of the same area as in (b) in a bright field; (e) the same area, but in a
dark field (g = 101).
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Fig. 12. Dislocation structure (section C) of a grain oriented for a single
slip in a specimen cycled with eap = 2 · 10�3: (a) ladder structures in
subgrains; (b) a detail of ladder structure.
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In the present work the most important results refer to
specific dislocation configurations which are responsible
for cyclic strain localization. No such structures were
observed at the lowest plastic strain amplitude (eap = 10�5)
and this specimen did not fracture after 3 · 106 cycles. In
the low-amplitude domain (eap = 5 · 10�5) PSBs with the
ladder-like structure were observed. Ladders represent
lamellae in which thin dislocation-rich walls alternate with
thick channels containing primary screw dislocations that
are hanging between neighboring walls. The walls in the
PSB lamella correspond to the primary walls formed by
the edge dislocation dipoles and multipole resulting from
the interaction of dislocations of the primary slip system.
They are embedded in the matrix which, contrary to fcc
metals [1–3,22–25], does not consist of vein structures,
but typically of a network with high density of screw dislo-
cations. For medium strain amplitude the neighboring
matrix contains dislocation bundles.

At medium and high strain amplitudes the individual
ladders are not able to accommodate the applied plastic
strain and the larger part of this strain is carried by wall
and labyrinth structures and finally also by cell structures.
All these structures, which are formed after long-term
cycling, are characterized by alternating volumes of high
and low dislocation density and represent low-energy dis-
location configurations. At medium and high plastic strain
amplitudes the walls are secondary walls, which are
formed by simultaneous actions of two slip systems acting
in one slip plane as described by Turenne et al. [32] and
bisect the angle between the two systems of screw disloca-
tion extending between the walls in the channels. The
walls can develop in two perpendicular directions which
results in the formation of labyrinth structures. Therefore,
the degree of strain localization in wall and labyrinth
structures is expected to be lower than that in PSB
lamellas.

The existence of the structures capable of carrying high
cyclic plastic strain contributes to the explanation of the
fatigue softening observed. However, more factors should
be considered. In low-amplitude regime I the effective stress
component represents an important fraction of the total
stress amplitude. The saturated effective stress in this stain-
less steel was evaluated to 89 MPa [33]. In the specimens
cycled with eap = 10�5 the character of the dislocation
arrangement does not differ qualitatively from that of
non-deformed material, only the dislocation density in
some grains is increased. An important fraction of the
applied plastic strain amplitude is due to extra magneto-
elastic strain produced in ferromagnetic materials in cyclic
loading. The extra magnetoelastic strain is due to the
reverse magnetoelastic effect (Villari effect) often referred
to as the DE effect (‘‘elastic modulus defect’’ in ferromag-
netic materials). The applied axial loading causes magnetic
anisotropy in the specimen and the magnetic domains align
parallel or perpendicular to the stress axis depending on the
sign of the applied stress and the type of the material. The
magnetic domain alignment results in magnetic induction
and, due to magnetostriction, an extra strain is produced
in the direction of the acting stress. This was evaluated to
be about 10�5 [34], which is of the same order of magnitude
as the applied plastic strain amplitude. The irreversible
plastic strain amplitude carried by mobile dislocations is
only some fraction of the applied plastic strain amplitude
and the dislocation rearrangement will thus be very slow.
No low-energy dislocation configurations and very moder-
ate fatigue softening for the lowest plastic strain amplitude
result.

Fatigue softening is more important for medium plas-
tic strain amplitudes. It is connected with the evolution
and modification of the dislocation structure. The pres-
ence of the texture in an as-supplied state results in a
multiple slip in most grains. During cyclic straining the
number of active slip systems in the individual grains is
reduced until one or two systems carry the major part
of the plastic strain. The production and annihilation
of dislocations accompanied by point defect production
and migration leads to the formation of low-energy dis-
location configurations. The dislocation configurations
were established depending on the applied plastic strain
amplitude and the relative fractions are shown in Table
3. The amount of the strain carried by individual struc-
tures is difficult to determine since it depends on the crit-
ical yield stress and only relative contributions of various
structures can be estimated from simultaneous structural
and surface observations.



Fig. 13. Labyrinth dislocation structure (section C) of a grain oriented for a double slip in a specimen cycled with eap = 2 · 10�3: (a) coexistence of
unidirectional walls, labyrinth and cells structures in one grain; (b) a detail of the middle area – the labyrinth structure; (c) a detail of the middle area under
a different diffraction condition (the ½�111� screw dislocations are invisible).
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The transformation of the original dislocation struc-
ture to low-energy configurations is thus the main reason
for the observed fatigue softening. Some of these low-
energy dislocation arrangements are important for the
evolution of the fatigue damage. In particular, the
ladder-like structures can carry appreciable plastic strain
in the neighboring elastic matrix which leads to surface
relief formation and crack initiation [31]. The slope of
the cyclic stress–strain curve is low in regime I and starts
to increase if the single slip of most of the grains cannot
accommodate the applied plastic strain. The double slip
results in the formation of secondary walls, labyrinths
and cells and a higher slope of the cyclic stress–strain
curve in regime II.
Thorough mapping of the dislocation structures in cyclic
straining is important for the formation of models of cyclic
plastic straining [1,3] and for checking the results of com-
puter simulations of the dislocation motion in cyclic load-
ing [35]. Until now only the early stages of cyclic straining
could be modeled, but the inhomogeneous distribution of
dislocations with low-energy dislocation configurations
were found in agreement with experimental observations.
Cyclic plastic strain starts to concentrate in the localized
bands leading to the formation of a surface relief. A com-
parison of the dislocation structures produced by computer
simulations with the three-dimensional configurations
determined experimentally contributes to the improvement
of the models.



Fig. 14. Dislocation structure (section C) in two grains in a specimen cycled with eap = 10�2: (a) coexistence of walls, labyrinth and cells structures in grain
oriented for a double slip; (b) cell structure in a grain oriented for a single slip.

Table 3
The percentage and the number of the grains containing the characteristic types of dislocation structures in ferritic steel at the end of fatigue life

eap 5 · 10�5 10�4 2 · 10�3 10�2

% Number
of grains

% Number
of grains

% Number
of grains

% Number
of grains

Random arrangement of mostly screw dislocations 96 94 56 28 4 3
Vein structure 2 2 4 2 18 12
Wall structures, i.e., ladders and unidirectional walls 2 2 40 20 60 41 30 25
Wall structures and labyrinths 8 5 10 8
Cell structures 10 7 60 50

Sum 100 98 100 50 100 68 100 83
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5. Conclusions

The detailed study of the dislocation arrangement devel-
oped under constant plastic strain amplitude cycling and
constant stress amplitude cycling up to fracture of ferritic
stainless steel leads to the following conclusions:

(i) In order to obtain true information about the types
of the individual dislocation structures and their
proportions as a function of the plastic strain
amplitude, the spatial distribution of the disloca-
tions in individual grains of the material has to
be determined. This can be achieved using the tech-
nique of oriented foils.

(ii) During repeated application of medium plastic strain
amplitudes the random arrangement of mostly screw
dislocations transforms into vein and wall structures
intersected by ladder-like structures. In high-ampli-
tude cyclic loading wall, labyrinth and cell structures
are produced.
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(iii) The proportions of the individual dislocation struc-
tures were obtained as a function of the plastic strain
amplitude. The increase in the volume fraction occu-
pied by wall structures (including PSBs) is responsible
for cyclic softening.

(iv) Two domains of the cyclic stress–strain curve corre-
spond to different types and proportions of disloca-
tion structures. A higher slope in regime II is linked
to the action of double slip.
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[13] Mori H, Tokuwame M, Miyazaki T. Philos Mag A 1979;40:409.
[14] Pohl K, Mayr P, Macherauch E. Scr Metall 1980;14:1167.
[15] Pohl K, Mayr P, Macherauch E. In: Sih GC, Provan JW, editors.

Defects, fracture and fatigue. The Hague: Martinus Nijhoff; 1983. p.
147.

[16] Lloyd JRT, Caceres P, Ralph B. Scr Metall 1985;19:1475.
[17] Roven HJ, Nes E. Acta Metall Mater 1991;39:1719.
[18] Petersmeier T, Martin U, Eifler D, Oettel H. Int J Fatigue

1998;20:251.
[19] Pohl K, Mayr P, Macherauch E. Int J Fract 1981;17:221.
[20] Fielding SE, Stobbs WM. J Microsc 1983;130:279.
[21] Magnin T, Ramade C, Lepinoux J, Kubin LP. Mater Sci Eng A

1989;118:41.
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Abstract

The nanoindentation hardness H of polycrystalline niobium in the recrystallized condition and after up to eight room temperature 90�
equal-channel angular pressing passes (equivalent deformation �9) has been studied in detail. An important indentation size effect (ISE)
that progressively disappears as the indentation depth h decreases has been observed at all pre-deformation levels. Qu et al. [J Mater Res
2004;19:3423] have explained such behaviour as a deviation from the ISE expected for conical or pyramidal indenters (a H2 � 1/h pro-
portionality) because of the rounded shape of real tips. The Nix and Gao ISE model [J Mech Phys Solids 1998;46:411], further refined by
taking into account the tip roundness and other unnoticed contributions to ISE, has been compared with the niobium results. Quanti-
tative agreement between observed and predicted ISE requires the true dislocation pattern under the indentation being much denser than
the very idealized geometrically necessary dislocations pattern assumed in the Nix and Gao model.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Equal-channel angular pressing; Nanoindentation; Strain gradient plasticity; Dislocations
1. Introduction

Indentation hardness experiments of crystalline materi-
als have repeatedly displayed a strong size effect [1–5].
Based on the classic dislocation strengthening relationship
and a kinematically admissible model of geometrically nec-
essary dislocations (GNDs) underneath a perfectly sharp
conical indenter, Nix and Gao [2] concluded that the rela-
tion between microindentation hardness, H, and indenta-
tion depth, h, should be

H
H 0

� �2

¼ 1þ h�

h
ð1Þ

where h* is a characteristic parameter (with length dimen-
sions) which depends on both the properties of the material
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doi:10.1016/j.actamat.2006.03.034

q This manuscript was presented at the ‘‘Micromechanics and Micro-
structure Evolution: Modeling, Simulation and Experiments’’ held in
Madrid/Spain, September 11–16, 2005.

* Corresponding author.
E-mail address: jalkorta@ceit.es (J. Alkorta).
and the indenter shape. H0 is the extrapolated hardness for
very large indentation depths, for which the contribution of
the GNDs is negligible. This relation holds up to the sub-
micrometre level but, recently, several nanoindentation
experiments [6–9] have shown a consistent deviation of
hardness from the expected Nix and Gao (NG) relation-
ship at very small depths (<0.2 lm). Elmustafa and Stone
[9], for instance, showed that in aluminium and alpha brass
the nanoindentation data show an abrupt deviation from
the slope of the NG relation (H2 vs. 1/h) for depths below
200 nm. Different explanations have been given to this
deviation: Swadener et al. [6], for example, suggested that
the repulsive forces between dislocations would cause an
increase of the volume in which GNDs are confined leading
to a lower GND density as indentation size decreases.
Recently, Qu, Nix and other authors, based on the conven-
tional theory of mechanism-based strain gradient plasticity
[10], have linked this deviation to the tip radius present in
real micro- and nanoindenters [11,12]. The tip radius
causes a transition from a typical behaviour of a sharp in-
denter in which the average plastic strain underneath the
rights reserved.
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Fig. 1. Generation of GNDs due to a rounded tip conical indentation
according to the NG kinematically admissible model based on a pattern of
concentric prismatic dislocation loops.
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indenter is constant and the strain gradient is proportional
to 1/h to a rounded tip behaviour (spherical indenter) in
which the average plastic strain is proportional to the con-
tact radius (�0.2a/R, where a is the contact radius and R is
the tip radius [13,14]). The strain gradient becomes inde-
pendent of the indentation size in the latter case [6]. This
transition could even lead to an inverse indentation size ef-
fect (ISE) for strain hardening materials. Moreover, even in
the absence of strain hardening, a decrease in contact hard-
ness with depth is expected due to the transition from an
elastic–plastic to a purely elastic contact in spherical inden-
tation [14].

Lim and Chaudhri [7], in contrast, proposed a qualita-
tive model (ignoring the contribution of the GNDs) which
consists of three different indentation stages, each of them
characterized by a particular deformation mechanism.
However, the contribution of GNDs is still the most
widely accepted explanation for the ISE. In this context,
and even if the tip radius effect could partially explain
the anomalous behaviour of hardness, we want to point
out that there is another possible contribution to the
ISE deviation from the Nix model that has up to now
been overlooked.

The NG relation is based on the assumption that the dis-
location strengthening obeys the classic relationship

s ¼ a � lb
ffiffiffiffiffi

qT

p ð2Þ

where l is the shear modulus (44.3 GPa for Nb [15]), b

the Burgers vector (0.286 nm for Nb [15]), qT the total
dislocation density and a a proportionality constant
(a � 0.36). However, it is well known that Eq. (2) is only
an approximation that should be corrected for large
departures from a reference density (see Gil Sevillano
[16] for a review). Since the NG relation predicts a de-
crease of GND density of some orders of magnitude with
indentation depth, this correction should be included in
the model.

In this paper, starting from the original NG model, a
novel expression which takes into account both the
rounded tip and the modified dislocation strengthening
relationship is derived. The results obtained with this
expression are then compared with experimental nanoin-
dentation results for a commercially pure Nb subjected to
different levels of deformation imparted by equal-channel
angular pressing (ECAP), i.e., on a material with a wide
range of initial dislocation densities.

2. Theory

Our analytical derivation starts from basically the same
arguments given by Nix and Gao [2] for a conical indenter.
The NG model assumes that a conical indentation gener-
ates a set of GND concentric prismatic loops under the
indenter, as shown schematically in Fig. 1.

We will consider a rounded-tip conical indenter for
which the relation between the indentation depth and con-
tact area can be expressed as follows:
S¼pa2¼pðtan /Þ2 �h2
f þ2pR �hf ¼pðtan /Þ2 h2

f þdhf

� �

ð3Þ

with

d ¼ 2R

ðtan /Þ2
ð4Þ

where / is the semi-angle of the conical indenter (note that
this angle and that used by Nix and Gao are complemen-
tary), R is the tip radius, hf is the depth, S is the area
and a is the contact radius. Following the NG model, Swa-
dener et al. [6] found that for an indenter with a smooth
axisymmetric profile (as is our case) the total length of
the GND loops is

k ¼
Z hf

0

2p
b
� rðhÞdh ¼ 2p tan /

b

Z hf

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ dh
p

dh ð5Þ

If we define v as:

v ¼ d
2hf

¼ R

hf ðtan /Þ2
ð6Þ

then finally we get

k ¼ p tan /
b

� h2
f

� 1þ vð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2v
p

þ v2 ln
v

1þ vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2v
p

� �� �

ð7Þ

Note that at very large depths the expression within the
brackets is very close to 1 and we recover the expression
obtained by Nix and Gao [2]. Assuming, as in the NG
model, that the GNDs are confined within a volume V =
2pa3/3 = (2p/3)(hf tan/)3(1 + 2v)3/2, the average GND
density is

qG ¼
k
V

¼ 3

2bðtan /Þ2
� 1

hf

� 1þ v
1þ 2v

þ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2vÞ3
q ln

v

1þ vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2v
p

� �

2

6

4

3

7

5

ð8Þ
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Note, again, that at very large indentation depths we
recover the expression obtained by Nix and Gao [2]. In
contrast, at very low indentation depths qG reaches a sta-
tionary state independent of the indentation depth, as pre-
viously shown by Swadener et al. [6]:

qG !
1

bR
ð9Þ

Assuming the classic dislocation strengthening relation-
ship (Eq. (2)), we get

sc ¼ alb
ffiffiffiffiffi

qT

p ¼ alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs þ qG

p

ð10Þ

where qs is any statistically stored dislocation (SSD) den-
sity present in the plastic zone developed by the indentation
and sc is the average critical resolved shear flow stress for
crystallographic slip. The tensile flow stress is related to
the shear flow stress through the Schmid factor M � 3
and hardness is related to the tensile flow hardness through
a constant (H � 3r). Therefore,

H � 9alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs þ qG

p

ð11Þ

Fig. 2 shows the NG relation for differently rounded con-
ical indenters with a = 0.36, l = 42 GPa, b = 0.255 nm
(adequate for copper) and qs = 1014 m�2.

Xue et al. [12] carried out elastic–plastic numerical simu-
lations using a mechanism-based strain gradient (MSG)
plasticity theory in order to observe the influence of the
tip radius on the ISE and compared hardness evolution with
depth for both MSG plasticity and classic plasticity. If we
use the results obtained by Xue et al. for copper [12] we will
be able to check the validity of Eq. (8). From the evolution
of hardness with depth using size-independent classic plas-
ticity the average SSD density can be obtained as follows:

qs �
H class

9alb

� �2

ð12Þ

If we define b as a correction factor which relates the
GND density obtained from Eq. (8) to that simulated
numerically by Xue et al. [12], then
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Fig. 2. Square of hardness vs. the inverse of indentation depth (H2 vs. 1/
hf) according to Eq. (11), with a = 0.36, l = 42 GPa, b = 0.255 nm
(copper) and qs = 1014 m�2. The dotted line corresponds to a perfect
conical indenter (NG model); the continuous lines correspond to rounded
conical tips with different spherical tip radius.
H � 9alb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H class

9alb

� �2

þ bqG

s

ð13Þ

Fig. 3 shows that the results obtained by Xue et al. [12]
confirm the validity of Eq. (8) with a correction factor that
lies between 0.8 and 1. The divergence at very small inden-
tation depths is due to the fact that the proportionality
between hardness and tensile flow stress falls well below 3
(H < 3r) due to the elastic contribution to the penetration
depth for very shallow spherical contacts (see Tabor [13] or
Johnson [14]).

Elastic contributions have to be taken into account
when considering contact hardness since it is upper-
bounded by purely elastic indentation. For a perfectly
sharp conical indenter, elastic apparent contact hardness
(load divided by contact area) is independent of depth.
For a spherical indenter, in contrast, it drops linearly to
zero with depth [17,18]. This implies that, from the point
of view of the contact hardness, the NG model must
unavoidably fail at very low indentation depths, even if
the indenter is purely sharp, since it is upper-bounded by
the elastic contact limit. Thus, an explanation of the diver-
gence between the experimental observations at very small
depths and the results of the NG model is, therefore, the
rounded end of the indenter. However, this is not the only
explanation.

As mentioned above, the average GND density may
span several orders of magnitude with increasing depth.
An important departure from the proportionality between
the critical resolved shear stress and the square root of the
dislocation density is then to be expected [19], the linear
approximation being only a consequence of the assumption
of a fixed dislocation line tension [20]. For large departures
from a reference density, the critical resolved shear stress
should be corrected as follows:

sc ¼ �a0 ln b
ffiffiffiffiffi

qT

p� �

� lb
ffiffiffiffiffi

qT

p ð14Þ

and, therefore

H � �9la0 ln b
ffiffiffiffiffi

qT

p� �

� b ffiffiffiffiffi

qT

p ð15Þ
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where a 0 is a dimensionless constant. Fig. 4 shows the com-
pilation of measures of q vs. sc for Cu and Ag carried out
by Basinski and Basinski [21], normalized for Nb; the black
curve corresponds to a fitting with Eq. (14), the dark grey
one to the classic dislocation strengthening relationship
(Eq. (2)) with constant a = 0.36. Very recent numerical re-
sults of the strengthening by a random dislocation density
using discrete dislocation dynamics [22] confirm the valid-
ity of Eq. (14) for face-centred cubic metals with a constant
a 0 very close to the empirical one of Fig. 4. The same
behaviour is expected for Nb at room temperature (or for
other body-centred cubic (bcc) metals at high enough tem-
perature or dislocation density) when the Peierls stress
makes a small contribution to the critical resolved shear
stress [16].

This correction has important implications since the NG
relationship (H2 vs. 1/hf), for ideally sharp indenters, is no
longer valid for shallow indentations as shown in Fig. 5.
Note also that Fig. 5 should show a saturation of hardness
at very low indentation depths due to the fact that Eq. (14)
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Fig. 5. Square of hardness vs. the inverse of penetration depth (H2 vs.
1/hf) for sharp conical indenters according to the original NG model (Eq.
(11)) with a = 0.36 (black curve) and according to Eq. (14) with a 0 = 0.057
(dark grey curve), for l = 42 GPa, b = 0.255 nm and qs = 1014 m�2.
has a maximum at qT � 0.135/b2, although such disloca-
tion density is physically non-realistic.

Therefore, even for perfectly sharp indenters an impor-
tant deviation from the simplified NG relationship is
predicted.

Finally, the attainment of a physical saturation of the
total dislocation density for very small indentation sizes
should not be discarded. A saturation of the tensile
strength at about 1400 MPa has been observed in heavily
axisymmetrically room temperature cold-drawn Nb [23],
in which a strong work-hardening rate due to the addi-
tional contribution of GNDs to dislocation storage occurs
up to very large strains (e > 10) because of the internal curl-
ing of the elongating grain structure [24]. Such tensile
strength would represent a GND dislocation density upper
bound of about 6 · 1016 m�2 for Nb at room temperature
according to Eq. (14) and r � 3sc.

3. Experimental

In this study, five rods (10 mm diameter and 60 mm
long) of a commercially pure Nb (99.9%, supplied by
Goodfellow Cambridge Ltd.) with initial grain size of
about 20 lm were subjected to ECAP (route BC) up to
different numbers of passes: up to 0, 1, 2, 4 and 8 passes
(B0, B1, B2, B4 and B8, respectively). The fundamentals
of ECAP and the description of the routes can be found
elsewhere [25,26]. The angle between channels is 90�, so
that the induced equivalent plastic strain per pass is about
1.15.

Samples were cut, ground and mechanically polished
including a final polishing with colloidal silica. Samples
were then subjected to nanoindentation using a Nanoind-
enter� II at constant effective strain rate, i.e., at constant
_P=P ¼ 2� 10�2 s�1 (where _P is the loading rate and P is
the load) which corresponds to an effective strain rate of
about 10�3 s�1 [27,28] up to a penetration depth of
1700 nm. The standard tip shape calibration method was
used (Nanoindenter II operating instructions v. 2.2.
(1996), Nano Instruments Inc., Oak Ridge, TN) which
led to the following expression:

S ffi 24:5 � h2 þ 748:49 � h ðwith h in nmÞ ð16Þ
where S is the indentation area and h is the indentation
depth measured by the instrument. According to Eq. (3),
this corresponds to / � 70.3� and R � 120 nm. Topo-
graphic measurements carried out using atomic force
microscopy (AFM) confirm these results.

The method of Oliver and Pharr (OP) [29] for extracting
the real contact area from nanoindentation load–displace-
ment data has been the most common method until now
for measuring the hardness or the elastic modulus from
nanoindentation experiments. However, this method has
been proved to be inaccurate for work-hardened materials
since it does not include pile-up effects. Recently, Alkorta
et al. [30] have found that the mechanical properties
(including hardness and the real contact area) cannot be
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uniquely extracted from nanoindentation load–displace-
ment data unless further data from the test are known.
For example, if Young’s modulus were known then the
area of contact could be extracted from the following
expression [17,29]:

S ¼ dP
dh

	

	

	

	

hmax

¼ 2c � Er
ffiffiffi

p
p

ffiffiffiffiffi

Ac

p

;
1

Er

¼ 1� m2

E
þ 1� m2

i

Ei

ð17Þ

where E, m and Ei, mi are, respectively, Young’s modulus
and Poisson’s ratio of the sample and the indenter and c
is a correction factor introduced by Hay et al. [31]
(�1.05 for conical indenters; �1.11 for Berkovich inden-
ters [32]).

The contact areas obtained from nanoindentation data
(assuming that E = 104.9 GPa and m = 0.39 [33] for Nb)
were compared with direct AFM measurements for differ-
ent indentation depths.

The mechanical properties of the sample can be
extracted accepting these values of Young’s modulus and
Poisson’s ratio and applying the following expressions [30]:

crigðnÞ � c
c� cel

¼ j
W el

W pl

ð18Þ

and

W el

W pl

¼ 1þ n
2n

nry

eeff E

� �1�n

ð19Þ

where c is the ratio between the indentation depth from the
contact level and the total indentation depth as measured
by nanoindentation, crig(n) is the value of c for rigid mate-
rials with a work-hardening exponent equal to n,
cel = 0.636 is the value of c for the elastic contact with con-
ical indenters, j � 2 for conical and Berkovich indenters
and eeff � 0.026 for conical indenters (eeff � 0.028 for Ber-
kovich [32]), ry is the yield stress, Wel is the released energy
during unloading and Wpl = Wtot �Wel, where Wtot is the
work done during the loading. The value of crig(n) obtained
from Eq. (18) can be compared with the values obtained
from finite element analyses [30] in order to extract the
work-hardening exponent. Note that the yield stress in
Eq. (19) corresponds to the elastoplastic behaviour consid-
ered by Alkorta et al. [30]:

e0 ¼ 1� nð Þ � ey ¼ 1� nð Þ Y
E

K ¼ Y n
Y
E

� ��n ð20Þ

However, if the same argument is followed for a Hollomon
stress–strain relationship, then the elastic limit associated
with Hollomon’s law obeys the following expression:

W el

W pl

¼ 1þ n
2

ryH

eeff E

� �1�n

ð21Þ

The main advantage of considering the latter is that it
avoids the singularity in n = 0. Moreover, it is closer to
the experimental r0.2% (tensile yield stress at 0.2% of plastic
deformation).
Once the pile-up/sink-in (c) was corrected by Eq. (17)
and assuming c independent of depth, H2 (H is hardness)
vs. 1/h (the inverse of the tip displacement) plots of about
100 nanoindentation experiments carried out for the same
sample (covering many different grains) were fitted to a b-
cubic spline smoothing (b-CSS). The same procedure was
followed for the five different samples (B0, B1, B2, B4
and B8). The extrapolation of hardness when 1/h! 0 pro-
vides an estimate of the mechanical properties of the sam-
ple in the absence of ISE. For instance, the current SSD
density of each sample can be estimated assuming the mod-
ified dislocation strengthening model (Eq. (14)) once the
tensile yield stress has been estimated from Eqs. (18) and
(20).

The experimental nanoindentation hardness results
have been compared with those obtained from adding
the analytically calculated GND density (Eq. (8)) to the
obtained SSD density, again making use of the corrected
dislocation strengthening relationship (Eq. (14)). The ratio
b between the GND density extracted from experimental
results and that calculated through Eq. (8) has also been
computed.
4. Results

4.1. AFM measurements

Fig. 6 shows the evolution of c with indentation depth
for B0 and B8. As expected, B8 shows an important pile-
up due to its low work-hardening ability compared with
B0. Use of the OP method would lead to considerable error
in this case, since B8 is markedly harder than B0 and it
should show higher elastic deflection (so smaller indenta-
tion area) than B0. Filled symbols correspond to the aver-
age value of c for 100 nanoindentation measurements using
Eq. (17) and assuming E = 104.9 GPa, m = 0.39, Ei =
1141 GPa, mi = 0.07 and c = 1.11.
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4.2. Mechanical properties

Fig. 7 shows the square of hardness vs. inverse of depth
(once pile-up has been corrected and assuming c indepen-
dent of depth) for 100 different indentations for B1. It
can be seen that a linear NG relation does not hold; only
a linear approximation is apparent for h > 200 nm
(1/h < 0.005 nm�1) but the average curve shows a constant
slope decrease, as previously reported by Elmustafa [34].

The extrapolation of the b-CSS (black dots) to very
large depths, i.e., small ISE, provides a full description of
the mechanical properties by means of Eqs. (18) and (20).
Moreover, Eq. (14) is suitable for estimating the value of
the SSD density for each ECAP level according to the mod-
ified dislocation strengthening model (with) and assuming
the Schmid factor is 3.06 for bcc [35]. The results are shown
in Table 1.

As expected, both the yield stress and the SSD density
increase with the induced deformation (number of ECA
pressings). In contrast, the Hollomon exponent decreases
already after the first ECA pressing from 0.24 to less than
0.05.
4.3. Recalculated hardness

Starting from the recalculated dislocation density (SSD
density in Table 1 + GND density in Eq. (8)), hardness
Table 1
Mechanical properties calculated from nanoindentation measurements for the

B0 B1

ryH (MPa) 120 ± 20 550 ± 30
n 0.24 ± 0.02 0.03 ± 0.01
c 1.01 ± 0.02 1.13 ± 0.01
qs (1014 m�2) 0.8 ± 0.3 37 ± 6
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Fig. 7. Square of hardness vs. inverse of pile-up-corrected indentation
depth for sample B1. The black line corresponds to the b-CSS.
can be recalculated by means of the corrected dislocation
density strengthening relationship (Eq. (14) with a Schmid
factor M = 3.06) assuming that both the Hollomon expo-
nent and the pile-up value c are independent of depth as
follows:

H rec

H exp

¼ W el=W totð Þrec

W el=W totð Þexp

ð22Þ

The results show, in all cases, that the recalculated hard-
ness is well below the experimental hardness (as an exam-
ple, see Fig. 8 for B1). This means that the GND density
calculated by means of the modified NG relationship
(including the tip roundness effect in Eq. (8) and the mod-
ified dislocation strengthening model), is well below the
actual GND density which can be extracted from experi-
mental data. In other words, the actual dislocation pattern
under the indenter must be much more populated by dislo-
cations than the idealized pattern of Fig. 1, which in fact
provides the lowest bound for the GND density responsi-
ble for the ISE.

Fig. 9 shows the ratio between the GND density
extracted from the experimental data and the GND density
calculated by means of Eq. (8), b, vs. the inverse of the
indentation depth. The factor b is about 2–5 for samples
with a high initial dislocation density; i.e., the actual
GND density related to rounded conical indentation is
five samples

B2 B4 B8

620 ± 50 660 ± 40 640 ± 40
0.01 ± 0.01 0.02 ± 0.01 0.07 ± 0.01
1.14 ± 0.01 1.12 ± 0.01 1.08 ± 0.02
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Fig. 8. Hardness vs. inverse of indentation depth for sample B1. Dark
grey dots, straight line and dashed line correspond, respectively, to the
experimental data, the b-CSS and the recalculated hardness.
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about 2–5 times higher than that expected from the modi-
fied NG relationship. The low values of b observed for B0
could be due to the fact that the Hollomon exponent has
been assumed to be independent of the indentation depth;
strictly, for very high values of dislocation density a reduc-
tion of the Hollomon exponent is expected which would
lead to an increase in the value of b.

Also, an unexpected progressive evolution of b towards
higher values is observed for increasing SSD density prior
to the nanoindentation procedure.

5. Discussion

A modified version of the NG relationship has been pro-
posed which accounts for both the correction due to the
rounded tip as proposed in Eq. (8) and for the alternative
expression for the dislocation strengthening model fitted
to the experimental data obtained by Basinski and Basinski
[21]. These modifications are able to reproduce the devia-
tion from the classic NG relationship observed for very
low indentation depths. Moreover, Eq. (8) has been found
to be very accurate in comparison with finite element anal-
yses carried out by Xue et al. [12].

However, the experimental results show that the actual
GND density generated by a rounded conical indenter is
about 2–5 times higher than that predicted by the modified
NG relationship. Indeed, this modified NG model seems to
be a lower bound of the actual GND density.

The correction parameter b shows an important depen-
dence on the initial SSD density. An explanation could be
the GNDs are obliged to interact with an increasing dislo-
cation density already present in the material and the
formation of effective low-energy GND patterns is pro-
gressively hindered as such initial dislocation density
increases.
A practical consequence of our results is that the pres-
ence of GNDs (i.e., ISE) leads to inherent difficulties for
accurately obtaining the bulk mechanical properties of
materials with very low dislocation density from nanoin-
dentation measurements. For instance, if we had a sample
with a very low Peierls stress and with a SSD density of
1012 m�2, then �92% of the hardness measured at an
indentation depth of about 1700 nm (about 20 lm imprint
diameter) should be due to the contribution of GNDs gen-
erated during the indentation process according to Eqs. (8)
and (14). Moreover, only at indentation depths of the order
of 170 lm (about 3 mm diameter) would the contribution
of GNDs correspond to less than a 50% of the measured
hardness. Therefore, it would be practically impossible to
extract the mechanical properties of very soft thin films
using nanoindentation, since, with the available testing
depth, the information would be totally hidden by the
GNDs generated unless the relative error of the measure-
ments was extremely small.

Another practical implication of the results presented is
that GND density can reach much higher values than SSD
density. The calculated SSD density of the most severely
deformed Nb sample available in this study (B8, e @ 9) is
well below the level of achievable GND densities calculated
under the indentations (6 · 1015 m�2 vs. �1017 � 2 ·
1017 m�2). Such GND densities are of the same order of
magnitude of and not far from the saturation density of
GNDs calculated from the limit tensile strength observed
for heavily drawn Nb [23]. Therefore, those severe plastic
deformation (SPD) processes (such as high-pressure tor-
sion, HPT) that introduce large amounts of GNDs because
of their associated strain gradients are expected to be more
effective for developing ultrafine-grained (UFG) structures
than ECAP or other SPD processes lacking such macro-
scopic or mesoscopic strain gradients. Most experimental
results point in this direction [36].

6. Conclusions

	 A correction of the NG model for rounded tip conical
indentations that considers the correct dislocation den-
sity strengthening relationship has been proposed which
succeeds in reproducing the deviation from the NG rela-
tionship occurring at very low indentation depths.
	 The value of the actual average GND density under an

indentation appears to be about 2–5 times higher than
that expected from the modified NG model, which
implies that the generated GND pattern is much more
complicated than the simple dislocation loops model
proposed by Nix and Gao.
	 The calculated SSD density of the most severely deformed

Nb sample available in this study (B8, e @ 9) is well below
the level of achievable GND densities calculated
under the indentations (6 · 1015 m�2 vs. �1017 � 2 ·
1017 m�2). Such GND densities are of the same order of
magnitude of and not far from the saturation density of
GNDs observed for heavily drawn Nb [23].
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Abstract

A testing technique based on cross-sectional nanoindentation has been used to assess the mechanical reliability of interconnect struc-
tures. A Berkovich indenter was used to initiate fracture in a silicon substrate and cracks propagated through the structure. To better
control crack growth and to convert the problem into two dimensions, a trench parallel to the indentation surface was previously
machined using a focused ion beam. The crack lengths obtained for different material systems in the interconnect structure correlate well
with the fracture energies measured for the same materials in blanket films. Finite element model simulations incorporating cohesive
elements have been used to model the fracture processes and to explain the different cracking behaviour observed.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The complexity of the thermomechanical assessment of
integrated circuits has increased dramatically during the
last few decades. The miniaturization process and the use
of processing routes, not always optimized from the
mechanical point of view, result in an increase of the ther-
mal stresses within the systems [1]. Moreover, introduction
of new low dielectric constant (low-k) materials with dete-
riorated mechanical strength (i.e., Young’s modulus
decreases exponentially with k for the low-k materials used
at present) to meet the RC delay goals increases the risk of
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All
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mechanical failure of devices during packaging or even in
service [2,3].

The residual stresses that cause film decohesion arise
from two main sources: the tendency of thin films to shrink
or expand once they have been deposited on the substrate
(intrinsic stresses) and the thermal expansion misfit
between constituents [4]. The residual stresses can reach
values as high as 1 GPa [5]. Over the last decade several
studies have been carried out for the analysis of the inter-
facial decohesion by combining fracture mechanics models
[6–16] with experimental calibration tests [15–18].

Among the experimental techniques, one of the most
widely accepted for measuring the interfacial fracture
energy in thin films for multilayer structures is four-point
bending (4PB) [18–20]. Some efforts have been made to
extend the use of this technique from blanket to patterned
structures [21,22].

Cross-sectional nanoindentation (CSN) was designed to
study the fracture energy of blanket thin films [23,24].
rights reserved.
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Cracks are initiated in a brittle silicon substrate by inden-
tation with a Berkovich diamond tip close to the interface
of interest. The cracks propagate from the corners of the
indentation to the weakest interface of the stack, producing
delamination of the film. By measuring the delaminated
area and using analytical or finite element models, the
interfacial fracture energy of both ceramic [15,23] and
metallic [16,24] thin films can be obtained. The delaminated
areas are measured for each test combining data from a
scanning electron microscopy (SEM) image of the cross-
section and an optical micrograph of the wafer top view.
This technique gives a quick and reproducible qualitative
measurement of the interfacial adhesion. It is quantitative
through the modelling and allows direct observation by
SEM of the crack interaction with the thin-film stack. In
addition, the technique has the potential of being applied
directly to interconnect structures and allows one to study
the interaction of the crack with the patterned film. This
method of characterizing adhesion in test chips with full
process conditions is preferable to using blanket films
with simplified process flows. Earlier qualitative attempts
at studying patterned structures using CSN were very
promising [24].

In this paper a modification of the CSN technique, using
a focused ion beam (FIB) system for sample preparation, is
applied to the interconnect structure of a test chip. The
samples tested are composed of a three-level metallization
structure. Each metallization line is composed of Cu lines
embedded in a dielectric material. Good qualitative agree-
ment has been obtained between the results obtained by
CSN in patterned films and those obtained by 4PB testing
[18–22] for the interfacial adhesion and by channel crack-
ing for the fracture energy of the interlayer dielectrics
(ILDs) [25] in blanket films of the same materials. One of
the advantages of the CSN technique is that it allows the
observation of the crack path and the study of the interac-
tion of the crack with the different features of the intercon-
nect structure. In order to understand the cracking
behaviour observed experimentally in terms of crack driv-
ing force and material properties, the general purpose finite
element model (FEM) code ABAQUS combined with in-
house developed cohesive elements has been used to model
the experiment. Very good agreement has been obtained
between experiments and simulations, proving the predic-
tive capabilities of the model developed.
M3, SiO2-Blanket Cu 

M2, ILD- Cu lines (2.3μm)
M1, ILD- Cu squares(1.3μm)

Si

Passivation

Fig. 1. Stack arrangement of the samples tested corresponding to 90 nm
2. Experimental

The samples studied in the present work were test chips
simulating a portion of the interconnect structure of 90 nm
microprocessor technology [26]. The test chips consisted of
three levels of Cu metallization embedded in an ILD with
etch stop (ES) dielectric films separating the levels (see
Fig. 1). The top metal layer was unpatterned, the middle
level was patterned with metal lines and the lowest level
was patterned with metal squares. Samples were prepared
using three types of low-k ILD films (designated ILD-1,
-2 and -3). For the particular case of the samples with
ILD-2, four types of ES films (ES-1 to ES-4) were used
at the lowest metal level (between M1 and M2), with all
other components of the system remaining invariant.

Cross-sections were prepared by cleaving the samples
following silicon single-crystal cleavage planes. After cleav-
ing, the FIB system was used first to eliminate the cross-
section roughness induced by the plastic deformation of
the Cu and then to mill a trench parallel to the indentation
surface (Fig. 2). The objective of this trench (which is not
present in conventional CSN) was to facilitate the study
of the crack path forcing the crack to grow only in the
x-direction, and hence turning the problem into a two-
dimensional one. Typically the FIB trench depth and dis-
tance from the cross-sectional surface were both 5 lm.

Once the sample was prepared, the indentation proce-
dure described by Sánchez et al. [23] was followed using
a Nano Indenter� XP (MTS). The distance from the inden-
tation to the free surface was fixed between 5 and 7 lm in
all cases. The process included a loading ramp at constant
displacement rate until the cracks were initiated and delam-
ination occurred. This event can be clearly seen in the load–
displacement record as a sudden jump in displacement.

Fractography of the tested samples in an SEM instru-
ment was performed to study the crack path and to mea-
sure the crack length along the different interfaces in the
system. To confirm that the crack was forced to grow in
the x-direction (see Fig. 2) some CSN test sections were
milled by the FIB (Fig. 3(a)) and observed using SEM.

3. Results

A typical CSN test is shown in Fig. 3(a). As in conven-
tional CSN, a wedge is formed that pushes the structure in
5μm

M2-ES, always ES-4 
M1-ES, four types (ES-1 to ES-4) 
for ILD-2 

microprocessor technology [26] with three levels of metallization.



Fig. 3. SEM micrographs of (a) a MCSN test performed on an interconnect structure and (b) crack propagation observed on a milled section as described
in (a) (sample tilted 45� + 45�).

Fig. 2. Schematic of sample preparation and indentation procedure for CSN test.
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the y-direction (see Fig. 2) producing the bending of a
beam of constant width as the crack propagates through
the interconnect structure. Fig. 3(b) shows one of the beam
sections, where the crack is observed to propagate at the
same plane in the whole beam width between the indented
plane and the trench milled with the FIB.

For each of the samples tested the load–displacement
record was studied. The indentation load at which fracture
occurred was found to be only dependent on the distance
from the indentation to the free surface, and hence was
insensitive to changes in the materials. As can be observed
in Fig. 4, the load–displacement records reveal a distinct
behaviour in terms of a jump in displacement during
delamination for the different ILD films (Fig. 4(a)), and,
in the case of ILD-2, for the different ES films (Fig. 4(b)).

These differences become more apparent in terms of the
magnitude of the crack length along the interfaces in the
system. Fig. 5 shows the differences in the cracking behav-
iour of the samples with different ES film types. These
samples were fabricated with identical materials, except
for the ES film on top of M1. Note that for the interface
between the ES film and the patterned Cu-ILD film in
M2, for which the ES film is the same for all the samples
studied, there are no significant differences in the mean
values of the measured crack lengths; however, for the
interface between the ES film and the patterned Cu metal-
lization in M1, the crack length decreases from ES-1 to
ES-4, suggesting that the interfacial fracture energies
increase from ES-1 to ES-4.

The ability of the CSN method to provide quick quali-
tative monitoring of the mechanical reliability of the inter-
connect structure was assessed by comparing the crack
lengths measured after the tests with the fracture energy
values obtained by the methods currently used in the indus-
try [18–20,25] for the mechanical characterization of blan-
ket thin films of the same material systems. Figs. 6 and 7
summarize these measurements. The fracture energies of
the ES/Cu interface obtained by 4PB are compared in
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Fig. 4. Load–displacement records from MCSN tests for (a) a set of samples with ES-4 and different ILDs and (b) two samples with ILD-2 and two ES.

Fig. 5. Crack length along the ES to patterned Cu interfaces above M1 and M2 metallization levels (as marked) with ILD-2 film type. The ES film above
M2 is the same for all samples (ES-4) while the ES film above M1 varies.
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Fig. 6 with the crack length measured at the ES to pat-
terned Cu interface at the lowest metallization level.
Although two different interfaces are involved in crack
growth (ES/Cu and ES/ILD), only the adhesion energy
of the ES/Cu interface varies significantly (ES/ILD adhe-
sion energy is about 3 J/m2 in all cases). It is interesting
to note that the crack lengths measured for ES-1 and
ES-2 are different, even though the adhesion strengths are
very similar. This behaviour will become clear when the
simulation results are presented.

Fig. 7 compares data for the cohesive strength obtained
by channel cracking [25] with the crack length through the
whole stack induced by CSN. As can be observed, the total
crack length increases as the cohesive strength of the ILD



Fig. 8. SEM images of the crack path in two different samples: (a) ES-1 (poor adhesion; the crack kinks at the interface); (b) ES-4 (good adhesion; almost
all the cracking occurs through the ILD).
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decreases. In summary, CSN results correlate very well
with those obtained in 4PB and channel cracking experi-
ments. Moreover, the size of the jump in the load–displace-
ment records follows the same tendency: the jump increases
as the ILD cohesive strength decreases for a constant ES
(Fig. 4(a)) and as the fracture energy of the ES/Cu interface
decreases with all the other properties remaining invariant.
These results prove that the CSN technique can be used as
a qualitative quick monitor to study the fracture properties
of an interconnect structure in situ, without the need to
fabricate blanket films of the same materials, and allows
one to study patterning and full processing effects.

In addition to providing a quick qualitative monitor of
interface adhesion and ILD toughness in patterned struc-
tures, one of the main advantages of the CSN technique
is that it allows the direct observation of the crack path.
For instance, Fig. 8 shows the differences between the crack
paths in the two extreme cases of ES-1 and ES-4. In the
case of ES-1 (poorest adhesion), the crack kinks at the
interface and runs along it for a considerable distance
before kinking again towards the free surface. In the case
of ES-4 (best adhesion), the crack travels through the inter-
connect structure towards the top surface, almost without
any kinking at the ES interfaces.

4. Finite element modelling

4.1. Cohesive zone model (CZM)

The experimental test described above has been mod-
elled using finite elements. The main objective of this part
of the work was to assess whether the differences in the
stress fields resulting from the different combinations of
elastic–plastic properties of the materials in the patterned
films in combination with their fracture properties could
explain the various crack path tendencies observed in the
experiments. The result has been a model that is able to
predict the most important experimental observations.

The fracture process has been characterized using the
CZM, which can be used to describe a broad range of frac-
ture problems in a wide variety of material systems. For
each material and interface in the structure, the model is
specified by a traction–separation law, r–d, which drops
to zero when the opening d reaches a critical value dc.

A convenient formulation of mixed-mode cohesive laws
is based on the existence of a potential U that represents the
energy consumption in the separation process along the
process zone [27]. First, we introduce an effective opening
displacement, d, as

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
n þ q2d2

t

q

ð1Þ

where dn and dt are the normal and tangential components,
respectively, of the displacement jump across the cohesive
surface. The weighting coefficient q defines the ratio be-
tween the normal and tangential critical openings (and thus
it also roughly represents the ratio of KIIC to KIC). The
model then assumes that the potential U depends on the
separation only through the effective opening d as

Uðdn; dtÞ ¼
Z d

0

rðxÞdx ð2Þ

where the function r(d) represents the (mode I) normal
traction in the absence of tangential separation. In the gen-
eral case of mixed modes, the normal and tangential com-
ponents of the tractions, rn and rt, acting on the fracture
process zone are obtained as derivatives of the cohesive
zone potential with respect to the displacement jumps

rn ¼
oU
odn

¼ rðdÞ dn

d

rt ¼
oU
odt

¼ rðdÞq2 dt

d

ð3Þ

A number of r–d laws have been used in fracture problems.
In a recent review, Chandra et al. [28] examined the most
popular CZMs in terms of their forms, physical signifi-
cance and applications. For instance, a dependence of the
shape of the r–d law on the nonlinear processes occurring
at the micromechanical level should be expected. However,
Tvergaard and Hutchinson [6,29] noted that the shape of
the traction–separation law is relatively unimportant and



Table 1
Material properties for the FEM simulations

Young’s
modulus
(GPa)

Residual
stress
(MPa)

G, cohesive
(J/m2)

GES–Cu from
CSN (J/m2)

GES–Cu from
4PB (J/m2)

ES-1 85 �200 6 3 4
ES-2 53 �150 5 3 5
ES-3 170 �250 7 5 8
ES-4 118 �250 6 8 12
ILD-1 8.9 50 1.4 – –
ILD-2 10 50 2.5 – –
SiO2 85 �300 16.5 – –
Cu 125 250 – –
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that the two most important parameters characterizing the
fracture process are the area under the curve (work of sep-
aration, G0) and the peak stress (fracture strength, rmax).

The cohesive model approach used in this work is
regarded as a suitable phenomenological description of
the fracture process zone. In particular, we have used a tri-
angular traction–separation law, as shown in Fig. 9, for
which the work of fracture is given by

G0 ¼
Z dc

0

rðdÞdd ¼ 1

2
rmaxdc ð4Þ

The initial slope of the r–d curve is a parameter that should
be selected in the numerical implementation. Ideally, it has
to be high enough so that the stress field in the process zone
is not significantly affected in the absence of damage (prior
to rmax) and, at the same time, low enough to avoid numer-
ical instabilities. Damage of the material is assumed when
d > d0 (see Fig. 9). In order to define fully the behaviour
of the process zone, the unloading response must also be
specified. In this model, the cohesive law is assumed to re-
main reversible (with no permanent damage) if the maxi-
mum effective opening during the deformation history,
dmax, is dmax < d0. When dmax > d0, material degradation
occurs and an irreversible unloading path to the origin is
used, as shown in Fig. 9.

A particularly appealing characteristic of cohesive mod-
els is that they fit in a natural manner within the conven-
tional framework of finite element analysis. One possible
approach is to implement the cohesive law as a mixed
boundary condition, relating tractions to displacements at
certain regions [6,27,29]. The approach we adopt here is
Fig. 10. Schematic of the MCSN FEM. Cohesive elements are placed

G0

δc δ

σ

0 δ0

σmax

Fig. 9. Traction–separation law of the c
to embed the cohesive law into special finite elements, the
so-called ‘‘cohesive elements’’. The general-purpose com-
mercial finite element package ABAQUS [30] has been used
to carry out the analysis. The cohesive model is incorpo-
rated into the main program as a user-defined element sub-
routine UEL. In particular, plane strain cohesive elements
with variable number of nodes and integration points have
been employed in the simulations. A detailed account of
the finite element implementation may be found elsewhere
[31,32].

4.2. Model description

As the crack grows only in one direction during the CSN
test and considering the geometry of the beam, a plane
strain state has been assumed to simplify the simulations.
Hence the CSN test has been modelled as a symmetric
beam using continuum plane strain elements. The nodes
at the bottom of the M1 metallization level (Fig. 1) and
in the possible crack paths determined from experimental results.

a

δn

δt

ohesive model for fracture process.
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at the end of the beam are considered to be clamped and a
uniform vertical displacement is imposed to the nodes in
contact with the wedge (Fig. 10). Cu is considered as elas-
tic, perfectly plastic (ry = 525 MPa) and all the other mate-
Fig. 11. Maximum principal stress plot in the vicinity of the crack tip (at point
differences observed are confined to the immediate vicinity of the crack.

Fig. 12. (a) SEM image of the crack path in the sample with the weakest ILD
(ILD-2). A much more tortuous crack path can be observed in the first case.

Fig. 13. Showing that the simulation is able to predict the crack initiation obse
crack tip is at ES/ILD interface in M2 and a stress concentration appears under
Cu line in M2 and the stress concentration disappears.
rials in the stack have been modelled as purely elastic (see
Table 1). The cohesive elements described in the previous
section have been introduced in the model, at the positions
indicated by the white lines in Fig. 10, to cover all the
A in Fig. 2) for the most dissimilar ES in the lot: ES-1 and ES-4. The small

(ILD-1). (b) SEM image of the crack path in a sample with a tougher ILD

rved under the Cu lines of M2 layer for the weakest ILD material: (a) the
the Cu line (indicated by the dashed ellipse); (b) a crack initiates under the
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possible crack paths obtained experimentally with all the
combinations of materials used. This way, the crack can
choose its path through the patterned stack as the wedge
is displaced vertically, driven by the stress field and the
fracture properties of the material. Note that cohesive ele-
ments have been only introduced at locations where cracks
were observed experimentally. For instance, no crack has
been permitted at any interface between the top surface
of an ES layer and the ILD material, since no cracks were
found experimentally at this interface. The fracture proper-
ties used for each material and interface in the system can
be found in Table 1, and, as previously mentioned, the ES/
Fig. 14. (a) Experimental crack paths (mean M1–ES crack lengths measured a
M1–ES for the set of samples with different ES materials at M1. The experim
increasing from top to bottom.
ILD adhesion energy was 3 J/m2 in all cases. The parame-
ter dc introduced in the previous section was chosen to be
10 nm in all cases.

4.3. Modelling results

Fig. 11 shows the maximum principal stress in the vicin-
ity of the crack tip when this reaches the corner of a Cu
square (point A in Fig. 2) for ES-1 and ES-4. The differ-
ences in the calculated values of the maximum principal
stress (that in both cases would drive the crack out of the
interface) are very similar. As a result, it appears that
nd standard deviation) and (b) FEM simulations of the crack length below
ents and the simulations show the same trend, with the adhesion strength
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the measured crack lengths are a direct consequence of the
adhesion properties of each interface. However, in a gen-
eral case, the elastic mismatch at the interface and/or the
state of residual stress can vary depending on the material
system, influencing the crack driving force. The crack
length along a particular interface should be affected both
by the stress field and the fracture properties of the inter-
face, and therefore it is not a direct measurement of the
true adhesion energy of the interface. The FEMs developed
using cohesive elements are able to capture these effects and
this is why they have turned out to be very useful for anal-
ysing the cracking behaviour of the patterned films.

An example of the predictive capabilities of the model is
shown in Figs. 12 and 13. Fig. 12(a) shows the typical
cracking observed in the interconnect structure made of
the weakest ILD material (ILD-1). In this case, the crack
follows a tortuous path, going up and down around the
Cu lines. This behaviour is rarely observed for the tougher
ILD-2 and ILD-3 materials, as shown in Fig. 12(b), and
can be explained by the extremely poor cohesive strength
of ILD-1 and by the stress concentration that appears
around the crack tip due to the patterned structure. As
shown in the finite element calculation of Fig. 13(a), when
the growing crack arrives at the ES to ILD interface in M2,
it kinks and travels along this interface. However, when the
crack tip reaches the Cu line at point B, it is arrested due to
the superior adhesion strength of the ES to Cu interface
and the cohesive strength of the ES material. It should be
noted that the ES/Cu adhesion energies used for these sim-
ulations are the ones derived from the CSN tests. Due to
the patterned structure, a stress concentration develops just
below the Cu line, indicated by the dashed ellipse.
Although the level of stress is much lower than the stress
at the crack tip, it is enough to initiate a second crack at
this point, because of the low cohesive strength of ILD-1.
The second crack relieves stresses (Fig. 13(b)) and eventu-
ally merges with the principal one. The explanation is con-
sistent with the fact that this type of secondary crack
initiation does not occur for materials ILD-2 and ILD-3,
due to their superior fracture properties.

The model is also able to capture the effect of the differ-
ent energies of adhesion ES/Cu for the tested materials.
Fig. 14 shows selected experimental results for each ES
and the corresponding outcome of the simulations. Mim-
icking the experiments, the only varying parameter in the
four simulations is the adhesion energy between the ES
and the Cu line, GES–Cu, while the rest of the parameters
remain constant. As a first guess the GES–Cu values
obtained from 4PB tests in blanket films of the same mate-
rials were used (Table 1). The actual adhesion energy
GES–Cu was chosen so that the crack length at this interface
matched the average crack length measured in the CSN
experiments (Figs. 5 and 14) for the same interface. The
experiments and the simulations show the same trend, dis-
playing shorter crack lengths at this interface as the adhe-
sion strength between the ES and the Cu line increases
from top to bottom. The values of the adhesion energies
used to match the experimental results agree well with
the adhesion strength measured by 4PB in blanket films
of the same materials. Moreover, the relation obtained
between the intrinsic energy of adhesion and the macro-
scopic fracture energy measured in 4PB experiments is sim-
ilar to the results from previous work on the effect of
plasticity on adhesion between Cu and ceramic thin layers
[33]. The simulations also capture the fact that the crack
lengths measured for ES-1 and ES-2 are different even
though the adhesion strengths are very similar (see
Fig. 5). In fact, the value of GES–Cu used in the simulations
in both cases is exactly the same but the crack length is
longer for ES-1. This occurs because the crack length at
a particular interface will be affected not only by the adhe-
sion strength, but also by the residual stresses, the elastic
mismatch at the interface and the cohesive strengths of
the surrounding materials. In this case, the stress field
drives the crack out of the interface earlier for ES-2 than
for ES-1, even when the true adhesion is similar in both
cases, resulting in a shorter crack length for ES-2.

5. Conclusions

A technique based on CSN has been used to evaluate the
fracture behaviour of patterned interconnect structures
made of different materials. The results correlate well with
those obtained for the same materials in blanket form using
widely accepted techniques and allow a quick and repeat-
able classification of both ILD films and ES films in terms
of their resistance to crack propagation. CSN also provides
a straightforward method to study crack propagation
within the interconnect structure.

A FEM incorporating cohesive elements has been devel-
oped that allows the prediction of the crack path and the
study of the interaction between the crack and the different
features in the structure. Very good agreement has been
obtained between the experimental results and the simula-
tions, proving the predictive capabilities of the model. The
CSN test, in combination with numerical simulations, consti-
tutes a powerful tool to study the key features that determine
the resistance to crack propagation in patterned structures.
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Abstract

A thermoactivation analysis of experimental data is used along with a constitutive model to determine the microscopic parameters of
domain wall dynamics in polycrystalline ferroelectrics–ferroelastics. The proposed constitutive model takes into account thermally acti-
vated processes assisting domain walls to overcome the energy barriers of short-range obstacles. The microstructure in polycrystals is
described effectively, employing the volume fractions of ferroelectric domains with different polarization orientations as structural (inter-
nal) variables, and its evolution is given in terms of rate equations for these variables. The average polycrystal properties are computed
using a discrete orientations approximation (a set of representative orientations) for the distribution function of grain orientations.
Assuming that the domain wall mobility depends on temperature according to the Arrhenius equation, the microscopic parameters
of the model including the obstacle strength and activation energy are extracted from the temperature dependence of the coercive field.
Using experimental data for doped lead zirconate titanate (PZT) ceramics, it is shown that within the framework of the constitutive
model the ‘‘soft’’ and ‘‘hard’’ PZT compositions differ considerably, not only in defect strength but also in activation volume.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Ferroelectric ceramics; Domain switching; Microstructure; Modelling
1. Introduction

Apart from the traditional use as high-dielectric-con-
stant capacitors, ferroelectric materials are being increas-
ingly utilized in many key technologies such as
information storage or energy conversion [1]. In most of
the applications of ferroelectrics two underlying properties
are commonly employed. First, ferroelectric crystals possess
two (or more) orientation states, which differ from each
other by the polarization direction but have the same energy
unless an external electric field is applied. The net polariza-
tion of polydomain structures depends on the volume frac-
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All

doi:10.1016/j.actamat.2006.03.038
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tions of regions (domains) occupied by different variants.
Ferroelectric random access memories (FeRAM) use rema-
nent polarization for non-volatile information storage, with
the polarization switching current being utilized for read
operations. Second, many ferroelectric ceramics, such as
lead zirconate titanate (PbZrxTi1�xO3, PZT) solid solu-
tions, have excellent piezoelectric properties and are
referred to as piezoceramics. They are used in sensors and
actuators because of their high electromechanical coupling
factor. However, the response of piezoceramics differs from
the intrinsic piezoeffect, as observed in single-domain crys-
tals. In the unpoled state piezoceramics are macroscopically
isotropic due to the random orientation of grains and show
no directional behaviour, including the spontaneous polar-
ization and piezoelectricity. These properties are acquired
only upon poling in an electric field, which must be suffi-
ciently strong to induce the domain reorientation.

The performance of piezoceramics depends on the com-
plex interplay among structural defects at many levels.
rights reserved.
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Because these materials are polycrystalline, their micro-
structures (grain size and orientation distribution, phase
distribution, phase and domain morphology) play crucial
roles in determining their properties. Likewise, the defect
structures (atomic structures of domain walls, native
defects, impurities) can also strongly influence the proper-
ties. In many cases, some of these factors act simulta-
neously, making the polarization switching phenomena
very intricate.

The cornerstone of simulations of microstructure evolu-
tion in ferroelectrics is the choice of a physical model cor-
rectly accounting for the time scale. In general,
polycrystalline ferroelectrics–ferroelastics can respond to
electromechanical loading in two ways: either by growth
of the existing domains with energetically favourable lattice
orientation or by nucleation of new ones, resulting in the
formation of domain structures of complex morphologies
within grains as well as in the grain accommodation pro-
cesses to minimize the thermodynamic potential of the
entire polycrystal. The relative contribution of these two
mechanisms is determined by the activation energies for
growth and nucleation and, therefore, strongly depends
on the field magnitude. In principle, it can be assessed from
the temperature and field dependencies of the polarization
switching rate (switching current). The kinetics of polariza-
tion reversal in ferroelectrics has been extensively studied
since the work of Merz [2] on BaTiO3 single crystals.
According to Ref. [2], the switching rate depends exponen-
tially on the inverse applied field and is controlled by the
nucleation rate of triangular nuclei with one atomic layer
thickness. Taking into account the long-range interaction
between bound charges (depolarization field) neglected in
Ref. [2], Miller and Weinreich [3] proposed an alternative
interpretation of the experimental results [2]. Having calcu-
lated the activation energy for nucleation of triangular sin-
gle-layer steps (two-dimensional kinks) on an existing 180�
domain wall, they showed that it has the same dependence
on the electric field as found my Merz under other assump-
tions. Correspondingly, the lateral velocity of the domain
wall in Refs. [2,3] follows the Arrhenius law

t ¼ t0 exp �DG
kT

� �

; ð1Þ

with the Gibbs free energy1 of activation (in the following,
for brevity, referred to as the activation energy) decreasing
with the electric field magnitude E as DG � 1/E. Similar
results were also reported for some polycrystalline ferro-
electrics, including both bulk ceramics [4] and thin films
[5]. In particular, the switching current measurements [4]
in Nb-doped PZT ceramics appear to be consistent with
Eq. (1). It can be shown that Eq. (1) leads to the following
dependence of the coercive field Ec on the applied field
frequency m:
1 In ferroelectrics the Gibbs free energy G is related to the free energy F

as G = F � rij eij � DiEi and is the thermodynamic potential with respect
to the temperature T, stress rij, and electric field Ei.
1

Ec

/ ln
m
m0

� �

: ð2Þ

This scaling law was reported [5] for La-modified PTZ thin
films. The Merz Eq. (1) is, however, limited to sufficiently
low fields, e.g. in BaTiO3 as low as 0.2 MV/m, while at
higher applied fields nucleation of multilayer steps on
domain walls should be taken into account, giving rise
to the power law t � E1.4 for the sidewise domain wall
velocity [6].

An especially strong effect of microstructure on the
switching speed is observed in polycrystalline thin-film fer-
roelectrics, where the density of mobile domain walls can
be very low. The experimental dependence

1

E2
c

/ ln
m
m0

� �

ð3Þ

of the coercive field on frequency in PZT thin films [7,8]
indicates the change in the polarization switching mecha-
nism. At present, there is no consistent theoretical model
explaining the scaling law given in Eq. (3). It has been pro-
posed by Du and Chen [7] that this frequency dependence
occurs provided that domain wall mobility is controlled by
the nucleation rate of semi-spherical bulges necessary to
unlock the strongly bound with defects parts of a domain
wall. The sidewise velocity in this case is described by
Eq. (1) with the activation energy DG � 1/E2. In their
calculations, however, Du and Chen [7] neglect the depo-
larization field energy. A proper account of depolarization
fields invalidates this model. In addition, the coercive field
was found to depend on the electrode size [8]. This circum-
stance makes it rather difficult, if possible at all, to formu-
late a reasonable constitutive model for polycrystalline
thin-film ferroelectrics.

However, the available experimental data allow one to
formulate a microstructure-based constitutive model for
an important class of ferroelectric ceramics including
doped ceramics of the PZT family. The experimental data
[9] for the temperature dependence of ferroelectric hystere-
sis in both hard (PZT-4) and soft (PZT-5A, PZT-5H) com-
mercial ceramics show that in a wide temperature range Ec

decreases with temperature nearly linearly, implying that
the governing mechanism of polarization reversal may be
related to the thermally activated motion of domain walls
in a random field of short-range obstacles. In a simple
approximation, the activation energy DG = DG0 (1�E/E*)
of this process decreases linearly with the electric field
E and contains only two microscopic parameters: the
defect strength E* and the activation energy at zero field,
DG0.

Starting from this observation, in this work we evaluate
the temperature and frequency dependence of the ferroelec-
tric hysteresis in doped PZT ceramics within the frame-
work of a time-dependent constitutive model for
ferroelectric–ferroelastic polycrystals. The main ingredients
of the model are the following. At the atomic level, it incor-
porates the thermally activated processes assisting domain



A.Yu. Belov, W.S. Kreher / Acta Materialia 54 (2006) 3463–3469 3465
walls to surmount the energy barriers of the obstacles. The
microscopic parameters of the model (defect strength and
activation energy) are determined from the experimental
data of Hooker [9]. At the mesoscopic level, microstructure
evolution is described in terms of rate equations for the vol-
ume fractions of domains with different polarization
orientations.

2. The model of microstructure

The microstructure in ferroelectric ceramics arises spon-
taneously upon cooling from sintering temperatures to the
Curie point, where the material undergoes a structural
phase transition and the constituent crystallites (grains)
acquire the spontaneous polarization and strain. Due to
the grain misorientations, the polarization varies from
grain to grain in accordance with the local lattice orienta-
tion, generating the electric and elastic fields. The minimi-
zation of their energy is the driving force for the
spontaneous microstructure formation in ferroelectric
ceramics. To reduce the intragranular fields, single-crystal
grains split into a set of domains with different polarization
directions, giving rise to complicated banded domain con-
figurations with preferred head-to-tail domain morpholo-
gies. Obviously, the formation of domain structures in
different grains is not independent. It proceeds self-consis-
tently to eliminate the macroscopic depolarization fields. In
general, for modelling of such microstructures both the
grain orientation distribution function and the domain
structure characteristics inside grains are required.

We consider a ferroelectric with M distinct domain ori-
entations in a grain. For instance, in tetragonal and rhom-
bohedral crystals M is equal to 6 and 8, respectively. Each
variant I is characterized by its volume fraction nI as well as
its spontaneous strain es(I) and polarization Ps(I). The aver-
age values of the spontaneous strain and polarization in a
single crystal (or grain) with a polydomain structure have
the form

es

Ps

� �

¼
X

M

I¼1

esðIÞ

PsðIÞ

" #

nI : ð4Þ

The corresponding constitutive relations for the crystal
(grain) are derived under an assumption (known as the
Reuss method) that the electric field E and stress r are iden-
tical in all variants:

e

D

� �

¼
X

M

I¼1

SðIÞ dðIÞT

dðIÞ jðIÞ

" #

nI

 !

r

E

� �

þ
es

Ps

� �

: ð5Þ

Here, S(I), d(I), and j(I) are the tensors of elastic, piezoelec-
tric, and dielectric constants of the I variant. In ceramics
the relations given in Eqs. (4) and (5) must be further aver-
aged over grain orientations. Following Refs. [10,11], this
can be done by means of the discrete orientations approx-
imation using a set of representative grain orientations
instead of a continuous distribution function. Each orien-
tation in the set possesses a system of M variants, with
the total number of variants used for averaging being
N = MK, where K is the number of the systems. Eqs. (4)
and (5) remain valid provided that summation is expanded
over all N variants. However, within this model switching
is possible only between M variants, which belong to one
system. The proper choice of the representative orienta-
tions should provide a nearly isotropic behaviour of an
unpoled ceramic. The corresponding examples for ferro-
electrics undergoing a cubic-to-tetragonal phase transition
are given in Refs. [10,11]. Here we consider a simple
approximation with K = 1, which turns out to give reason-
able results provided that M P 6.

3. A constitutive model

3.1. Domain wall mobility

As noted above, the existence of the linear region in the
Ec–T curves for the ceramics of the PZT family [9] indicates
that the motion of domain walls in these ceramics at the
field magnitude near Ec may have a thermally activated
character. Similar linear behaviour of the coercive field
was observed in relaxor ferroelectrics Pb(Mg1/3Nb2/3)O3

(PMN) at low temperatures, where they are normal ferro-
electrics [12]. It was suggested in Ref. [12] that the temper-
ature dependence of Ec in PMN can be related with the
thermally activated processes of surmounting of local bar-
riers by domain walls. However, no evidence was presented
as to why this dependence is linear. To substantiate this
hypothesis, we consider by analogy with the dislocation
theory [13] the following dependence of the domain wall
velocity on the driving force f:

t¼
lpm0 exp �DGðf Þ

kT

n o

� exp �DG0

kT

� 	


 �

; f 6 f�
f
B ; f > f�

8

<

:

ð6Þ

describing the thermally activated motion in the field of
short-range obstacles. Here m0 is the attempt frequency re-
lated to the domain wall vibrations between pinning
points, lp is the distance between subsequent obstacles
(the domain wall free-length), and f* is the critical driving
force (defect strength), above which the domain wall mo-
tion becomes purely dissipative and the wall velocity de-
pends on temperature only through the drag coefficient
B. The frequency m0 depends on the defect concentration,
decreasing with the distance between pining points as
1/lp. Here, it was assumed that for uniform obstacle distri-
butions the domain wall free-length and the distance be-
tween pinning points coincide. In fact, the magnitude of
f* is not known and has to be extracted from the experi-
mental data. At sufficiently low values of the driving force
the second exponential in Eq. (6) accounts for possible
back jumps, providing the zero wall velocity as f vanishes.
The simple expression for the frequency of back jumps
used here is valid only in the limit of low f. Following
Ref. [13], we adopt the following empirical expression for
the activation energy:



0
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DGðf Þ ¼ DG0 1� f
f�

� �p� �q

: ð7Þ

In ferroelectrics–ferroelastics, the most significant part
of the driving force for the transformation I ! J is linear
in the applied fields

fIJ ¼ �EiDP s
i � rijDes

ij ð8Þ

where DP s
i ¼ P sðIÞ � P sðJÞ and Des

ij ¼ esðIÞ
ij � esðJÞ

ij are the
jumps of the spontaneous polarization and strain across
the domain wall. The kinematics of the domain wall mo-
tion can be illustrated for a system of parallel domain walls
separating domains of types I and J. An increase in the
volume fraction nI of energetically favourable I domains
due to the wall displacement can be represented in the
form similar to the Orowan equation of the dislocation
theory:

_nI ¼ qt ð9Þ

where q is the mobile domain wall density (per unit length
normal to the wall).

3.2. Constitutive framework

To formulate a constitutive model we generalize Eqs. (6)
and (9) in the following way. The mesoscale switching rate
for each variant I is represented as

_nI ¼
X

M

J¼1;J 6¼I

�wIJ þ wJIf g ð10Þ

with the transition rates

wIJ ¼ w0 exp �DGðfIJ Þ
kT

� �

� exp �DG0

kT

� �� �

na
I : ð11Þ

Here w0 = qlpm0 is the transition rate at zero activation en-
ergy, and the switching fraction na

I , where the exponent a is
a model parameter, is introduced following Ref. [14] to ac-
count for the processes of annihilation of domain walls as
the volume occupied by the variant I vanishes. In general,
the pre-exponential factor w0 depends on microstructure
parameters such as the defect concentration or the mobile
domain wall density, which are difficult to estimate. There-
fore, here it is considered as a model parameter. However,
an order of magnitude estimate for w0 can be obtained
from the experimental data on low-frequency internal fric-
tion in PZT ceramics. As was shown in Ref. [15], the tem-
perature dependence curve of internal friction had some
relaxation peaks in the temperature range corresponding
to ferroelectric phase. One peak was demonstrated to be
due to interaction of domain walls and point defects, which
are oxygen vacancies or their clusters. Recent studies
[16–18] of internal friction in PZT ceramics give a value
of about 1011–1014 Hz for the pre-exponential factor in
the temperature dependence of inverse relaxation time.
Therefore, as a first approximation we accept an estimate
w0 = 1011 Hz. A further refinement of this parameter can
be achieved by comparison of results of micromechanical
modelling with experiment. In what follows we show that
in doped PZT ceramics the coercive field Ec depends on
w0 only logarithmically and therefore already the first
approximation gives good agreement with experiment.
The constitutive model introduced by Eqs. (10) and (11)
is rather simple. It requires only integration in time (in gen-
eral, numerically) of the differential equations for the meso-
scale switching rates.

3.3. Assessment of the model parameters

To begin with, we present a method for a direct assess-
ment of the defect strength f* and activation energy DG0.
Let us consider a ferroelectric with only two variants I

and J corresponding to 180� domain switching with driving
force f = 2P0E. In the case of a triangular electric field with
the amplitude E0 and frequency m, the system of Eqs. (10)
and (11) admits an analytical solution, which can be used
as a basis for the experimental data analysis. The volume
fraction nJ of the growing, energetically favourable variant
J increases with a rate

_nJ ¼ wðtÞð1� nJ Þa: ð12Þ
The function w(t) is defined in Eqs. (7) and (11), where it

was assumed for simplicity that q = 1. Eq. (12) is elemen-
tary integrated with the initial condition nJ(0) = 0, yielding
the volume fraction nI as

n1�a
I ðtÞ � 1 ¼ �ð1� aÞmðtÞ ð13Þ

with m(t) having the form

mðtÞ ¼ w0e�b

4mk1=p

Z 4mtk1=p

0

eup � 1
� 


du ð14Þ

and

b ¼ DG0

kT
; k1=p ¼ b1=p E0

E�

� �

: ð15Þ

The normalized defect strength E* is defined as

f� ¼ 2P 0E�: ð16Þ

In the two-variant model under consideration, the rela-
tion between the average spontaneous polarization and the
volume fractions of variants reduces to

P s ¼ P 0ðnJ � nIÞ ð17Þ

and the coercive field can be approximately found from the
condition nJ = nI = 1/2, that is, at Ps = 0. Taking into ac-
count the asymptotic behaviour of the integral on the
right-hand side of Eq. (14)

Z z

exp updu ¼ z1�p exp zp

p
1þ O

1

zp

� �� �
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at z� 1, we finally obtain the following equation:

Ec

E�

� �p

¼ 1þ p � 1

b
ln

Ec

E�

� �

� 1

b
ln

w0

4m
1

gðaÞpb
E�
E0

� �� �

:

ð18Þ
It relates the coercive field with temperature and the

model parameters a, p, DG0, and E*. The function g(a) is
expressed by

gðaÞ ¼ 1

ð1� aÞ 1� 1=2ð Þ1�a
n o

:

Its value is about unity; e.g. g(1) = ln 2. Because it is
expected that the parameter b must be large, the second
term on the right-hand side of Eq. (18) can be omitted
and the temperature dependence of the coercive field takes
the form

Ec

E�
¼ 1� kT

DG0

ln
w0

4m


 �

þ ln
E�
E0

kT
DG0

1

pgðaÞ

� �� �� �1=p

:

ð19Þ
Eq. (19) yields some important conclusions on the

domain dynamics. First, the coercive field depends on both
the applied field magnitude and frequency only logarithmi-
cally. This frequency dependence is very weak in compari-
son with the corresponding single-crystal or thin-film
results given in Eqs. (2) and (3). The choice of the model
parameter a controlling the switching function in Eq. (11)
also causes only a minor effect on Ec. Second, the observed
experimentally linear dependencies of Ec on temperature in
PZT ceramics favour the model of square obstacles corre-
sponding to the case p = 1 and q = 1.
Fig. 1. Computed coercive field vs. temperature for three ceramics (PZT-
4, PZT-5A, PZT-5H) within the framework of a two-variant model. The
experimental plots of the coercive field and remanent polarization vs.
temperature from Ref. [9] are used for the model calibration.
4. Comparison with experiment

Fig. 1 presents the results of the simulations performed
within the framework of the two-variant model described
above along with the experimental data of Hooker [9] for
three ceramics of the PZT family. A common feature of
the Ec–T plots for all ceramics is the region of a nearly linear
behaviour consistent with Eq. (19) provided that one sets
p = 1. Therefore, accepting the model of square obstacles,
we obtain the following temperature dependence of Ec:

Ec

E�
¼ 1� kT

DG0

ln
w0

4m


 �

þ ln
E�
E0

kT
DG0

1

ln 2

� �� �

: ð20Þ

The parameter adjustment can be done in the linear
region by means of two quantities: the obstacle strength
E* and characteristic temperature T*:

EcðT Þ
E�
¼ 1� T

T �
; ð21Þ

where the weak logarithmic dependence of T* on T is ne-
glected. The parameters E* and T* are directly extracted
from experimental plots presented in Fig. 1, after which
the activation barrier DG0 is calculated from Eq. (20). The
results of the calculations are summarized in Table 1. The
values used for the field amplitude (see Table 1) and fre-
quency of 1 Hz correspond to the experimental conditions.

Table 1 shows the main trends in the parameter varia-
tions from hard to soft PZT. In all cases the defect strength
E* is about twice as large as the room temperature coercive
field. However, the value of E* in hard PZT-4 exceeds by
almost 2.5 times the obstacle strength in soft PZT-5 H.
The activation volume defined as

V � ¼ �
o

of
DGðf Þ ð22Þ

and characterizing variation of the activation energy with
the driving force shows the inverse trend, increasing in
the direction from hard to soft ceramics. For the model



Table 1
Parameters for obstacles in PZT ceramics extracted from Fig. 1 and
conditions of the measurements [9]

PZT-4 PZT-5A PZT-5H

E0 (MV/m) 2.5 2.0 1.25
2P0 (C/m2) 0.60 0.50 0.25
T

*
(K) 575 625 500

E
*

(MV/m) 3.1 2.5 1.45
V

*
(nm3) 4.23 (4.03) 4.93 (4.73) 6.93 (6.63)

DG0 (eV) 0.85 (0.74) 0.92 (0.80) 0.73 (0.64)
T0 (K) 9821 (8579) 10681 (9331) 8510 (7425)

Here T0 = D G0/k is the activation barrier height in kelvin and V
*

= DG0/
2E

*
P0 is the activation volume. The results of calculations are given for

w0 = 1011 and 1010 Hz (in parentheses).
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of square obstacles with p = 1 and q = 1, Eq. (22) yields
merely V* = DG0/f*. Thus, in soft PZT the domain wall
surmounts wide weak obstacles. As concerns the height
of the activation barrier DG0, this achieves a maximum va-
lue in soft PZT-5A ceramic and a minimum one in soft
PZT-5H. However, the difference between these values is
not large.

To assess the accuracy of the simplified model with only
two variants, the simulations were also carried out for a
model with six variants [10,11], corresponding to a tetrag-
onal ceramic. Within the framework of this model the
polarization reversal proceeds by two consecutive switches
of 90� domains instead of one 180� switch employed in the
previous model. The results of the simulations for PZT-4
for the same values of the parameters E* and DG0 (see
Table 1) for the velocity of 90� domain walls are illustrated
in Fig. 2. In the case of the 90� polarization reversal the
critical driving force f* is related to the normalized defect
strength E* as f* = P0E*. Interestingly, after the parameter
renormalization, the two models give practically identical
results, substantiating the efficacy of the analytical esti-
mates given above. In fact, in tetragonal ferroelectrics there
exist both 180� and 90� domain walls, and therefore two
sets of the parameters are required. In turn, rhombohedral
crystals allow for 180�, 109�, and 71� polarization switch-
ing, and domain wall dynamics must be described by three
0 100 200 300 400 500
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Fig. 2. Computed coercive field vs. temperature for PZT-4 ceramic within
the framework of two models, one with six and the other with two
variants.
parameter sets. A special situation occurs in some ceramics,
like PZT with compositions near the morphotropic phase
boundary, which admit a coexistence of the tetragonal
and rhombohedral phases and hence the transformation
systems of both phases have to be incorporated into the
model. The experimental plots appear to allow for the
parameters of only one active transformation system with
the lowest activation energy for the domain wall motion
to be identified.
5. Conclusions

The proposed constitutive model for ferroelectric ceram-
ics shows a high degree of transferability. Being calibrated
using the data for only the linear branch of Ec–T plots,
where Ec decreases with temperature, it predicts, in
agreement with experiment, an overall non-monotonic
behaviour of the coercive field, including its growth in the
low-temperature region. The prediction of the peak is the
most important result of this paper. The theoretical position
of the maximum, however, is not fully consistent with
experiment and is shifted to lower temperatures. An essen-
tial feature of the model is that it provides a simple criterion
for the transition from the thermally activated regime of
polarization switching to dissipative. According to Table
1, for typical values of the electric field magnitude of
2 MV/m, the polarization switching in PZT-4 and PZT-
5A is thermally activated. Thus, it cannot be described by
constitutive models with a linear dependence of the
switching rate on the driving force. The most interesting
situation occurs in PZT-5H. This ceramic shows a change
in the physical mechanism of the domain wall motion at
E = 1.45 MV/m, which may turn out to be lower than the
operating field in some applications. This observation shows
the limitations of micromechanical models [14,19,20] for
polarization switching in ferroelectric ceramics.
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Abstract

Representative volume elements (RVEs) have been extensively used to estimate the elastic properties of fibre-reinforced composites.
Most of them rely on the assumption of a periodic distribution of fibres which is not realistic. In order to reproduce damage phenomena,
such as matrix cracking, it is necessary for volume element to represent properly the random distribution of fibres (distance to first neigh-
bors, occurrence of clusters of fibres, etc.). Therefore, a statistical RVE (SRVE) should satisfy both mechanical and point pattern criteria.
The present work establishes the size of a SRVE for a typical carbon fibre reinforced polymer. It is concluded that the minimum size is
d = L/R = 50 (L the side of the element and R the fibre radius).
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Fibre reinforced composites; Finite element analysis; Fracture
1. Introduction

Fibre-reinforced polymeric composites are widely used
in structural applications because of their good specific
stiffness and strength. However, the use of these materials
is limited by the lack of efficient tools to predict their deg-
radation and lifetime under service loads and environment.
The inhomogeneity and anisotropy of their microstructure
leads to complex damage mechanisms (basically: fibre
breakage, matrix cracking and yielding, fibre–matrix deb-
onding and delamination).

The development of specific design tools for composites is
being pursued since the early stages of their application in
aircraft structures. Two approaches may be distinguished:
a phenomenological approach and a mechanistic approach.
Phenomenological approaches are based on the empirical
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All
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laws of mechanical behavior obtained from experimental
tests. These models require a heavy experimental back-
ground and are not general in the sense that the behavior
of a particular material and ply sequence cannot be inferred
from the behavior of a simpler configuration, that is, each
laminate requires a complete experimental characterization.
The simplest, and more extensively used, design tools
assume a complete elastic behavior of the material until a
failure criterion is satisfied. Once this happens, it may be
considered as either a complete breakage of the structural
element or a stiffness reduction by an arbitrary factor.
However, there is no agreement concerning the failure
criteria to be used in the design of composite structures [1].

On the other hand, mechanistic approaches aim to sim-
ulate the occurrence of damage on the constituent scale and
to reproduce the interaction of the different damage mech-
anisms. Moreover, the final objective of these models is
to establish the degraded mechanical properties of the
composite resulting from the damaged microstructure.
Although this is a complex and computationally expensive
task, the powerfulness of such a model as a design tool
motivates the research activity in this field. Moreover, they
rights reserved.
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can certainly contribute to clarify the physics of the
damage processes.

For a more realistic simulation of the microstructure of
these materials, a representative volume element (RVE)
may be used. Because of its ability in reproducing the real
stress and strain evolution, the simulation through a RVE
may provide the understanding of damage mechanisms
and the identification of the possible sources and scenarios,
which cause their initiation. This understanding is a need
for the proposal of macroscopical failure criteria and failure
laws. On the other hand, the simulation of a RVE can also
be employed in a two-scale method and then, for the simu-
lation of failure and fracture in real structural components.

In the analysis of the microstructure, the periodicity
hypothesis of the fibre within the composite has been tradi-
tionally employed. This hypothesis reduces the analysis of
the microstructure to the analysis of a single unit cell (the
simpler RVE) and may lead to analytical solutions.
Although these unit cells can be useful for some purposes
and can be employed successfully in two-scale methods to
reproduce macroscopical behavior [2,3], they do not reflect
the reality of composite materials, in which the fibre is ran-
domly distributed, and consequently, they are not usable to
simulate some of the complex mechanisms which take place
in long fibre reinforced polymers and which may cause
microscopic failure [4].

One of the most revealing simulations which can be per-
formed with a RVE is the mechanical analysis of the plane
which is perpendicular to the fibres in long fibre reinforced
polymers (FRPs), the transverse plane. In this plane, the
mechanical behavior is dominated by the matrix properties,
both in the elastic and in the failure regime.

Due to the complex geometries and the extended use of
laminates with multiple ply orientations, usual laminates in
structural components may have plies which work mainly
in the direction perpendicular to the fibres. Also because
of this design approach, transverse failure of composites
is normally not critical but, of course, it has to be verified
in the design process. Matrix cracking also contributes to
other degradation phenomena like in stiffness degradation
[5], damage [6,7] and fatigue [8] and are related to delami-
nation [9] and even fibre breakage [10]. Furthermore,
matrix cracking is crucial for some applications such as
hydrogen tanks and aerospatial vehicles in which this phe-
nomena must be avoided.

The simulation through RVEs of the transverse plane
can also provide useful information on other damage
agents like residual thermal stresses, the role of voids and
defects, or the influence of fibre–matrix interface and it
be applied to quantify reliability of carbon fibre reinforced
polymers (CFRPs).

The phenomena of matrix cracking has been in depth
analyzed by Asp et al. [11–14]. The main conclusions of this
analysis are that the large mismatch in the elastic properties
between usual fibres (glass or carbon fibres) and matrix
(epoxy), under these load circumstances, submits the
matrix to a triaxial stress state [11,12] and that the cracking
phenomena is closely related to the dilatational energy den-
sity [12–14] in the matrix, given by:

U v ¼
1� 2m

6E
ðr1 þ r2 þ r3Þ2 ð1Þ

where E and m are the Young’s modulus and Poisson’s ratio
of the matrix and ri are the principal stresses.

More recently, Fiedler et al. [15] have performed finite
element simulations using periodic unit cells which also
confirm the importance of the triaxial stress state in matrix
cracking of CFRPs loaded transversely and additionally
consider a parabolic criterion for its prediction.

The present work is a part of a deeper research project
whose main objective is to model the random microstruc-
ture in carbon fibre reinforced polymers and simulate the
probability of failure associated to matrix cracking. For
this purpose, the employed model must precisely reproduce
the stress maps present in the microstructure of real mate-
rials. These real material stress maps are caused by the real
distribution of the fibre within the composite and they
differ from those stress maps obtained with the periodic
models which have been classically employed [16].

This work establishes some criteria which a microstruc-
ture model (a statistical representative volume element)
must satisfy for the probabilistic simulation of matrix crack-
ing failure in long fibre reinforced polymers and according
to them, determines the critical size for the SRVE. First,
some definitions and some criteria (including both mechan-
ically and statistically based) from the scientific literature
are reviewed. The criteria which, determine the validity of
the micro-model, are then selected and analyzed in a
scale-dependent analysis. Each criterion is satisfied by a crit-
ical RVE size. The criteria which needs a larger size to be
satisfied determines the minimal size for a valid RVE.
2. Mechanical definitions and criteria for a RVE

In the mechanics and thermodynamics of solids, the def-
inition of a RVE is of paramount importance. According
to the very first definition by Hill [17] a RVE is:

‘‘a sample that (a) is structurally entirely typical of the
whole mixture on average, and (b) contains a sufficient
number of inclusions for the apparent overall moduli
to be effectively independent of the surface values of
traction and displacement, so long as these values are
‘‘macroscopically uniform’’. That is, they fluctuate
about a mean with a wavelength small compared with
the dimensions of the sample, and the effects of such
fluctuations become insignificant within a few wave-
lengths of the surface. The contributions of this surface
layer to any average can be made negligible by taking
the sample large enough’’.

Although the RVE concept has been used widely in the-
oretical solid mechanics, for which an infinitessimal RVE
is of practical usefulness in the developments of theories
and formulae, in computational mechanics a finite size
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RVE is required. Then, according to the RVE concept, it
is necessary to define some quantitative criteria that a
sample of the material must satisfy to be considered as
representative. The interest is to determine the minimal
element size that satisfies the criteria in order to reduce
the computation time. Usually these criteria are closely
related to the purpose of the simulation in which the
RVE is intended to be used. In consequence, there is a
large diversity of criteria used by the different authors that
have worked in this field. Additionally, the size of the
RVE used by one author may not satisfy the criteria con-
sidered by another author. This may lead to some confu-
sion when the decision about the RVE size is taken.

Some analysis only require the RVE to have the same
effective mechanical properties than the bulk material.
The methodologies used were variational principles [18],
periodic boundary conditions for the RVE [19], homogeni-
zation theory [20] and some improved the accuracy of a
RVE of smaller size using Monte Carlo simulation [21].

Another criteria which appears in the scientific literature
is the Hill condition [22]. According to this, a valid RVE
must satisfy the following equation:

hr : ei ¼ hri : hei ð2Þ
where Æ Æ æ is the mean operator, r the stress tensor and e the
strain tensor. This condition has been formerly analyzed
[23] and employed for the determination of the critical size
of the RVE analyzing both types of boundary conditions:
imposed forces and imposed displacements [24,25].

Some other works consider statistical evaluation of
mechanical properties for the determination of the critical
size of the RVE, like computing confidence intervals for
the effective properties [26].

3. Random geometry criteria for the RVE size

A quite different statistical approach is to analyze the
point pattern formed by the distribution of fibres or inclu-
sions centers in the matrix, that is to focus on the represen-
tativeness of the random geometry. The statistical functions
which, describe these point patterns, are well established.
For the long-range interaction, Ripley’s K-function (K(r),
or second-order intensity function) and the pair distribu-
tion function (g(r)) are useful [27]. Ripley’s K-function
can be defined as the number of further points expected
to lie within a radial distance r of an arbitrary point and
divided by the number of points per unit area. Ripley’s
estimator [28] seems to be the most appropriate [29]:

KðrÞ ¼ A

N 2

X

N

k¼1

w�1
k IKðrÞ ð3Þ

where N is the number of points in the observation area A,
IK(r) is the number of points in the circle with center at one
of the points and radius r and wk is the proportion of the
circumference contained within the sampling area A to
the whole circumference with radius r. The second-order
intensity function of a complete random pattern (CSR or
Poisson set), KP(r), in a two-dimensional dominium is gi-
ven by [30,31]:

KPðrÞ ¼ pr2 r > 0 ð4Þ
The pair distribution function g(r) describes the probability
of finding an inclusion whose center lies in an infinitesimal
circular region of radius dr about the point r, provided that
the coordinate system is located at the center of a second
inclusion. The following relation between g(r) and K(r)
can be found [32]:

gðrÞ ¼ 1

2pr
dKðrÞ

dr
ð5Þ

Although g(r) and K(r) are related, they provide quite dif-
ferent physical information. K(r) can distinguish between
different patterns and detect regularities, whereas the pair
distribution function g(r) describes the occurrence inten-
sity of inter-inclusion distances. In this later function a
local maxima indicates the most frequent distances be-
tween points and a local minima the least frequent ones
in the pattern. The pair distribution function can be used
for the statistical description of a composite sample, in-
stead of the two-point probability function when the
material can be considered ergodic and statistically
isotropic.

Some authors have defined the RVE size from the anal-
ysis of the point patterns described by the geometrical dis-
tribution of the fibres in the matrix. Povirk [33] proposed a
method to consider the inherent randomness in heteroge-
neous material within a usual homogenization technique,
which deals with periodic materials. The main idea of this
method is to find a periodic RVE with random position of
the reinforcement but which is optimally representative of
the material. The comparison between the real material
and the objective RVE is done by computing the power
spectral density (which can be interpreted as the probabil-
ity density function in the frequency domain). Given the
length of the RVE and the number of reinforcements con-
tained therein, an optimal RVE is found by solving a min-
imization problem with an objective function which
compares the power spectral density of the material and
the one corresponding to the RVE. An optimal for the
RVE was found by minimizing the second-order intensity
function K(r) [34].

The second-order intensity function, K(r), and the pair
distribution function, g(r), are useful in describing long-
range interactions between points. Another interesting
measure of how inclusions or fibres are distributed within
the material is given by the nearest-neighbor distribution

which can be obtained easily as the probability distribution
function of the smallest distance to a fibre for each fibre.
Analogously, second or third-nearest-neighbor distribu-
tions may be computed. This nearest neighbor functions
focus on short-range interactions between points.

Some researchers have used the elastic properties
together with the nearest-neighbor distance distribution
to define the critical size of a RVE [35].
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The works reviewed follow either mechanical or statis-
tical criteria but, so far, to the authors’ knowledge, it has
not been published any work which takes into account
both groups of criteria in depth: some were only based
on the Hill condition, some others analyzed only the fibre
position and none considered the statistics and the distri-
bution functions of the stress and strain fields. Moreover,
the works concerned with the size of the RVE consider
criterium assuming only the application of the RVE for
the simulation of the elastic properties, although some
of them use the RVE for damage and fracture [36]
simulation.

Another important conclusion when reviewing the
works which try to determine the finite size of the
RVE is that different criterium lead to different sizes
and, since no comparative study for determining which
criteria is the most critical has been performed, no clear
conclusion about which criteria have to be used is
available.

For these reasons, a scale-dependent comparative study
of the different criteria which characterize somehow the
finite RVE size is performed in the present work. More-
over, these criteria are analyzed with the aim of defining
a statistical representative volume element (SRVE). This
SRVE has to reproduce the same statistics related to the
stress and strain fields than the whole material and also
those statistics related to the fibre distribution. This way,
this SRVE will be able to reproduce the random failure
behavior of the composite.
4. Methodology

For the determination of the finite size of the
statistical representative volume element, models of
increasing size are constructed and the evolution of some
variables or functions versus the size of the SRVE are
analyzed.

First, let us define the dimensionless variable d, which
relates the side length of the SRVE L and the fibre radius
R:

d ¼ L
R

ð6Þ

From the literature review values of d between 4 and 100
are chosen. The upper limit for the analysis is chosen from
both preexisting literature and trial-error process. The
models are transformed into finite element models to which
boundary conditions are applied using the embedded cell
approach (ECA) [37] and then, they are solved for two dif-
ferent loadcases: imposed displacement and imposed force.
In the analysis, the following hypotheses are considered:

� A criteria is only satisfied by a SRVE candidate when all
the bigger SRVE candidates satisfy this criteria.
� The biggest SRVE candidate is considered to be an

SRVE, and so to have the same behavior of that of
the material.
The variables and functions which are considered as cri-
teria for the determination of the size of the SRVE are the
following: fibre content, effective properties, Hill condition,
main statistics of stress and strain fields, probability density
functions of stress and strain in the matrix, distance statis-
tical distributions (Ripley’s K-function and pair distribu-
tion function). The dependency of these variables and
functions on the SRVE size (d) will be analyzed to deter-
mine for which size each of them is satisfied. Consequently,
the criterion which is satisfied for a larger d, will determine
the required minimal size for a valid SRVE.
4.1. Material

The present analysis is performed for a typical carbon fibre
reinforced polymer (CFRP), whose main properties are set to
be: Ef = 23,000 MPa, Em = 4000 MPa, mf = 0.22, mm = 0.34,
vf = 0.5. Where E is the Young Modulus, m the Poisson’s
ratio, vf the fibre content and the subscripts ‘f’ and ‘m’ stand
for the fibre and the matrix, respectively.

4.2. Relation between number of fibres and fibre content

The material is considered to be ergodic and statistically
isotropic when considering the stress and strain fields and
the fibre position as random fields. The position of the
fibres is assumed to satisfy the conditions of a hard-core
point field or Mathern’s model [30]. That means that every
point in the domain has the same probability to contain a
fibre and fibres cannot overlap. The number of fibres is
drawn from a Poisson distribution and, since complete spa-
tial randomness (CSR) is assumed, the fibre position is
drawn from an homogeneous distribution. The Poisson
parameter k is obtained from a fixed fibre volume vf,
through the following expression:

k ¼ hni
A

ð7Þ

where Ænæ is the expected number of fibres which lay in the
considered dominium and A the area of that dominium. On
the other hand, the fibre volume vf is the ratio between the
total area which is occupied by fibres and the total area of
the dominium under consideration [16]:

k ¼ hni
A
¼ vf

af � A � at

½a2
1 þ a2

2 þ a2
3� ð8Þ

where:

a1 ¼ ðL� dÞ2 ð9Þ
a2 ¼ 4 � ðd � nÞ � ðL� dÞ ð10Þ
a3 ¼ 4 � ðd � nÞ2 ð11Þ
at ¼ a1 þ a2 þ a3 ¼ ðLþ d � 2nÞ2 ð12Þ

and L is the side length of the SRVE, d is the fibre diame-
tre, and n is a small value set to avoid troubles in the finite
element meshing process.



Fig. 1. Illustration of the embedded cell approach and FE mesh in one of the RVE candidate models.
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4.3. Random generation of fibre positions

For the generation of the position of the fibres in each
model the usual Random Sequential Absorption Algo-
rithm [30] is used: the position of fibres is randomly drawn
from a uniform distribution; then this location is accepted
if it produces no overlaps, if not it is rejected.

4.4. Finite element modeling

The embedded cell approach [37] is applied by surround-
ing the RVE cell by an homogeneous material whose elastic
constants are computed through the Halpin–Tsai equa-
tions [38], as schematized in Fig. 1. Each model is meshed
with triangular elements, using MSC MARC’s three-node
plain strain element ]6, as shown in Fig. 1. Although the
Fig. 2. Number of nodes and number of elements of the SRVE
candidates.
stress gradient in the fibres is much smaller than in the
matrix, the core region is required to have a regular mesh
to allow the estimation of the stress and strain statistics
without element-size correction.

The boundary conditions are then applied to the bound-
ary of this homogeneous material. Since an important
requirement for the RVE is the equivalency of boundary
conditions (displacement and force) two load cases – one
with constant forces and one with constants displacements
– are applied, as shown in Fig. 1.

The main data relative to the finite element models is
shown in Fig. 2. The number of nodes (and the number
of elements) is a power function of d with exponent about
1.84 (about 1.85 for the number of elements). This fact
shows the importance of defining the minimal usable size
of the SRVE.

5. Effective properties

Following Hill’s very first definition of the RVE, a valid
RVE has to be typical of the whole material in average.
That means that the effective properties of the RVE are
the same of those of the material. Although the elastic
properties of a unidirectional lamina can be modelled as
a linear function of the fibre content [38], in a microscopic
scale they can show some deviation from this relation.
Consequently, an analysis of scale-dependency of the elas-
tic properties is performed in this section.

The elastic constants are computed for each SRVE can-
didate, using both type of boundary conditions: displace-
ments and forces. Results, which are nearly proportional
to those of volume fraction, are shown in Fig. 3. Small
variations of the elastic constant are obtained for d > 30.
If the variation with respect to the immediately smaller
SRVE candidate is computed the same conclusion is
obtained: from d = 30 variations lower than 10% are
obtained when applying displacements and forces.



Fig. 3. Comparison of computed E22 with theoretical formulae.
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The values obtained for E22 can also be compared with
the estimations of different formulae, like the rule of mix-
tures and the Halpin–Tsai expressions [38]. The results of
this comparison are shown in Fig. 3. As a verification of
the FE modeling and computational tasks, it can be
observed that the computed effective modulus lies between
the rule of mixtures (upper limit) and the inverse rule of
mixtures (lower limit) and it is close to the Halpin–Tsai
equations.

6. Hill condition

The so-called Hill condition of Eq. (2) should be satis-
fied by any RVE. To verify the satisfaction of this criteria,
both sides of equality (2) have been computed for each
SRVE candidate. Results (plotted in Fig. 4) show as the
bigger the SRVE size is, the closer are the measures of
the energy. Fig. 4 also shows the relative difference between
energy bounds is plotted. In the same figure, a tendency
line with a exponential fit is shown. It can be verified that
for d > 15 the relative difference is lower than 5%, which
can be considered a small enough difference.
Fig. 4. Energy bounds for the RVE candidates: va
7. Convergence of stress and strain fields

In a probabilistic mechanical analysis, mechanical prop-
erties as seen as random variables, which can be fitted with
a probability density function, characterized by some sta-
tistics (for instance, the mean and the variance fully charac-
terize a normal distribution). According to the criterion
established by Asp and co-workers for matrix cracking
[14], each polymer has a constant critical value of the dila-
tational energy density Uv of Eq. (1), U crit

v . When the value
of Uv at a point in the matrix (which can be computed as a
function of its elastic constants and the principal stresses)
reaches U crit

v , then a crack nucleates. The stress and strain
tensor at any point in a geometrically random composite
is a random tensor and consequently, a SRVE must repro-
duce this randomness. In this section the convergence of
the mean, the variance and the coefficient of variation of
the stress and strain fields is analyzed.

In some of the works reviewed [24,25], the requirement
of obtaining the same effective results using the different
types of boundary conditions is pointed out. For these rea-
son, additionally the analysis of the statistics is performed
for both cases of boundary conditions, displacements and
forces.

7.1. Mean of stress and strain fields

Fig. 5 shows the evolution of the mean strain and the
mean stress in each constituent and in the composite when
the size of the SRVE increases. Since the fibre content in
each candidate is a random variable, these plots have to
be seen as variations around a tendency. Moreover, since
the volume fraction is not constant within the SRVE can-
didates, the mean strain may tend to converge slowly. Nev-
ertheless, this is a normal situation, since the SRVE has to
take into account the fibre content variation, which causes
variation in the elastic constants. Since the SRVE model
with d = 100 is considered to have the same statistics than
the bulk material, the following hypotheses can be tested
[39]:
lue of each bound (left) and difference (right).



Fig. 5. Mean strain (left) and mean stress (right) for displacement boundary condition. Analogous results are obtained for force boundary condition.
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H 0 : l eðdÞ22

� �

¼ l eð100Þ
22

� �

H 1 : l eðdÞ22

� �

6¼ l eð100Þ
22

� � ð13Þ

where the superscripts 100 and d stand for the mean in the
model d = 100 and any other model with size d, respec-
tively. The hypothesis test is used here for detecting when
the mean obtained from a SRVE candidate model can be
considered to be equal to the mean of the whole composite
(computed through the model with d = 100).

A hypothesis test with a = 1% (when performing a
hypotheses test a is the error of rejecting the null hypothesis
when it is true) has been performed for l(e22) in the com-
posite, in the fibre and in the matrix. Fig. 6 shows the
results of this test for each d. These results show how the
Fig. 6. Hypothesis test for: the mean of e22 (left) and the mean of r22 (right)
boundary condition.
null hypothesis can be accepted for d P 15, since from this
value and for all the considered cases jz0j � z > 0 and, con-
sequently, H0 is accepted for d P 15.

Analogously, the following hypothesis related to the
mean of r22 can be tested:

H 0 : l rðdÞ22

� �

¼ l rð100Þ
22

� �

H 1 : l rðdÞ22

� �

6¼ l rð100Þ
22

� � ð14Þ

with the superscripts having the same meaning than in the
former test. Again, the hypothesis test for l(r22) in the com-
posite, in the matrix and in the fibre has been performed and
results plotted in Fig. 6. Following the same criteria that was
used for l(e22), in this case H0 can be accepted for d P 10.
for displacement boundary condition. Same results are obtained for force
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7.2. Variance of stress and strain fields

Fig. 7 shows the evolution of the variances of e22 and
r22.

The variance is a useful statistic to determine if two sam-
ples come from the same population [40]. That means, the
variance of each SRVE candidate and the variance of the
model with d = 100 can be compared using an appropriate
hypotheses test [39]:

H 0 : r2 eðdÞ22

� �

¼ r2 eð100Þ
22

� �

H 1 : r2 eðdÞ22

� �

6¼ r2 eð100Þ
22

� � ð15Þ

The analogous hypothesis regarding the variance of r22 can
also be written:
δ

Fig. 7. Variance of: the strain (left) and the stress (right) in the composite and i
are obtained for force boundary condition.

Fig. 8. Hypothesis test for: r2(e22) (left) and r2(r22) (right) for displacement bo
H 0 : r2 rðdÞ22

� �

¼ r2 rð100Þ
22

� �

H 1 : r2 rðdÞ22

� �

6¼ r2 rð100Þ
22

� � ð16Þ

In Fig. 8 the results of the test for the variance of e22 and
r22 have been plotted, for a significance of 99%. These fig-
ures show that H0 can be accepted for d P 25, since from
this SRVE size a positive value of F0 � F is obtained.

7.3. Coefficient of variation of stress and strain fields

Another useful statistic to analyze he variation within a
sample is the coefficient of variation q, defined as:

q ¼ r
l

ð17Þ
δ

n each constituent for displacement boundary condition. Analogous results

undary condition. Same results are obtained for force boundary condition.



δ δ

Fig. 9. Coefficient of variation of: the strain (left) and the stress (right) in the composite and in each constituent for displacement boundary condition.
Same results are obtained for force boundary condition.
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Fig. 10. QQ-plots of e22 in the matrix for d = 4, 8, 20, 30, 50 and 75 (left to right, top to bottom).
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Since the mean value of the stress and strain is allowed to
have some variation, the coefficient of variation can be
used to analyze the standard deviation independently of
the mean. The plots of the coefficient of variation of r22

and e22 for the fibre, the matrix and the composite for each
SRVE candidate are shown in Fig. 9.

If the biggest SRVE candidate (d = 100) is considered to
have the same statistics of the whole population, the error
can be computed with respect to the value obtained for this
SRVE. Results show that the relative error is lower than
10% for d P 50.

8. Probability density functions of stress and strain fields in

the matrix

Most of the failure criteria for the composite transverse
direction consider that the failure is caused by cracks in the
matrix [13,41]. One of the objectives of this work is to find
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Fig. 11. QQ-plots of r22 in the matrix for d = 4, 8,
probability distribution functions for the failure in the
transverse direction. For this reason, when trying to
develop a statistical representative volume element, the
stress and strain probability distribution functions in the
matrix have to be analyzed.

The probability distribution function for e22 in the
matrix is obtained for all the SRVE candidates. For
small SRVE sizes the distributions seem to be nearly
symmetric, but from d = 25 this tendency disappears
and distributions have a right tail longer than the left
tail. One should note the importance of well reproducing
the distributions tails, since the failure of the composite
will be related to the values which are in these tails. It
is important to notice, that a random model of the com-
posite will reproduce in a more realistic way these tails
than classical periodic models do [16]. This fact provides
random models of the capacity of determining the failure
of the composite more accurately.
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The same results are obtained for the probability density
function of r22 in the matrix.

The similitude between two probability distributions can
be observed with a QQ-plot. In this plot, if the distributions
are equivalent the plot shows a line with slope 1. Fig. 10
shows QQ-plots for e22 in the matrix and Fig. 11 shows
QQ-plots for r22 in the matrix. From these figures, the dis-
tribution function obtained in each SRVE candidate is
compared with the distribution function of the model with
d = 100.

From all these plots it can be considered that the prob-
ability distribution of e22 in the matrix for the model d = 20
is equivalent to that corresponding to the model d = 100.
Regarding r22 the analogous conclusion can be derived
for d = 25.
Fig. 12. Second-order intensity function and pair d
9. Distance distributions

The clustering or homogeneity of fibre (particle) distri-
bution may affect strongly the damage behavior of a com-
posite [42]. Moreover, the random distribution of fibres
within the composite gives place to different statistical
stress and strain distributions than an ideal periodical dis-
tribution of fibres [16]. For this reason, the SRVE has to
represent the real statistical distance distribution of the
fibres in the bulk material. As described in Section 2, a use-
ful way to analyze inclusions or fibres within a matrix is to
use the second-order intensity function and the pair distri-
bution function. In the following, these functions, together
with the nearest neighbor distance functions, for the differ-
ent SRVE candidates are analyzed.
istribution function for the SRVE candidates.



Fig. 13. Neighbor distance functions for d = 10, 20, 40, 50, 75, 100.
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9.1. Second-order intensity function

The second-order intensity function K(r) (Eq. (3)) can be
seen as the expected number of fibres to be found inside a
circle of radius r, divided by the Poisson parameter, k. For
the SRVE candidates corresponding to d = 4 to d = 8, K(r)
is not computable with the estimator of Eq. (3). Fig. 12
shows the second-order intensity function for d = 15–25,
d = 30–50, and d = 60–100. Besides that, this figure
includes a plot of K(r) corresponding to a random pattern
(that is, a Poisson process). Results show that when d
grows K(r) tends to that of the random process.

It is also important to notice that K(r) tends to be lin-
ear. That means, from a certain value of r the expected
number of fibres to be found is proportional to the sam-
pling area.

9.2. Pair distribution function

Recalling Eq. (5), the pair distribution function is a
function of the derivative of K(r), and consequently,
can be easily computed by numerical differentiation.
Fig. 12 shows the estimated pair distribution function
for each SRVE candidate. The plots in Fig. 12 also
show this function for a Poisson process (for which
g(r) = 1).

The employed estimator of K(r) counts the number of
fibres which are within a circle of radius r with center in
a fibre. Since all the sampling points are fibre centers the
derivative of K(r) is overestimated for the lower values of
r. For this reason most of the plots show peaks for the
lower values of r.

For d = 8, d = 10 and d = 15, g(r) does not converge to
any constant value since the number of fibres in these
models is not large enough. For d = 20 the pair distribution
function shows large fluctuations around a constant value.
For d = 25 and d = 30 g(r), seem to converge but for a
higher (in the case of d = 25) and for a lower value (for
d = 30) to that of a CSR pattern. For the SRVE candidates
with d P 40 it can be considered that g(r) is equivalent to a
Poisson process.
9.3. Neighbor distances

As described before, nearest neighbor distances provide
information about the short-range interaction between par-
ticles. It is important for the SRVE to reproduce the short-
range interaction between fibres of the bulk composite
because this may have strong influence in the failure prop-
erties of the material. In Fig. 13, plots for the first, second
and third nearest neighbor probability distribution func-
tion are given. Those plots corresponding to small values
of d (d = 4,6,8) show some peaks which may lead to the
wrong conclusion of presence of some regularity. However,
these peaks are due to the small number of fibres present in
those models, more than to regularity. Those plots corre-
sponding to d = 10, 15, 20, 25 and 30 show nearest neigh-
bor distributions which are still not smooth enough. For
d P 40 the nearest neighbor functions show typical shapes
of random point patterns.

10. Concluding remarks

This paper has reviewed the criteria which can be used
to define the minimal required size for a SRVE. The SRVE
defined this way reproduces the mechanical and the statis-
tical behavior of the material. The criteria which have been
analyzed are: the effective properties, the Hill condition, the
mean and the variance of the stress and strain components
in the fibre, the matrix and the composite, the probability
density function of the stress and strain components in
the matrix and the typical inter-fibre distance distributions
(second-order intensity function or Riley’s K-function, pair
distribution function and nearest neighbor distances).

Each of these criteria has a minimum model size (d)
which satisfies it and, consequently, the largest of these d
values defines the minimal size for a valid statistical repre-
sentative volume element. Table 1 summarizes the results
obtained for each criteria.

According to the obtained results, the most demanding
criteria are the coefficient of variation (for which d P 50)
and the statistical functions of the distances between fibres
(for which d P 40). Then, for the analyzed material, a



Table 1
Summary of analyzed criteria and results

Criteria Description Result

Effective properties Percentual difference lower than 10% d P 30

Hill condition Difference between energy bounds
lower than 5%

d P 15

Hypothesis test for the mean d P 15
Strain field Hypothesis test for the variance d P 25

Coefficient of correlation
Percentual difference

d P 50

Hypothesis test for the mean d P 10
Stress field Hypothesis test for the variance d P 25

Coefficient of correlation
Percentual difference

d P 50

Strain in matrix pdf Similarity of probability density
functions

d P 30

Stress in matrix pdf Similarity of probability density
functions

d P 25

Distance distributions Comparison with Poisson process d P 40
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carbon fibre reinforced epoxy, the minimal size of a SRVE
is d = 50. This result is valid for other composite materials
having similar mismatch. The most demanding criteria
should be computed again for materials with sensibly dif-
ferent values of the contrast.

However, it is important to notice that the criteria that
the RVE or SRVE must satisfy are defined in terms of
the application. The simulation of the mean value of the
effective properties may require only the analysis of
the effective properties themselves and the Hill condition;
the probabilistic simulation of these effective properties
may require, additionally, the analysis of the main statistics
of stress and strain; the probabilistic simulation of the elas-
tic failure requires additionally the analysis of the probabil-
ity density function of stress and strain; and the simulation
of non-linear phenomena, probabilistic damage and effects
of clustering, all of the above criteria and the analysis of
the statistical functions which describe the inter-fibre dis-
tance (K(r), g(r) and the nearest neighbor distances).
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The present work has been partially funded by the
Spanish Government under research project MAT2003-
09768-C03-001. The first author express gratitude to the
University of Girona for research Grant BRAE00/02.

References

[1] Soden P, Hinton MJ, Kaddour AS. A comparison of the predictive
capabilities of current failure theories for composite laminates.
Compos Sci Technol 1998;58(7):1225–54.
[2] Car E, Zalamea F, Oller S, Miquel J, Oñate E. Numerical simulation
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Abstract

A recently developed multiscale, multifield model is used to study the elastic response of a fiber-reinforced polymer composite material
under different loading conditions. The multifield model is based on the theory of microstructured continua, and allows the introduction
of microstructural variables (in this case the local microfiber orientation) within a standard continuum model. The numerical solution is
implemented in a finite element approach. By simulated loading tests on a model system, we show that the multifield model goes well
beyond the conventional anisotropic Cauchy solution, and can effectively incorporate the dependence of the elastic response on (i) an
internal length scale, representing the actual fiber length, and (ii) the local fiber orientation.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recent years have witnessed an increasing interest in the
derivation of macroscopic mechanical properties of
heterogeneous materials by multiscale and multilevel com-
putational methods. Indeed, the demand for high-perfor-
mance structural materials in several fields of engineering
and technology has spurred research in the field of com-
plex, composite materials, such as polyphase metallic alloy
systems, polymer blends, polycrystalline, porous or tex-
tured media, fiber–matrix composites, and biocomposite
materials [1,2]. In all such cases the improved materials
properties are dictated by a complex internal microstruc-
ture, going beyond the elastic and mechanical properties
of the bare components. The ability to design such materi-
als and to derive their macroscopic properties relies, in
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All
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turn, on the ability to take into account the (possibly
evolving) internal structure, size, shape, and spatial distri-
bution of the microstructural constituents which can span
several orders of magnitude in length, starting from the
submicrometer scale. For example, the combined effect of
thermal residual stresses and fiber packing on deformation
of metal–matrix composites was studied in direct numerical
simulations encompassing a huge number of degrees of
freedom [3]. The role of local stresses can be so important,
for example in active-fiber composites [4], to require a very
fine meshing of the whole microstructure, in order to
describe explicitly the fully three-dimensional structure of
the fibers embedded in the matrix, thereby leading to nearly
intractable computational problems.

In order to avoid a direct, ‘‘brute force’’ discretization of
the microstructure, several homogenization methods have
been introduced to deal with such a multiscale phenomenol-
ogy (for a review, see Ref. [2]), starting from the early effec-
tive-medium approximation of Eshelby [5], to the
variational bounding methods [6], to asymptotic homogeni-
zation [7]. While such methods, based on the standard Cau-
chy continua, have been quite successful in describing the
rights reserved.
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Fig. 1. Schematic of the module. The fiber is represented by the shaded
area of size dl. The embedding volume, or block, of size wt, is the smallest
unit explicitly represented by its center of mass. Each module contains
four blocks and five bonds, and fills the entire space by periodic
translation. The chosen arrangement for the five linear-elastic bonds
corresponds to an orthotropic material.
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global response of nonlinear composite materials with
nearly periodic microstructures, as well as random poly-
crystalline materials [8], two major disadvantages of such
‘‘conventional’’ homogenization methods must be high-
lighted [9]. First, they cannot predict the effect of the size,
shape, and orientation of the heterogeneities, since they deal
with only the volume fraction and, in some cases, the mor-
phology of the heterophase distribution. Second, they con-
strain any microscopic feature to be homothetic to the
macroscopic deformation, which is likely to be inappropri-
ate in critical regions of high gradients, e.g., in the vicinity of
a macroscopic discontinuity such as a joint or a hole, or
close to the point of application of a localized load.

Several models have tried to overcome such difficulties
by introducing generalized continuum descriptions, e.g.,
Cosserat, couple stress, strain gradient, or nonlocal mod-
els [9–14]. In the present work we use a recently developed
multiscale simulation approach [13,16] based on the the-
ory of microstructured continua [17] to describe the distri-
bution of microscopic stresses in a fiber-composite
material, thereby providing a comparatively more accu-
rate description of the microstructure with respect to con-
ventional homogenization, and moreover at a reduced
computational cost. For this purpose, we make use of a
version of our multifield model focusing on the essential
ingredient of local rotations, representing the change in
orientation of the fibers in each volume element by means
of a properly defined microstructural field [13]. The func-
tion of such an additional field is effectively to smear the
microscopic heterogeneities (fibers) in the macroscopic
continuum, allowing at the same time the introduction
of a material length scale (the size of the fibers with
respect to the leading dimension of the macroscopic sys-
tem, as well as their orientation), besides the fiber density
and aspect ratio already present in the conventional Cau-
chy continuum.

The paper is organized as follows. In Section 2 we give a
brief summary of our multifield methodology (which is
deployed in practice by a highly modular, custom-devel-
oped, finite element (FE) code, MUSCAFE, written in
object-oriented C++ [16]). In Section 3 we present some
results of microstructural modeling for a macroscopic
truss, under simple traction loading, shear loading, and
four-point bending. Without loss of generality, we make
reference to a specific class of polymer-matrix fiber com-
posites, such as epoxy/glass, to show that the model is able
to capture the features of the elastic energy and micro-
scopic stress distribution, as a function of fiber size and ori-
entation. Finally, in Section 4 we draw some conclusions
from our work.

2. Computational model

In the following we give a brief account of our multifield
computational approach, already presented in great details
in Refs. [15,16]. With respect to the formulation presented
in those papers, in which the coupling between two scalar
microstructural fields was studied as an example, here we
will focus on a single microstructural field, representing
the local orientation of the fibers dispersed in the matrix.

The continuum model of a generalized homogeneous
material (macromodel) is built up based on the kinematics
of a discrete lattice model (micromodel) of the kind pro-
posed in Refs. [13,15]. At the microscopic level a composite
material is characterized by a given density and distribu-
tion of fibers much stiffer than the matrix in which they
are embedded. If the material microstructure is periodic,
or at least statistically homogeneous, a representative vol-
ume element (from here on referred as a module) can be
defined. In the present work, the module describes the
fibers arranged in a regular lattice, connected in pairs by
linear elastic bonds (Fig. 1). For simplicity, we assumed a
rhombic texture with bonds lying parallel to the Cartesian
directions. Note that, since the fibers must overlap to be
connected, such an arrangement will limit the geometrical
density of the fibers to relatively small volume fractions
for a given aspect ratio. However, this is not a limitation
of our approach, since, with an appropriate geometry of
the module, any value of density and texture can be
simulated.

The procedure governing the scale transition between
the micromodel and the macromodel is based on two key
assumptions:

(i) macroscopic homogeneous deformations are imposed
to the module;

(ii) the volume average of the strain energy of the module
is posed equal to the strain energy density on the
neighborhood of the macromodel.

Such assumptions are standard in the classic molecular
theory of elasticity (e.g., Ref. [18]). In particular, the latter
corresponds to the energy-averaging theorem known in the
literature as the Hill–Mandel condition [19]. In such a
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manner a formula for the stored energy function (or elastic
potential energy) of the macromodel can be written in
terms of the continuum kinematical fields, and the macro-
scopic stress measures can be derived [15].

Briefly, the linearized strain measures of the module are:
(1) the relative displacement between two fibers A and B
placed at the positions a and b, represented by the vector
ui = ua � ub + Wa(pa � a) �Wb(pb � b), where Wa (Wb) is
the rotation of fiber A (B) and pa (pb) is a point on A (B)
of the bond connecting the two fibers; (2) the relative rota-
tion between A and B, represented by the skew-symmetric
tensor Wa �Wb. In this framework, the module undergoes
a homogeneous deformation if:

ua ¼ uðxÞ þ ruðxÞ ½a� x�
W a ¼WðxÞ þ rWðxÞ ½a� x�

ð1Þ

where u and W are regular fields defined on the current
configuration of the continuum, and x is the center of the
continuum neighborhood; u is the standard displacement
vector and W is a skew-symmetric tensor describing the lo-
cal rotation of the fibers.

The generalized forces associated with the above kine-
matical quantities are the force and the couple between A
and B, represented by the vector tab and the skew-
symmetric tensor Cab, respectively [13]. The strain energy
of a module of volume V is

e ¼ 1

V
1

2

X

ab

tab � ½ui �Wbðpa � pbÞ� þ 1

2
Cab � ðW a �WbÞ

� �

ð2Þ

Then, we substitute Eq. (1) for the unknown fields, and the
linear-elastic laws of Ref. [15] for tab and Cab. Finally, by
using the energy equivalence principle (ii) above, obtain
the energy density of the continuum as

E ¼ 1

2
S � ðru�WÞ þ 1

2
S � rW

� �

ð3Þ

where

S ¼ Aðru�WÞ þ BrW

S ¼ Cðru�WÞ þDrW
ð4Þ

A, B, C, and D are constitutive tensors of order four, five,
five, and six, respectively. The quantities S and S are gen-
eralized stress fields, the former being a generalization of
the ordinary Cauchy stress tensor, and the latter the cou-
ple-stress tensor.

Eq. (4) is the constitutive equation for the multifield
continuum model. The components of A to D depend on
the elastic constants of the matrix/fibers and, moreover,
on the shape and arrangement of the fibers and bonds in
the module, as depicted in Fig. 1. Moreover, the compo-
nents of B to D depend also on the fiber size. It can be
shown [13] that C = BT and that, moreover, the tensor B
is null by the requirement of centrosymmetry. In practice,
with regard to an isotropic matrix and the module arrange-
ment of Fig. 1, it is found that the only nonzero matrix ele-
ments of A and D are:

A1111 ¼ Elq A2222 ¼ 2E

A1212 ¼ 2El A2121 ¼ El
q
2

D121121 ¼ E
l
2
þ q2

16

� �

w2 D122122 ¼ E
1

4
þ 2l

q3

� �

w2

ð5Þ

where l = G/E and q = w/t is the aspect ratio, with w the
length and t the thickness of the block embedding the fiber
(see Fig. 1). The local fiber orientation within each module
is specified by a rotation of the A and D tensors by an angle
u. Note that in the elements of the D tensor the square of
the length parameter w appears explicitly, thereby endow-
ing the multifield model with an intrinsic length-scale
dependence, while the elements of A, as pointed out above,
have no such dependence.

By setting D = 0 and W = skw($u) in Eqs. (3) and (4),
the so-called ‘‘anisotropic Cauchy’’ (a-C) model is obtained
[13]. Such a model can, indeed, describe the fiber orienta-
tion but the local deformation would be always homothetic
to the global deformation, i.e., no local rotation of the
fibers can be elucidated in the a-C model.

E and G are the effective elastic moduli of the bonds con-
necting the fibers. In general, they should represent a
proper average of the matrix and fiber elastic moduli, even-
tually modified by the interfacial adhesion between matrix
and fiber. A generally accepted formula for the lower
bound to such an average is E ¼ EfEm=ðEfvm þ EmvfÞ
(see, e.g., Ref. [20]). However, since we are considering
materials with Ef� Em and, moreover, our choice for the
module geometry is limited to relatively small fiber density,
vf 6 0.05, we can safely retain E @ Em and G @ Gm.

3. Results

We will now employ the MUSCAFE code [16], which
translates the model of Section 2 into a highly efficient,
two-dimensional FE computational approach, to obtain
some results on the elastic properties of model fiber-
reinforced composites. We assume infinitely rigid, brittle
fibers embedded in a ductile, tough, elastic matrix. There-
fore, as already mentioned, the only numerical parameters
appearing in the model will be the elastic moduli of the
matrix, E and G, which will be, however, effectively coupled
by the presence of the fibers, under the different loading
conditions. A typical composite material to which such
modeling applies could be a thermoset polymer matrix,
such as epoxy resin, reinforced with short fibers, e.g., glass
[21]. Such a kind of composites is widely adopted in a vari-
ety of technological applications, e.g., appliance frames
and covers, packaging, impact shielding, and so on, with
fiber volume proportions usually ranging from 1% to
50%. However, in the purely elastic regime, and up to the
limit of an ideal adhesion between matrix and fibers, the
same microstructural modeling may also apply to a brittle
matrix, e.g., ceramic matrix composites.
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In particular, thermoset polymers have covalent bonds
linking the polymer chains in three dimensions. These links
prevent the chains from sliding past one another resulting
in a higher modulus and improved creep resistance. The
polymer chains in thermosets are below their glass transi-
tion point at room temperature, making the material
glassy. Therefore, the matrix can be assumed as elastically
isotropic, i.e., characterized by the two single moduli E and
G. As a reference material we will adopt the experimental
values of E = 3.5 GPa and G/E = 0.4, common to epoxy
and polyester. Both such thermosets have an experimental
value of Poisson’s ratio of m = 0.25, i.e., identical to the
value miso = E/2G � 1 = 0.25 corresponding to an ideally
isotropic material. Due to the scaling of Eq. (5) with
respect to E, the same results illustrated below should also
hold qualitatively similar for a range of commercial poly-
mers, going from E = 2.7 GPa (corresponding to polycar-
bonate) to E � 1.5–0.7 GPa (rigid PVC, polypropylene,
high-density polyethylene), the experimental G/E ratio for
such plastics being in all cases around 0.4–0.45, with the
only exception being polycarbonate for which G/E =
0.36. However, it should be noted that the Poisson ratio
for such materials may be away from the isotropic value,
the closest one being polycarbonate with a difference of
�6% between the experimental m and the theoretical isotro-
pic value. Concerning the fibers, we have E = 71 GPa for
the E-type glass usually employed in fiber reinforcement,
giving a lower bound of 3.65 GPa for the average Young’s
modulus at vf = 0.05 volume fraction. This is only 4% dif-
ferent from the bare matrix value, thus confirming the
validity of our approximation.

Our two-dimensional reference system, shown in Fig. 2,
is a truss of length L (parallel to the x Cartesian axis) and
height H = L/10 (parallel to the y Cartesian axis), in plane-
strain, constant-force loading condition. The system is dis-
cretized with a FE triangular mesh. Each mesh element
may include several modules of the type described in
Fig. 1, thereby implicitly describing a group of individual
Fig. 2. Schematic of the simulated system, a truss of length L and height
H = L/10. The system is discretized into a FE mesh. Each FE includes
several modules (see Fig. 1). Loading modes: (a) traction test, (b) shear
test, (c) four-point bending test.
fibers with the same local orientation. Three types of simu-
lated loading tests will be considered: (1) traction, repre-
sented by a symmetric tensile loading at both ends of the
truss (Fig. 2(a)); (2) shear, represented by two equal and
opposite loadings at the two ends of the truss (Fig. 2(b));
(3) four-point bending, represented by two point loads
applied on the top side, at a distance L/3 and 2L/3 along
the truss, while the two ends are held fixed at the bottom
side (Fig. 2(c)). In all cases, the applied force is such that
the maximum displacement is within 2–3%. All the results
are presented as a function of the scale parameter k = w/L,
and of the fiber orientation u, with u = 0 indicating fibers
parallel to the x-axis of the system, and u = p/2 indicating
fibers parallel to the y-axis.

In Fig. 3 we show the behavior of the energy density
integrated over the whole system, as a function of the initial
fiber orientation u, at a fixed value of k = 4 · 10�3. For
each loading test the curves compare the multifield solution
to the a-C solution. The values are scaled by the corre-
sponding isotropic elasticity, u-independent value. It can
be seen that in each loading test the behavior of the multi-
field solution is close, or even equal, to the a-C, at u = 0
and p/2. In contrast, very large differences are seen at
any intermediate value, the maximum discrepancy always
occurring around u = p/4. In all cases, the multifield model
appears to describe a less rigid composite than a corre-
sponding a-C model, since the stored elastic energy is
always higher under fixed forces.

The appearance of an intrinsic scale length in the multi-
field model is clearly demonstrated in Fig. 4, in which the
integrated energy density is reported as a function of k
at constant aspect ratio, for u = 0, p/4, p/2. The case
Fig. 3. Plot of the integrated energy density as a function of the initial
fiber orientation u, for k = 4 · 10�3. Continuous curves: multifield model;
dashed curves: anisotropic Cauchy model. Symbols: h, traction test; s,
four-point bending test; n, shear test. Each curve is scaled by the value of
the corresponding isotropic Cauchy model without fibers.



Fig. 4. Plot of the integrated energy density in the four-point bending test
as a function of the scale length factor k = w/L, for u = 0, p/4, p/2.
Continuous curves: multifield model; dashed curves: anisotropic Cauchy
model.
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shown is the four-point bending test, the shear test giving
qualitatively similar curves. The traction test, conversely,
would give no dependence of the results on k since in that
case $W = 0. In the figure, the a-C results are merely
straight lines, since the a-C model is insensitive to the
actual fiber length. Upon increasing k, the effect of the fiber
length dependence of the multifield model becomes more
and more evident. By analogy with similar studies [13],
we can speculate that the energy density curves would tend
to drop below the a-C value, and should approach a differ-
ent asymptotic value for k! 1. It should be noted, how-
ever, that our results at the largest values of k may be
affected by the size of the module approaching the mesh
size.

The detailed analysis of the localization of the elastic
response is a prominent feature of the multifield method
allowing the extraction from the simulated loading experi-
ments discussed above. By taking the four-point bending
test at k = 4 · 10�3 and u = 0, p/4 and p/2 as an example,
Fig. 5 shows the xy map of the energy density in a region
around the point of application of the load. Once again,
we compare the multifield and the a-C solutions with the
aim of showing that, as anticipated in Section 1, the stan-
dard homogenized continuum treatment may fail badly in
describing the rapid variation of stress and strain around
a singularity. In fact, at u = p/4 and p/2 the multifield solu-
tion displays much more pronounced energy maxima than
the a-C case, moreover also decaying radially much faster,
while the opposite is true at u = 0.

The results of Figs. 3–5 demonstrate that the multifield
model provides a qualitatively different response with
respect to the a-C model. In view of the more approximate
character of the latter, the multifield description should be
regarded as preferable, even in the absence of a detailed
comparison with a fully discretized FE solution which,
for the above examples, would be computationally
prohibitive.

An equal wealth of local information is available in the
multifield model for all the various vector/tensor compo-
nents of the displacement u, rotation W, and the S and S
generalized stress fields. Using again the four-point bend-
ing test as an example, in Fig. 6 we plot the relative rota-
tion R = W � skw($u) (which in a two-dimensional
frame has only one independent component, R) in the form
of angular variation of the orientation of a stick, each stick
representing the interpolated average of 2 · 2 mesh ele-
ments. The quantity R describes the actual physical rota-
tion of the fibers, since it is obtained by subtracting from
the field W the macroscopic deformation corresponding
to the applied load. It is instructive to compare the stick
map superimposed to the energy density map, for the two
cases of u = 0 and p/2. As observed in Fig. 5, the elastic
energy is localized around the points of loading, much
more in the case u = 0 than p/2. Such an increased locali-
zation can be easily understood by looking at the stick
map, since the u = 0 initial orientation of the fibers induces
tangential stresses when paired with the couple stress
(apparent from the ‘‘wiggles’’ in the stick orientation right
below the loading point), whilst in the u = p/2 orientation
the fibers can more easily ‘‘glide’’ sideways in response to
the torque. (One may think of the analogy with a deck of
playing cards being pushed either on the flat side, u = 0,
or on the border, u = p/2.) Moreover, it is very interesting
to note that the two fiber orientations correspond to very
different mechanisms of stress transfer between the four
loading points: indeed, the ‘‘arching’’ effect from the center
to the corners, extremely evident at u = 0, appears to be
completely hindered when the fibers are oriented at
u = p/2, a nontrivial result that warrants further, more
detailed investigation. We stress once more that such local,
independent rotations of the fibers would be impossible to
describe in a conventional homogenized continuum model.

Another piece of relevant information that can also be
extracted from our multifield model of a fiber-reinforced
composite is the variation of the effective elastic moduli
E* and G* as a function of, for example, fiber orientation.
We use the traction and shear tests, respectively, to deter-
mine such effective values from the slope of the stress vs.
displacement curve. In Figs. 7 and 8 we plot E*, G* as a
function of u and k, respectively. It can be seen that both
moduli are larger than the E, G values of the bare matrix,
due to the presence of the fibers. As u! 0 and k! 1, the
upper bound for E*, G* should be infinite since the fibers



Fig. 5. Map of the energy density around one of the points of loading (top left, see schematic at the bottom of the figure) in the four-point bending test.
Left panels: multifield model; right panels: anisotropic Cauchy model. Top row: u = 0; center row: u = p/4; bottom row: u = p/2. The color scale of each
map goes from 0 to Emax.
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have infinite rigidity. The actual numerical value of E*, G*

at u = 0 is determined by the value of k and, to a lesser
extent, by the fiber density.

Notably, the fiber orientation also has a sizeable effect
on the effective moduli, the E*, G* values in Figs. 7 and 8
dropping by one order of magnitude when going from
u = 0 to p/2. In analogy with these findings one may recall
that, in a careful series of experiments on short-fiber-rein-
forced thermoplastic polymers, Blumentritt et al. [22,23]
reported quite puzzling results for the effective E* as a func-
tion of fiber aspect ratio and volume fraction. After about
30 years, it still appears that such results cannot yet be



Fig. 6. Stick map describing the local fiber orientation, superimposed to
the energy density map, for the four-point bending test. Top panel: initial
fiber orientation u = 0; bottom panel: initial fiber orientation u = p/2.
Each stick represents the average of 2 · 2 finite elements. Stick inclination
is amplified by a factor of 50 for better visibility, after subtracting the
global rotation of the applied deformation. The inclination is a measure of
the actual physical rotation of the fibers. The color scale of the energy goes
from 0 to Emax.

Fig. 8. Plot of the effective moduli E*, G* at u = 0, p/4, p/2, as a function
of the scale factor k = w/L.

Fig. 7. Plot of the effective moduli E*, G* at k = 4 · 10�3 as a function of
the fiber orientation u.
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understood in terms of conventional homogenization
models [21]. In practice, lumped parameters such as the
‘‘effective aspect ratio’’ were introduced [24], trying to
correlate the observed macroscopic properties with the
average composite microstructure. While a detailed com-
parison with experimental data [22,23] is beyond the scope
of the present work, we suggest that the strong coupling
and the presence of local fiber rotations (described by the
tensor W) should make the multifield model a good candi-
date for understanding microstructure–property correla-
tions in complex, composite materials.

4. Discussion and conclusions

In this work we presented the first application of a
recently developed multiscale, multifield simulation
method [15,16] to study the elastic response of a fiber-rein-
forced polymer matrix composite material. By taking
epoxy/glass as an example of matrix/fiber combination,
we studied different simulated loading conditions, corre-
sponding to traction, shear and four-point bending.
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The results clearly demonstrated the ability of the gener-
alized continuum, multifield model to capture the detailed
microstructural features of the elastic response, going
beyond both the standard and the anisotropic Cauchy con-
tinuum analysis routinely used in conventional homogeni-
zation methods.

In particular, the additional microstructural field
appearing in the generalized continuum has the function
of effectively smearing the microscopic heterogeneities
(fibers) in the macroscopic continuum. In this way, while
simulating a coarse-grained continuum with a minimum
mesh size equal to a few fiber lengths w, one can introduce
the dependence on a material length scale, i.e., w divided by
the leading dimension L of the macroscopic system. More-
over, the additional field explicitly describes the local fiber
rotation, besides the fiber density and aspect ratio already
present in the conventional Cauchy continuum, allowing
one to map the local stresses and couple stresses at the
microscopic level, as well as the local rotation of the fibers.
Such features can be very important in designing the opti-
mum arrangement of the fibers in a composite, so as to
maximize the resistance to the various types of mechanical
stresses the material can undergo.

Notably, the multifield results are obtained at a negligi-
ble computational cost with respect to a fully discrete anal-
ysis. As was shown in Refs. [13,15], by comparing the results
of a similar multifield model to a fully discretized, numerical
solution (albeit for a very different composite material,
brick masonry), a comparable quality of the results could
be reached only at the price of explicitly discretizing the
whole continuum, by meshing the matrix and fibers down
to an extremely fine scale, assigning different constitutive
equations to each separate material, and, moreover, with
a special treatment for the interfacial boundary layer.

The present multifield approach appears very promising
for dealing with several, interacting microstructural fields,
as was already demonstrated with a simple example in
our previous work [16], dealing with an ideal material con-
taining hard inclusions and microcracks. While the present
version of the multifield FE code can solve only a static
equilibrium problem, we are presently developing an exten-
sion of the MUSCAFE code which will allow one to follow
the time evolution of the local constitutive equations, in
order to describe localized yielding and damage under sta-
tic and dynamic loading conditions.
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Abstract

A mechanical model for simulating intergranular stress corrosion cracking is presented. The model has been developed to address the
limitations of percolation-like models, which do not account for the mechanical crack driving force and cannot capture experimentally
observed phenomena such as the formation of ductile bridging ligaments by resistant boundaries. The model is based on a regular rep-
resentation of material microstructure and a categorisation of grain boundaries as susceptible and resistant to corrosion. Crack propa-
gation in two-dimensional microstructures with several fractions of experimentally observed susceptible boundaries is studied. Monte
Carlo-type simulations with random distributions of boundaries and a range of susceptible and resistant boundary failure strengths
are performed. The effects of crack bridging and crack branching are quantified. It is concluded that together with the fraction of sus-
ceptible boundaries, the resistant boundary failure strength is the significant parameter controlling the shielding effect of bridges on crack
propagation.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It has increasingly been realised during the last two dec-
ades that the grain size is not the only mesoscale factor
influencing the strength of polycrystalline materials. Two
other factors have been brought to wider attention. The
first is the grain boundary character distribution (GBCD)
which describes the fractions of boundaries with different
energies, with ‘‘special’’ or low-energy boundaries having
higher resistance to intergranular degradation mechanisms
and ‘‘random’’ or high-energy boundaries having lower
resistance. The second factor is the topological connectivity
of ‘‘random’’ boundaries. In connection with these find-
ings, the concept of grain boundary engineering has been
1359-6454/$30.00 � 2006 Acta Materialia Inc. Published by Elsevier Ltd. All
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introduced by Watanabe [1]. The primary purpose of grain
boundary engineering has been to improve the bulk
mechanical properties of polycrystalline materials by
increasing the number of ‘‘special’’ or low-energy bound-
aries. Together with applications to enhance general frac-
ture toughness [2,3], it has been shown that the ‘‘special’’
grain boundaries can be much less susceptible to intergran-
ular corrosion and stress corrosion cracking (SCC) [4,5].

Predictive SCC models aim to determine the probability
of crack arrest and distribution of arrested crack lengths
for given grain boundary network characteristics. Previ-
ously proposed models [6–8] used a percolation-type pro-
cess to determine the probable extent of crack growth.
These are binary models, i.e. a grain boundary is assumed
to be either entirely resistant or entirely susceptible to SCC.
In the early models [6], the probability of crack advance at
a junction is based on the GBCD and orientation of the
grain boundary with respect to the applied stress. Later
models [7,8] additionally account for the network connec-
tivity via the distribution of triple junctions. All these
rights reserved.
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models, however, lack a way to describe the effects of the
applied stress magnitude or stress redistribution during
crack evolution. Hence, they stand close to a pure geomet-
rical percolation model, giving the critical share of
‘‘random’’ boundaries above which a continuous crack
path across a given microstructure is always possible. Pre-
vious models also cannot account for the experimentally
observed crack bridging behaviour (see Fig. 1). Bridging
is created by the yielding of ductile ligaments, formed by
resistant boundaries left behind the advancing crack front
in real three-dimensional (3D) geometry. A recently pro-
posed analytical model [9] has attempted to take into
account the effects of crack bridging on the local crack
tip stress intensity factor, thus mimicking 3D crack
behaviour.

All the percolation-type works mentioned above use a
regular representation of the material microstructure. Reg-
ular two-dimensional (2D) models must choose either a
square or hexagonal cell structure. The higher coordination
number in hexagonal meshes is more representative of
material microstructure, so this has been the standard unit
cell used in previous percolation-like models. For the hex-
agonal cell structure, the critical share of susceptible
boundaries, i.e. the percolation threshold, is found mathe-
matically to be around 0.65 [7]. Below this value, a crack
Fig. 1. In situ observation of the failure of a crack bridging ligament.
(a) and (b) are successive images obtained by high resolution X-ray
tomography of a propagating stress corrosion crack [9].
will not necessarily percolate through the structure. The
fraction of susceptible boundaries can be reduced by grain
boundary engineering, through thermomechanical process-
ing. Adopting the most widely used regular representations
of 2D microstructures, the principle aim of this work was
to develop 2D mechanical models for intergranular crack
propagation in thermomechanically processed microstruc-
tures under the influence of applied stresses. The idea was
to establish a finite element model of the microstructure
chosen, and use it for calculations of the stress after each
change in geometry due to crack advance. This approach
allows for a more accurate simulation of crack evolution,
as the probability of crack advance depends upon the
actual mechanical conditions at the crack tip. These condi-
tions are affected by the crack propagation history, i.e. the
effects of crack branching, crack bridging, and redistribu-
tion of the initial stress state could be accounted for in a
natural manner. This is viewed to be a necessary precursor
to the development of 3D modelling, which is the ultimate
goal of this work [10]. At present the model is relevant only
to fully sensitised materials and the kinetics of crack prop-
agation are not taken into account. Therefore, the pro-
posed model should be viewed as an advance to the
percolation-like models by including mechanical effects.
In this sense, in the same manner as the percolation-like
models, it is a tool for assessing the relative microstructure
resistance to intergranular fracture that is applicable to
intergranular SCC, rather than a model for SCC. It should
be appreciated, however, that the proposed model allows
for the incorporation of the dependence of propagation
kinetics on the local mechanical fields, and this is a topic
of ongoing work.

2. Model description

The model of intergranular crack propagation in a
material microstructure used in this work has two levels
of abstraction: physical and computational. These are
described briefly in Sections 2.1 and 2.2. Section 2.3 is
devoted to the computational strategy of crack advance
adopted.

2.1. Physical level

At the physical level, the microstructure geometry is rep-
resented as a regular tessellation of space into identical
cells, where each cell corresponds to one material grain.
The assumptions concerning grain geometry, grain bound-
ary character and properties and material failure are as
follows:

� Grain geometry. Grains are assumed to be identical in
shape and represented by regular hexagons. With the
grain geometry assumption, a region of a polycrystal-
line solid is approximated by an assembly of identical
cells. A major geometrical parameter is the unit cell
diameter, D.



Fig. 2. The discrete model for the 2D hexagonal structure.
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� Grain boundary character. Grain boundaries (the com-
mon faces in the assembly of cells) are assumed to belong
to either of two classes. The first class is formed of the
special (i.e. low-angle, low-energy) grain boundaries,
which are generally accepted as resistant to corrosion.
The second class includes the random (i.e. randomly ori-
ented high-angle, high-energy) grain boundaries, which
are accepted as susceptible to corrosion. The fraction
of susceptible boundaries (the number of susceptible
over the total number of boundaries), f, is a major
parameter in the current studies. The distribution of sus-
ceptible boundaries is randomly assigned for given f.
� Material failure and grain boundary properties. Material

is assumed to fail via the crack propagating along grain
boundaries only. In the present model, the kinetics of
the stress corrosion mechanism are not accounted for,
so the real time dimension of crack propagation is not
determined and crack velocities are not calculated. In
principle, the model could be developed to include
kinetic factors, however. Experimental observations of
intergranular stress corrosion show that susceptible
boundaries fail at crack opening displacements of the
order of several nanometers with insignificant inelastic
deformations [11]. This suggests that the failure strain
of the susceptible boundaries, denoted by esf, is around
or below the apparent material yield strain, ey. The fail-
ure strain esf is a second model parameter. Resistant
boundaries, in contrast to the susceptible boundaries,
can yield and rupture well into the inelastic region, as
demonstrated by in situ high-resolution tomographic
and fractographic observations of intergranular SCC
[12]. Therefore, resistant boundaries in the model are
allowed to fail after a significant amount of accumulated
inelastic strain, denoted by erf and defining a third model
parameter. This failure strain is assumed to be a fraction
of the material ultimate tensile strain, eu.

2.2. Computational level

A direct approach to model an assembly of cells in a
finite element environment would be based on continuum
mechanics. Each cell would have to be tessellated into
available shapes of continuum elements and connected to
the neighbouring cells with some interface elements, repre-
senting the grain boundaries. Such a direct modelling strat-
egy has so far only been used for an assembly with limited
number of grains (e.g. up to 50 grains in Ref. [13]) as it
requires an enormous amount of computer resources, espe-
cially for 3D models. Therefore, at the computational level
of modelling a discrete representation of the assembly was
suggested. This is viewed as a good first approximation,
while the continuum approach is left for the future as more
computational power becomes available.

In the discrete model, each cell is represented as a geo-
metrical point and its connections to the neighbouring
cells, which are the grain boundaries in reality, are repre-
sented by structural members of linear extension. The idea
is illustrated in Fig. 2, where a portion of a plane hexagonal
mesh and its corresponding structure are shown. The finite
element model consists of nodes, placed in the centres of
the grains, and beam-type finite elements for structural
members. Thus, the grain deformability is transferred to
the deformability of the adjacent beam elements. The dis-
crete representation leads to a significant reduction of the
nodes and elements in a model and hence of the computa-
tional effort. Essential to the discrete model is the question
of how well it represents the solid behaviour. This question
is connected to the selection of element cross-sections and
elastic properties. Since the regular geometry introduces
preferential directions in the assembly, it is generally
impossible to make a selection so that the discrete assembly
behaves as a continuum solid for all modes of deformation
simultaneously. It is possible, however, to make such a
selection for every particular deformation mode. In the
present work, selections of beam cross-sections are made
so that the assembly in question, when subject to tensile
deformation in the elastic range, behaves like a solid under
the same deformation. All elements have identical modulus
of elasticity and Poisson’s ratio.

The assumptions for the mechanical properties of the
modelled polycrystalline solid and the beam elements of
its discrete representation are as follows:

� Solid mechanical properties. The macroscopic mechani-
cal properties are those of grade 304 austenitic stainless
steel. The constitutive relationship chosen is elastic–
plastic with linear isotropic hardening, which for the
purposes of this work describes sufficiently well the
stainless steel behaviour. The parameters involved in
the constitutive description are Young’s modulus
E = 206 GPa, Poisson’s ratio m = 0.3, yield (proof)
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strength ry = 205 MPa, yield strain ey = 0.002, ultimate
tensile strength ru = 515 MPa and ultimate tensile strain
(elongation) eu = 0.4.
� Beam elements mechanical properties. Beam elements are

ascribed the same mechanical properties as for the solid
for the finite element solution. However, in the course of
crack propagation, the beams representing susceptible
boundaries would fail upon reaching their prescribed
failure strain esf, which is a fraction of the material yield
strain ey, while the beams representing resistant bound-
aries would fail upon reaching their prescribed failure
strain erf, which is a fraction of the material ultimate ten-
sile strain eu. This behaviour of the beam elements is
shown schematically in Fig. 3. The average strain, i.e.
the strain in the centre of the cross-section in beam ele-
ments, is used in the calculations.

2.3. Crack advance strategy

The strategy for crack advance in the computational
model relies on a series of finite element solutions for equi-
librium of the (evolving) assembly with the applied loads.
Each solution provides the stresses and strains at the grain
boundaries (midpoints of the beam elements) necessary to
decide upon further crack propagation. If the failure strain
of a grain boundary, being either resistant or susceptible, is
reached, that boundary is a candidate for failure. In general
only one boundary, the most critical, is allowed to fail at a
time, i.e. one beam element is deleted from the discrete
structure. As every failure event leads to redistribution of
stresses and strains that cannot be judged in advance, the
single-failure strategy ensures that the recalculated equilib-
rium will deliver the correct stresses and strains for the sub-
sequent event. Strictly speaking, while the crack is
advancing the mechanical equilibrium found by finite ele-
ments is physically unstable, and turns into physical equi-
librium only at crack arrest.
Fig. 3. Schematic illustration of the deformation and failure character-
istics for susceptible and resistant boundaries.
The search for boundaries that are candidates for failure
incorporates the possibility for bridge formation in the 2D
settings. This is explained below, assuming a crack has
grown to a certain stage and an equilibrium solution has
been found for the corresponding discrete model. The
approach to determine crack advance is illustrated in
Fig. 4, where the current crack is shown with thick light
grey lines, denoted by c, and all the boundaries that are
in contact with the crack surface are shown in grey and
are denoted by s. These surface boundaries are in direct
contact with the corrosive environment, and are thus can-
didates for failure. In addition the subsurface boundaries,
i.e. those in contact with surface boundaries, are shown
in dark grey and are denoted by s 0. The search for candi-
dates for failure is performed first amongst the surface
boundaries. For each of these boundaries, the difference
between its calculated strain, e, and its failure strain is
obtained. Thus for susceptible boundaries this difference
is d = (e � esf), while for resistant boundaries the difference
is d = (e � erf). All boundaries with d > 0 are candidates for
failure at the current solution step. If there are any such
boundaries, the boundary with largest d is accepted as
being critical and the corresponding beam element is
removed from the structure. The simulation then contin-
ues. If there are no surface boundaries with d > 0, the sub-
surface boundaries are considered. The reason for
considering subsurface boundaries is to mimic the real
3D behaviour. For example, consider the boundary
between point A and B in Fig. 3. If this was resistant, this
would prevent it from failing at the current simulation step.
In the real 3D situation the crack could pass from point A
to point B via an out-of-plane path along susceptible
boundaries. This places the subsurface boundaries adjacent
to point B in contact with the environment, i.e. they
become surface boundaries. The same possibility for
bypassing the current surface boundaries exists for all of
the subsurface boundaries. Depending on the total crack
geometry (not only the portion shown in the figure) the
critical subsurface boundary could be either adjacent to
point B, or adjacent to point C, or somewhere else.
Therefore if the surface boundaries cannot fail at a given
c

c

c

s

s

s
s

s'

s'

s'

s'

s'

s'

s'

s'

A

B

C

Fig. 4. Illustration of the search for failing boundaries in the model of
crack advance for a crack tip located at point A.
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Fig. 5. Stress intensity factor calculation for the bridged crack in the finite
element model, compared to a straight edge crack.
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simulation step, all subsurface boundaries are reconsidered
as surface boundaries and the same strategy for failing
holds. If there are no candidates for failure among subsur-
face boundaries, the crack is assumed arrested and simula-
tions are terminated.

The crack advance strategy, described above, is imple-
mented using an in-house computer program written in
Java. The program is responsible for creating the initial
model and consecutively calling external equilibrium sol-
ver, ABAQUS [14], deciding upon crack advance from
the equilibrium solution and changing the model if
required.

3. Problem description

With respect to a fixed coordinate system (X1, X2), the
assembly of grains studied fills the solid rectangular region
{�50D 6 X1 6 50D, 0 6 X2 6 50D}. This region contains
7740 grains, which form 22,850 internal grain boundaries,
modelled by 7740 nodes and 22,850 beam elements in the
finite element model. An initial crack, extending along
three grain boundaries, is introduced from the surface
point at the origin of the coordinate system and running
in towards the centre of the element assembly.

The load is symmetric and applied via prescribed displace-
ments: u1 = � 0.025D along the boundary {X1 = � 50D,
0 6 X2 6 50D} and u1 = 0.025D along the boundary
{X1 = 50D, 0 6 X2 6 50D}. Displacements u2 = 0 are
prescribed along the boundary {�50D 6 X1 6 50D,
X2 = 50D}, while zero stresses are prescribed for all other
boundary conditions. These boundary conditions introduce
a homogeneous strain in the assembly e1 = 5 · 10�4, equiv-
alent to a homogeneous stress r1 � 0.5ry.

For comparative purposes the analytical stress intensity
factor for a straight edge crack in a finite geometry has
been used [15]:

KI ¼ F ðaÞr1
ffiffiffiffiffiffi

pa
p

ð1Þ
where a is the crack length, r1 is the remote tensile stress
and F(a) is given by

F ðaÞ ¼ 1:12� 0:231aþ 10:55a2 � 21:72a3 þ 30:39a4 ð2Þ
for parameter a = a/W with W = 50D. Eq. (2) gives an er-
ror of ±0.5% for a 6 0.6.

Computationally, the stress intensity factor is calculated
in the way illustrated in Fig. 5, where a portion of the solid
is shown. The actual crack is shown by a thick white line
and a bridge along the crack path is depicted with grey.
The corresponding straight, unbridged crack is also shown
for comparison. The rectangle ahead of the crack tip shows
the region that is accounted for in determining the stress
intensity factor of the bridged crack. The possible crack
tip plastic zone is dashed, while the rest of the rectangular
region is taken to span over 10 grains. For any given dis-
tance from the crack tip, r, with a step one grain diameter,
a stress r11 has been calculated by averaging the stresses in
all grains along the line shown in the figure. The approxi-
mate relationship r11(r) established by this method is then
used to calculate the stress intensity factor via

r11ðrÞ
ffiffiffiffiffiffiffi

2pr
p

!r!0
KFEM

I ð3Þ
A post-processing computer program has been devel-

oped to implement the computational procedure for deter-
mining the stress intensity factors. It delivers the stress
intensity factor and the current crack geometry, including
the number of bridges along the crack surface, after each
step of the simulations. The bridges can be in the elastic re-
gime or yielding plastically. In addition, the program calcu-
lates the shielding effect of the bridges via the stress intensity
factor that the bridges create with respect to the corre-
sponding crack fronts. The contribution from all bridges,
and the fraction of this that is due to yielding bridges are ob-
tained. The stress intensity due to all bridges is an algebraic
sum of the contributions from every bridge, given by

Kbr ¼ F ðaÞP
ffiffiffiffiffi

p
2r

r

ð4Þ

where P is the force in the bridge parallel to the loading
(crack opening) direction, r is the distance to the corre-
sponding crack front and F(a) is given by Eq. (2). Eq. (4)
is the solution for a crack loaded in mode I by a couple
of symmetric concentrated forces of magnitude P placed
on the crack surfaces at distance r from the tip [15]. The
program has been checked with straight cracks without
bridges or branches (i.e. zigzag cracks in the hexagonal
microstructure) for the entire range of crack extensions be-
tween one grain and 25 grains. Comparison with theoreti-
cal values given by Eqs. (1) and (2) showed identical results
for the stress intensity factors to within 0.1%.

4. Results and discussion

One approach to understand the sensitivity of SCC
propagation to microstructure influences would be to
develop a series of simulations with variable strengths of
the susceptible and the resistant boundaries, together with
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a variable fraction of the susceptible boundaries in the
assembly, random distributions of the boundaries within
the assembly. The aim with such a series would be to
answer the following questions:

� Do the observed resistant boundaries control crack
growth by dissipating energy in plastic deformation, or
are they just energetically unimportant remnants left
by crack propagation?
� How does this answer change with the strength and frac-

tion of susceptible and resistant boundaries?

The microstructures of interest are those that have been
experimentally studied. These had susceptible boundary
fractions in the range 0.65 6 f 6 0.75 [9,10].

Before commencing full-scale 2D parametric studies, it
was advisable to check if the proposed mechanical model
could reproduce the existing results from percolation mod-
els. This has been reported in Ref. [16], where simulations
with 2D geometry have been run for the full series of sus-
ceptible boundary fraction, 0.1 6 f 6 0.9 and for a number
of susceptible boundary failure strains, esf = 0, 0.1ey, 0.2ey.
The resistant boundary failure strain has been fixed at
erf = 10ey. For each fraction f, 30 different random distribu-
tions of the boundaries have been considered and results
have been averaged over these random distributions to give
a single value for the given fraction. The parameters that
have been monitored are the projected crack length,
denoted by a, and the total crack surface, i.e. main crack
including branches and kinks, denoted by A. From the
results presented in Ref. [16] it is evident that the role of
mechanical strain is to direct the crack growth by decreas-
ing crack branching and kinking compared to the percola-
tion models. For a given fraction of susceptible boundaries,
the crack arrest length determined by the 2D model with
bridges is always smaller than the 3D percolation predic-
tion and larger than the 2D percolation prediction. Any
decrease of the susceptible boundary failure strain, esf,
Fig. 6. Example of a crack propagate
leads to an increase of the arrest length, i.e. shift towards
the 3D percolation prediction, as expected. Conversely,
an increase of esf shifts the arrest length towards the lower
limit that is given by the 2D percolation prediction. This
influence of esf, however, is pronounced only for micro-
structures that are dominated by resistant boundaries,
f < 0.5, and becomes insignificant for the microstructures
of interest, those with 0.65 6 f 6 0.75. In addition, esf is a
parameter that controls crack branching. This is also most
pronounced for f < 0.5, and is not significant for micro-
structures with 0.65 6 f 6 0.75.

Returning therefore to the microstructures of interest,
Fig. 6 gives an illustration of a crack grown in a 2D hexag-
onal microstructure with fraction of susceptible boundaries
f = 0.7. The cracked boundaries are shown with thick white
lines. The thin and thick black lines show susceptible and
resistant boundaries, respectively. The bridges formed in
the crack wake by resistant boundaries are clearly identifi-
able. In the model for crack advance used here, a bridge
can always form when a subsurface boundary is in a critical
state, i.e. it is assumed that the real 3D microstructure will
always allow bypassing of a resistant boundary. Strictly
this cannot be always the case, as it depends on the fraction
and distribution of susceptible boundaries in 3D. This
means that a direct correspondence of the results from
the present model and the 3D microstructure for a given
f cannot be claimed. It is anticipated that results for a given
f obtained with the present model will correspond to a 3D
microstructure with larger fraction of susceptible bound-
aries. Therefore a wider region of change has been adopted,
namely 0.5 6 f 6 0.8.

For the series of fractions 0.5 6 f 6 0.8, with intervals of
0.05, simulations with different values of the variable
esf = 0.1ey, 0.2ey, 0.3ey, 0.4ey and fixed erf = 10ey, as well
as simulations for three values of resistant boundaries fail-
ure strain, erf = 5ey, 10ey, 50ey, and fixed esf = 0.1ey have
been performed. For illustration, Fig. 7 gives the total
number of bridges (Fig. 7(a)) and the number of yielding
d in a microstructure with f = 0.7.



Fig. 7. Average number of bridges with crack extension: (a) all bridges
(elastic and yielding); (b) yielding bridges only.

Fig. 8. Stress intensity factor evolution with crack extension with
variation in f.
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bridges (Fig. 7(b)) formed as the crack extends for the base
case where esf = 0.1ey and erf = 10 and three selected frac-
tions of susceptible boundaries. The number of bridges is
normalised with the projected crack length in terms of
number of grains, L = a/D, while the crack extension, a,
is normalised with the total assembly thickness, W. Values
for the total number of bridges (Ntotal/L) in Fig. 7(a) that
are larger than 1.0 indicate that there are a significant num-
ber of bridges formed not only along the main crack, but
also along various crack branches. With increasing f, the
number of branches decreases and Ntotal/L should become
comparable to f. In theory, in the absence of branches,
these two values must coincide, but this could be the case
only if the crack has straight (zigzag) geometry. In reality,
with increasing f the crack has more opportunities to grow
by kinking from the straight geometry and bridges form
only when other possibilities are exhausted. This makes
the value Ntotal/L smaller than expected on theoretical
grounds, and this is visible in the curves for f = 0.6 and
f = 0.7 in Fig. 7(a). Fig. 7(b) shows that the number of
yielding bridges is much less dependent on the fraction of
susceptible boundaries in the region of interest and is more
controlled by the current crack extension. It should be
noted that decreases in the number of yielding bridges in
Fig. 7(b), reflecting decreases in the total number of bridges
in Fig. 7(a), indicate failures of yielding ligaments. These
failures occur earlier, i.e. at shorter crack extensions, for
larger fractions of susceptible boundaries, since the total
number of bridges that are shielding the crack decreases.

Fig. 8 shows the evolution of the stress intensity factors
with crack extension for the base case esf = 0.1ey and
erf = 10 and four selected fractions of susceptible bound-
aries. Crack extension, a, is normalised with the total
assembly thickness, W. Stress intensity factors are norma-
lised as depicted in the figure, where r1 represents the
actual remote stress in the structure. As the load is applied
via prescribed displacements, the actual stress depends on
the current stiffness of the cracked assembly and is found
from the finite element solution. With crack advance the
remote stress decreases, by a factor of 8% for the stiffest
structure with f = 0.5 and by 18% for the most compliant
structure with f = 0.8, in the interval of crack extensions
shown in the figure. The stress intensity development is
obtained through the stress results from finite element solu-
tions using Eq. (3), while the theoretical value is calculated
using Eq. (1). In the figure, Ksh denotes the shielding effect
of the microstructure, which includes not only the effect of
bridges but also the effect of branches on the crack driving
force reduction, as will become clear shortly.

The shielding effect is almost independent of the suscep-
tible boundary failure strain, esf, but depends on the resis-
tant boundary failure strain, erf, in the region of interest.
This is demonstrated in Fig. 9, where the shielding stress
intensity factor, Ksh, is plotted versus the susceptible
boundaries fraction, f, for a selected crack extension,
a = 0.3 W, and for the series of failure strains of susceptible
boundaries (Fig. 9(a)) and the series of failure strains of
resistant boundaries (Fig. 9(b)). The stress intensity is nor-
malised as in Fig. 8. The dependence on erf comes from the
larger contribution of bridges to the total shielding effect,
which increases with the resistant boundary failure strain.

To quantify the relative effects of branching and bridg-
ing on the total shielding effect, the crack driving force



Fig. 9. Variation of shielding with boundary failure strain with fraction f:
(a) the effect of susceptible boundaries failure strain; (b) the effect of
resistant boundaries failure strain.
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reduction solely due to bridges has been estimated. This
was done by calculating the stress intensity factors using
Eq. (4) and the stress results from finite element solutions.
As an illustration, Fig. 10 presents the stress intensity fac-
Fig. 10. Bridging stress intensity factor evolution with crack extension
with variation in f.
tors due to bridges alone for the same grain boundary
properties and fractions as in Fig. 8. The normalising fac-
tors for the two axes of the plot are also the same.

Fig. 11 demonstrates the effects of all bridges
(Fig. 11(a)), only the elastic bridges (Fig. 11(b)) and only
the yielding bridges (Fig. 11(c)) for the particular values
of grain boundary properties depicted. Bridging effects
are shown as fractions of the total shielding effect. The
Fig. 11. The contribution of bridges to the shielding effect: (a) all bridges;
(b) elastic bridges only; (c) yielding bridges only.
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effect of elastic bridges is a nonlinear decreasing function of
f, almost independent of erf, while the effect of yielding
bridges depends on erf, and may turn into an increasing
function of f, for sufficiently large erf. Thus, in the region
of interest for f, the yielding bridges provide the larger con-
tribution to the crack shielding and this relative contribu-
tion increases with increasing f.

As a general observation from all the 2D simulations,
the parameter controlling the effect of bridges is the resis-
tant boundary failure strain and the parameter controlling
branching is the susceptible boundary fraction. The effect
of the susceptible boundary failure strain is negligible in
the region of interest for fractions of susceptible bound-
aries in the constraints of the model. The initial crack
extension (pre-crack) and the applied load set a threshold
for the susceptible boundary failure strain above which
the pre-crack cannot start propagating. For any value of
the susceptible boundary failure strain smaller than this
threshold the cracks will propagate and will have the
behaviour presented by the above results. Conversely, a
fixed value of the susceptible boundary failure strain will
set a threshold on the applied load, below which the cracks
cannot start propagating. It may therefore be considered to
be a material/environment parameter.

5. Conclusions

The proposed discrete structural model has the potential
to simulate intergranular crack propagation and crack coa-
lescence in a realistic manner by including the phenomenon
of crack bridging by ductile ligaments. It accounts for the
effects of external load magnitude and the failure properties
of susceptible and resistant boundaries. Crack arrest was
not observed in the region of interest for susceptible
boundary fraction, but a significant degree of crack tip
shielding was developed, which would be expected to
reduce the crack propagation rate. Increasing the fraction
of resistant grain boundaries is therefore predicted to
increase the resistance of short cracks to intergranular
SCC.

Any further refinement of the model requires that it be
related to experimental observations of intergranular
SCC extensions and distributions to tune the model param-
eters. This is necessary in order to turn the model into a
predictive tool. The first step is the identification of the sus-
ceptible boundary failure strain, esf, which is essentially a
local criterion for SCC advance. This could be estimated
from experimental results without noticeable bridging.
The influence of the bridging ligaments could then be deter-
mined, comparing the local crack driving force in the
model with the stress intensity predicted theoretically for
a non-bridged crack of the same geometry and applied
load. Another tuning parameter is the failure strain of
the resistant boundaries, erf, which may be connected to
twin thickness. This parameter could be estimated compar-
ing experimental results showing failed bridging ligaments
with model simulations.
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