
Simulation Interoperability Workshop, Orlando, Fall 2001

Paper 01F-SIW-026

Object-Oriented Analysis of a DII COE Simulation Product Line Architecture

Ronald B. Sprinkle
The AEgis Technologies Group

12565 Research Parkway
Orlando, FL 32765

rsprinkle@AEgisTG.com

William P. Sudnikovich
Atlantic Consulting Services

167 Avenue at the Common, Suite 4
Shrewsbury, NJ 07702

wsudnikovich@acsinc-nj.com

Francis H. Carr
The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102

carr@mitre.org

Keywords: Army Enterprise Architecture (AEA), Command Control
Communications Computers and Intelligence (C4I) Interoperability,

Defense Information Infrastructure Common Operating Environment (DII
COE), Joint Common Database (JCDB), Modeling and Simulation (M&S),

Product Line Architecture (PLA), Object-Oriented Analysis (OOA),
Software Architecture, Technical Architecture

ABSTRACT: The Army has articulated a vision in which simulations will support C4ISR systems through the
integration of simulation infrastructure into the Defense Information Infrastructure Common Operating Environment
(DII COE) software architecture. Identification of a specific simulation infrastructure product set is the key to
developing the technical steps required to achieve this vision.

Integrating simulation into the DII COE in a systematic fashion requires the following: 1) reuse by the simulation
infrastructure of existing DII COE C4ISR software segments 2) identification of new segments required to provide DII
COE based simulation capability and 3) identification of new simulation-enhanced C4ISR functionality not available
today in either C4ISR or simulation domains through new DII COE segments. As simulation-enhanced C4ISR systems
will use intelligent agent software, there are relevant Future Combat Systems (FCS) implications. FCS C2 systems will
need to interact with intelligent agent-based robotic forces and will encounter similar challenges identified for future
simulation-enhanced C4ISR systems.

This paper describes a general Object-Oriented Analysis based approach, which identifies DII COE segments as
software products in a Product Line Architecture. This paper concludes with recommendations for use of the DII COE
Simulation Product Line Architecture in achieving the Army simulation to C4ISR interoperability vision.

1. Introduction

1.1 Opportunity

A significant portion of the U.S. Department of Defense
is at work attempting to solve interoperability challenges
or reduce interoperability costs. The Army is building
Future Combat Systems and the Objective Force on the
concept of network centric warfare. Without a system-of-
systems solution we will be unable to perform the
seamless data interactions required to build network
centric warfare systems. Efforts such as the Software
Blocking Policy, the Environmental Database (EDB)
Integrated Product Team (IPT) and the Simulation to C4I
Interoperability (SIMCI) Overarching IPT (OIPT) [1] are
working to solve the interoperability challenge at the
system-of-systems level.

Further, as M&S applications continue to increase in
power and utility and those capabilities transition into

“embedded” C4ISR capabilities, the difficulties inherent
in specifying, tracking, interfacing, and assessing this
evolving “system-of-systems” will grow.

The U.S. Army vision for simulation & C4ISR
interoperability, as specified in [2], prescribes the need to
develop a simulation infrastructure in the DII COE for
C4ISR systems. That paper and other SISO activities set
the stage for a plan to solve some of the major C4ISR and
simulation interoperability challenges.

A plan to satisfy these interoperability challenges must
define simulation-enhanced C4ISR system components;
must specify their operational context to the degree
required by the designer; must identify and specify
interfaces; and must provide a mechanism by which
multiple simulation infrastructure components can be
sequenced and prioritized for acquisition or development.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2001 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2001 to 00-00-2001  

4. TITLE AND SUBTITLE 
Object-Oriented Analysis of a DII COE Simulation Product Line
Architecture 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
MITRE Corporation,7515 Colshire Drive,McLean,VA,22102-7539 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Simulation Interoperability Workshop, Orlando, Fall 2001

Paper 01F-SIW-026, Page 2

This paper presents the results of an object-oriented
analysis of a simulation-enhanced DII COE product set
and makes recommendations for the future acquisition of
simulation infrastructure components.

1.2 Thesis

The integration of simulation infrastructure into the DII
COE software layered architecture, depicted in Figure 2,
is necessary but not sufficient to ensure future C4ISR
simulation interoperability. A coherent system-of-systems
level capability must be prescribed and does not occur
from “market forces” or when left to chance.

One way to form that system of system functionality for
families of simulation-enhanced C4ISR systems is to
identify the needs of the user and specify a finite set of
software application products to support them.

Through the identification of those software application
products, the solution space of the interoperability
challenge is broken into discrete components. When we
focus on the software products as a set, we look to
understand their interdependencies in providing the
simulation-enhanced C4ISR functionality. It is these
interdependencies that help us define the architectures,
data modeling and standards depicted in Figure 1 that are
required to build true interoperability.

Furthermore, software products are the culmination of a
myriad of interoperability design choices such as those
represented by the subjects of Figure 1 blocks B, C & D.
The user cannot directly interface with Common
Data/Object Models, Common Standards or
Architectures. Software products must represent
interoperability design choices to the user through

increased functionality.

The standards, architectures, data models and process
efforts can only impact interoperability if they are
somehow manifested in software products.

1.3 Scope

This paper is concerned with collective interoperability of
Army systems with M&S applications as described in [3].
Joint systems can be similarly analyzed using the methods
described herein, but this paper does not specifically
address Joint systems. The Joint system uses are
potentially different from Army systems and therefore the
corresponding system interactions warrant a separate
analysis.

As described in [2], this paper’s scope is bounded by
those systems supported by the DII COE and the
simulations that must either connect to or be embedded
within these systems.

The analysis in this paper, and therefore its result, does
not encompass the simulation-enhanced C4ISR system’s
full spectrum of use. The scope of the analysis is
restricted to the use of simulation on board a future
C4ISR system used in standalone mode. We expect that
the extrapolation to LAN/WAN distributed modes, to
include interaction with external simulation(s), will result
in the addition of architecture components but not
modification of the architecture itself.

The remainder of this paper is organized as follows.
Section 2 discusses the simulation-enhanced C4ISR
system. Section 3 presents the Product Line Architecture
(PLA) overview. Section 4 outlines the analysis method.

Figure 1. “House” of Interoperability

Figure 2. DII COE Software Layered Architecture
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Section 5 presents the detailed section on the OOA
method and how its use results in classes in the PLA.
Section 6 looks at the PLA and its uses in detail.  Section
7 concludes with recommendations and considers the
impact of the presented architecture.

2. The Simulation-enhanced C4ISR System

This section discusses the impact and potential uses of
simulation to enhance C4ISR system capability. We cite
some of the increased functionality based on the current
and future systems, how interoperability is approached
and the role of reuse.

For the purpose of our discussion, M&S applications can
be one or more functional components that are either
embedded within, or externally linked to a C4ISR system
to aid or enhance the operational capability of the base
system.

2.1 Enhancement of C4ISR systems

The following paragraphs provide examples of common
operational functions that are required within military
service organizations. Prior to the availability of C4ISR
systems, these functions were traditionally carried out by
manual, human intensive activities. As computer
hardware and software evolve, these activities are
gradually being automated. Just as Tolk discussed in [4]
we believe that the addition of M&S capabilities to the
existing suite of C4ISR applications will benefit users
with more powerful tools. More importantly, the
successful application of M&S is critical for current and
near term C4ISR systems to deliver the performance and
functionality expected of them.

Situation Assessment. Situation Assessment gives
military staff visibility into current force deployment,
activities, and status. Additional capabilities might
provide insight into similar information for opposing
forces. Sample tools that aid in this function are simple
message storage and retrieval mechanisms, automated
alert systems, and common data stores. It may also
involve more sophisticated visualization tools such as
Geographic Information Systems (GIS), Digitized
Topgraphic Support System (DTSS), or Joint Mapping
Tool Kit (JMTK).

Course of Action (COA) Development & Analysis. COA
development and analysis is the ability to develop and
measurably assess the results of taking one or more
possible actions as a response to a given military
situation. In addition to using the same capabilities
described above, typical components used in COA
development and analysis include Synch Matrices, Force
Ratio tools, GIS, DTSS, or JMTK.

Mission Rehearsal. The Mission Rehearsal capability
attempts to project the results of applying a particular
COA to the current situation. Simulating the activities
based on the current situation assessment, or modeling the
aggregate effects of actions taken may produce these
results. Currently, methods used for mission rehearsal are
principally intellectual activities of mission staff, with
some assistance being provided by SA and COA
software. Mission rehearsal tools have a limited presence
on C4ISR systems and there is significant interest in
development of such components.

Execution Monitoring. Execution Monitoring provides the
capability to assess the current military situation and
compare it against COAs that had been developed earlier.
Future capabilities might retain a number of COAs, with
specific branches and sequels that could be considered.
They might also continuously evaluate potential COAs
for optimal circumstances which when encountered, flag
them for Command and / or planning staff. Currently,
tools provided to aid this function represent simple alerts
set on C4ISR systems that monitor the flow of
information, and signal when critical resources or items of
interest are encountered.

Training. It is envisioned that all future C4I systems will
be fielded with the capability to perform training, either
embedded in the system itself or linked to some
distributed training capability. As can be seen in Table 1,
conducting training encompasses all of the functionality
expected to be required to perform tactical tasks and helps
illustrate the need and potential benefit of common
products.

 The operational functions just discussed are excellent
examples of simulation-enhanced C4ISR system
functionality. Our next step is to define in more detail
what products are needed to gain these C4ISR system
capabilities. An initial effort at identifying applications
and the functions they support is shown in Table 1.

Table 1 also illustrates that there are simulation-enhanced
applications (left column) common across multiple
mission functions (top row). It is clear that these
applications, when instantiated into software components,
must fit into some framework that facilitates interactions
among the applications and the system functions they
support.

2.2 Interoperability and Re-use

Table 1 illustrates that a number of C4I system
applications can be reused across mission functions.
Current re-use of this kind has evolved both as a part of a
planned development strategy by DoD and Service
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developers, and also as a result of
ad-hoc experimentation with
these tools in training and field
situations. Through the careful
development of use cases as part
of the Product Line Architecture
set, further reuse can be realized.
Scarce development resources
can be focused on components
with the highest potential value.
C4I systems will be enhanced
with simulations as a collection
of new DII COE components and
modifications to existing
components. This is no different
than other C4I systems
applications.

The Army Enterprise Architecture (AEA) [5] provides the
context within which approaches to system
implementation and interoperability are defined. The
AEA is the Army's framework used to guide information
technology investments, acquisitions, and fielding of
integrated systems-of-systems capabilities. It includes
programs to develop integrated architectures
incorporating Operational Views (requirements), Systems
Views (system-of-system laydowns), and Technical
Views (technical standards) for Army tactical units,
functional areas, and installations. A similar approach is
presented here, defining requirements, looking at the
system and its components and focusing on common
products that will be created within a common framework
or standard. A critical part of this task is identifying the
individual products and components that provide the
future system-of-system capabilities/functions.

2.3 Future Applications

As the C4I systems of today transition to the systems of
the future, solving the interoperability issue with a well
thought out, rigorous process based on accepted, standard
architectures, common products and components is
critical to success. An example of a current research and
development effort looking at future command and
control can be found in the Agile Commander Advanced
Technology Demonstration [6] program being executed
by the Army’s Communications-Electronics Command
(CECOM) Research, Development and Engineering
Center (RDEC). The Agile Commander ATD is exploring
new architectures and designs to demonstrate the
emerging technologies feasibility (to include simulations)
and their future command and control system
applications.

We envision that, like today, the military scenario
building of the future is concentrated around the
development of plans. The difference is that building a
plan in the future is affected by the introduction of
information technologies as pointed out in the March
2001 PHALANX [7]. Plans creation may be done
graphically, worked in tight iteration with Course of
Action development and then shipped to subordinate units
as a simulation run file. The subordinate unit executes the
run file in their on-board simulation to study the time-
varied 3D execution of the plan in concert with their
sister, subordinate and higher units.

The system-of-systems that will be the basis of the
Objective Force is the Future Combat Systems (FCS)[8].
It is envisioned that some components of the FCS will be
autonomous, robotic platforms. These platforms, while
expected to revolutionize warfare, present unprecedented
challenges in terms of command and control, integration
and interoperability. Simulation-enhanced C4ISR systems
in this future force will be critical to its success. What, in
fact, is different about interfacing and controlling a
robotic platform with a C4I system compared to doing the
same with a wargame simulation?

Simulation technology is playing a major role in each of
these programs. It is imperative that we start to build
future systems in a manner that will bring to bear the
benefits anticipated by the network centric system-of-
systems concepts. Critical to this success is a common
framework and infrastructure to support interoperability
between simulations and future C4I systems.

3. Product Line Architecture Overview

The European Software Institute [9] defines PLA as “The
common architecture of a set of related products. The
product-line architecture captures the essential
commonality in the product-line and provides for
flexibility and adaptability for specific requirements.” A

Table 1. Functionality Cross Matrix
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Product Line Architecture, as specified in [10] “defines
element types, how they interact, and how the product
functionality is mapped to them”. Wittman & Harrison
represent the product line perspective in [11] with “For
OneSAF the product line concept is driven by the need to
support multiple user domains with a variety of end state
uses”. These definitions are particularly applicable since
we intend to design the simulation infrastructure to be
useful to not one specific C4ISR system, but a set of
C4ISR systems.

We use a PLA because it is oriented towards the
development of products and we are correlating the
components of the DII COE to products. We believe that
the specification of PLA products will result in a more
focused overall effort thereby increasing the probability
that the simulation-enhanced C4I capabilities will become
a reality.

An example of a PLA, identified in [12] is a “Car
Periphery Systems (CPS), which combines all products
which use, or could use, radar or ultra-sonic sensors to
detect objects in the immediate vicinity of or approaching
a vehicle”. Individual products require an intense amount
of domain expertise to produce so their independent
development is practically dictated. Still, the concept of
their integration onto a vehicle requires that they integrate
well, that improvements to the products do not invalidate
their common architecture.

How do we go about developing a PLA? The next section
introduces the method we used.

4. Method

It is clear that we intend to be constrained to supporting
system functionality within the DII COE. The DII COE,
through the specification of software capabilities as
reusable segments, supports a component-based
architecture. The question to answer is “How do we
systematically specify the components needed for a
simulation-enhanced C4ISR system?”

4.1 The Decision

We can begin to answer this question by observing some
characteristics of DII COE software segments. DII COE
software segments are:

 Reusable software with well defined interfaces.
 Unaware of their users. They simply provide the

needed interface for their use.
 Comprised of private data and methods on that data

that gives them their characteristic signature and
allow them to perform their intended function.

We recognize these observations as some of the most
fundamental characteristics used to describe software

objects. We also recognize that DII COE segments are in
many ways not unlike software objects [13,14]. For this
reason we choose to use the Object-Oriented Analysis
(OOA) method to analyze, specify and communicate the
components needed for the simulation-enhanced C4ISR
system. Making the selection of OOA has the advantage
of the use of a well understood and rich design language
in the Unified Modeling Language (UML). With UML
we can communicate our specification of objects to the
world of systems engineers and software designers.

Furthermore, the object-oriented framework is well
studied and gives us options for patterns of designs from
which to choose our solution space decomposition [15].
Supporting this claim, the book providing one of our PLA
definitions, is a member of the well-known Object
Technology Series by Addison-Wesley [9].

4.2 The Method Overview

The development of a Product Line Architecture has a
flavor of creativity in that there are not any cook book
recipes to follow, resulting in the finished product, just
right, every time. The developer must combine the correct
amounts of domain experience, UML expertise and
System/Architecture design experience.

This section outlines the steps selected to develop the
Product Line Architecture for the C4I-to-Simulation
integration domain. Figure 3 depicts the primary steps.

Step 1: Actor Selection. In UML, users of the system are
known as actors. Actor selection is done in close
coordination with the system users, in this case, users
from the Central Technical Support Facility (CTSF) at Ft.
Hood, TX. Actor selection also involves projecting how

Figure 3. Basic PLA Development Steps
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future systems may be used. We will come back to Step 2:
Develop PLA Composition View since it is described in
detail in the following diagram. Step 3: Analyze PLA
Inter-product Dependencies & Relationships is part of the
follow-on effort to the work covered by this paper. Step 3
consists of conducting an analysis of each of the PLA
software products as classes with the intent of capturing
all of the important relationships and data. The potential
exists for many useful design products to result from
activities in Step 3. Examples include, although not
limited to; specification of the DII COE software segment
APIs, interaction specifications (perhaps contributing to
HLA FOM interaction and object models), and potential
object models.
Since we also desire to understand dependencies between
the classes (or products), it is important to show how the
products work together to provide system level functions.

Object Collaboration Diagrams accomplish this. Object
Collaboration Diagrams, such as the one depicted in
Figure 4, are used to “realize” the functions required to
support a use case. Developing an Object Collaboration
Diagram for each use case also ensures that each of the
systems functions are addressed within the
object/products identified.

The development of these different diagrams (Class,
Object Collaboration and Use Case) is the focus of Step 2
in Figure 3. It is an iterative process where the developer
changes focus from one diagram type to the next. The
primary purpose of Step 2 is the development of the PLA
Composition View. However, the developer can seldom
complete all aspects of one diagram type without
discovering a facet (use case or class) that needs to be
added to another diagram or view. In this way each
diagram and especially the PLA Composition View,
continues to be enriched in detail as the process
interactively reveals more depth and breadth to the
content of the architecture.

In our analysis we used the process depicted in the flow
chart of Figure 3 until each use case had its own Object
Collaboration Diagram. The process of developing an

Object Collaboration Diagram for each generated use case
causes the discovery of new classes and sometimes, new
use cases. Since our focus is to identify products in the
PLA, each new object type identified in an Object
Collaboration Diagram equates to the identification of
another class in the PLA that performs a system level
capability.

5. Object-Oriented Analysis

While there is no requirement in this paper for the reader
to be familiar with OOA, some familiarity with OO terms
is assumed. The germane elements of the OOA method
are highlighted as steps in defining the PLA. The first step
in OOA begins with Use Case identification.

5.1 Step 1: Actor Selection

The Object-Oriented Analysis of any system-level design
begins with an analysis of the system from the use
perspective. Properly done, use case analyses recognize
the external stimuli that drive the design of the system to
respond to the user needs. Like any complex problem,
decomposition of the problem space is of critical
importance to the simplification of the solution space. A
simulation-C4I PLA is no different. Problem space
decomposition begins with the selection of the system
Actors.

Selection and distinction between the different roles
performed by the actors on the system, enables
unambiguous and ideally, non-redundant identification of
use cases.  In Figure 5 we see the relationships between
the actors enhances the understanding that each actor
inherits the use cases of the actor above it, thereby

Figure 4 Example Collaboration Diagram
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cementing what we already know to be true; that more
sophisticated users build their actions upon a foundation
of simpler operations with the system.

Actors. Since we are developing a Product Line
Architecture, we take care not to select actors that are
specific to any one C4ISR system, but apply to the class
of C4ISR systems for which the PLA is intended. The
following actors and their definitions were identified with
help from users of the ABCS systems:

 User. This is the most basic actor. The role of the
User actor performs actions related to system
operation that does not relate to C4I/Simulation
software such as turning on the computer, printing
adjusting the monitor, setting the screen saver, etc.

 Operator. Operator is a basic user who specializes in
the operation of the C4ISR/Simulation System
software. Starting it, sending messages, etc. are
actions performed by the Operator actor.

 Analyst. This role primarily encompasses actions
related to information retrieval and subsequent
analysis.

 Planner. This role focuses on forming plans and task-
organizing assets for future operations. Creating
action plans, task organizations, tactical control
graphics, and measures of effectiveness are activities
performed by this role.

 System Administrator. System Admin performs
specialized activities such as software installation and

hardware maintenance.

Having identified the actors involved with the simulation-
enhanced C4ISR system, we turn to the use cases
themselves. Naturally, these are developed and organized
around the perspective of the actor.

5.2 Step 2: Develop PLA Composition View

The goal of Step 2 is the development of the PLA
Composition View. The process to develop the PLA
Composition View is patterned after the diagram in
Figure 6. Accordingly, we begin by addressing use cases.

5.2.1 Use Cases

The planner develops potential current and future
operations. The planner is concerned with the setup of the
military scenario and the context within which the
scenario must run. We call this context the exercise
scenario. The use cases supporting this genre of
interactions are listed in Table 2.

Table 2. Planner Actor Use Cases

USE CASE HIERARCHY

1.0 Create Course of Action
1.1 Create Military Scenario

1.1.1 Create Ops Plan
1.1.1.1 Create Task Organization
1.1.1.2 Create Graphic Overlay
1.1.1.3 Create Unit Instructions

1.1.2 Input Unit Status
1.1.3 Create Comms Plan

1.2. Create Exercise Scenario
1.2.1 Input Data Collection Plan
1.2.2 Create Mission Event List
1.2.3 Set Measures Of Effectiveness
1.2.4 Create Network Laydown
1.2.5 Map Models To Units

The indention and the numbering within Table 2 indicates
parent/child relationships such that Create Course of
Action may include (or is extended by) Create Military
Scenario and Create Exercise Scenario. Create Military
Scenario may include Create Ops Plan, Input Unit Status
and Create Comms Plan. In the same fashion Create Ops
Plan may include Create Task Organization, Create
Graphic Overlay and Create Unit Instruction. From the
Planner hierarchy of use cases, we can see that the two
main Planner use cases of the simulation-enhanced C4ISR
system supporting Create Course of Action are Create
Military Scenario and Create Exercise Scenario.

Figure 6. PLA Composition View Development Process
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At this point, we have captured some interesting use
cases. We continue this exercise for User, Operator,
Analyst and System Administrator Actors to complete the
use cases required for the system. We have shown the
results of the process used to develop the Planner use
cases. Since method execution for the rest of the actors is
no different than that shown for the Planner, listing of the
rest of the use cases is omitted.

The next step in the development of the Product Line
Architecture is to assemble, in an Object Collaboration
Diagram for each use case, the objects required to support
the simulation-enhanced C4I system functionality.

5.2.2 Collaboration Diagram Development

Collaboration Diagrams show which classes are involved
in implementing a particular use case. They show this by
depicting a set of objects, links between the objects and
messages sent between the objects for a particular
scenario.

The result of developing a Collaboration Diagram for the

Create Ops Plan use case from Table 2 is shown in Figure
7. For this example, we envision that a tool such as the
Ops Plan Tool would assemble an Operations Plan
consisting of different part types, such as textual
instructions, graphic overlays, etc., of the 5 Paragraph
Order format. We imagine that this is done using
independent software applications, much like this
document is produced using MS Word, Rational Rose,
MS PowerPoint and MS Visio.

We then step through the thought process of how these
applications would interact to produce an Operations Plan
for use by the simulation-enhanced C4I system. Figure 7
shows very basic messages or links between the objects
representing software applications that assist building and
storing the Operations Plan.

5.2.3 Composition View Class Diagram

The process described in Figure 6 ultimately results in the
addition of new classes to the PLA Composition View.
The Composition View is a UML class diagram where the
“has a” relationship forms the primary relationships
between classes in the diagram. Through the “has a”
relationship we depict what software applications are a
part of the PLA. The “has a” relationship also helps us
recognize clusters of classes, or software products, that
collectively provide some major system capability. Figure
8 depicts the composition of the Military Scenario
simulation-enhanced C4I capability, as a “cluster” of
products bordered in a dotted red line at the bottom of the
diagram.

The development of the Create Ops Plan collaboration
diagram in Figure 7 results in the identification and
addition of the Synch Matrix Builder and Instructions
Builder products. These products were added as classes to
the PLA Composition View and are shown circled in the
Military Scenario portion of Figure 8.

Although Step 3 from Figure 3 analyzes PLA inter-
product relationships, we have not completed that step. It
serves to further identify relationships among the PLA
software application products and is left to future efforts.

From Step 2: Develop PLA Composition View, we have
gained a significant understanding of the relationships and
dependencies between software application products. We
use this insight to demonstrate how the dependencies
among software application products are used to organize
and reach the Army vision of DII COE integrated
simulation architecture

6. The Product Line Architecture

Since the purpose of the analysis is to understand what
products comprised the PLA, we are concerned with an
architecture view, shown in Figure 8, that consists of the
primary classes (software application products) and their
relationships. The diagrams focus for relationships is on
the line with the diamond on one end. This forms the “has
a” relationship between classes. For example the C4I/Sim
System box “has a” Execution Monitor, AAR, etc. Except
the “depends on” dashed line with arrow all other
relationships are labeled.

The products in Figure 8 combine in clusters to form the
major simulation-enhanced C4ISR system capabilities of
Military & Exercise Scenario Development, AAR,
Reports Development and Execution Monitoring. As an
example, Military Scenario Development is identified in

Figure 7. Create Operations Plan Collaboration Diagram
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the dashed red box at the lower portion of Figure 8.  The
figure also shows executable software products shaded in
blue, non-persistent data artifacts shaded in yellow and
persistent data stores shaded in gray.  At the bottom of
Figure 8, the software product “Instructions Builder”
retrieves the data artifact “Battle Action Word” which is
contained (stored) in the persistent data store (database)
called “BML db”.  In this way, Figure 8 classes depict
system composition.

6.1 Using the Product Line Architecture

There are really two immediate uses of the PLA. The
PLA is used to understand the list of products that must
be in place to support the simulation-enhanced C4ISR
system functionality. The PLA is also used an input to
determine the time ordering of product deployment into
the hands of the user. There are other uses not as
immediate, but still of primary importance such as the

development of software product interface specifications.
Our immediate uses take precedence however, so the
others uses of the PLA will be left to future work.

We use the PLA to identify which products must be
developed, which products can be adapted or modified
from existing products and which products already exist
and can be used as is. This is the same make/buy analysis
that most systems engineers perform during system
design. They identify system components and any
COTS/GOTS availability/suitability for system use.
Preliminary product make/buy analyses for the
C4I/Simulation PLA are shown in Table 3.

 In addition to the make/buy analyses presented in Table
3, we have listed all of the products identified in the
analyses to date and their dependency upon databases. It
is startling to note how often databases are reused among
the different products. The implications of that reuse are
clear. Data modeling is a crucial element to the

Figure 8. Product Line Architecture Composition Class Diagram
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interoperability of the different products and the
simulation-enhanced C4ISR systems that they support.

While critically important, dependencies upon databases
are not the only dependencies recognized among the
products through the OOA method. The process of
developing the Object Collaboration Diagrams and adding
classes to the PLA Composition View establishes each
software product and some of the relationships between
those products as critical to the execution of at least one
use case. These relationships translate to development
dependencies, especially true where some products
support the capabilities of many other products.

Table 3. PLA Make/Buy Analyses

Products with the most dependencies are selected for
early deployment. We adopt/adapt/develop these products

first so that the dependencies of the products that follow
will be satisfied.

Figure 7 illustrates the Ops Plan Tool dependency upon
the Unit Order of Battle (UOB) tool as the UOB Tool
“create(uto_id)” method is called. Rational Rose™
automatically collects each class dependency from all
Object Collaboration Diagrams where a UOB Tool
method is called. Classes with the most method calls and
the highest quantity of dependencies can be easily
determined. Each use case has a collaboration diagram
and the Rational Rose™ tool tracks each dependency
from the collaboration diagrams to each class.
Requirements traceability from system use case to class
(product) is built in.

As an intermediate step, MS Project was used to organize
the products as tasks and the dependencies identified with
Object Collaboration diagrams as task links. These finish-
to-start task links establish the MS Project time ordered
sequence of products depicted in Figure 9.

The colored horizontal bands in Figure 9 are based on the
technical blocks of the house chart in Figure 1. Each band
in Figure 9 is built upon the interoperability foundation of
the bands beneath it. If, for example, the foundational
work in Architectures is not executed first, the
interoperability of related work in Common Standards,
Common Data/Object Models and Shared Solutions &
Interfaces is in jeopardy.

Looking deeper into the Figure 9 one can begin to see that
the same relationship existing between the blocks is also
manifested in the relationships between the products. For
example, the product “NetMap Builder” depends on a
standard for network specification, in this case called
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“Network Spec Language”. The “Network Spec
Language” may be incomplete if it leaves out newer
network components included in the Systems
Architecture. Some of the dependencies between are
depicted with the arrows between software components.

As the PLA analysis becomes more mature and fully
populated, the products and timing represented in Figure
9 will solidify. Furthermore, SIMCI will synchronize the
timeline represented by Figure 9 with the US Army’s new
Software Blocking Policy. By default, this will force
product acquisition and development timing priorities to
align with the US Army Transformation Plan.

7. Conclusions & Recommendations

This paper frames a method and a plan to attain vision for
the future of simulation interoperability with the C4ISR
domain over the next 10 to 20 years. The DII COE
paradigm has most of the technical and process
components needed for a comprehensive solution. It is
still necessary to further specify the products and their
time phased deployment for the effective creation of
simulation-enhanced C4I system functionality. Object-
Oriented Analyses to determine a Product Line
Architecture for the DII COE provide a well-suited
method to plan and define the integration of simulation
infrastructure and functionality into simulation-enhanced
C4ISR systems. Our purpose has been to introduce the
method, define the solution space and to identify the
results to date.

We have discussed how the need for a suite of
components that comprise the DII COE-based simulation
infrastructure is well defined by the functional
requirements of the simulation-enhanced future C4ISR
systems. The observation that the DII COE components
are similar to objects enables the use of the OOA method.
The realization that DII COE components are also the
products in a DII COE-based simulation Product Line
Architecture logically connects the analysis method to
support the description of the desired PLA end-state.

7.1 Conclusions

Using the OOA method as our process for defining the
PLA we conclude the following:

 Standards, architectures, data models and process
efforts can only impact interoperability if they are
manifested in software application products.

 Given the strong correlation between products and
DII COE components, developing a PLA using OOA
enables a straightforward identification of a DII
COE-based simulation infrastructure.

 The PLA method supports systems design by
identifying make/buy decision targets (products).
Product capability is traceable to system use cases.

 So much of the PLA is dependent upon common
databases that the specification of a common data
model is essential for product, simulation and C4ISR
systems interoperability. This confirms the direction
in data modeling that SIMCI has been heading for the
last 2 years.

 The PLA method allows a systematic way to time
phase the introduction of the simulation infrastructure
products into the DII COE. This is an enabling
function to achieving the interoperability vision for
C4ISR and simulation systems.

7.2 Plans for Future Work

Our recommendations fall out naturally from the analyses
and conclusions:

 Complete the use case study and subsequent OOA of
the PLA for the RDA, TEMO, ACR domains, for
distributed/embedded C4ISR-based simulations and
for umbilical simulations externally supporting
C4ISR systems.

 Continue to specify the PLA API level information.
This specification will assist in identification of
whether to adopt or adapt existing products, or if new
products must be developed.

In closing, since the vision driving this paper is based
upon the DII COE, it is not only an Army vision but is
also a Joint vision. Furthermore, parallel efforts [16]
suggest that this vision can be an international one that is
shared between the U.S. and its allies. We believe that our
approach to attaining the vision through the use of the
PLA method is broad enough that it can be used by the
Joint and international communities and that the
conclusions and recommendations herein are valid for
consideration by those communities.
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