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ABSTRACT

In ultrasonic NDE, simulation studies can play an important role in
complimenting experimental validation of techniques under development. The utility of
such simulations depends, in part, on the degree to which the simulated defect and noise
signals are representative of the measured signals. In this paper, we describe an approach
for generating simulated acoustic noise with a spatial correlation coefficient distribution
and maximum extreme value (MEV) distribution which matches those distributions for
measured acoustic noise. The procedure for generating noise signals is outlined for a line
scan and for a raster scan. The basic approach forces the correlation of neighboring
signals to the desired correlation by creating each signal as the sum of appropriately
scaled neighboring signals plus a new random signal. For the line scan where each
interior position has only two neighbors, this process is done sequentially without
iteration. For the raster scan where each interior point has four nearest neighbors,
iteration is required to simultaneously achieve the desired correlations with row and
column neighbors. The MEV distribution is controlled in an outer iterative loop with the
shape and position of the distribution dictated by spectral content of the noise signals and
by controlling the signal energy, respectively. Results are shown which demonstrate the
effectiveness of the approach. With this approach, a limited number of measured signals
can be used to establish the correlation coefficient and MEV distributions which drive the
computer generation of a large number of simulated acoustic noise signals.

Keywords: ultrasonics, acoustic noise, correlation
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I. INTRODUCTION

Simulation studies are routinely used in ultrasonic nondestructive evaluation
(NDE) to complement experimental studies during the development of new inspection
approaches. Simulated A-scans typically include a target signal (e.g., a flaw or weld
plane signal) plus noise. The noise of interest lies between the front and back surface
reflections in an A-scan and is comprised of electronic plus acoustic noise. In certain
cases, the degree of correlation between A-scans can have a significant influence on
detection.*®  These correlations can be quantified in terms of the spatial cross-
correlation, at zero lag, between gated A-scans.“® Uncorrelated noise A-scans are easily
generated using a normal random number generator with filtering used to achieve the
desired frequency content. Margetan et al. have gone a step further using an independent
scatterer model to generate simulated grain noise A-scans with correlations between A-
scans controlled to some degree through use of an experimentally determined spatial
correlation length parameter.?) Using their approach, the average, maximum, and
standard deviation of gated peak-values are also controlled. In the current paper, we
describe an approach for generating simulated acoustic noise with a correlation
coefficient distribution and maximum extreme value (MEV) distribution (i.e, the gated
peak-value distribution) which matches those distributions determined for measured
acoustic noise.

The motivation for this project finds its origin in research associated with kissing
bond detection for inertial welding of two stainless steel pieces. Kissing bonds can be
very difficult and expensive to fabricate in a controlled fashion, providing motivation for

simulation studies which utilize simulated noise signals with realistic correlation



coefficient distributions. The basic approach being developed relies on the correlation
coefficients between adjacent A-scans to detect low signal-to-noise ratio (SNR) kissing
bond signals. This approach finds its genesis in the work of Nagy and Adler on this same
problem.® Without going into the analysis details, suffice it to say that an inspection
approach can be formulated which relies heavily on the comparison between correlation
coefficient distributions associated with backscattered signals from the weld being
inspected and from a known set of acceptable welds.”” More recently the correlation
approach has been extended to crack detection in both pulse/echo and pitch/catch.®

Computer generation of correlated random variables with a desired mean
correlation coefficient is straightforward. For example, the i" random sample can be

generated based on the i —1 random sample as follows: ©

(i) = a(i)+ bx(i—1) @)

where b is an adjustable scale factor, a(i) is the output of a random number generator,

and the x’s are the computer generated samples of the random variable, x. The single
scale factor can be adjusted to yield the desired mean correlation coefficient value, but, in
general, the scale factor cannot be adjusted such that desired correlation coefficient mean
and distribution (width and shape) are achieved. The natural relationship between the
mean and shape dictate that as b is increased, correlation values are forced closer to the
limiting value of 1.0, the distribution breadth decreases, and the distribution becomes
increasingly skewed with a fat lower tail. The primary task addressed in this paper is to

extend the approach represented in Eq. (1) so that vectors of random numbers (simulated



A-scans) can be generated that show the desired distribution of correlation coefficient
values. These simulated signals will also be forced to the desired MEV distribution.

Simulation of data with specified correlation structure arises in many fields. In
the physical sciences, scientists often use Shewhart Control Charts to monitor a process.
In this setting, data are a time-indexed series of averages or counts taken at regularly
spaced time intervals. Padgett, Thombs and Padgett © present a method to generate such
one-dimensional data with specified mean and variance structure so that the performance
of such charts can be studied via simulation. In this paper, the generated data are two
dimensional, with emphasis on both the correlation within and between series, as well
and the maximum extreme value distribution.

Two dimensional spatial time series data with correlation structure is common in
many other areas, including meteorology, hydrology and ecological and environmental
studies. In the area of ecology and wildlife studies, observations such as animal counts
are typically observed at irregularly-spaced locations. Neighboring observations are
likely to be correlated, and the paper by Brooker ™ represents one of the first attempts to
generate such data.

In spatial statistics, point patterns are observed on variables such as temperature
and rainfall, so that the data often include a (third) component, time. See Cressie ™ for
more information on the statistical aspects of fitting models to such data. A recent
contribution by Kyriakidis et al.*? proposes an algorithm for generating spatio-temporal
precipitation data, with emphasis on preserving the distribution of the original data set.

Data are both space-indexed (e.g., longitude and latitude) and time indexed.



The methodology presented in the current paper is distinct from these related
approaches for generating dependent data in that both the correlation and the MEV
distribution are controlled. The paper proceeds by first establishing representative
correlation coefficient and MEV distributions associated with measured backscattered
noise. The methodology for generation of simulated acoustic noise with the desired
correlation coefficient and MEV distributions is then described for a line scan and for a
raster scan. Results are presented which validate the approach for the experimentally
established correlation coefficient and MEV distributions. The paper closes with a brief
summary section.

Il. MEASUREMENT PROCEDURE

Backscattered grain noise signals were measured and used as a basis for
calculating associated correlation coefficient and MEV distributions. The ultrasonic
measurement system used in these measurements consists of a water tank filled with
degassed tap water at approximately 19°C, a three dimensional scanning bridge that holds
a transducer, a pulser-receiver unit, and a 12 bit data acquisition card with a sample rate
of 100 MS/s. A dedicated PC collects data from the acquisition card and controls the
motor controller that moves the scanning bridge. A separate PC is employed for data
analysis.

The transducer used to make measurements was a focused %" transducer with a
10 MHz center frequency and a 4” focal length. The settings on the pulser-receiver and
the data acquisition card were typically set at values such that the front and back surface

reflections were blown off the screen in order to enable proper digitization of the grain



noise. In each measurement position, 64 signals were taken and averaged together in
order to reduce electronic noise.

The sample used in all measurements was a stainless steel plate with the
dimensions 10.1 x 5 x 1.9 cm. A leveling plate was used to ensure that the specimen was
aligned with the transducer’s scan plane. The transducer was normalized in relation to
the front face of the sample. Data was taken at a single water path such that the focal
point of the transducer would be approximately at the sample mid-plane. Signals were
measured on a 3.2 x 2.4 cm grid with 0.5 mm between measurement positions.

After the data was collected, pre-processing was done on the raw signals. First,
the front surface reflections of each signal were aligned with one another. Then all of the
signals were averaged together in order to identify any non-random component
associated with the front surface reflections. This mean signal was subtracted from each
of the individual signals so that spatial correlations between adjacent noise signals could
be calculated with minimal influence from front surface reflection ringing.>. Finally,
each signal was gated to extract a time window of 51 points (0.50 us) with the gate
positioned to correspond closely with the location in the sample where the transducer was
focused.

1. STATISTICAL ANALYSIS OF MEASURED NOISE
A. Maximum Extreme Value Distributions

Vectors of data representing maximum extreme values (maximum absolute
values) for the measured noise were extracted from the gated signals. Figure 1 shows 2
histograms based on this MEV data. The lower histogram is for all measured signals,

that is, for a measurement position spacing of 0.5 mm. The upper histogram is for every



3rd signal, corresponding to a measurement spacing of 1.5 mm. The histograms are
fundamentally the same with the number of observations being the only significant
difference. An extreme value distribution based on the absolute value of the difference
between min and max values could have been utilized instead.®
B. Spatial Correlation Coefficient Distributions

The correlation of interest is the spatial cross-correlation calculated at zero lag
between gated A-scans measured at adjacent measurement positions. For discussion
purposes, consider an N x M scan with the A-scan (each T points long) written into the
matrix x = x(i, j,t)i=L,N j=1,M t=0,T -1 (see Fig. 2). Calculation of the correlation

coefficient between A-scans is then given by the following equation where

pzp(i, Bty v5r’5c):

D) . )40 .51)

P ty @)
;[x(i,j,t)—mx(i,j)]z ;[X(i+5c’j+5r’t)_mx(i+5c'j+5r)]2

In Eq. (2), the summation range in the time-domain defines the portion of the signal (the
time window or gate) of interest, m is the mean value calculated over the gate, and & is
a spatial shift parameter. Throughout the paper, t is used as a discrete index referring to

the temporal direction. With &, =1 6, =0, row correlations are calculated between

adjacent A-scan, that is, A-scans measured at the j™ and j™ +1 positions in the i" scan

row. Similarly, with 6, =0 &, =1, column correlations can be calculated. Correlations



for all possible adjacent signal combinations in an N x M raster scan can be established
using a computation loop over i and j with the spatial shift applied sequentially to i and j.

In order to define desired distributions of spatial correlation coefficients for
simulated noise, conditional correlation coefficient distributions were established based
on the pre-processed measured noise signals. In this section, we begin by considering the
overall distribution of correlation coefficients. Conditional distributions are addressed
below. The first step was to calculate the correlation coefficient (Eq. 2) between each
signal and its row and column neighbors (see Fig. 2) and write these values into a single
vector. This calculation was done separately for three measurement spacings: 0.5 mm
spacing (every signal), 1 mm spacing (every 2nd signal), and 2 mm spacing (every 4"
signal). The correlation coefficient histograms for these measurement spacings are
shown in Fig. 3. The influence of measurement spacing on both the mean and the shape
of the correlation coefficient distribution is apparent. Conditional correlation coefficient
distributions show the same basic characteristics as these overall distributions.

Probability density function fits to the distributions were considered. The normal
and gamma distributions were found to be the two common distributions that yielded the
best fit to the correlation distributions. The normal distribution works best when the
average correlation value is near zero and the distribution is symmetric; however, as is
apparent from the figure, the distribution tends to show a suppressed peak and fatter tails
than the normal distribution. The gamma distribution works well for skewed
distributions with higher average correlations. In some cases, a standard distribution
which shows reasonable fit to the histogram cannot be found; however, an interpolation

of the histogram can be used to approximate the actual distribution of the correlation



coefficient values. The interpolation approach utilizes the Matlab routine randsample to
randomly choose a bin and then randomly select a value from each bin based on a linear
probability density function defined between the edges of each bin.® Superimposed on
each histogram in Figure 3 is a normal or gamma distribution fit along with the
interpolation fit.

In general, correlation coefficient values are not randomly distributed in space.
That is, the correlation coefficient between a given pair of signals depends on the
correlation coefficients between surrounding pairs of signals. As an example, Fig. 4
shows the variation in correlation values along a line scan with relatively low (upper
graph) and high (lower graph) measurement spacing. As demonstrated in the figure, the
dependence of correlation values on adjacent values decreases with increasing
measurement spacing. A graphical example of a conditional histogram is shown by the
stem-plot in Fig. 5. The overall distribution is given by stems terminating in light circles,
and the conditional distribution, assuming an adjacent correlation value of 0.58, is given
by the stems terminating in dark circles.
IV. GENERATION OF SPATIALLY CORRELATED NOISE
A. Generation of Spatially Uncorrelated Acoustic Noise

A number of equally effective approaches could be taken to generate uncorrelated
acoustic noise. As depicted in Fig. 6, the basic steps in the process as implemented here
are as follows: 1) using a standard normal random number generator, create a time-
domain white noise signal, T points long, for each (simulated) measurement position; 2)
Fourier transform each signal to the frequency domain; 3) filter each signal using a filter

(with unit energy) that will force the resultant noise to have the same average power



spectrum as the measured noise; and 4) inverse Fourier transform each signal back to the
time-domain to yield A-scans which are spatially uncorrelated with appropriate frequency
content. Note that the correlated noise creation step described below involves sums of
scaled A-scans. This process changes the average power spectrum from the desired
spectrum associated with these initial spatially uncorrelated signals. An iterative
correction approach will be outlined which brings the average power spectrum back to
the desired shape while still achieving the desired correlation distribution was
implemented.
B. One Dimensional Generation of Spatially Correlated Noise

We begin by establishing the approach for a line scan and then expand the
procedure for application to an xy raster scan in the next section. Starting at the noise
measurement stage, assume that a line scan is performed, acoustic noise signals are
measured and pre-processed, the average power spectrum is estimated, and the overall
and conditional correlation coefficient distributions are established. The line scan of

measured signals are written in a two-dimensional matrix, denoted x,,, with average
power spectral density function estimate and associated magnitude spectrum given by
|Xm(f]2 and |Xpy(f), respectively.

For discussion purposes, assume that an N position line scan is to be simulated.
N —1 correlation coefficients are randomly generated with the first value coming from
the overall distribution and subsequent values drawn from conditional correlation

coefficient distributions. These N -1 correlation coefficients, denoted p(i) i=2,N,

will dictate the correlations between simulated noise signals.
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Clarification of the overall and conditional correlation coefficient distributions is
in order. The overall distribution is the probability density function associated with the
probability P(p(i)), that is, for the entire set of correlation coefficients given that these
correlation coefficients are not independent. Before addressing conditional distributions,
recall the notation: (i) gives the correlation between x(i,t) and x(i-1t); p(i—1)
gives the correlation between x(i—1,t) and x(i—2,t); and p(i+1) gives the correlation
between x(i+1t) and x(i,t). Considering only nearest neighbors, the conditional
probability density function for p(i) is associated with the probability:
P(p(i)| p(i—1) and p(i+1)). In practice, during the sequential generation of correlated
signals, the correlation coefficient p(i) is drawn from the distribution associated with
P(p(i)| p(i—1)) since p(i+1) does not yet exist.

The process of creating correlated noise signals involves several steps. We begin
by describing the procedure used to force the desired correlation between to two given
signals.  This approach is then incorporated into an iterative procedure used to
simultaneously match the desired correlation distribution and average power spectrum.

Figure 7 gives a cartoon representation of the notation and some of the steps
involved in creating a simulated line scan of spatially correlated signals. Using the
procedure described in the previous section, the first step is to create a set of N
uncorrelated acoustic noise signals, represented by the matrix
a=a(i,t) i=L,N t=0,T-1. The output matrix, i.e., the set of correlated signals, is
denoted x =x(i,t) i=1,N t=0,T —1. The next step is to set x(1,t) equal to a(Lt), that

is, x(L,t)=a(l,t) t=0,T —1. Throughout the remainder of the paper, all operations will
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be implicitly carried out over the range of t, for example,
xILt)=a(Lt) = x(@t)=a(t) t=0,T-1. The second signal, x(2,t), is then to be
determined so that the correlation between x(2,t) and x(Lt) is equal to the desired
correlation, ,5(2). Consistent with approach of Eq. (1), the method used to calculate
x(2,t) is to add b(2)x(L,t) to the uncorrelated signal a(2,t): x(2,t) =a(Lt)+b(2)x({Lt).
The key is to find the value of b(2) which forces the correlation between x(1,t) and

x(2,t) to be equal to p(2). This process will be repeated for each signal, that is:

x(i,t) = a(i, t) + b(i )x(i — 1 t) i=2,N (3)

Note that x(i,t) will be appropriately correlated with both of its neighbors, x(i—1,t) and
x(i+1,t), since the process forces correlations between x(i,t) and x(i—1,t) and between
x(i +1,t) and x(i,t).

The process for establishing the scale factor, b(i), can be described as follows.
We begin by using the correlation coefficient between a(i,t) and x(i—1,t) to calculate

the inherent similarity between the two signals that will be used to create the output

signal.
(6.0 - ma i) -1 )
pli)=——==2 - i=2,N 4)
\/Z(a(l t) —m, (i) \/Z x(i—1,t) —m, (i))?
t=0 t=0
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In order to simplify the notation, the mean subtraction step will be implicit in future

correlation equations. For ease of calculations, the following substitutions will be used.

T-1
=Y a(i,t)x(i-1t)

t=0

T-1
si= > a(i,t)?

5 g
zi= > x(i-1t)

t=0
pli)=—

SiZj

The goal is to force the correlation between x(i,t) and x(i—1,t) to be equal to 5(i). This

correlation can be calculated as follows.

T-1
> (i, t)x(i-1t)
pli)=——= (6)

T-1 T-1
\/Zx(i,t)z\/ZX(i—l,t)z
t=0 t=0

To relate this correlation to the scale factor, b(i), we proceed with manipulations of Eq.
(3). First, both sides of Eq. (3) are multiplied by x(i —1,t) to give the top equality in Eq.
(7). Second, both sides of Eg. (3) are squared to give the middle equality in Eq. (7). This
equation is then multiplied by Zx(i -1, t)2 to yield the lower equality in Eq. (7). Each

equality in Eq. (7) is written in terms of the parameters defined in Eq. (5).
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T-1 T-1 T-1

S, -L1t) = 3 ali,t)x(-L1t)+b(i) Y x(i-1t)% =, +b(i)z
t=0 t=0 t=0

T-1 T-1

T-1 T-1
> x(1,1)2 = > ai,t)% +20(i) > adi, )x(i—1,t) +b2(i) > x(i~1,t)?
t=0

t=0 t=0 t=0 (7
=s; +2b(i)r; +b?(i)z;
T-1 T-1

> X[, )2 x(-1t)? =z (si +2b(i)r, +b2(i)z; ): sizj +2b(i)r z; +b2(i)z;2
t=0 t=0

Equation (6) can now be re-written as follows.

T-1
x(i,t)x(i —1,t)
5(I) = g(:) _ I + b(i )Zi @
\/fo(i,t)sz_“lx(i _11)2 Jsizi +2b(i)z; +b2(i)z;2
t=0 t=0

To obtain the desired correlation, the correct scale factor must be chosen by
solving Eq. (8) for b(i). To solve for b(i), both sides of Eq. (8) are squared, the resultant

equation is rearranged into a quadratic polynomial, and solved as follows.
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~2 )= ri2+2b(i)rizi +b2(i)2i2
sizj + 2b(1)rz; + b2 (i)z?

[P 52020+ et 570+ (55200 ®
Al 52(i)sizi —r2)
o) Zi _\/ @-5%()

If the desired correlation is positive ((i)>0), the maximum value of b(i) is chosen; if
the desired correlation is negative (5(i)<0), the minimum value of b(i) is chosen. In

the discussion given below, the argument of the radical is shown to be non-negative.

At this point, the correlation part of the line scan problem is solved. With b(i)

calculated as given in Eg. (9) and following the procedure outlined above culminating in
Eq. (3), simulated acoustic noise signals can be created with a correlation coefficient
distribution which matches the desired distribution.

C. Matching the Maximum Extreme Value Distribution

A secondary point of emphasis was to force the simulated noise to match the MEV
distribution for the measured noise. When using a normal random number generator
approach to create simulated acoustic noise signals, the mean of the MEV distribution is
controlled by the standard deviation of the random number generator. As discussed
below, the mean of the MEV distribution was handled at the end of the correlated noise
creation step by scaling each signal to control the average signal energy. The shape of
the MEV distribution depends on the correlation between points in each A-scan; in other
words, the shape is controlled by the autocorrelation function or average power spectrum

of the noise. As described above, the initial set of uncorrelated noise signals
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(a(i,t) i=1,N) are filtered to force an average magnitude spectrum which matches that
of the measured noise. The summation process depicted in Eqg. (3) alters the average
spectrum for the output correlated signals (x(i,t) i =1,N ). Unfortunately, correcting the

average spectrum of the correlated signals back to the desired spectrum would alters
signal correlations and associated correlation coefficient distribution; thus, motivating the
implementation of an iterative approach. The goal is to filter the noise going in to the
correlation process so that the noise coming out of the correlation process will have the
desired average power spectrum and, therefore, the desired MEV distribution shape.
Additional notation is needed to describe the iterative approach. The output of the

kth

correlation process for the iteration will be denoted xj =x(i,t) i=1,N with

average power spectrum and magnitude spectrum given by |Xk(f)|2 and [Xy(f),
respectively. The filters will be denoted F(f) with the initial filter, F;(f), based
directly in the magnitude spectrum for the measured noise: Fy(f)=|Xp(f). The initial
filter, Fy(f), is the filter used in creating the uncorrelated signals (a=al(i,t) i=1,N).
The goal is then to make the output spectrum, [X, (f), equal to the desired spectrum,
|Xm(f )| to within some acceptable error. Defining E, to be the sum of squared errors
between [X, (f) and [Xp(f) over some frequency range and &, to be the acceptable
error level, the iterative process will continue until E, <&, . The filter is updated after

each iteration based on the ratio of the desired and output spectra: Xy, (f)/|X(f).
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For a line scan, the iterative approach used to achieve the desired correlation
coefficient distribution and frequency spectrum can be summarized in algorithm form as
follows:

0. generateaset of whitenoisesignals: a,, = a,,(i,t) i=1N

1. apply thefilter, F(f), to the white noise to yield: a=a(i,t) i=1,N

2. calculate x @ x (Lt)=a(Lt) x(i,t)=x(i-1t)+b(i)ali,t) i=2,N
ft

3. calculate [X, () andthe error: Ex = > (X (f )~ [X (f ])2
fi

4. if Ey < gy; X=Xy, stop;

5. if Ey > &,; calculate anupdatedfilter: k =k +1 F(f)=F_(f )M

X ()
6. returntostep 1.

Empirical evidence shows that the final filter shape is strongly dependent on the
desired magnitude spectrum and weakly dependent on the desired conditional correlation
coefficient distributions. As such, for a given desired magnitude spectrum, we generally
run through the iterative process one time to establish the appropriate filter shape. This
filter is then used for all additional runs to generate correlated noise signals, regardless of
the desired output correlation coefficient distributions.

Finally, the signals are scaled to achieve the desired mean MEV, that is, the mean

MEYV associated with the measured acoustic noise signals, denoted mye,. As indicated

earlier, when generating uncorrelated noise signals (a:a(i,t) i=1,N) using a standard
normal random number generator with o =1 will force the mean MEV for the signals in

a to unity. The mean MEV for the correlated noise signals (x = x(i,t) i=1N) can also
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be forced to 1 by making the energy of each correlated noise signal equal to the energy of
the associated uncorrelated signal. The desired mean MEV can then achieved by scaling

by the mean MEV of the measured noise, denoted mye,. This can be done in the
computational loop or as a post-processing step as follows: X =X(0'a /ax)mmev where
o, and o, are the standard deviation of the uncorrelated and correlated noise,

respectively. Note that scaling the signals does not change the correlation coefficient
distribution since the correlation coefficient is scale independent.

We close the section by showing that b(i) is purely real and by considering some

special cases. To prove that b(i) will never be imaginary, the value under the square root
must be shown to be non-negative. There are three values under the square root ,52(i),

(1—52(i)) ,and (s,;z,—r?). Since p is always between -1 and 1, the first two quantities
are clearly greater than or equal to zero. To show that the third quantity is always

positive, consider the following manipulations of Eq. (6?), noting that 52(i)2 0.

pli)=—— = =)z = <sy (10)

A few special cases should be examined. The first case is where the desired
correlation is £1. From Eg. (9), it can be seen that setting the desired correlation to +1

makes the denominator under the square root equal to 0, forcing b(i) to £oo. With

reference to Eq. (3), this makes sense because p(i)=+1 implies x(i,t)=+x(i—1t) which
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can only be approximated with b(i)=+o (a(i,t)=0). If the desired correlation were
+1, x(i,t) should simply be set to +x(i—1,t).

A second special case would arise if the original correlation (Eq. (5)) were equal
to +1. For this case, r’ =sz, and the numerator under the radical in Eq. (9) goes to
zero. This eliminates the influence of the desired correlation value, p(i), and results in
b(i)=-1/z . We note from Eq. (8?) that b(i)=—1;/z; = r; = -b(i)z; will merely set the
output correlation to 0. However, when dealing with randomly generated noise, it is
exceedingly unlikely that we will come across two signals that have a correlation of 1. If
this case were to occur, the problem could be solved by generating a new a(i,t).

D. Two Dimensional Generation of Spatially Correlated Noise

The procedure for generating correlated A-scans which simulate an xy raster scan
follows directly from the procedure for a line scan. Figure 8 defines some of the notation
used in this section. For the two dimensional case, the correlated signals are created in an
inner iterative loop with a second outer iterative loop used to simultaneous satisfy the
correlation distribution and frequency content requirements.  We again begin by
assuming that a set of data is taken by measuring backscattered signals at N x M equally
spaced measurement positions (see Fig. 1). The correlation coefficients between
neighboring signals can be used to define the overall and conditional correlation

coefficient distributions.  These distributions can be used to generate N(M -1)
correlation coefficients between signals in a row, denoted p(i,j), and (N-1)M
correlation coefficients between signals in a column, denoted p.(i, j). These are the

desired correlation values that will be used in determining the scale factors, similarly
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denoted b, (i, j) andbg(i, j). As with the line scan case, desired correlation coefficients
can only be drawn from distributions conditioned on correlation coefficient values
between previously generated signals.

The procedure again starts with the generation of a set of uncorrelated acoustic
noise signals, now written into a thee-dimensional matrix: a:a(i, j,t) i=LN j=1LM.
The first row and the first column are treated as line scans. The first output signal,
x(L1t), is set equal to a(LL,t). The procedure described above for a line scan is then
used to find the scale factors, by(L, j) j=2,M and b.(i,1) i=2,N, and the associated
simulated signals, x(1, j,t) j=2,M and x(i1,t) i=2,N .

The remainder of the correlated signals are created in an iterative fashion starting
with x(2,2,t). Each new signal is simultaneously forced toward the desired correlation
with two neighboring signals. In general notation (see Fig. 12), x(i, j,t) is iteratively
forced toward the desired correlation with x(i -1, j,t) and x(i, j —1,t) by using the sum of
appropriately scaled versions of these two signals plus a(i, j,t).

To generate the signal x(i, j,t), the algorithmic loop can be summarized as
follows:

1. Calculate the scale factors required to force the desired correlation between
x(i, j,t) and x(i—1, j,t), denoted p.(i, j), and between x(i, j,t) and x(i, j—1),

denoted 5 (i, j):
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2.

bc(i’j):_rcij i\/ﬁg(i'j)(scijzcijrc%j)

Zai (-p¢ (i i)
(11)
b, j)__rrij +\/5r2(i’j)(3rijzrij_rr2ij)
r\b )= - 20
Zii -7, )
Calculate the output signal using both scale factors and all three signals:
(i, ) =ad, j,)+be (1, J,)x(, J =L ) +be (i, )x(1 -1, ,1) (12)
Calculated the actual correlation coefficient between x(i, j,t) and
x(i—1, j,t),denoted p(i, j), and between x(i, j,t) and x(i, j —1,t),
denoted p, (i, j),
T-1
— (i ) t=0
peli j)= T T1
> x(, 02 D (i1 j,1)?
t=0 t=0
(13)
T-1
Do x(, j.)x3, j-1t)
— (i ) _ t=0
prli )= T 1
t=0 t=0
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4. Calculate the correlation coefficient error and compare with the acceptable error

level, Ep'

opc i, i)=1pc (i, §)-pcl. i) o (i i)=[pr (i §)-p2r (i, ) (14)

If 5pc(i,j)<e, and dp(i, j)< &, then stop; else go to step 5.

5. Use the current output signal as a new starting signal: a(i, j,t)= x(i, j,t). Return

to step 1.

The loop is repeated until NM —(N +M ) correlated acoustic noise signals have
been generated. Note that x(i, j,t) is correlated with each of its four neighbors since
x(i, j,t) is calculated based on its correlation with x(i—1,j,t) and x(i, j-1t), and
x(i+1, j,t) and x(i, j+1,t) are calculated based on their correlations with x(i, j,t) (see
Fig. 8).

Finally, the MEV distribution shape and position are addressed. As with the line
scan, an outer iterative loop is used to force the generated signals to have the desired
frequency content, and thus the MEV distribution shape, while maintaining the desired
correlation coefficient distribution. This iterative process follows directly from the steps
outlined for a line scan in the previous section with only notational changes required to
account for three-dimensional rather than two-dimensional matrices. The position of the
MEYV distribution for the simulated signals is again dealt with by scaling of the simulated

signals, following the approach outlined for the line scan: X =X(c3 /oy JMmey -
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IV. RESULTS
A. Implementation

The MEV distributions (Fig. 1) and conditional correlation coefficient
distributions associated with the overall distributions shown in Fig. 3 were used as the
desired distributions to demonstrate implementation of the noise generation approach. A
periodogram approach was used to estimate the average magnitude spectrum of the
measured noise for use in creating acoustic noise signals with the desired MEV
distribution shape. Desired correlation coefficients were drawn from interpolation-based
conditional probability density functions which were based on conditional histograms
constructed from the measured noise. Spatially correlated acoustic noise A-scans, each
51 points long, were generated to simulate a 50 x 50 raster scan at a digitization rate of
100 MS/s (10 ns/point).
B. Results

We begin by showing an example of the evolution of correlation coefficients and
signals toward the desired result for the middle distribution shown in Fig. 3. The two

dashed lines in Fig. 9 show examples of the how the actual correlation values, ,Br(i, j)
and p(i, j), move toward the desired values, p,(i, j) and p;(i, j), with each iteration.

Figure 10 shows how one uncorrelated noise signal, a(i, j) (solid lines, upper graphs),
can start at an arbitrary correlation coefficients with its neighboring signals (dashed lines
in the upper and lower graphs) and then after iteration evolve to a correlated noise signal,
x(i, j) (solid line