

AFRL-IF-RS-TR-2006-298
In-House Interim Technical Report
October 2006

GRID COMPUTING FOR HIGH PERFORMANCE
COMPUTING (HPC) DATA CENTERS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO COPY

 NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Rome
Research Site Public Affairs Office and is available to the general public, including foreign
nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-IF-RS-TR-2006-298 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

LOIS D. WALSH, Chief JAMES A. COLLINS, Deputy Chief
Advanced Computing Technology Branch Advanced Computing Division
Advanced Computing Division Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCT 2006
2. REPORT TYPE

 In-House Interim
3. DATES COVERED (From - To)

Feb 04 – Jun 06
5a. CONTRACT NUMBER

In-House

5b. GRANT NUMBER
N/A

4. TITLE AND SUBTITLE

GRID COMPUTING FOR HIGH PERFORMANCE COMPUTING (HPC)
DATA CENTERS

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
459T

5e. TASK NUMBER
GR

6. AUTHOR(S)
Virginia W. Ross, Zenon Pryk, Walter Koziarz and Scott Spetka

5f. WORK UNIT NUMBER
ID

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/IFTC
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
525 Brooks Road
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-298

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-688

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research project developed an HPC grid infrastructure to operate as an interactive R&D tool. Previous HPC grid architectures
were designed for batch applications, where the user lacks direct control over application execution. While this may be acceptable
for running very large computationally intense atch jobs on large mainframes, it is not acceptable for use with jobs that require a near
real-time response and an interactive environment. To meet this need, IFTC developed an environment that stresses ‘near real-time’
user interaction with the application. This involved evaluating the various developing protocols for interactive grid computing, using
the Globus Toolkit, and then selecting the one with the most growth potential. The grid architecture evaluated by assembling and
demonstrating an in-house interactive demonstration grid using in-house cluster assets and existing code, to verify proper operation
on a small scale. This project provided a framework for longer term efforts to investigate and improve interactive scalability and
performance, taking into account the needs of JBI, HPC, logistics, etc.
15. SUBJECT TERMS

Grid computing, interactive computing, high performance computing

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Virginia Ross

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

22 19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

ABSTRACT:

This research project investigated techniques to develop a High Performance Computing
(HPC) grid infrastructure to operate as an interactive research and development tool.
Current HPC grid architectures are designed for batch applications, where users submit
their job requests, and then wait for notification of job completion. In the batch
environment, the user lacks direct control over the execution of their application. While
this may be acceptable for running certain very large computationally intense batch jobs on
large mainframe HPCs, it is not acceptable for use with jobs that require a near real-time
response and an interactive environment. To meet this need for accessing and processing
data interactively in near real-time, the Air Force Research Laboratory/ Information
Directorate developed an environment that stresses 'near real-time' user interaction with the
application. This involved evaluating the various developing protocols for interactive grid
computing, using the Globus Toolkit, and then selecting the one with the most growth
potential. The grid architecture was evaluated by assembling and demonstrating an in-
house interactive demonstration grid using in-house cluster assets and existing code, to
verify proper operation on a small scale. This project provided a framework for longer
term efforts to investigate and improve interactive scalability and performance, taking into
account the needs of the Joint Battlespace Infosphere, high performance computing, and
logistics.

 ii

TABLE OF CONTENTS Page

1. Concept 1

2. Approach 2

Example 1 Initializing Variables 4

Example 2 Creating Counter Service 4

Example 3 Running Counter Service 5

Example 4 Using Globus Browser 6

3. The HIE Frame Work Grid Interface 10

4. Generating Stubs and Skeletons 11

5. A Globus Function Stub 11

6. A Globus Function Skeleton 12

7. Summary 14

8. References 12

 iii

LIST OF FIGURES Page

Figure 1: Architecture Diagram 3

Figure 2: Counter Service Inactive 7

Figure 3: Counter Factory Service 8

Figure 4: Notification Subscription Factory Service 9

Figure 5: Frame Work Flow 10

Figure 6: Specifying the Interface 11

Figure 7: Globus Client Stub 12

Figure 8: Globus Service Skeleton 13

 1

1. CONCEPT:

This research project investigated techniques to develop a High Performance Computing
(HPC) grid infrastructure to operate as an interactive research and development tool.
Current HPC grid architectures are designed for batch applications, where users submit
their job requests, and then wait for notification of job completion. In the batch
environment, the user lacks direct control over the execution of their application. While
this may be acceptable for running certain very large computationally intense batch jobs
on large mainframe HPCs, it is not acceptable for use with jobs that require a near real-
time response and an interactive environment. With the current proliferation of HPC
clusters and the existence of the internet, which allows for remote access to compute
resources, the demand for rapid response times is escalating and achievable. To meet this
need for accessing and processing data interactively in near real-time, AFRL/Information
Directorate (AFRL/IF) developed an environment that stresses 'near real-time' user
interaction with the application.

The approach for developing such an HPC grid capability involved evaluating the various
developing protocols for interactive grid computing, and then selecting the one with the
most growth potential. The Globus Toolkit was selected for the grid development
environment. This toolkit is rapidly becoming the de-facto standard for grid research.
The grid architecture was evaluated by assembling and demonstrating an in-house
interactive demonstration grid using in-house cluster assets and existing code, to verify
proper operation on a small scale.

Potential users of this product include developers of experimental systems as well as
users who want to showcase their codes by making them available through the
Hyperspectral Image Exploitation (HIE) Framework. [1-7, 9-13]. The primary emphasis
was on creating a working interactive grid for use with the HIE framework. This project
provided a framework for longer term efforts to investigate and improve interactive
scalability and performance, taking into account the needs of the Joint Battlespace
Infosphere (JBI), HPC, logistics, etc. It is envisioned that user interaction will be web
based, to assure extensive portability.

To validate successful operation of the interactive grid implementation, the Hyperspectral
Image Exploitation (HIE) framework software, was used [8]. Truth data already exists for
this code, thus simplifying the final data analysis. This architecture also has the potential
to be applied to streamline the management of Air Force logistics, operations where
legacy software is widely used.

The major payoffs potentially include: Setting the groundwork for grid-based application
of the HIE framework, improved real-time feedback for decision analysis tools, reduced

 2

latency for publication of subscription based data queries, and decreased turn-around
time for decision support tools, wargaming, and modeling and simulation tools. An
interactive grid gives the applications a more responsive underlying architecture to
leverage future grid connected hardware.

The limitations for Grid computing over HPC Centers mostly arise from security
concerns and the requirement to access heterogeneous environments. Even when systems
are identical, the grid mechanisms that deal with security were difficult to implement and
couldn’t be adequately addressed within the scope of this project. Also, significant
additional problems arise when hardware and software heterogeneity are considered.
Other limitations are related to the difficulty in assigning processing and establishing
reservations across groups of systems, for example at distinct HPC centers. Considerable
additional work is necessary to consider these issues. This project explored the basic Grid
capabilities, leaving these additional issues for future consideration.

2. APPROACH:

Three in-house workstations were configured for software development. Two were Linux
based and one ran Microsoft Windows. Of the two Linux workstations, one was
configured as a “grid” server. Communication between the server and the development
workstation was established over a secure channel using Virtual Network Computing
(VNC) based on Tight VNC and using a Secure Shell (ssh) connection from a Linux
workstation running Red Hat Linux. Tight VNC supplied the ssh and graphical (X-based)
connection to the server. There was an issue with resource intensive connections using
Tight VNC.

To address this issue, the hardware was upgraded from the original ‘grid’ server, named
“mintho” with a 1.2 GHz CPU and 512 MBs of random access memory (RAM) to a new
server named “styx” with 2 central processing units (CPUs) operating at 2+ GHz and 4
GBs of RAM. It was hosting the installation of the VNC Server software and the Globus
Toolkit (version 3.2). The various required ancillary tools were installed. [14] Graphical
secure communication (using VNC) between mintho and a Windows 2000 desktop
system and a Linux desktop system was demonstrated. The team evaluated the intricacies
of Globus installation and determined an effective way to install Globus version 3.2 on
the server. This provided access to all the necessary and sufficient tools to submit and
interact with Grid (-like) job submissions. The next step was integration of a web-
browser interface to Globus, providing the ability to launch, interact-with, terminate, etc.
grid applications in semi-real-time. The Air Force Research Laboratory, Information
Directorate (AFRL/IF), successfully integrated the Globus Grid toolkit with the HIE
framework. One of the framework objects was rewritten as a grid service and presented at
the 2005 Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA) Conference [1]. Additional work explored using Grid technology and
information management for command and control [14].

 3

The architecture diagram below, Figure 1, depicts the experimental setup used for the
project. In the diagram, the virtual network computer (VNC) connection provides access
from a Linux computer (astro) or Windows 2000 computer to the Grid Services
Container. A “secure shell” (ssh) connection was also used to tunnel messages between
Linux and the Globus “container” (server) system. The diagram shows a “counter”
service operating within the Globus Grid Services Container. It shows that “stubs”,
compiled into client software, provide access to the services that are active in the Grid
Services Container. Services are accessed via Skeleton interfaces that are presented by
the Grid Container as Grid services. The stub/skeleton basis for the architecture relieves
developers of the requirement to implement detailed network interfaces, providing a
significant opportunity for developers to implement efficient interfaces easily. The stub
and skeleton are automatically generated from a Web Services Description Language
(WSDL) interface description.

Figure 1: Architecture Diagram

Notice that all references to the counter service are given using global web references
that include the name of the system and a path that uniquely identifies a service available
through a Grid Services Container. In the example 3 below, The Grid services container
is listening on port 8080 on styx and has a service available called
ogsa/services/guide/counter/CounterFactoryService/calc which can accept input
parameters, passed by the client , to specify which of the available “calc” functions
should be invoked.

The following examples show how the grid process works. The first three examples
below show how to invoke Grid Services. Examples 4 and 5 demonstrate the built-in

 4

capabilities for Grid Management and Administration. Services can be started and
stopped using the administrative interfaces to interact with the Grid Services Container.
Sample computer outputs from the installation and test are shown below. The four
examples demonstrate initializing the grid services environment, creating and accessing a
local service, accessing a remote service on styx (from astro), and using the Globus
Service Browser to verify services that are active in the Globus Grid Services Container.
AFRL/IF also used the Globus notification services to set up a client that is notified
whenever the counter changes (not shown in the examples below).

Notice that all references to the counter service are given using global web references
that include the name of the system and a path that uniquely identifies a service available
through a Grid Services Container. In the example 3 below, the Grid services container is
listening on port 8080 on styx and has a service available called
ogsa/services/guide/counter/CounterFactoryService/calc which can accept input
parameters, passed by the client, to specify which of the available “calc” functions should
be invoked.

EXAMPLE 1: Initializing Variables

Example 1 shows how to initialize environment variables that are needed by the grid
services container and also by the service browser tool shown in the screengrabs in
example 4.

Set up the Grid Services environment

cd /usr/local/gt3
. ~scott/.bash_profile // Setup Java/Grid Environment
. setenv.sh
globus-start-container // Start Java Container
globus-service-browser // Start Gui to show the state of services
 // Screengrab before starting Counter services
 // and after starting them are shown below.
EXAMPLE 2: Creating Counter Service

This example demonstrates creating the counter service and client application access for
the counter service.

Create the counter service:

The following two lines contain the command to create the Globus counter service:

ogsi-create-service
http://localhost:8080/ogsa/services/guide/counter/CounterFactoryService/calc

 5

Use the counter service, adding 10

The following lines contain the command to use the Globus counter service:

java org.globus.ogsa.guide.impl.CounterClient
http://localhost:8080/ogsa/services/guide/counter/CounterFactoryService/calc
add 10
>> output >> Counter add: 10

EXAMPLE 3: Running Counter Service

We got the Counter service running on styx by doing "ant deployGuide" in the gt3
directory. We added that to the instructions that are given below that show how to run,
not deploy, the Counter service.

The lines below show that we were able to use the counter service on styx from a client
counter application on astro. Notice that the user command prompt indicates that the
client is running on astro but the specified service, provided as an argument to the
CounterClient client application, is running on styx.oc.rl.af.mil.

Get the counter value from styx:

The following command gets the counter value from styx:

[scott@astro gt3]$ java org.globus.ogsa.guide.impl.CounterClient http://styx.oc
.rl.af.mil:8080/ogsa/services/guide/counter/CounterFactoryService/calc get

Counter value: 10

Note that the counter value changes (subtraction performed by a different client
program)

[scott@astro gt3]$ java org.globus.ogsa.guide.impl.CounterClient http://styx.oc
.rl.af.mil:8080/ogsa/services/guide/counter/CounterFactoryService/calc get

Counter value: 5

[scott@astro gt3]$

EXAMPLE 4: Using Globus Browser

To demonstrate the built-in capabilities for Grid Management and Administration with
the Globus Service Browser, Example 4 shows how to use the Globus Service Browser to

 6

verify services that are active in the Globus Grid Services Container. Services can be
started and stopped using the administrative interfaces to interact with the Grid Services
Container. To illustrate use of the browser, Figures 2, 3, and 4 show screenshots of the
Globus Services Browser. Each of these figures illustrates an aspect of the functionality
available through the Globus Service Browser.

 7

Figure 2 shows that the counter service, including notification services, is inactive (notice
CounterFactoryService, WSDLCounterFactoryService,
ServiceDataCounterFactoryService, NotificationCounterFactoryService, etc.):

 // ServiceBrowserInactiveCounter.jpg shows
 // the Inactive counter services

Figure 2: Counter Service Inactive

 8

Figure 3 shows that the counter service, CounterFactoryService, is now active and one
instance of the CounterFactoryService “calc” object has been created.

 // ServiceBrowserActiveCounter.jpg
 // Shows that counter is active
 // The CounterFactoryService and one instance
 // of the Counter Service are active

Figure 3 Counter Factory Service

 9

Figure 4 shows that the NotificationSubscriptionFactoryServices are active:

 // ServiceBrowserOtherServices.jpg
 // Shows that Handle Resolver,
 // Notification Subscription Service and
 // Generic Persistent Grid Service are
 // active

Figure 4: Notification Subscription Factory Services

These services together constitute the necessary steps to initiate and run an interactive
grid job, by initializing the grid services environment, creating and accessing a local
service, accessing a remote service on the Grid Services Container, and using the Globus
Service Browser to verify services active in the Globus Grid Services Container. This is
a significant step accomplishment to move grid computing toward interactive
computing..

 10

3. The HIE FrameWork Grid Interface

The HIE FrameWork implements a general purpose Web interface for access to remote
applications, usually running on HPCs. The Web interface is driven by objects that
implement interfaces to specific codes, allowing the Web interface to collect application-
specific inputs and deliver them to remote applications appropriately. This section
describes the steps that use grid services to implement FrameWork application interface
objects. The application interface object is used by the FrameWork server to determine
the variables that have to be supplied through the Web interface. Figure 5 shows the
FrameWork flow. In the diagram the Code Dependent User Services represent the code
interface object. Notice that the code interface object provides information to the User
Interface Services, or FrameWork server, that describes the inputs to be collected from
the user. The User Inputs are then used to request execution service as shown in Figure 5.

FrameWork Flow

 Figure 5: Frame Work Flow

The original FrameWork implementation used a Corba interface to connect the
FrameWork server with the code interface object. For this project, we added a Grid
interface to allow developers to implement code interface objects using the Globus Grid
software or the Corba software. For both Globus Grid and Corba, the code to implement
the interface and establish the connection between the FrameWork server and the code
interface object can be generated automatically from an interface description that
specifies remote functions (implemented in the code interface object) and parameters that
are needed to call the functions. The FrameWork server can then access the remote
function without regard for network issues, like locating the remote object and opening a
connection, by simply calling the function. For the FrameWork, the code interface object
is implemented as a service that waits for service requests generated by the Globus Grid
or Corba software that is executed as a result of a request by the FrameWork server to
execute an interface function.

In the examples below, we focus on the FwGetFunc function that is implemented in the
code interface object. After the user selects one of the codes to execute, the code
interface object must return a list of functions available for that code. Each of the
functions may require a different set of input parameters. The code interface object for

 11

the selected code must return the information needed by the FrameWork server so that it
can present a list of the available functions to the user, through the Web browser
interface. Once a particular function is selected, the FrameWork server uses the same
code interface object that also must implement the FwGetParams function, so that the
FrameWork server can request the specific list of parameters that are needed by the code
from the user, through the Web browser interface.

4. Generating Stubs and Skeletons

For both Globus and Corba, a standard interface description is used to automatically
generate the interface functions needed by the client (called a stub) and the server (called
a skeleton). Generally, all of the service code needs to be built into the server, by
implementing the code that is executed when the service interface (skeleton) is invoked.
The term skeleton seems appropriate since the interface code is just a container in which
the service must be implemented. The stub, by contrast is just the client’s interface to
make the call and pass the parameters to the service implementation. In Corba, the
interface is specified using a standard called Interface Definition Language (IDL). The
Grid uses an Ex(tensible) M(arkup) L(anguage) XML XSLT specification. Extensible
stylesheet language transformation (XSLT) is a language for transforming XML
documents into other XML documents. XSLT is designed for use as part of XSL, which
is a stylesheet language for XML. The example XML XSLT code for our Grid interface
to the fwGetFunc interface for the code interface object is shown in Figure 6.

Generate Client Stubs and Service
Skeleton <xsd:element name="fwGetFunc">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="Opcode" type="xsd:string"/>
<xsd:element name="Mesg" type="xsd:string"/>
<xsd:element name="Fname" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="fwGetFuncResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Retval" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Figure 6: Specifying the Interface

5. A Globus Function Stub

The stub is used by the client to call a function that is actually implemented as a service
in the grid services container. The code shown in Figure 7 was generated by a Globus
utility program for the fwGetFunc interface to the code interface object that is described
above.

 12

fwGetFunc.Opcode = argv[2];
fwGetFunc.Mesg = argv[3];
fwGetFunc.Fname = argv[4];

/* create blog resource with createBlogTopic
operation */

result = Fw_fwGetFunc(
fw_handle,
argv[1],
&fwGetFunc,
&fwGetFuncResponse,
&create_fault_type,
&fault);

/* destroy response from fwGetFunc */
fwGetFuncResponseType_destroy(fwGetFuncResponse);

printf("Returning from fwGetFunc\n");

/* destroy client handle */
FwService_client_destroy(fw_handle);

rc = globus_module_deactivate(FWSERVICE_MODULE);
if(rc != 0)
{

globus_fatal("FwService deactivate failed");
}

exit(0);
}

Figure 7: Globus Client Stub

6. A Globus Function Skeleton

The skeleton function is compiled and installed in the C Web Services Container. Users
can add backend code to perform desired services. The part of the skeleton shown in
Figure 8 initializes debugging and can be used to perform custom initialization of the
service if necessary. The Fw_fwGetFunc_imp function implements the service that is
compiled into the C Web Services Container and sends results back to the client program,
through the client stub interface, by copying it into an “xsd_string Retval” variable
generated from the interface description.

FwService_init FwService_finalize
Fw_SetTerminationTime_init Fw_SetTerminationTime_impl
Fw_Destroy_init Fw_Destroy_impl
Fw_GetCurrentMessage_init Fw_GetCurrentMessage_impl
Fw_Subscribe_init Fw_Subscribe_impl
Fw_fwGetResults_init Fw_fwGetResults_impl
Fw_fwExecFunc_init Fw_fwExecFunc_impl
Fw_fwGetParams_init Fw_fwGetParams_impl

 13

Fw_fwGetFunc_init(
globus_service_engine_t engine,
globus_soap_message_handle_t message,
fwGetFuncType * fwGetFunc)

{
/* add function local variable declarations here */
globus_result_t result = GLOBUS_SUCCESS;

/* initialize trace debugging info */
GlobusFuncName(Fw_fwGetFunc_init);
FwServiceDebugEnter();

/*
* If no configuration or initialization needs to be done, this
* call can remain empty.
*/

FwServiceDebugExit();
return GLOBUS_SUCCESS;

}
globus_result_t
Fw_fwGetFunc_impl(

globus_service_engine_t engine,
globus_soap_message_handle_t message,
globus_service_descriptor_t * descriptor,
fwGetFuncType * fwGetFunc,
fwGetFuncResponseType * fwGetFuncResponse,
const char ** fault_name,
void ** fault)

{
/* add function local variable declarations here */
globus_result_t result = GLOBUS_SUCCESS;

/* initialize trace debugging info */

GlobusFuncName(Fw_fwGetFunc_impl);
FwServiceDebugEnter();

/* This is where it all happens. Service implementer must
* implmenent this function. Asume that fwGetFunc has
* been initialized and filled with request values.
* fwGetFuncResponse must be set by the implementer.
*/

/* Use the error object construction api */
result = FwServiceErrorNotImplemented("Fw_fwGetFunc");

FwServiceDebugExit();
return result;

}

Figure 8: Globus Service Skeleton

 14

7. SUMMARY:

This research project successfully set up and operated an interactive grid using Globus
Toolkit, ran it, and prepared the way for subsequent integration with the HIE framework.
This is a significant step up from traditional HPC grid architectures, which are designed
for batch applications, where the user lacks direct control over the execution of their
application. Applications, such as the HIE framework require a near real-time response
and an interactive environment. Lessons learned were how to successfully use the Globus
toolkit to run these services, including initializing variables, creating and running the
counter service, and using the Globus browser. Potential future work in the area would be
to use this capability to run interactive grid based work, supporting the warfighter in
areas such as the Joint Battlespace Infosphere.

 15

8. REFERENCES:

1. Ramseyer, G.O., Linderman, R.W., Spetka, S.E., Fitzgerald, D.J. , Moore, M.J., "Rapid
Remote Hyperspectral Image Exploitation on High-Performance Computers", Wailea
Marriott, Wailea, Maui, Hawaii, September 8-13, 2003.

2. Ramseyer, G.O., Linderman, R.W., and Spetka, S.E., “Open Architecture for Large
Imaging Systems”, C4ISR Architectures, Las Vegas, NV Oct 18-19, 2004.

3. Ramseyer, G.O., Phister, P.W., Spetka, S.E., Linderman, R.W., "Rapid C4I High-
Performance Computing for the Joint Battlespace Infosphere", Airborne C4I Conference,
London, England, October 2002.

4. Ramseyer, G.O., Spetka, S.E., Linderman,R.W., Fitzgerald, D.J. , Moore, M.J., "Open-
Architecture Middleware for Hyperspectral Image Exploitation", 28th Annual
GOMACTech (Government Microcircuit Applications & Critical Technology)
Conference, "Countering Asymmetric Threats", Hyatt Regency Tampa, Tampa, FL,
March 31-April 3, 2003.

5. Ramseyer, G.O., Spetka, S.E., Linderman, R.W., Romano, B.C., "The FrameWork: An
Open-Architecture for Very Large Image Exploitation", 2002 Command and Control
Research and Technology Symposium, Naval Postgraduate School, Monterey, CA, June
11-13, 2002.

6. Ramseyer, G.O., Spetka, S.E., Linderman, R.W., Romano, B.C., "Rapid C4I High
Performance Computing for Hyperspectral Imaging Exploitation", 6th International
Command and Control Research and Technology Symposium, U.S. Naval Academy,
Annapolis, MD, June 19-21, 2001.

7. Ramseyer, G.O., Spetka, S.E., Linderman, R.W., Fitzgerald, D.J., "Integrated High-
Performance Computing of Hyperspectral Imaging Algorithms", DOD High-Performance
Computing Modernization Program Users Group Conference 2004, Williamsburg, VA,
June 7-11, 2004.

8. Spetka, S. E., Ramseyer, G. O., Linderman, R. W., “Using Globus Grid Objects to
Extend a Corba-based Object-Oriented System”, OOPSLA 05, San Diego, CA, October
16-20, 2005.

9. Spetka, S.E., Ramseyer, G.O., Linderman, R.W., "Grid Technology and Information
Management for Command and Control", 10th International Command and Control
Research and Technology Symposium, The Future of C2, McLean, Virginia, VA, June
13-16, 2005.

 16

10. Spetka, S.E., Ramseyer, G.O., Linderman, R.W., "Redeveloping a High-Performance
Computing FrameWork", 18th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Special Interest
Group on Programming Languages, Anaheim Convention Center, Anaheim, California,
October 26-30, 2003.

11. Spetka, S.E., Ramseyer, G.O., Linderman, R.W., "A FrameWork for High-
Performance Image Exploitation", 17th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Special Interest
Group on Programming Languages, Washington State Convention & Trade Center,
Seattle, Washington, November 4-8, 2002.

12. Spetka, S.E., Ramseyer, G.O., Linderman, R.W., Moore, M.J., "A Software
FrameWork for HPEC System Development", Sixth Annual Workshop on High
Performance Embedded Computing, MIT Lincoln Laboratory, September 24-26, 2002

13. Spetka, S.E., Ramseyer, G.O., Fitzgerald, D.J., Linderman, R.W., "A Distributed
Parallel Processing System for Command and Control Imagery", 7th International
Command and Control Research and Technology Symposium, Quebec City, QC, Canada,
September 16-20, 2002.

14. “Web Services Architecture, W3C Working Draft 8 August 2003”,
http://www.w3.org/TR/ws-arch/ .

