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1 Summary 
 
The overall BioCOMP/BioSPICE project aims at integrating a broad set of “Systems 
Biology” measures and models ranging from functional genomics to simulation tools. 
Our Harvard sub-project focused on computer aided design (e.g. CAD-PAM) and testing 
of various synthetic biology approaches integrated with improved functional-genomics 
quantitation tools (e.g. MapQuant) in turn integrated with systems-biology modeling (e.g. 
Minimization of Metabolic Adjustment, MOMA).  The entire collection long-term should 
be capable of cycles of iteration – CAD-Quant-Model -- CAD-Quant-Model …  Initial 
designs focused on the major biopolymer synthesis pathways (DNA, RNA, protein), in 
vitro.  That project was briefly expanded with supplementary funding to include 
experimental work which was then transitioned out to a Dept. of Energy grant which 
resulted in a Nature paper and commercial licensing (to CodonDevices).  The metabolic 
modeling (MOMA) has developed as very useful in stand-alone software and as a prime 
example of the successes and challenges on merging such software into the BioSPICE 
community vision. During this project timeline we have developed ten major applications 
of these concepts and software tools: 
 
 

a. A variety of chemical systems capable of replication and evolution, fed only by 
small molecule nutrients, is now designable and constructible. This could be 
achieved by stepwise integration of decades of work on the reconstitution of DNA, 
RNA and protein syntheses from pure components. Such an in vitro cell project 
(IVCP) would initially define the components sufficient for each subsystem, allow 
detailed kinetic analyses, and lead to improved in vitro methods for synthesis of 
biopolymers, therapeutics and biosensors. Completion would yield a functionally 
and structurally understood self-replicating biosystem. Safety concerns for synthetic 
life will be alleviated by extreme dependence on elaborate laboratory reagents and 
conditions for viability. The proposed minimal genomes are 113 kilobase pairs long 
and contain 151 genes. 

 
b. Mathematical models of diffusion-constrained polymerase chain reactions provides 

the basis of high-throughput nucleic acid assays (licensed commercially to 
Agencourt – Beckmann - Coulter) and simple self-organizing systems (as in item 1 
above) 

 
c. The integration of the genomic and proteomic measurements and system-wide 

analyses was dramatically demonstrated in the first simultaneous determination of 
complete genomes and proteomes (initially of Mycoplasma mobile).  

 
d.  A cross-species expression data mining tool is now realized, and a first instance has 

been put in the public domain, called yMGV (yeast microarray global viewer).  The 
comparative approach is applicable to filling of gaps in metabolic networks using 
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expression information. The metabolic expression placement (MEP) method relies 
on the co-expression to predict over 20% of all known Saccharomyces cerevisiae 
metabolic enzyme encoding genes within the top 50 out of 5594 candidates for their 
enzymatic function, and 70% of metabolic genes whose expression level has been 
significantly perturbed across the conditions of the expression dataset used. 

 
e. Expression dynamics of a cellular metabolic network demonstrate predominance of 

local gene regulation. Metabolic genes display significant co-expression on 
distances smaller than the average network distance, a behavior supported by the 
distribution of transcription factor binding sites in the metabolic network and 
genome context associations. Positive gene co-expression decreases monotonically 
with distance in the network, while negative co-expression is strongest at 
intermediate network distances. Basic topological motifs of the metabolic network 
exhibit statistically significant differences in co-expression behavior. 

 
f. While we and others have developed quantitation for full genome RNA since the 

mid 1990s, the protein equivalent has awaited software like MapQuant.  This is 
Open-Source Software and has been exported to several groups including the 
largest genomics-proteomics center in the world, the Broad Institute, Cambridge 
where it is in routine use. 

 
g. The important task of going from annotated genomes to metabolic flux models and 

kinetic parameter fitting has been addressed by a variety of software modules 
ranging from MOMA to ordinary differential equations (ODE) to comparative 
genomic and geometric constraints. 

 
h. Accurate Multiplex Gene Synthesis from Programmable DNA Chips is now on-line. 

The CAD-PAM software for design of oligonucleotides for synthesis on chips and 
assembly into genomes is publicly available at: 

 http://arep.med.harvard.edu/cadpam.html.   
 
i. Potential Bio-Security implications of some of the above work have been addressed 

by a novel, inexpensive, semi-automated means for surveillance of the synthetic 
DNA supply stream from chemicals, instruments, oligos and genes.  
http://arep.med.harvard.edu/SBP/Church_Biohazard04c.htm 
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2 Introduction 
 
The approach was to develop a framework that accelerates the computational 
construction of models of genetic and metabolic processes that can be used to design, 
synthesize and optimize replicating in vivo and in vitro systems. These can be used for 
bioengineering applications that utilize biomolecules as information processing, bio-
sensing, and structural components.  
 
The above approach assumes some predicative power of computational models of genetic 
and metabolic processes.  The design, synthesis and optimization of replicating in vivo 
and in vitro systems required new technology for fabrication of synthetic DNA, 
introduction into cells and high-throughput monitoring of the properties of the synthetic 
cells.  This synthetic component empowers an important feedback loop to the 
computational modeling components. 
 
The major focus of the Church Lab BioSPICE project has been the development of 
multisite use case software packages. Harvard and Dana Farber people have led a 5 site 
use case involving 16 investigators entitled “From Annotated Genomes to Metabolic 
Flux Models”.  This use case starts with metabolic pathway networks that have been 
loaded into the Biowarehouse from SRI, either using the SRI tool called Pathologic to 
transform GenBank files into databases or in the future using a tool not yet developed to 
convert Systems Biology Markup Language (SBML) metabolic models into 
Biowarehouse databases.  A tool was created that extracts metabolic networks as SBML 
files.  These or any SBML files can be prepared for flux analysis and elementary flux 
mode prediction using an interactive spreadsheet based on the BioSpreadsheet developed 
at the University of Tennessee.  The spreadsheet prepares annotated SBML that is used 
by the Metatool  dashboard analyzer that was created by the Keck Graduate Institute to 
enumerate the elementary flux modes of the network and the Fluxor program developed 
at Harvard to make flux predictions for the model as well as predicting the fluxes for a 
knockout mutation requested using the spreadsheet using both the traditional linear 
optimization approach and the MOMA approach that minimizes the changes from the 
wild type flux predictions. The spreadsheet is used for a second time to display the flux 
predictions, and the standard BioSPICE Table View analyzer is used to display the 
pathways associated with the elementary flux modes. 
 
Harvard has also collaborated with the Center for the Development of Advanced 
Computing in Pune, India, to create an SBML representation of the E. coli JR904 flux 
model. The Church Lab has prepared it using the spreadsheet and run a Fluxor analysis 
on it, but this first attempt did not yield realistic predictions.  The spreadsheet is used to 
diagnose whether this is a problem with the Church lab model representation or with the 
Fluxor application, one expects to find fixes for both.   
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The use case distribution at http://arep.med.harvard.edu/moma/biospicefluxor.html is 
provided as a Linux tar file containing a dashboard analyzer for extracting reaction lists 
from the Biowarehouse as SBML files, the spreadsheet analyzer that prepares an SBML 
file for use by Fluxor or Metatool and displays the Fluxor predictions, and the Fluxor 
analyzer itself. It also contains the current state of the E coli JR904 SBML model, the 
tab-delimited listing of the model, and a tool that creates a new SBML file once the tab-
delimited listing has been modified. The Biowarehouse and Pathway tools including 
Pathologic software can be downloaded from links at http://community.biospice.org/ or 
http://www.metacyc.org/. The tar file on arep.med.harvard.edu also includes instructions 
for setting up a MySQL database to hold the Biowarehouse Structured Query Language 
script that loads it with E coli pathway information derived from EcoCyc and a small 
hypothetical reaction system used as the Church lab demonstration case.  Biowarehouse 
can also use an Oracle database, but the Church lab analyzer for extracting information 
from it as SBML was written using MySQL and there is no expectation it will work 
unchanged using Oracle.  The Keck Institute has also set up a download page at 
http://public.kgi.edu/~spaladug/one.html, which includes windows installers for the 
Software Biology Workbench (SBW) including metatool and other agents and for 
BioSPICE dashboard analyzers that launch each of these tools.  There are also Linux 
downloads for an SBW broker, the Metatool agent, and the NOM agent that handles 
providing an SBML file to Metatool.  It is also necessary to copy the java jar files for 
metatool on the windows platform to the Linux platform to use these as dashboard 
analyzers. Once these SBW elements have been set up on a Linux machine they can be 
used in the same workflows as the Biowarehouse 2SBML Fluxor Spreadsheet, and 
Fluxor analyzers. 
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Project URL: http://arep.med.harvard.edu/darpabiocomp/ 
Quad Chart: http://arep.med.harvard.edu/darpabiocomp/Quad04_GC.ppt 
 

Figure 1.  From Annotated Genomes to Metabolic Flux Models 
 
Objective 
This project explores connections between computational systems biology and synthetic 
biology (bio-input/output, DNA memory & bio-manufacturing processes).  This is done 
using the only class of programmable nanometer scale replicators (i.e. polymerase-
ribosome-based). The major challenge is integration with silicon computing. The 
motivations are bio-monitoring of spatially patterned light, chemicals, and toxins.  
Software is aimed at BioCOMP/BioSPICE compatibility and emphasizes computational 
tools for analyzing complex metabolic networks and related synthetic biology goals. 
 
 
Approach 
The approach is to develop a framework that accelerates the computational construction 
of models of genetic and metabolic processes that can be used to design, synthesize and 
optimize replicating in vivo and in vitro systems. These can be used for bioengineering 
applications that utilize biomolecules as information processing, biosensing, and 
structural components. 
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The Systems Biology Markup Language (SBML) is a computer-readable format for 
representing models of biochemical reaction networks. SBML is applicable to metabolic 
networks, cell-signaling pathways, and genomic regulatory networks.  The Systems 
Biology Workbench (SBW) is a modular, broker-based, message-passing framework for 
simplified communication between applications that aid in the above. The SBML module 
included the Network Object Model (NOM) and MetaToolSBW, a network analysis tool.  
These help to develop a pipeline from genome sequence and annotation to metabolic and 
genetic network optimization models.  This employs linear and quadratic programming 
math modules.  This is done in the context of experimental validation with an emphasis 
on integrating quantitative mass spectrometry, RNA tags, and effects of metabolic 
inhibition and related stresses. 
 
In order to improve the performance of the fabrication and memory tools, in vitro 
replication/translation arrays will provide for experimental feedback. A 120kbp 
minigenome design shows capability for replication and protein-synthesis. This 
minigenome will be 6 times smaller than the smallest living cellular genomes with 1000-
fold fewer molecular components. These in vitro systems are ideal for integrating with 
detailed computational models, due to simplicity, knowledge of the 3D structure of 
nearly all components and extreme experimental accessibility.  Also coupling the 
extremes of modeling (from single base changes to 3D structures to molecular networks 
to population doubling selection) is likely to be dramatically more transparent and 
tractable.  
 
Novel, Useful Applications & technology transfer: The focus is on practical applications 
that take advantage of the unique features of DNA and metabolic systems.  Examples are: 
(a) proven Myr information archiving and retrieval; (b) interfacing with biochemical, 
photon, or thermal sensors. (c) A DNA recorder analogous to black-box flight recorder 
would take early advantage of the ability to record on DNA more easily than reading it.  
Only rarely would the archived materials be accessed.   
 
In vitro minigenome synthesis: 
The Church group led by Dr. Tian has shown that the multi-his-tag Western blots are a 
reliable assay.  Hence, the minigenome genes have been moved into his-tagged "in vitro" 
linear-vectors.  This included synthesis of tagged and untagged forms for all 23 genes of 
the 30S-ribosomal subunit.  From these the Church group has synthesized all of the 
RNAs in vitro and most of the proteins.  The low levels of protein synthesis observed for 
a few of these normally very abundant proteins is rapidly revealing key design criteria for 
codon usage and secondary structure of the mRNAs.  The group has developed software 
for general gene and genome design tools that takes these observations into account.   
 
A new method was developed for large scale synthesis of genes or genomes which has 
the potential of being 100-fold less expensive.  This has been successfully tested by 
synthesizing two full-length genes from the minigenome (rs3 & rs5) from a mixture of 
512 chemically synthesized 70mers.  A report of invention has been filed with Harvard 
Medical School-Office of Technology Licensing. This is a major milestone for this 
project supplement.  Joined by Hui Gong (for the oligo design), Nijing Sheng (gene 
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assembly expert, Research Asst. Prof. from the Univ. of Houston)  and a Harvard 
undergraduate, and CS-graduate student.  So this project is likely to continue to progress 
capturing this recent momentum. 
 
Computational: 
Church lab work on close-to-optimal networks as might occur in mutants,  "Minimization 
of Metabolic Adjustment" (MoMA) has been extended to allow automated access to new 
genomes  (Daniel Segre & Dennis Vitkup assisted by Jeremy Zucker, Tamar Mentzel, 
and Jeremy Katz)  requiring only Kyoto Encyclopedia of Genes and Genomes or 
Genbank annotations as staring points. 
 

Table 1.  SBML models from BioCyc version 7.5 for 14 organisms 
 
Agrobacterium-tumefaciens.xml 
Bacillus-subtilis.xml 
Caulobacter-crescentus.xml 
Chlamydia-trachomatis.xml 
Escherichia-coli.xml 
Haemophilus-influenza.xml 
Helicobacter-pylori.xml 
Mycobacterium-tuberculosis-CDC1551.xml 
Mycobacterium-tuberculosis-H37Rv.xml 
Mycoplasma-pneumoniae.xml 
Pseudomonas-aeruginosa.xml 
Saccharomyces-cerevisiae.xml 
Treponema-pallidum.xml 
Vibrio-cholerae.xml 
 
Plus, a program called biocyc2sbml.lisp which can take any organism in a 
Pathway/Genome database and generate the corresponding SBML model.  The URL to 
download these models is http://genome.dfci.harvard.edu/~zucker/BPHYS/sbml.zip 
 
An in vitro coupled replicating and translating system is based on pure bacterial E.coli 
translation. Novel developments include (1) a linear expression clone system compatible 
with the most powerful in vitro replication system, polymerase chain reaction (PCR), and 
(2) a modular method for computer gene design and automated gene synthesis including 
affinity-tagging for all ribosomal proteins.    
 
The group merged Minimization of Metabolic Adjustment (MOMA) software with 
BioSPICE & SBML tools to allow optimization of metabolic network utilization in 
mutant genotypes and experimentally tested using metabolic fluxes (from Uwe Sauer’s 
group) and a new high-throughput method for measuring growth rates of hundreds of 
mutants in parallel.   
 
The group developed methods for 3D & 4D modeling of bacterial cells and replication 
translation of their circular chromosomes.  In addition the Church lab has 1D to 4D 
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models of expansion of an in vitro DNA colony.  High resolution atomic-force 
microscopy images have been obtained for heavy-atom labeled DNA samples. 
 
The group completed integration of genome sequence for Mycoplasma mobile and M. 
pneumoniae with "complete" proteome comparisons.  These are proving crucial for 
integration and 4D-modeling efforts and relevant to understanding these simple 
pathogens as biosystems. 
 

3  Minimal Cell Design Tools 
 

3.1 Methods, Assumptions, and Procedures  
 
“How far can we push chemical self-assembly?" 
This question was posed recently as one of the big 25 questions in science for the next 25 
years (Service, 2005). Nowadays, big questions often are addressed by big experimental 
efforts. But before embarking on a big project, it is helpful to get specific. What push in 
chemical self-assembly might be most worthwhile and practical? Self-assembly in vitro 
of viruses and the ribosome, achieved decades ago, taught us some of the principles 
assumed to be used in general by cells (Lewin, 2004). For example, self-assembly occurs 
in a definite sequence and is generally energetically favored, obviating the need for 
enzymes and an energy source. Assembling some type of cell would seem to be the next 
major step, yet detailed plans have not been published. Here, we attempt to outline the 
synthesis of a minimal cell containing the core cellular replication machinery, review the 
pertinent literature, and highlight gaps in knowledge that need filling. 
 
Utility 
Synthesizing a minimal cell will advance knowledge of biological replication. Many 
hypotheses in replication and its subsystems can only be tested in such a synthetic 
biology project. The meaning of “synthetic” (from Greek synthesis, to put together) 
discussed here bypasses the current reliance of synthetic biology on cells or 
macromolecular cell products: the aim is to put together an organism from small 
molecules alone. The simplest approach for creating an artificial cell may be by evolving 
an RNA polymerase made exclusively of RNA (Szostak et al., 2001) to replace all 
protein components of in vitro replicating and evolving systems (e.g. to replace Qβ 
replicase (Mills et al., 1967)). But in comparison with a purified protein-based system, it 
is neither guaranteed to arrive sooner nor tell us more. A protein-based system will 
connect with, and reveal more about, existing biological systems. Life, like a machine, 
cannot be understood simply by studying it and its parts; it must also be put together from 
its parts. Along the way to synthesizing a cell, we might discover new biochemical 
functions essential for replication, unsuspected macromolecular modifications, or 
previously unrecognized patterns of coordinated expression. 
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How good a model would an artificial, protein-based, minimal cell be for natural cells? 
The only cellular alternative is a perturbed natural cell, an incredibly complex system 
even for the simplest of cells. A much simpler purified system based on a real cell would 
thus be easier to model and understand. It could certainly answer questions that cannot be 
answered in vivo or in crude extracts, such as which macromolecules and 
macromolecular modifications are sufficient for subsystem function. However, even the 
simplest minimal cell would still be highly complex, so its construction and study would 
be facilitated by substituting some of the necessary subsystems with simpler analogs. 
Should the simpler in vitro model turn out to be a poor model for the more complex in 
vivo system, one could always construct a more complex in vitro system that may better 
reflect in vivo. 
 
Synthesizing a cell will also lead to new applications. Purified biochemical systems 
already offer major advantages, such as PCR and in vitro transcription. A better 
understanding and manipulation of all cellular replication subsystems (molecular 
biology’s tool kit) should spin off new technologies. For example, in vitro genome 
replication may be useful for replicating very large segments of DNA with high fidelity. 
Combined in vitro transcription, RNA processing and RNA modification would allow 
preparation of rRNAs and tRNAs with defined modifications to test the roles of the 
modifications, and modified tRNAs to aid incorporation of unnatural amino acids into 
proteins. Purified translation systems have enabled reassignment of mRNA codons to 
encode unnatural amino acids by omission of competing natural amino acids (Forster et 
al., 2003); further improvements of the purified translation system could enable the 
genetic selection of protease-resistant, peptide-like ligands for drug discovery by pure 
translation display (Forster et al., 2004). The purified translation system may also 
facilitate expression of proteins difficult to express by standard approaches. Better 
control of lipid vesicle synthesis could advance liposome-based drug delivery. Since 
bacterial translation is the main target of antibiotics, greater understanding may assist 
development of new drugs to fight mounting antibiotic resistance. Ultimate success in 
cell synthesis could generate useful microorganisms, e.g. for renewable production of 
biodegradable plastics (Pohorille and Deamer, 2002). 
 

3.1.1  Approach 
The ideal approach for synthesizing a cell would allow all of the machine parts to be 
understood and tested. Like any engineering project, this requires detailed blueprints, raw 
synthetic capabilities and an overall diagnostic and debugging strategy. The use of entire 
genomes as the blueprints, some of which are small enough to synthesize de novo, is 
inconsistent with this approach. Self-replication of an unadulterated genome, however 
impressive, would not define the unnecessary genes, and the functions of about a third of 
the genes would remain unknown (Fraser et al., 1995; Jaffe et al., 2004). Building a 
machine from mysterious parts can only create a mysterious machine. What is needed is 
some way of defining a near-minimal genome and then a strategy that will lead 
inexorably to an understanding of all of its parts. 
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Theoretical and experimental studies have attempted to establish a minimal set of genes 
needed for a self-replicating system in a cushy constant environment of unlimited, small 
molecule nutrients (e.g. nucleotide triphosphates, amino acids, lipids and cofactors). 
Three basic approaches present themselves. 
 
Comparative genomics searches for genes that have homologs in the genomes of groups 
of organisms. The approach estimates from 50 to 380 genes in a minimal genome (Jaffe 
et al., 2004; Koonin, 2000; Mushegian and Koonin, 1996; Tomita et al., 1999). It has the 
caveat that, among closely related genomes, some genes appear “required” for those 
species although they are not required for basic life. If one goes to longer evolutionary 
distances, many gene functions are replaced by non-homologous genes, hence making 
some essential genes look dispensable (e.g. the tRNA modification enzymes used by 
Mycoplasma are either different from E. coli or unidentified by sequence identity, but 
that doesn't mean the different ones are dispensable). An additional challenge is that 
about a third of the essential genes have unknown functions. It is thus expected that a 
minimal genome based on this approach alone would be unviable, and it would not be 
possible to identify the missing essential genes. 
 
Genetics searches for essential genes by mutating one gene at a time. This approach 
estimates 330 genes in a minimal genome (out of Mycoplasma genitalium's total of 517; 
(Hutchison et al., 1999). Again, about a third of the essential genes have unknown 
functions. It is limited by false “essentials” due to the fraction of genes that were never 
mutated in the screen, due to creation of toxic partial complexes or pathways, and due to 
inadvertent effects on adjacent genes. The latter effects are prevalent in bacteria because 
a primary RNA transcript typically encodes multiple gene products. At the other extreme, 
false "dispensables" are disastrous when trying to assemble a viable minimal genome that 
lacks all of the individual "dispensables". For example, most RNA modification enzymes 
are individually dispensable, but simultaneous deletion of tens of them would be 
expected to be unsustainable due to cumulative reductions in efficiency or fidelity (a 
useful working definition of essentials for a minimal genome should encompass such 
lethal “dispensables”). Again, in using this approach alone, it would not be possible to 
identify the missing essential genes. 
 
Biochemistry identifies from cell fractions those gene products essential for the 
reconstitution of biochemical reactions. It does not suffer from the above problems 
(except creation of toxic partial complexes), gives access to details of kinetic steps and 
allows debugging of isolated subsystems. However, the cellular subsystems must be 
integrated and thoroughly tested for accuracy on long templates before they can be 
considered physiological. Nevertheless, the biochemical approach has been successful at 
identifying macromolecules sufficient for reconstituting DNA, RNA and protein 
syntheses and, based on individual subtraction experiments, the components have either 
been shown to be necessary or could be so tested. Mindful of the remaining self-
replication functions that need to be discovered (see below) it seems likely that a largely 
biochemical approach, now further empowered by mass spectrometry analyses and 
genetic and comparative genomic information, will be the most practical route to define a 
near-minimal, well-understood genome. We now review the relevance of current 
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knowledge and technology to this new minimal cell project (MCP), (Luisi, 2002). 
 
A minimal genome 
A MCP may be realized by reconstituting the macromolecular catalysts that synthesize 
DNA, RNA and protein. However, this overlooks the formation of the membrane 
compartment and the poorly-understood process in which it is divided by membrane 
proteins (Gitai, 2005), both of which are required for life. But lipids alone have been 
shown to be sufficient for formation of rudimentary membranous compartments capable 
of both transmembrane transport of small molecules and fission autocatalytically 
(Szostak et al., 2001), so membrane proteins may be dispensable. Polysaccharides should 
also be dispensable. If the simplest and best characterized examples of DNA, RNA and 
protein synthesis are selected, if translation of all codons is enabled for generalizability, 
and if efficiency and accuracy are not compromised, then this leads to the 
macromolecules and pathways of Figure A1. 
 
A detailed list of the gene products in the hypothetical synthetic minimal cell of Figure 
A1 is shown in Table A1, left column. This list overlaps with a computational model of a 
minimal cell gene largely derived from a minimal organism, Mycoplasma genitalium 
(Tomita et al., 1999), but differs by omitting enzymes for synthesizing small molecules 
(e.g. lipids and glycolysis substrates) and by including DNA replication, RNA 
processing, RNA modification, extra tRNAs to decode the whole genetic code, some 
additional essential translation components, and chaperones. It should be emphasized that 
Table A1 is a working model only and that strict adherence will likely hamper progress. 
Examples of omitted, potentially stimulatory genes are given below.  Conversely, 
examples of included, potentially dispensable genes may be gleaned by comparison with 
the streamlined Mycoplasma genome (Fraser et al., 1995). 
 
Several conclusions can be drawn from the provisional list of genes selected for a 
minimal cell, most of which are attractive when contemplating a MCP. In genomic terms, 
the list is very short, containing only 151 genes and 113 kbp. All of the genes are derived 
from E. coli and its bacteriophages (except for the hammerhead RNA from a plant virus 
(Forster and Symons, 1987)), implying that the individual subsystems will be compatible. 
In contrast to lists derived by comparative genomics or genetic approaches, the 
biochemically-based list does not contain any genes of unknown function or challenging 
membrane proteins, so it is close to a fully understood, accurately replicating “platform” 
for life. The few known gaps constitute only about seven genes, all of which are 
predicted to be for RNA modification (Table A1, yellow in left column). From the 
viewpoint of structural biology, courtesy of recent breakthroughs in ribosome structure 
determination (Diaconu et al., 2005; Ogle and Ramakrishnan, 2005), significant three-
dimensional information is lacking for only 3% of the products: a few RNA modification 
proteins and aminoacyl-tRNA synthetases (Table A1, yellow in right column). While 
some of the states and complexes remain to be solved at high resolution, a draft three-
dimensional structure for any replicating system is a major milestone in the history of 
biology. 
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3.1.2  Tools 
Genes for a MCP could be synthesized using either natural or unnatural gene sequences 
as starting points. Using natural gene sequences, genes can be readily synthesized by 
PCR, and large cloned operons of essential genes can be fused using synthetic linkers and 
homologous recombination. However, gene synthesis by cloning and PCR will soon be 
more expensive than raw synthesis from synthetic oligodeoxyribonucleotides (oligos). 
The latter also allows unnatural sequences, such as versions with altered codon bias to 
adjust mRNA secondary structures (Tian et al., 2004). Scalability and cost limitations of 
established methods for gene synthesis from synthetic oligos are now being overcome by 
oligo synthesis on chips followed by PCR amplification and error-correction (Carr et al., 
2004; Richmond et al., 2004; Tian et al., 2004; Zhou et al., 2004). 

3.2. Results and Discussion 
 

3.2.1  Biochemical Subsystems 

 
Several biochemical subsystems are required to synthesize a minimal cell, and they are 
reviewed here. For each subsystem, possible examples from natural systems will be 
compared, gaps in knowledge will be identified, and diagnostic and debugging strategies 
to fill the gaps will be suggested. Mindful of the goal of integration of the subsystems, 
emphasis is placed on subsystems that are homologous and that operate under standard 
physiological conditions. 
 
Genome replication 
In principle, the genetic material for a MCP could be either DNA or RNA. Although an 
RNA genome has the advantage of obviating genes for DNA replication, the challenges 
of preventing inhibitory double-stranded RNA structures and replicative mutations in 
artificial RNA genomes (Mills et al., 1967) are unsolved. So the genetic material for a 
MCP should be DNA.  
 
A simple possible scheme for DNA replication that could be completely integrated with 
biological systems is shown in Figure A2. It shows rolling-circle DNA strand 
displacement (Zhong et al., 2001) initiated with RNA transcript primers synthesized in 
situ by an RNA polymerase. Processing of the resulting double-stranded DNA 
concatemers into monomeric DNA circles occurs by homologous recombination at Lox 
sites catalyzed by Cre recombinase (Sauer, 2002). This approach has advantages over 
existing rolling-circle (Dahl et al., 2004) or PCR (Mitra and Church, 1999) replication 
methods since it requires neither solid phase oligo synthesis nor changes in temperature, 
and is far simpler than natural DNA replication systems (Khan, 1997). 
 
Rolling-circle DNA strand displacement could be engineered in a stepwise manner. First, 
a simpler version could be tested in which the T7 RNA polymerase and RNA processing 
are substituted by addition of short RNA primers. The efficiency of synthesis of 
monomeric DNA circles would be followed by gel electrophoresis (Dahl et al., 2004), 
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and replication fidelity at the base pair and whole genome levels should be tested with 
different polymerases. The biggest challenge anticipated is boosting the efficiency of 
monomeric circular template generation over byproducts, such as linear DNAs or 
oligomeric circles. Such defective byproducts would also be replicated and compete for 
nutrients (like PCR deletion products or defective interfering viruses). Defective 
byproducts potentially could be weeded out with appropriate selection schemes. For 
example, encapsulation of individual genomes within membranous cells would result in 
non-viability of cells containing deleted genomes. 
 
Transcription 
A single RNA polymerase should suffice for a MCP. Either E. coli's multi-subunit 
enzyme (Lewin, 2004) or the single polypeptide enzyme encoded by coliphage T7 
(Studier et al., 1990) seem best, with the choice influenced by several considerations that 
also determine possible modes of regulation. In considering the whole transcription cycle 
for a minimal replicating system, the simpler, more predictable T7 RNA polymerase is 
arguably a better starting point than the E. coli RNA polymerase (a detailed comparison 
is provided in supplementary text). 
 
RNA processing 
A host of RNases cleave precursor RNAs in vivo (Li and Deutscher, 1996) with a 
complexity that could be reproduced in a MCP. However, inclusion of these RNases 
comes with the risks of cryptic cleavages, and a simpler approach may be easier to 
engineer (Figure A2, top). This approach generates all required unadulterated termini: 
tRNA 5’ and 3’ ends (Forster and Altman, 1990) and, if necessary, the 3’ end of a rRNA. 
The self-cleaving sequence (Forster and Symons, 1987) is included because precursor 
tRNAs with substantial 3’ extensions can be poor substrates for RNase P (Li and 
Deutscher, 1996) and RNA polymerase terminators are inefficient. The efficiency of 
RNA processing, monitored by gel electrophoresis, could be improved by trying several 
different precursor-specific sequences. 
 
A minimal translatome 
The most complex universal biological machinery is clearly translation. Translation-
associated genes (the "translatome") account for a large fraction of cellular genes, 96% of 
the genes in Table A1, and all of the currently predicted gaps in knowledge for a MCP. 
The eukaryotic version is less attractive for engineering than the bacterial version 
because it contains some 30 initiation factor proteins and because eukaryotic ribosome 
assembly in vitro awaits the coordination of more than a hundred non-ribosomal 
macromolecules (Fromont-Racine et al., 2003). Of the bacterial systems, Mycoplasma 
has advantages over E. coli due its eight-fold-smaller minimal genome and its simple set 
of 29 tRNAs that is the only completely characterized set (Andachi et al., 1989)). 
Unfortunately, other important biochemical information for Mycoplasma is essentially 
unknown in areas where it is well-studied in E. coli (e.g. reconstitution of ribosomes and 
translation,  
 
characterization and functional assays of rRNA modifications, characterization of RNA 
modification enzymes). Presently, this seems to favor the E. coli translatome for a MCP.  
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Purified translation 
Efficient synthesis of proteins has been reconstituted from purified natural components 
(Kung et al., 1978) or recombinant His-tagged translation factors (Shimizu et al., 2005) 
from E. coli, but not yet from eukaryotes. The next steps with the E. coli system will be 
verifying accuracy by mass spectrometry and extending the short lifetime of the batch 
mode by continuous dialysis (Spirin et al., 1988). The versatility of the system will 
become apparent as more mRNAs are translated. If stronger mRNA secondary structures 
prove inhibitory despite the helicase activity of  the ribosome (Takyar et al., 2005), 
introduction of an RNA helicase may be helpful. Given that aminoacyl-tRNA 
synthetases, translation factors, and ribosomal proteins are among the most abundant 
proteins in the cell, it will be important to verify that the purified system can produce 
high concentrations of all of these proteins. 
 
An in vitro ribosome 
The ribosome of choice is from E. coli because, in contrast with its eukaryotic cousins, it 
has been self-assembled from its purified components (Nierhaus and Dohme, 1974; 
Nomura and Erdmann, 1970; Traub and Nomura, 1968) and is homologous with the other 
components of the gene list (Table A1). Reconstituted ribosomes have only been assayed 
by synthesis of phenylalanine polymers from polyU templates (Lietzke and Nierhaus, 
1988), so future assays need to test initiation and elongation at non-UUU codons, and 
also termination. Furthermore, the self-assembly protocol is finicky and non-
physiological. In vitro assembly of the 30S subunit under physiological temperatures has 
been attained recently by adding the DnaK/DnaJ/GrpE chaperone system (Maki and 
Culver, 2005), although this system is dispensable in vivo (El Hage et al., 2001). Perhaps 
addition of natural polyamines might overcome the requirement for an unphysiologically 
high concentration of magnesium ions. All 54 of the ribosomal proteins have been cloned 
((Culver and Noller, 1999; Semrad et al., 2004); the hypothesis that they (and other 
proteins in Table A1) can be synthesized in a purified translation system in active forms 
warrants testing. 
 
rRNA production in a purified system is complicated by post-transcriptional nucleoside 
modifications. Since 5S rRNA lacks nucleoside modifications and is short, it is not 
surprising that it is active when transcribed in vitro (Zvereva et al., 1998). But the other 
two rRNAs are modified by about 20 enzymes in E. coli, half of which are unidentified. 
All 11 modifications of the E. coli small subunit 16S rRNA are dispensable for subunit 
assembly and aminoacyl-tRNA binding (Krzyzosiak et al., 1987). However, E. coli 23S 
rRNA lacking its 23 modifications is 30-fold less active than the natural version in N-Ac-
Met-puromycin synthesis (Semrad and Green, 2002) due to one to six modifications in a 
relatively small RNA domain (Green and Noller, 1996). The enzymes that catalyze these 
six modifications are therefore included in Table A1, although the two known ones are 
individually dispensable (Del Campo et al., 2001). Other bacteria should also be 
entertained for a MCP, as these six E. coli modifications are not conserved and the 
unmodified 23S RNAs from two other eubacteria are quite active (Green and Noller, 
1999; Khaitovich et al., 1999). 
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In vitro tRNAs 
Which of the myriad tRNA genes and tRNA modification enzymes are likely to be 
sufficient to decode all 61 sense codons in a MCP? There are some 85 tRNA genes in E. 
coli coding for some 45 different tRNAs each bearing post-transcriptional modifications 
on about 10% of their nucleosides, and a fifth of the tRNAs still remain to be 
characterized at the modification level. At least 27 different types of nucleoside 
modifications are present in E. coli (Bjork, 1995). There are an estimated 40-50 tRNA 
modification enzymes in E. coli, about half of which remain to be identified. To make 
matters worse (or more interesting) for a MCP, the roles of the tRNA modifications are 
controversial. 
 
Arguments for choosing essential tRNA modification activities are highly speculative. As 
few as 33 E. coli tRNAs may be sufficient to translate the entire genetic code accurately 
(Table A1, left; Figure A3). E. coli tRNAs could be substituted with the completely 
characterized set from Mycoplasma capricolum, which contains only 14 types of 
nucleoside modifications (Andachi et al., 1989), some of which differ from E. coli. 
However, the predicted savings in number of essential tRNAs and modification enzymes 
are minor (Table A1, middle column), and full compatibility with the heterologous E. 
coli translation apparatus seems unlikely (e.g. the codon UGA in Mycoplasma encodes 
Trp, not stop). 
 
Each in vitro-synthesized nascent tRNA transcript should be modified with different 
combinations of modification enzymes and tested for efficiency and accuracy of codon 
recognition in translation, initially in a simplified purified translation system (Forster et 
al., 2001). Identification of the unknown modification enzymes is being hastened by 
bioinformatic and genomic approaches (Soma et al., 2003). It is also conceivable, though 
unlikely, that unknown small molecules would need to be identified biochemically for 
RNA modification (or other reactions). The remaining E. coli tRNA modification 
enzymes not listed in Table A1 might be predicted to be dispensable based on available 
data (Bjork, 1995; Giege et al., 1998). But given the uncertainties, it may be faster to get 
to a working near-minimal cell by using every known E. coli modification enzyme. 
 
Post-translation 
A MCP must promote correct protein folding and any necessary post-translational amino 
acid modifications. Early versions of a purified replicating system will contain cell-
derived macromolecules, so establishing that such systems can be completely weaned 
from cells will require enough rounds of replication for “infinite” dilution of the starting 
macromolecules. This will test for dependence on folding by chaperones and on post-
translational modifications. It is unclear which, if any, chaperones will be necessary, but 
GroEL/ES (El Hage et al., 2001; Kerner et al., 2005) are likely candidates (Table A1). 
The only known examples of required post-translational modifications for the proteins in 
Table A1 are the recently discovered methylations of translation release factors 1 and 2 
catalyzed by release factor Gln methylase (Table A1) (Heurgue-Hamard et al., 2002; 
Nakahigashi et al., 2002). Other possibilities include ribosomal protein acetylations. 
Mass spectral comparisons between proteins made in the purified system and those made 
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in vivo will expose modifications and also assess fidelity, while the inactivity of a protein 
of expected mass would suggest a protein-folding deficit and the need for an additional 
chaperone. Any necessary missing components could be identified biochemically by 
mixing with fractionated crude extracts or through genetics. 
 
Compartments and division 
Membranes would allow evolution without serial transfers and purifications, extension of 
the system to new environments, and better modeling of cells. On the other hand, 
membranous boundaries are unnecessary for directed evolution (Mills et al., 1967) or, in 
theory, self-replication. Membranes also restrict applications (e.g. delivery of unnatural 
amino acyl-tRNAs, selection schemes based on binding and spatial arraying for 
nanofabrication). Addition to self-replicating macromolecules of lipids alone may be 
sufficient for encapsulation of the macromolecules within bilayer membrane vesicles, 
synthetic cell division and transmembranous small molecule transport (Szostak et al., 
2001). The choice of lipids is wide open, but one should not underestimate the challenges 
involved in working with them (Luisi, 2002) nor the advantages in regulation to be 
gained by adding membrane-modeling proteins (e.g. pores, transporters and the yet-to-
be-discovered complement of cell division proteins (Gitai, 2005)). 
 
Integrating the subsystems 
How might all of the biochemical subsystems in Figure A1 be combined to generate a 
self-sustaining system? This is clearly a new level of complexity in comparison with 
prior self-assembly projects. None of the subsystems described above are completed, yet 
their selection is based on a reasonable plan for their ultimate integration. The approach 
again would be stepwise, and there are many possible pathways that could be integrated 
in parallel (Figure A1). For example, transcription by T7 RNA polymerase couples well 
with a purified E. coli translation system (Shimizu et al., 2005). Theoretical integration of 
DNA synthesis, RNA synthesis and RNA processing was discussed above (Figure A2). 
These four different subsystems could then be combined to synthesize part of a fifth 
system (the ribosome) by synthesis of an antibiotic-resistant 16S rRNA and His-tagged 
versions of all 21 small subunit ribosomal proteins (Tian et al., 2004). The products of 
these integrated subsystems could then be assayed for correct in vitro reconstitution of 
small ribosomal subunits by (i) selecting for resistance of protein synthesis to the 
antibiotic, and (ii) detecting the presence of tagged proteins in purified small ribosomal 
subunits by Western blot with anti-His antibodies. As another example, rudimentary 
vesicles encapsulating replicating systems (e.g. Q replicase) were shown to be capable of 
multiplication (Luisi, 2002). 
 
Numerous fine-tuning strategies can be envisioned. Relative strengths of DNA promoters 
and mRNA ribosome-binding sites for different genes could be modeled on the in vivo 
strengths, with necessary adjustments of synthetic rates (and thus concentrations of 
products) achieved by mutations in the binding sites. Additional modules might be 
useful, such as catabolism (nucleases and proteases), active conversion or removal of 
waste products (e.g. by energy regenerating enzymes or membrane transporters) and 
regulatory feedback (e.g. excess transcription -> excess T7 lysozyme mRNA -> excess 
lysozyme -> lysozyme binding to and inhibition of T7 RNA polymerase). Control of 
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macromolecular concentrations will be aided by in silico modeling and design (Tomita et 
al., 1999). Given that the subsystems discussed above were selected with integration in 
mind by choosing physiological reaction conditions and homologous components, and 
given that additional subsystems could always be borrowed from living cells as needed 
(e.g. E. coli RNA polymerase and regulatory modules such as riboswitches (Isaacs et al., 
2004)), it seems likely that this approach will eventually produce synthetic self-
replication and ultimately a self-sustaining minimal cell. 
 
It is important to note that a minimal cell would be intentionally fragile. For example, the 
vesicle would be easily lysed and the small molecule feeding mix would be highly 
specialized indeed (including unstable cofactors such as N-5,10-methenyltetrahydrofolate 
and S-adenosylmethionine). These built-in safety features will prevent a minimal cell 
from replicating outside the laboratory. However, some or all of the synthetic genes for a 
MCP would be intentionally passaged through living cells for construction of 
recombinant DNA clones and for amplification. Constantly upgraded ethical and safety 
regulations in place for existing biohazards would also encompass this research (Cho et 
al., 1999); http://arep.med.harvard.edu/SBP/Church_Biohazard04c.htm . 
 

3.2.2  Completion 
In conclusion, a stepwise biochemical approach lends itself to the eventual identification 
of any remaining functions essential for the synthesis of a minimal cell sustained solely 
by small molecules. Five states of completion present themselves as tractable goals of a 
MCP. Namely, the identification of: 
(1) the genes listed as missing in Table A1, 
(2) any additional genes and organization necessary experimentally for minimal cell 
synthesis, 
(3) any dispensable genes, 
(4) biochemical parameters and computational models sufficiently detailed to predict the 
effects of alterations, and   
(5) the missing three-dimensional structures of the gene products and their relevant 
complexes. 
 
It is difficult to predict how long it will take to debug each of the individual biochemical 
subsystems or to put them all together, so it is important to bear in mind that there are 
short-term goals. Intermediate assembly steps could also be pursued while the gaps in 
RNA modification knowledge (Table A1) are being filled. For example, the project to 
assemble a ribosome under physiological conditions could be carried out without the 
missing 23S rRNA modification enzymes (Table A1) by substituting in natural 23S 
rRNA. Similarly, assembly of self-replication in the absence of functional in vitro-
synthesized tRNA substrates could be carried out using cellular total tRNA to enable 
self-replication from substrates (rather than just small molecules) as a major step towards 
understanding biological self-replication. This would also allow directed evolution of all 
of the components except the tRNAs in a more flexible manner than is possible in vivo 
(e.g. for selecting ribosome mutants that incorporate unnatural amino acids more 
efficiently). 
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The biochemical subsystems necessary for a MCP are central, old fields that have lost 
impetus. Completion within a decade will only be possible through a coordinated filling 
of the key gaps in knowledge by the cutting-edge laboratories scattered around the world 
in these fields. It will also require stimulation of rate-limiting fields. For example, though 
rRNAs and tRNAs can constitute more than 70% of the dry weight of a cell, half of the 
estimated 60-70 RNA modification enzymes of E. coli and one fifth of the tRNAs remain 
to be characterized, despite the recent completion of about 300 bacterial whole genome 
sequences. The momentum of genomics and consequent deluge of computed hypotheses 
cries out for comparable breakthroughs in experimental tests. Synthetic systems biology 
projects such as a MCP promise such tests with the added bonus of new applications. 
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Table A1. Biochemically-derived list of genes that may encode a useful, near-minimal, self-
replicating system dependent only on small molecule nutrients. 

 
Gaps in knowledge are in yellow. Left column: chosen gene products and DNA sites. 
Middle column: relationship to the minimal genome of Mycoplasma genitalium; clear 
sequence homolog = “+”; known enzyme product without an evident sequence homolog 
= “unidentified”; no functional homolog = “-”. Right column: high-resolution, three-
dimensional, structural information; >25% of the structure solved = “+”, <25% = “-”.  

Escherichia coli Mycoplasma 3D structure
Coliphage f29 DNA polymerase + +
Coliphage P1 Cre recombinase - +
   >Coliphage Lox/Cre recombinase site - +
Coliphage T7 RNA polymerase analog +
   >Coliphage T7 RNA polymerase initiation site analog +
   >Coliphage T7 RNA polymerase class II termination site analog +
Lucerne viral hammerhead RNA - +
RNase P RNA + +
RNase P protein + +
   >RNase P site/RNA primer for DNA polymerase + +
Small subunit 16S ribosomal RNA + +
All 21 small subunit ribosomal proteins (1-21) + except 1,21 +
Large subunit 5S ribosomal RNA + +
Large subunit 23S ribosomal RNA + +
Large subunit 23S rRNA G2445>m2G methylase: unidentified unknown -
Large subunit 23S rRNA U2449>dihydroU synthetase: unidentified unknown -
Large subunit 23S rRNA U2457>pseudoU synthetase unknown -
Large subunit 23S rRNA C2498>Cm methylase: unidentified unknown -
Large subunit 23S rRNA A2503>m2A methylase: unidentified unknown -
Large subunit 23S rRNA U2504>pseudoU synthetase unknown -
All 33 large subunit ribosomal proteins (1-7,9-11,13-25,27-36) + except 25, 30 +
Translational initiation factor 1 + +
Translational initiation factor 2 + +
Translational initiation factor 3 + +
Translational elongation factor Tu + +
Translational elongation factor Ts + +
Translational elongation factor G + +
Translational release factor 1 + +
Translational release factor 2 - +
Translational release factor Gln methylase + +
Translational release factor 3 - +
Ribosome recycling factor + +
33/45 Transfer RNAs (see Fig. 2) Set of 29 +
tRNA C34>lysidine synthetase unidentified +
tRNA A34>I deaminase unidentified +
tRNA U34>cmo5U (=V) synthetases: unidentified - -
tRNA U34>2sU Cys desulfurase - +
tRNA U34>2sU synthetase unidentified +
tRNA U34>cmnm5U GTPase unidentified +
tRNA U34>cmnm5U synthetase unidentified +
tRNA cmnm5U34>nm5U>mnm5U synthetase unidentified -
tRNA G37 N1-methylase + +
tRNA A37>t6A N6-threonylcarbamoyl-A synthetase: unidentified unidentified -
tRNA A37>i6A synthetase - +
tRNA i6A37>s2i6A>ms2i6A synthetase - +
All 22 aminoacyl-tRNA synthetase subunits (20 enzymes) + except Gly sub., Gln + except Gly sub., Ala
Met-tRNA formyltransferase + +
Chaperonin GroEL + +
Chaperonin GroES + +

151 genes = 38 RNAs + 113 proteins
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Figure A1.    A minimal cell containing biological macromolecules and pathways proposed to be 

necessary and sufficient for replication from small molecule nutrients. 
 
The macromolecules are all nucleic acid and protein polymers and are encapsulated 
within a bilayer lipid vesicle. The small molecules (brown) diffuse across the bilayer. 
The macromolecules are ordered according to the pathways in which they are synthesized 
and act. They are colored by biochemical subsystem as follows: blue = DNA synthesis, 
red = RNA synthesis and cleavage, green = RNA modification, purple = ribosome 
assembly, orange = post-translational modification, and black = protein synthesis. MFT = 
methionyl-tRNAfMet

i formyltransferase. 
 



 

  21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.  A generalizable, physiologically-compatible theoretical schema for accurate DNA 
replication and RNA synthesis in vitro. 

 
Polymerase movements are illustrated by colored arrow heads. DNA synthesis. A nicked 
double-stranded DNA circle (middle) undergoes rolling-circle DNA synthesis by 
coliphage phi29 DNA polymerase (Dahl et al., 2004) to give an oligomeric single-
stranded DNA (bottom, blue).  RNA primers (red) then hybridize at two sites to prime 
lagging strand DNA synthesis (bottom, green). When two Lox sites (bottom, L) are 
completed, recombination occurs between them catalyzed by coliphage P1 Cre 
recombinase (black cross) to form a duplicate of the original circular template. RNA 
synthesis. The circular genetic operon (middle) contains a promoter for T7 RNA 
polymerase (P), a ribosomal RNA (rRNA) gene, two transfer RNA (tRNA) sequences, a 
self-cleaving hammerhead sequence (H), and a T7 terminator (T). RNA synthesis from P 
generates a precursor RNA (top, red) containing three cleavage sites (thin black arrows). 
The second tRNA sequence merely serves as a recognition site for RNase P cleavage. 
Cleavages yield the mature rRNA and tRNA1. Any cleavage product containing a 3' 
hydroxyl group or primary RNA transcript can serve as a primer for DNA synthesis 
(bottom, red). 
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Figure A3.  All nucleoside modifications of all 33 synthetic tRNAs that may be sufficient for accurate 

translation.   
 
Outside (shaded): mRNA codons of the genetic code are illustrated in the standard 
format, except that the 3’ U and C are switched to simplify depiction of decoding. Inside: 
tRNA nucleotides 34-37 (from 5’ to 3’) and their cognate amino acids. Nucleotides 34-36 
are the anticodons, and nucleotides 37 are represented by black superscripts. Codon and 
anticodon positions that base pair with each other are colored similarly. Stop codon 
specificities of release factor (RF) proteins are included. The portions of the tRNA 
sequences not shown in the figure are unmodified. Expected modifications of in vitro 
transcripts by the enzymes in Table A1, and expected amino acid and codon specificities 
are given. * = unspecified modification, _ = unknown modification status, ms2i6A = 2-
methylthio-N6-isopentenyladenosine, m1G = 1-methylguanosine, t6A = N6-
threonylcarbamoyladenosine, cmnm5U = 5-carboxymethylaminomethyluridine, V = 
cmo5U = uridine 5-oxyacetic acid, I = inosine, cmnm5s2U = 5-
carboxymethylaminomethyl-2-thiouridine, k2C = lysidine, S = mnm5s2U = 5-
methylaminomethyl-2-thiouridine, mnm5U = 5-methylaminomethyluridine. 
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Transcription by RNA polymerase from E. coli versus coliphage T7 
 
Initiation  
All E. coli genes are transcribed by E. coli RNA polymerase, given the appropriate sigma 
subunit (Lewin, 2004). For a MCP with the target genes in Table A1, use of natural 
promoters with the rpoD sigma subunit would probably maintain the natural relative 
initiation rates, although this needs to be confirmed. Any promoters that didn't function 
(perhaps due to the lack of an uncharacterized factor) could then be "fixed" by 
substitution with working promoters. Natural regulatory proteins could also be added to 
provide control mechanisms. However, cryptic initiation sites are anticipated for E. coli 
RNA polymerase but not for the more selective T7 RNA polymerase. The latter 
polymerase could be regulated by the binding of T7 lysozyme and by promoter binding 
by lac or other repressors (Studier et al., 1990). Relative initiation rates for T7 RNA 
polymerase could be set using T7 promoters of different strengths, although such 
promoters dictate the first few bases of the transcripts (usually pppGGG...). Nevertheless, 
this restriction in 5'-terminal sequence does not appear to be problematic for the synthesis 
of any of the RNAs needed for a MCP (see below). 
 
Elongation and termination  
T7 RNA polymerase transcribes about five times faster than the E. coli one, altering the 
relative E. coli rates of coupled transcription and translation, although this works well for 
phage T7 infections and when over-expressing genes in vivo. Termination by both 
enzymes is inefficient, so tandem terminators should be tried. T7 has the important 
advantage of high processivity through essentially any sequence until it reaches its 
natural terminator (class I or II (Lyakhov et al., 1998)). The E. coli polymerase 
terminates prematurely within genes containing an anti-termination signal (e.g. found in 
rRNA genes) if the anti-terminator factor(s) fail to act. Since the number of different anti-
termination mechanisms in E. coli is unknown, the extent of anti-termination is also 
unknown. Though premature termination could be detected easily in MCP experiments 
and might be overcome in some cases by omission of transcription termination factors, 
other cases would require altering codon bias with the hope that the natural premature 
termination signal (sometimes an unknown sequence) is destroyed without otherwise 
affecting transcription or translation. 
 
The cycle 
The transcription cycle of E. coli is more complex than T7's because it requires 
association and dissociation of the sigma factor.  
 
tRNA modifications  
The roles of the tRNA modifications are controversial. The genetic approach almost 
always finds a particular tRNA modification enzyme to be dispensable (Bjork, 1995), and 
even the enzyme that synthesizes the universal U to T modification at position 54 is only 
essential due to a function separable from tRNA modification (Persson et al., 1992). The 
biochemical approach finds unmodified tRNAs to be active in translation systems 
(Cornish et al., 1995; Harrington et al., 1993), although careful comparisons between 
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individual unmodified tRNA transcripts and their modified counterparts (either purified 
natural isoacceptors or chemically-synthesized tRNAs (Wang, 1984)) are limited. Thus, 
the hypothesis that the modifications are unimportant is widely held. But the source of 
tRNAs for all in vitro protein syntheses are cellular total tRNAs (because so many 
different tRNAs are required), so attempting protein synthesis with in vitro-synthesized 
tRNAs will be helpful in testing this hypothesis. The contrary view, that several tRNA 
modifications will be of key importance for a MCP, seems most likely. The comparative 
approach argues for their essentiality (Bjork, 1995). Genetics rarely rules out 
pseudorevertants (suppression by secondary mutations (Gutgsell et al., 2001)) and has 
recently identified a few essentials (Bjork et al., 2001; Soma et al., 2003; Wolf et al., 
2002) (not to mention the potential for pairwise lethals). Biochemical assay interpretation 
should be tempered by the presence in crude translation extracts of endogenous 
modification activities (Samuelsson et al., 1988) and the paucity of assays performed in 
pure charging and translation systems (Harrington et al., 1993). 
 
What modification enzymes can be predicted to be essential for self-replication?  
Nucleotide 34 in the anticodon wobble position, and nucleotide 37 directly 3’ of the 
anticodon, contain the most complex (hyper-) modifications, and all of the most likely 
essentials. Charging by aminoacyl-tRNA synthetases in E. coli requires mnm5s2U34 in 
tRNA-Lys and tRNA-Glu (and perhaps the related modification in tRNA-Gln), t6A37 in 
tRNA-Ile1, and lysidine34 in tRNA-Ile2 (Bjork, 1995; Giege et al., 1998). The latter is 
the only known example of a modification acting as an anti-determinant by preventing 
mischarging (with Met (Giege et al., 1998)), but a systematic search for others is needed 
by in vitro charging of unmodified tRNAs in a purified system containing all 20 
aminoacyl-tRNA synthetases. Accurate wobbling during codon recognition requires 
lysidine34, mnm5s2U34 and its variants (mnm5U34 and cmnm5U34), cmo5U34 and 
inosine34 (Curran, 1998; Yokoyama and Nishimura, 1995). The active anticodon loop 
confirmation of tRNA-Lys is stabilized by direct interaction of mnm5s2U34 and 
t6A37(Sundaram et al., 2000). m1G37 is essential to prevent frameshifting (Bjork et al., 
2001). t6A37 and msi6A37 (and its variant i6A37) stabilize A-U and U-A base pairs at 
the N36 position of codon-anticodon duplexes by stacking, presumably important for 
increasing translational efficiency at these codons (Grosjean et al., 1998). 
 

4  Quantitative Proteomic Software 
 

4.1. Methods, Assumptions, and Procedures  
 
Whole-cell protein quantitation using mass spectrometry has proven to be much more 
challenging than mRNA quantitation. The detection efficiency varies significantly from 
peptide to peptide; the molecular identities are not evident a priori and are dispersed 
unevenly throughout the multidimensional data space. In this study we have developed 
open-source software, called MapQuant, which quantitates all organic species in large 
mass spectrometry datasets 
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We tested MapQuant on Bovine Serum Albumin, BSA samples in 21 Liquid 
Chromatography / Mass Spectrometry, LC/MS experiments, in triplicate at seven 
different concentrations (7 – 5000 fmoles) for quantitation purposes (labeled q-
experiments) and two LC/MS experiments for identification purposes (labeled s-
experiments). For each q-experiment, MapQuant generated a two-dimensional map of 
scans against m/z bins. Analysis entailed applying algorithms for noise filtering, 
watershed segmentation, peak finding and fitting, peak clustering and isotopic-cluster 
deconvolution and fitting using binomially distributed clusters of gaussioid peaks. 
MS/MS spectra were interpreted using the program SEQUEST. 
 
Out of the 190 tryptic peptides used for the quantitation, 172 were identified by 
SEQUEST. Although the data were acquired on a low resolution spectrometer, 
MapQuant enabled us to search and find 18 more peptides based on m/z position and 
charge estimation. These 190 tryptic peptides cover 94.85% of the BSA sequence.  
 
The data has shown evidence of linearity, at least for the highly abundant peptides 
observed in the range of 7 to 1600 fmoles. We have also developed a model for 
ionization efficiencies by calculating ionization coefficients for each amino acid. This 
model gives us the capability to describe the quantitation level of BSA as a whole 
protein. The applicability to quantitation of more complex mixtures such as a proteome 
appears to scale linearly with number of peptides, as long as the peak overlap density is 
kept at a low level. 
 
With the capability of performing whole-cell proteome analysis (Lipton et al. 2002; Jaffe 
et al. 2004), a need to extend this process to quantitation has become increasingly 
apparent. Methods for measuring the state of an organism’s proteome have been 
successful with the use of 2-D polyacrylamide gel protein maps, followed by spot 
excision, digestion of the protein with trypsin and peptide sequencing using reversed-
phase liquid chromatography coupled to electrospray ionization mass spectrometry (ESI-
MS) (Gygi et al. 1999; Pandey and Mann 2000). Quantitation of peptide mixtures using 
only chromatographic separation methods coupled to mass spectrometry has proven to be 
a more easily automated procedure than 2-D electrophoresis. However, quantitation of 
proteins in complex mixtures using the signal acquired from their constitutive tryptic 
peptides has become a very desirable and challenging goal. The reason being that the 
detection efficiency varies significantly from peptide to peptide; the molecular identities 
are not evident a priori and are dispersed unevenly throughout the multidimensional 
separations. Although, commercially available programs are available for quantitation, 
they are not designed for high-throughput proteomic data and the algorithms used in them 
are not publicly available.  
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Knowing the quantities of proteins in a biological system is crucial in understanding 
post-transcriptional events (Gygi et al. 1999; Futcher et al. 1999) including translational 
efficiency, post translational modifications, compartmentalization, interactions, and 
turnover. 
 
In this study we proposed a data analysis method utilizing one or more chromatographic 
(or electrophoretic) separation dimensions and a mass separation dimension provided by 
the mass spectrometer.  Data from an LC/MS experiment (hereafter referred to as 
experiment) can be analyzed after being formatted into a data-structure called a 2-D map. 
A 2-D map is essentially a matrix whose rows and columns represent scans and m/z bins 
respectively. The 2-D map of a tryptic peptide from BSA is shown in Figure B1. The 
separation dimensions are considered orthogonal since they describe two independent 
properties of the peptides: mass and hydrophobicity. For this reason a parallelism can be 
drawn between a 2-D map and a 2-D electrophoresis gel, where in the latter the two 
dimensions represent mass and isoelectric point. The advantage of this visualization 
method is that the experimentalist gets a global view of the type of species eluting from 
the column and their relative position to each other.  
 
Using the above as motivation we have developed open-source software, called 
MapQuant, which given large amounts of mass-spectrometry data, outputs quantitation 
for any organic species in the sample. We will discuss features of the software including 
several algorithms used in it. Furthermore, we have applied MapQuant in the study of 
BSA samples at different concentrations and tried to develop a peptide ionization model 
that would explain the abundances observed for the BSA tryptic peptides. Analyses of 
tryptic peptides of BSA have been carried out in the past (Bruce et al. 1999; Hirayama et 
al. 1990), however without any attempts for absolute quantitation using its constituent 
tryptic peptides. Another goal of this study was to set the ground on the standardization 
of storage and quantitation of mass spectrometry data and create a community where 
investigators can share their algorithms and data structures.  

 

4.1.1. Data Acquisition 
 
The sample used in this study was a BSA digest standard from Michrom BioResources 
(910/00002/15). Samples were injected, with a FamosTM auto sampler, on a reversed-
phase column coupled to a Finnigan LCQTM DECA XP+ mass spectrometer. The column 
was an in house made 15 cm x 75 μm capillary filled with Magic C18 resin. 
 
The BSA digest was diluted in 95% water, 5% acetonitrile and 0.1% formic acid to a 
final volume of 10 μL for each of twenty-three experiments. Twenty-one of them 
involved seven different amounts of BSA peptides in triplicate. These BSA amounts 
include 7, 21.5, 66.67, 200, 500, 1600 and 5000 fmoles. The signal acquisition method 
for these experiments was carried out in the profile mode and did not involve any MS/MS 
scans, since they were meant for quantitation purposes (q-experiments). Moreover, these 
q-experiments were run from low to high concentrations to minimize carryover effects. 
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The remaining experiments involved two 5000 fmole samples that were run with a signal 
acquisition method that included MS/MS scans for sequencing purposes (s-experiments). 
 

4.1.2. Data Storage 
In order for MapQuant to be functional, a standard for storing raw LC/MS experiment 
data had to be developed. For the moment we are calling this standard OpenRaw but in 
the meantime we are in the process of developing an XML version of it. All OpenRaw 
files were created by a program written in Visual C++ using the API provided by the 
company Finnigan. OpenRaw file format has the advantage of being readable on all 
computer platforms due to its open-source nature.  

 

The raw data of an experiment were stored in three functionally distinct folders which 
themselves were within a parent folder named after the LC/MS experiment (Figure B2). 
These folders are: (a) a global parameters folder, (b) an MS1 spectra archive folder and 
(c) an MS/MS spectra archive folder. 

 

The global parameters folder holds four files. The size.param file stores information 
about the size of the data of an LC/MS experiment, i.e. total number of scans and total 
number of mass bins. The RTSA.param file, which stands for Retention Time Sampling 
Array, stores information about all the time points at which each mass spectrum was 
scanned. The MSSA.param file, which stands for Mass Sampling Array, stores 
information about the spacing of the sampling points in the m/z dimension given by the 
mass spectrometer. The file InstrumentMethod.param stores information about the 
instrument method used by the user at that particular LC/MS experiment.  

 

The MS1 spectra folder contains the file expmnt_name.msar. The extension msar stands 
for mass spectrum archive and, as the name indicates, it stores the ion-abundance signal 
from each mass spectrum in a concatenating manner.  

 

Similarly, the MS/MS spectra folder stores the file expmnt_name.ms2ar which is a 
concatenation of the ion-abundance signal for all MS/MS spectra. MS/MS spectra can be 
analyzed for peptide identification by a sequencing program. 

 

4.1.3. Data Analysis 
Strategy: Identification – Quantitation 
 
Since the mass accuracy of the spectrometer used in this study was not very high, we 
were reluctant to base peptide identification solely on the m/z of the peaks observed. 
Instead, we used the well established strategy of acquiring MS/MS spectra upon peptide 
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fragmentation, followed by sequencing using commercially available software, like 
SEQUEST (Eng et al. 1994). However, if we had chosen to perform MS/MS scans in our 
data acquisition scheme, we would have limited the number of MS scans that would have 
been acquired, hence reducing the sampling data points for quantitation. For example, a 
140 min chromatographic run without acquiring any MS/MS spectra would yield 5881 
scans, whereas the same run set to collect five MS/MS scans per MS scan would yield 
4433 scans, of which about one fifth would be the MS scan used to reconstruct the 2-D 
map. To circumvent this problem we collected MS data with and without MS/MS 
spectra. These runs were referred to as s-experiments and q-experiments respectively, as 
described in the data acquisition section. The strategy of how we linked the quantitative 
output from the q-experiment to the identification output of an s-experiment is outlined in 
Figure B3. 
 
In order to link a sequenced MS/MS event to a fitted peak, the following algorithm was 
implemented, which was essentially encoded in the program assignq2. First, every entry 
in the SEQUEST summary file (Figure B3) reflects a sequencing event (MS/MS scan) 
which has a unique retention-time and m/z coordinates in a 2-D map, as indicated by the 
blue points in Figure B4. The sequence for these MS/MS scans that is depicted next to 
the blue points represent the highest scoring peptide given by SEQUEST. Isotopic 
clusters that were identified using MapQuant also have centroids, represented by red 
points in Figure B4. For each sequencing event a rectangular area that is 1 m/z and 80 
scans wide in each dimension was searched for possible MapQuant peaks that lay within 
it. If there were multiple sequencing events that were assigned the same peptide, the 
peaks captured by these events were pooled and then ranked according to their Euclidean 
distance from their corresponding sequencing event. Also the charge predicted by 
MapQuant was checked for agreement with the charge used by the sequencing program. 
If the charge was different the peak was rejected. The procedure described above was 
used for all 21 q-experiments, thus creating a calibration table for further analyses. 
 
Definitions and Data Structures 
Experiment is the data structure that holds information about an LC/MS experiment. 
More specifically it holds information on the sampling of the eluent at different time 
points. Also it holds information about the sampling in the m/z dimension used by the 
spectrometer.  

Scan is the sampling unit in the chromatography dimension 

Mass bin is the sampling unit of the mass spectrometer when measuring the m/z of the 
produced ions.   

Map2D is the data structure describing a 2-D map as defined in the introduction. It is 
stored in the form of matrix (Figure B5). 

Mass spectrum is defined as the signal acquired at particular time point. It can be thought 
of as a row (or column) of the Map2D matrix (Figure B5). 

Mass chromatogram is defined as the signal present at a fixed mass bin point. It can be 
also thought of as a row (or column) of the Map2D matrix (Figure B5). 
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Segment map is defined as a region of a parent 2-D map to which the operation of 
segmentation was performed. Segmentation is performed to partition the signal (peaks) in 
the map for easier analysis (Figure B6). 

Peak is defined as a point in the 2-D map where it is considered to be a local maximum 
(as defined by a PeakFinder model)  

FittedPeak (or FPeak) is a peak that has been fitted to a particular model described by a 
mathematical equation, such as a two-dimensional Gaussian (Figure B6). 

Peak group is the cluster of fitted peaks that can represent candidate co-eluting isotopic 
clusters (fig. 6). 

Peak group map is defined as the minimum 2-D map needed for fitting the estimated 
number of isotopic clusters that a peak group might contain (Figure B6). 

Isotopic cluster is a group of peaks that represent the isotopic variants of a molecular 
species (Figure 1). 

MapQuant 
MapQuant is a program designed for quantitation of data from an LC/MS experiment that 
is in OpenRaw format, as described above. The quantitation procedure involved 
formatting the data into a 2-D map and applying several algorithms on the 2-D map with 
the goal of outputting a list of abundances of possible isotopic clusters. Below, we are 
presenting the order that several algorithms were applied to the data acquired from the 
BSA samples mentioned in the data acquisition section. 
 
Since the data were quite noisy, especially in the chromatography dimension, noise filters 
were applied. More specifically, smoothing algorithms such as applying a moving-
averaging filter were applied (Press 1992). The purpose of the smoothing algorithm is to 
facilitate the detection of all local maxima (peaks) found in the 2-D map.  
 
The second step in the data processing involved segmentation of the 2-D map into 
smaller areas called segments, such that overlapping peaks were confined into unique 
segment maps (Figure B7). The purpose of the segmentation algorithm was to minimize 
the number of data points being used simultaneously for fitting. It also made sure that 
overlapping peaks were included in the same fitting iteration. 
 
The third step of the quantitation process involved the application of a peak detection 
algorithm for finding the positions of the local maxima in every segment map, and then 
using that information as initial conditions for the curve fitting algorithm. 
The fourth step in the procedure involved single linkage clustering of the fitted peaks into 
clusters referred to as peak groups. Peak groups represent co-eluting peaks that might 
include one or more possible isotopic clusters. 
 
Finally, more refined fitting was performed for each peak group. This refining algorithm 
involved an iteration of subtraction and residual fitting based on previously estimated 
peak widths. This algorithm was chosen because peptides that had charges of +2 and +3, 
had isotopic peaks that were significantly overlapping. However, peptides with a +4 
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charge were impossible to resolve by this method, since the resolution offered by the 
Finnigan LCQTM DECA XP+ spectrometer was too low.  
 
The above five steps were included in the structure of scripts called MQScripts that can 
be read by MapQuant’s parser called MQParser. MapQuant algorithms were written in 
ANSI C and the MQParser was written using the general-purpose parser generator 
program called bison. Moreover, MapQuant includes minimal visualization features 
including 2-D map visualization as well as mass spectrum and mass chromatogram 
visualization. 
 
In the next section, some of the most important functions recognized by the MQParser 
are discussed in detail, along with the algorithms they encapsulate. 
 
 Algorithms 

1. Smoothing by convolution  
2. Watershed segmentation 
3. Peak Finding and Peak Fitting 
4. Peak Clustering 
5. Refine m/z peaks (Deconvolving  by fitting and subtracting) 
6. Deconvolve and isotopic carbon peaks  

 
Smoothing by convolution  
Convolution is the equivalent of band filtering in the frequency domain after a Fourier 
transform has been applied to either a mass chromatogram or a mass spectrum. The 
implementation of this filter utilizes the mathematical property shown in equation 1 
(Press 1992), where s is the signal array and h is the impulse array. S and H are the 
Fourier transforms of s and h respectively. 

).(1 HSFhs −=⊗                    (1)        
 
Related Functions in MQScript 
Map2D  Map_ApplyFilter (Map2D map, char* filter, double dim) 
The string filter describes the impulse function that will be applied to each mass spectrum 
or mass chromatogram of the 2-D map "map". The value of filter can either be “BC_n” or 
“GS_n_m” where n and m are integers. BC refers to a box-car filter (otherwise called 
moving-average filter) of n points and GS refers to a Gaussian filter of standard deviation 
n.m. The value of dim can be either RT_DIMENSION or MZ_DIMENSION, referring to 
the dimension of the 2-D map that the filter will be applied. 
 
Watershed segmentation 
The goal of this quantitation analysis is to fit every peak in the 2-D map. However, since 
fitting all peaks at the same time is computationally too expensive, a strategy involving 
compartmentalization is considered. This is achieved by segmenting the map using the 
watershed segmentation algorithm (Vincent and Soille 1991). 
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Related Functions in MQScript 
Map2D Map_Segment(Map2D map, double bin_size) 
This function takes the 2-D map map and segments it using the watershed algorithm. The 
parameter bin_size is used to denote the stepping size used by the flooding procedure of 
the watershed algorithm. 
VariantArray Map_GetSegmentArray(Map2D map) 
This function returns an array of type ‘segment’ which defines the boundaries of a 
segment map.  
Map2D  Segment_GetMap(Segment segment, Map2D source, Map2D mask) 
This function extracts a segment map from the map source, using a map which acts as a 
mask. Each point in the 2-D map mask holds the segment number in which it belongs to. 
This procedure is illustrated in Figure B7. 
 
Peak Finding and Peak Fitting 
After compartmentalizing the parent 2-D map into segment maps, the goal of peak 
finding and peak fitting becomes computationally more manageable. The peak detection 
algorithm used here uses concepts from mathematical morphology such as a structuring 
element (Ritter and Wilson 2001). A structuring element can be considered a small 
binary image that an image operator can take as input along with the image of interest. 
An example would be the image operation of erosion (symbolized by ^) between the 
image-signal S and the structuring element N that would act as a kernel (analogous to the 
response element used in convolution). The operation mentioned above is shown 
mathematically in equation 2. 
T = S ^ N (2) 
 
The peak detection algorithm uses a structuring element such as the ones in Figure B8, in 
order to decide which neighboring points for each data point in the 2-D map are to be 
included in the image operation. The shaded point indicates the point of reference of the 
structuring element.  
 
In the operation of peak-detection, a data point in the 2-D map is considered a local 
maximum only if its value is larger than all the neighboring points defined in the 
structuring element as 1. Mathematically speaking 
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N represents the structuring element and sk the value of the data point k in the 2-D map S. 
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To avoid detecting pseudo-peaks due to the noisy signal an abundance threshold is also 
set for all the points in the structuring element. The abundance threshold is usually set to 
m + 2s, where m is the median of the map and s is the average absolute deviation from 
the median.  
 
After a list of candidate peaks is formed, they are fitted as a sum of curves described by a 
mathematical equation. For example, if in a segment map there are n candidate peaks, 
and if each peak is chosen to be fitted as curve C, then the whole segment-map would be 

fitted as ∑
n

i
iC . In this study we chose to fit each curve with a double Gaussian, 

referred to from now on as the gaussioid curve, i.e. 
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As seen from the equation, the number of parameters to be fitted per peak is five, 
i.e. abundance A, retention-time centroid ro, mass-over-charge centroid mo, the standard 
deviation of the Gaussian in the retention time dimension σr and finally the standard 
deviation of the Gaussian in the mass-over-charge σm. The method used for peak-fitting 
is the “non-linear least squares” method (Press 1992).  It is a minimization method using 
steepest descent. It requires knowledge of the first derivative for each of the parameters 
to be fitted. For example if there are n candidate peaks in a segment map and we want to 
fit them using the gaussioid curve, we would need to fit 5n parameters and the algorithm 
would require 5n partial derivatives. 
 
Related Functions in MQScript 
Segment Segment_FindAndFitPeaks(Segment segment, Map2D map, char*  structel, 
double abuthr, double noisefactor, double numberofsd, char*  curve) 
This function finds and fits peaks in the 2-D map map, and returns them inside a variable 
of type ‘Segment’. The arguments used by the peak-finding part of the algorithm are 
structel and abuthr. The argument structel refers to the structuring element used in the 
peak-finding of the algorithm. It can take values such as “N9x3E”, “N3x3R”, etc (Figure 
B8). The argument abuthr denotes the threshold value which needs to be met by all the 
points in the structuring element.  The argument curve refers to the peak-fitting part of 
the algorithm and it denotes the type of curve that the peak should be fitted too. It can 
take values such as “NR_GAUSSIOD” or “NR_EM_GAUSSIOD”. The arguments 
noisefactor and numberofsd are not used anymore. 
double Map_GetMedian(Map2D map) and 
double Map_GetAvgAbsDevFromMedian(Map2D map) 
The function Map_GetMedian calculates a distribution of the intensities of all the points 
in the 2-D map map and returns its median. Similarly Map_GetAvgAbsDevFromMedian 
returns the average absolute deviation from the median. 
 
Peak Clustering 

(4) 
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In order to decide which fitted peaks belong to which isotopic clusters we cluster the 
peaks into data structures called peak groups. Peaks belonging in an isotopic cluster have 
restrictions in their relative position in the isotopic cluster. More specifically isotopic 
peaks have to be co-eluting (Figure B1). Secondly, the peaks cannot be separated more 
than 1 m/z unit, which is maximum distance defined by peptides with charge +1. The 
above natural restrictions, co-elution and the 1 m/z maximum distance limit, are taken 
into account by limiting the number of inter-peak distances when peaks are clustered. 
 
Related Functions in MQScript 
double FPeakFile_ClusterAndSave(char* szInFilename, char* szOutFilename, double 
scan_thr, double mz_thr, double abund_thr, double nLinkageType) 
This function reads the fpeaks from the file szInFilename, clusters them into peak groups 
and then outputs them into the file szOutFilename. The arguments scan_thr is used to set 
the scan tolerance of the co-elution restriction mentioned above. Likewise the argument 
mz_thr is used to set the m/z tolerance for the maximum allowed distance between two 
isotopic peaks. This value was set to 1.1 m/z, and calculated from known +1 peptides. 
 
Refine m/z peaks (Deconvolving by fitting and subtracting) 
Due to the fact that the spectrometer cannot resolve isotopic peaks of peptides that have 
charges of +3 and above, we apply an algorithm following a ‘fit and subtract’ strategy. 
We use a simple test for discriminating between ‘oversized’ or ‘undersized’ peaks from 
‘normal’ peaks. The metric applied in this case makes the assumption that peak width in 
the m/z dimension is constant throughout the experiment. The pseudo code for this 
algorithm is provided in the supplementary material. 
 
Related Functions in MQScript 
PeakGroup PeakGroup_Refine6(Peakgroup peakgroup, Map2D PGMap, VariantArray 
pPGMapFPeaks, char*  structel, double numberofsd, char*  curve) 
 
Deconvolve and fit isotopic carbon peaks  
In this algorithm we assume that each peak group may represent one or more isotopic 
clusters. So we devise an algorithm for sequential prediction of each isotopic cluster by 
going through the fpeaks based on increasing m/z. The peaks that are candidates for an 
isotopic cluster are to be fitted using a binomially distributed sum of two-dimensional 
Gaussians. 
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PeakGroup PeakGroup_Deconv3(PeakGroup peakgroup, Map2D PGMap, VariantArray 
pPGMapFPeaks, char*  curve); 
The above function can be divided into two parts which are iterated until all fpeaks are 
distributed into isotopic clusters: 
1. Guess the most likely subset of the fpeaks in a peak group, which can comprise a 

possible isotopic cluster. 
Substitute those peaks with a binomially distributed gaussioid curve (denoted with the 
string “NR_BD_GAUSSIOD”) and fit the peak group map with equation 7, where m is 
the number of single gaussioid curves C (eq. 4) and n is the number of binomially 
distributed gaussioid curves B (eq. 5).  

∑∑ +
n

i
i

m

i
i BC  (7) 

 
First we provide a description of the first part of the algorithm which itself is comprised 
of two steps. As a first step it involves the finding of all possible sets of fpeaks whose 
m/z forms an arithmetic series, as shown in equation 8, and hence might provide 
evidence of belonging to the isotopic variant peaks of a charged molecular species. This 
algorithm is referred to a charge deconvolution algorithm. 
 

 
 
 
 
 
 
 
 

where d = 1/Z , Z is the charge of the molecular species (8) 
 
Figure B9 shows a possible arrangement of fpeaks in a peak group and the schematic 
description of the charge deconvolution algorithm. This algorithm extracts sets of fpeaks 
that could belong to candidate isotopic clusters. As seen in Figure B9, for each fpeak 
belonging to the peak group, which itself can be represented as a directed acyclic graph, a 
search is being performed through it and stored in a tree. For example, steps 2-4 describe 
the creation of a tree whose root is peak A, step 5 describes the creation of the tree whose 
root is peak B, etc. Each tree stores all possible paths that link the root with every leaf. 
The paths in all the trees represent all candidate isotopic clusters for the peak group under 
study. In order to choose the most plausible isotopic cluster candidate we rank these 
isotopic clusters according to the sum of the abundances of their constituent peaks. In this 
way, low abundant molecular species do not interfere with the deconvolution process 
since they are deconvolved later. The next step after charge is to take the most abundant 
candidate isotopic cluster discussed above, and to try to estimate a possible carbon 
content by comparing the abundances of its comprising peaks to the binomial distribution 
described in equation 6. The metric used in this selection is the average square deviation 
form an idealized, hence calculated binomial distribution for a particular carbon content. 
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Similar algorithms for carbon deconvolution have been reported in the literature 
(Wehofsky et al. 2001). 
 
Finally, after the first part of the algorithm is called iteratively and the number of isotopic 
clusters represented in the peak group is found, they are fitted with equation 7. 

4.2.  Results and Discussion 
Coverage 
The BSA sequence used in the study was identified by running SEQUEST on nine BSA 
sequences extracted from the National Center for Biotechnology Information (NCBI) 
database. From the peptides that scored (xcorr > 2.0) it was evident that the 24 amino 
acid leading peptide was not present in the mature form of the BSA used in the 
experiment, implying a protein of 583 amino acids in length. The sequence is shown in 
Figure B10 and referred to from now on as mBSA-A214T. 
 
SEQUEST was re-run using a protein database that included mBSA-A214T as well as 58 
trypsin sequences. Enzyme settings were set to none, in order to increase the confidence 
for the identity of the tryptic ones. The program was set to search for +1, +2 and +3 
charged variants. Moreover, it was set to take into account possible amino acid 
modifications such as lysine and arginine carbamylation, methionine, histidine and 
tryptophan oxidation, and glutamine N-terminal loss of ammonia. The following charge 
specific xcorr cutoff values were set: 3 for +3 peptides, 2 for +2 peptides and 1 for +1 
peptides. The peptide charge variants that passed the charge-specific cross-correlation 
score thresholds amounted to 242. From these peptide charge variants only half (121) 
were fully tryptic on both termini. By observing sequences of the non-tryptic peptides we 
concluded that an enzyme with chymotrypsin activity was present in the digestion 
mixture, since 74 of the amino acids found at the C-terminus of the restriction site were 
either phenylalanine, tyrosine or leucine (Antal et al 2001). However we hypothesize that 
chymotrypsin activity was attributed to an enzyme that was co-purified with trypsin and 
in a lesser amount, since only 8 peptide charge variants were fully chymotryptic. 
 
Out of the 242 BSA peptide charge variants 70 were regarded as false positives and were 
rejected because no signal was found on the two-dimensional maps. The remaining 172 
peptide charge variants cover 540 amino-acid residues out of a total of 583 which 
corresponds to 92.62%.  
 
MapQuant Performance In order to evaluate MapQuant’s performance we try to 
estimate the percentage of SEQUEST hits that have been linked to a possible MapQuant 
isotopic cluster of peaks.  It should be noted that the program performs better with +2 
peptides. An obvious reason for the bias mentioned above is due to the low resolution of 
the spectrometer. For example the average m/z bin size was about 1/15 (0.067) m/z units 
wide. This means that peaks belonging to an isotopic cluster of a +3 peptide would be 
only 5 bins apart given an average peak width of 0.16 m/z (2.4 bins). This makes it 
extremely difficult for any algorithm to resolve the peaks.  
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Moreover, it should be noted that the lack of finding an isotopic cluster with the correct 
charge does not imply that the algorithm did not find any peaks that were in the vicinity 
of the MS/MS event. Another reason for the lack of finding all peaks can be attributed to 
the way the two experiments (q-experiment and s-experiment) were chosen to be aligned 
and to the size of the window chosen to be searched around the MS/MS events. Thirdly, 
since only certain peptides give high enough signal to be detected in the high 
concentrations of the sample, we assume that a significant number of the total number of 
peptides would be detectable in the low concentration data points. For this reason we 
observed that the percentage cover increased for the four most concentrated samples (12 
points).  
 
Additional Non-SEQUEST Peptides In addition to the 172 peptide charge variants we 
included 18 peptide charge variants that were not found by SEQUEST. There are two 
possible reasons for peptide isotopic clusters present on a 2-D map not to be identified by 
SEQUEST. One reason could be the fact that an MS/MS spectrum corresponding to a 
peptide isotopic cluster is not interpretable by the program. Another reason could be the 
complete absence of MS/MS spectra for a peptide isotopic cluster due to the difficulty of 
sampling MS/MS spectra for a 2-D map densely populated by peaks.  
 
These 18 non-SEQUEST peptides were divided into four groups based on the criteria for 
accepting the identity to be true. The first group included seven peptides that were found 
by MapQuant after analyzing a 2-D map that had been collected on a high-resolution 
Fourier Transform Ion Cyclotron Resonance Mass Spectrometer). A second group 
included 7 peptides that were found manually due to the presence of other same-sequence 
charge variants that co-eluted with them. The third group included three small non-
overlapping tryptic peptides of charge +1, that were covering parts of the protein that 
were not covered by all previous peptides. Finally, the last group included a peptide 
which had to be fitted manually because of its marginal position in the 2-D map, as it had 
the lowest m/z of all peptides.   
 
These new non-SEQUEST peptide charge variants increased their total number to 190 
and also the sequence cover of BSA to 94.85%.  
 
Amino Acid Modifications and N-Terminal Cyclizations 
In this study we were also interested in finding out possible modifications. Among the 
172 peptides examined, we focused on the following modifications, mainly on S-
carboxymethylation of cysteines, on the oxidation of methionine and histidine, on 
carbamylation of lysine and arginine and on neutral loss of ammonia from N-terminal 
glutamine. These four modifications were the ones set for SEQUEST to search for. In 
addition, the 19 non-SEQUEST peptide charged variants described above, include two 
cases where we observe neutral loss of ammonia and one case of arginine modification. 
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Out of the eight cases representing neutral loss of ammonia, all of them correspond to 
peptides whose sequences have the amino acid glutamine at their N-terminus. This is 
consistent with the formation of pyroglutamate reported in the literature (Baldwin et al. 
1990).  
 
With regard to carbamylation, 5 peptides were observed to have carbamylated lysines, 
and 4 peptides were observed to have carbamylated arginines (supplementary table 3). 
Peptide K*QTALVELLK indicated that lysine-548 was carbamylated. Moreover, lysine-
548 is also known to be glycated (Wada 1996), indicating a sequence hot spot for attack 
by acidic molecules.   
 
Linear response 
We also wanted to investigate the range of linear response of an ESI mass spectrometer, 
such as the Finnigan LCQTM DECA XP+. Although, the results pertain to the particular 
instrument used in this study, our long-term goal is to be able to use the BSA tryptic 
peptide mix as a calibration standard that has to be run on the instrument where the 
proteomic study will occur.  
  
In this study we focused on the five most abundant peptides, which had been confirmed 
by SEQUEST and had a charge of +2. The theoretical number of data points for these 5 
peptides is equal to 105. For the graphs shown in Figure B11, the abundances of 72 
isotopic clusters were used, which included 59 automatically found by MapQuant out of 
which 8 had to replaced by manually fitted isotopic clusters, and 13 completely new 
manually fitted isotopic clusters. 
 
As we see from Figure B12, when we plot the logarithms of fmoles vs. ion volume units 
for each peptide charged variant we see that the 5000 fmole point is an outlier as it shows 
evidence of saturation. For this reason we use the data points from 7 fmoles to 1600 
fmoles for fitting. The curve used to fit the data points mentioned above is of the form y 
= Axn. The correlations observed for this log-log regression are very close to 1.  
Moreover, parameter n, which represents a measure of deviation from linearity, is very 
close to one for all peptides, especially for R.RPC#FSALTPDETYVPK.A (1.05439) and 
R.KVPQVSTPTLVEVSR.S (1.07880). However, further investigation for the reasons of 
the variation of parameter n should be considered in the future. 
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Model for Ionization 
Finally, we thought that one aspect of mass-spectrometry that MapQuant could be used to 
explore, is modeling the variability of ionization of different peptides. The approach we 
took was to cluster the 190 peptide charged variants into 39 non-overlapping peptide 
clusters, shown by a double line in Figure B10. The abundance for each peptide cluster 
was calculated as the sum of the abundances for all its constituent peptide charged 
variants. This was done only for the 1600 fmole data point since it is the most abundant 
data point in the linear region. In this way we can assume that the number of molecules 
introduced into the mass spectrometer per peptide cluster is equal and thus allowing us to 
proceed into formulating a model for explaining why the signal acquired per peptide 
cluster is not equal to each other. 
 
In this study we developed a linear model to explain the ionization variation of each 
peptide cluster, where each amino acid contributes either negatively or positively to 
ionization efficiency. Similar models have been applied to the prediction of the retention 
time of peptides in reverse phase columns (Chabanet and Yvon, 1992). Since it is a linear 
model, the fact that we sum the abundances of the constituent peptide charged variants 
for each peptide cluster is compatible with the model. 
 
In order to calculate the coefficients of ionization for each amino acid we use the 
equation 9, where X is the matrix amino acid composition for the 39 peptide  

oXY ββ +=  (9)  
clusters and β is 1 x 20 vector holding the ionization coefficient for each the twenty 
known amino acids. In the case of Y, we assume that there exists a maximum ionization 
value for the peptide clusters that ionize well. For this reason we normalize the 
abundance of each peptide cluster by the maximum and use that as the Y vector in the 
regression. The regression is performed using the statistical toolkit in MATLAB and in 
particular with the function regress.  The correlation of this regression is 0.7967, with as 
p-value of 4.8 x 10-3. The regression was also cross validated using the leave-one-out 
method with the correlation value of 0.5476. 
 
Using the ionization coefficients, we can see that for a significant number of amino acids, 
their ionization coefficients are positive. Ionization coefficients for methionine and 
tryptophan can be considered the least reliable since the BSA sequence contains only 4 
and 2 respectively. Only six amino acids have ionization coefficients that are less than 
0.01. At least for two of them, i.e. proline and phenylalanine hypotheses could be 
formulated as to explain their negative ionization coefficients. Although, the exact 
mechanism of ionization in the gaseous phase is not known (Cole 2000), the ionization 
coefficients of these two amino acids point to an ionization model which reflects amino 
acid ionization properties that are known for the aqueous phase. 
 
More specifically, proline which has the second most negative ionization coefficient is 
the only proteinogenic amino acid that forms a tertiary amide when it is part of a peptide. 
This means that it does not have a hydrogen on the amide group and can therefore not act 
as a hydrogen bond donor. Another amino acid that has a negative ionization coefficient 
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is phenylalanine. Phenylalanine is the only proteinogenic amino acid whose side chain is 
both aromatic and completely non-polar. It is also known that aromatic amino acids 
contribute negatively to the pKa of acidic and basic groups, which reflects ability to be 
protonated. 
 
Moreover, no correlation was found between amino acid ionization coefficients and 
either isoelectric points or hydrophobicity coefficients. As far as modifications and N-
terminal cyclizations are concerned we did not distinguish, for example, between 
glutamine and pyroglutamate and neither between carbamylated and uncarbamylated 
lysines or arginines. It is evident, that these regression results call for the collection of 
more datasets similar to this one, but for different proteins, in order to improve the 
correlation of the regression and the confidence of the ionization coefficients. 
 
Concluding Remarks 
One purpose of this study was to promote community sharing and standardization of 
quantitative mass spectrometry. We believe that MapQuant is an excellent beginning for 
the above goal as it is an open-source and versatile software. An XML version of the 
OpenRaw data format will facilitate the exchange of raw mass spectrometry data. 
Furthermore, we have ensured that MapQuant can be compiled and run on both Windows 
and Linux platforms. Another advantage of MapQuant is that it can process data acquired 
on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS). 
 
In conclusion, our goal was to be able to apply the techniques used for BSA to quantitate 
proteins in complex mixtures such as proteomes of microorganisms that have small 
genomes. In this study we show that tryptic peptides from BSA can behave linearly and 
ionize according to a linear ionization coefficient model postulated above. We believe 
that BSA or other proteins for that matter can be used as standards either external or 
internal for calibration of different types of mass spectrometers, including ones that use 
quadrupole ion traps (QIT), linear traps or cyclotron resonance cells. 
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Figure B1. A detailed look at an isotopic cluster as it is visualized in a 2-D map. 
 
Sections of the 2-D map, such as relevant mass spectrum and mass chromatogram are 
also shown. 
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Figure B2.  The format (file tree structure) used by MapQuant to store raw data 
 

 
 

Figure B3.  The pipeline employed to link an s-experiment with a q-experiment.  
 
Regarding the q-experiment the program presented in this report, MapQuant, is used to 
extract fitted peaks from the raw data. On the other hand, SEQUEST with the help of the 
program extractdta, provides identification information for each dta file. Then all 

open raw file 

deconvolved 
peak-group file 

MapQuant 
*.dta files 

extractdta 

SEQUEST 

*.out files 

s-experiment q-experiment 

*.seqsum file    
(sequest summary) 

createseqsum 

assignq2 

open raw file 

*.mqsqmap file 
(massquest-sequest 
mapping summary) 

mulitple *.mqsqmap files 

createmqsqsum.pl 

craetecaltable.pl 

*.mqsqsum file 

*.caltable 

Experiment Name 
(e.g. BSA_5_pmole) 

PARAM 

MS1 

MS2 

RTSA.param 

MSSA.param 

InstrumentMethod.param 

Size.param 

BSA_5_pmole.msar 

BSA_5_pmole.ms2ar 



 

  42

SEQUEST output files are summarized in one summary file using the script 
createseqsum.pl.  

 
Figure B4.  Mapping between sequenced MS2 events and quantitated isotopic clusters.  
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MS2 events, marked by blue crosses, correspond to the peptide sequence 
K.DLGEEHFK.G, as shown in the 2-D map extracted from an s-experiment (lower map). 
For each MS2 event a 160-scan x 1-m/z search window (in this illustration, 40 scans on 
each side in the RT dimension and 0.5 m/z on each side in the m/z dimension) is drawn in 
the 2-D map extracted from a q-experiment (upper map). Quantitated isotopic clusters 
using MapQuant are marked by red crosses and are labeled by their integrated intensities. 
Any isotopic clusters found within the windows defined by the MS2 events are assigned 
to them.  
 

 
 

Figure B5.  Illustration of the definitions surrounding the concept of a 2-D map.  
 
As seen in the figure, a 2-D map can also describe a fraction of an experiment, indicated 
by the shaded rectangle. A 2-D map is defined by scan boundaries (e.g. 175 – 675) and 
by mass bin boundaries (e.g. 100 – 1240). Any column of a 2-D map is defined as a mass 
spectrum at a particular scan, and any row is defined as a mass chromatogram at a 
particular mass bin. Positions of data points in a 2-D map can be addressed in three 
different ways: (a) Using global sampling coordinates, where position is given in scan 
and mass bin units that refer to the experiment as a whole, (b) using local sampling 
coordinates, where position is given in scan and mass bin units but using a local frame of 
reference and (c) using real number coordinates, where position in the 2-D map is 
described in units of the physical quantities that the sampling points refer to, i.e. minutes 
and m/z.  
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Figure B6.  Illustration of data structures and concepts required for the understanding of the 

algorithms.  
 
A segment map is a 2-D map that contains all the data points belonging to a segment as 
result of performing the operation of watershed segmentation on a parent 2-D map. A 
peak group is defined as a cluster of fitted peaks that can represent candidate co eluting 
isotopic clusters. A peak group map is the minimum 2-D map needed for fitting the 
estimated number of isotopic clusters that a peak group might contain. 
 

 
 

Figure B7.  Operation of watershed segmentation on a 2-D map.  
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This algorithm is utilized to divide the map in non-overlapping regions so that fitting 
individual peaks becomes less computationally intensive. The product of segmentation is 
a 2-D map called labeled map where each data point is given a segment number which it 
belongs to (indicated by different shades). The labeled map can be used as a guiding 
mask to extract the data points needed for a particular segment, thus creating a segment 
map as described in Figure B5. 
 
 

 
 

Figure B8.  A collection of different structure elements used for different map operations, such as 
opening, closing and peak finding.  
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Figure B9.  Schematic way description the charge deconvolution algorithm.  
 
 
The algorithm’s goal is to go through all peaks that belong to the peak group and 
construct a tree for each one of them, which will represent all possible equidistant groups 
of peaks that might be candidates for defining an isotopic cluster. For building the first 
tree, the algorithm starts from the peak with the lowest m/z (peak A, step 2) and searches 
and picks all the peaks (peak B and C) that in relation with the root peak (peak A) have 
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an m/z distance that is compatible with a possible charge state of an isotopic cluster (+2 
for peak B and +1 for peak C. 
 

 
 

Figure B10. Tiling of the observed peptides with unique sequences on the mature sequence of BSA.  
 
The coverage is calculated to be 558 amino acids out of a total of 583, which amount to 
94.85%. The possible sites for trypsin cleavage, lysines and arginines are marked by 
asterisks.  
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Figure B11.  Cumulative ion volume for each amino acid in the protein (mature BSA).  
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The cumulative ion volume for each amino acid is calculated as the sum of the ion 
volumes for each peptide that contains that particular amino acid. The histograms show 
that certain areas of the protein are apparently more ionizable than others. However, this 
variation might also be due to unidentified peptides. 
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Figure B12. Calibration curves for the five most abundant +2 peptides.  

The curves were generated using the abundances of 72 isotopic clusters, quantitated by 
MapQuant, either in a supervised (51) or an unsupervised manner (21). 
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5 Metabolic modeling Software 
 
Identifying metabolic enzymes with multiple types of association evidence 
 
Existing large-scale metabolic models of sequenced organisms commonly include 
enzymatic functions which can not be attributed to any gene in that organism. We present 
a novel method for identifying such missing genes based on a local structure of metabolic 
network and multiple types of functional association evidence, including clustering of 
genes on the chromosome, similarity of phylogenetic profiles, gene expression, protein 
fusion events and others. Using E. coli and S. cerevisiae metabolic networks, we 
illustrate the predictive ability of each individual type of association evidence and show 
that significantly better predictions can be obtained based on the combination of all data. 
In this way our method is able to predict 60% of enzyme-encoding genes of E. coli 
metabolism within the top 10 (out of 3551) candidates for their enzymatic function, and 
as a top candidate within 43% of the cases. Our approach does not rely on direct 
sequence homology to known enzyme-encoding genes, and can be used in conjunction 
with traditional homology-based metabolic reconstruction methods. 
 
Supplementary materials are available at:  
http://arep.med.harvard.edu/kharchenko/identification/supplements.html . 
 
 

5.1. Motivation 
Comprehensive and accurate reconstruction of the metabolic networks remains an 
important problem for both newly sequenced and well-studied organisms (Borodina et al. 
2005; Reed et al. 2003). The challenges posed by the experimental determination of the 
metabolic enzymes have led to development of computational methods for metabolic 
reconstruction. The most common approach is to identify genes encoding a specific 
metabolic enzyme by establishing sequence homology to functionally characterized 
enzymes in other species (Tatusov et al. 1996). Although such sequence homology 
methods have been remarkably successful overall, they fail to identify enzymes encoded 
by genes with poor sequence homology to known metabolic enzymes, and result in 
partially reconstructed metabolic networks. The problem of identifying genes encoded for 
a specific metabolic function in such partially reconstructed networks has been referred 
to as the “missing gene” problem (Osterman and Overbeek 2003). 
 
Computational strategies for identifying missing metabolic genes rely on refined 
sequence homology analysis (Green and Karp 2004; Reed et al. 2003) and consideration 
of functional association evidence linking candidate genes with known enzyme-encoding 
genes (Osterman and Overbeek 2003). For example, PathwayTools hole-filler developed 
by Green et al. (Green and Karp 2004), prioritizes candidates obtained from an initial 
sequence homology search by using, among other factors, information on whether the 
candidate gene is located adjacent to, or in the same transcriptional unit as known 
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enzyme-encoding genes of related metabolic function. In some cases, strong genome 
context association evidence, such as clustering of genes on the chromosome, or co-
occurrence of genes in phylogenetic lineages, has played a key role in identifying 
metabolic genes in several organisms (Bishop et al. 2002; Bobik and Rasche 2001).  
 
An extensive set of tools has been developed to detect and catalog general pair-wise 
functional associations between genes based on a combination of genome context 
methods and other evidence, such as co-expression or protein interactions (Bowers et al. 
2004; von Mering et al. 2003). Combinations of heterogeneous association evidence have 
been used for general functional inference (Troyanskaya et al. 2003), prediction of 
protein complexes (Asthana et al. 2004; Jansen et al. 2003; Yamanishi et al. 2004) and 
synthetic lethal interactions (Wong et al. 2004). A recent work by Yamanishi et al. 
(Yamanishi et al. 2005) relied on a combination of genomic, mRNA expression and 
localization evidence, together with information on chemical compatibility to reconstruct 
metabolic pathways from known metabolic enzymes. 
 
In an earlier study we described a method for identifying missing enzyme-encoding 
genes based on gene co-expression and local structure of metabolic network (Kharchenko 
et al. 2004). The candidate genes for encoding a missing metabolic enzyme were 
evaluated based on the overall similarity of their expression profile with the expression of 
the metabolic network neighborhood of the missing enzyme (Figure C1a). The local 
property of gene co-expression, which formed the basis of this method, was also 
observed for other types of functional associations, in particular for associations 
established by genome context (Kharchenko et al. 2005). In this work we showed that 
such an approach can be extended to identify metabolic enzyme-encoding genes from a 
number of different types of functional association evidence, including phylogenetic 
profile co-occurrence, physical clustering of genes on the chromosome and protein 
interaction data. We noted that the presented method does not rely on sequence 
homology to known enzymes, and its predictions are complementary to the traditional 
methods of metabolic reconstruction. 
 
We illustrated the performance of each individual type of association evidence by testing 
how well the method is able to predict known enzyme-encoding genes of E. coli (Reed et 
al. 2003) and S. cerevisiae (Forster et al. 2003) metabolic models (see Methods). A set of 
candidate genes, containing all non-metabolic genes in an organism, is evaluated and 
prioritized by calculating overall association with the neighborhood of the missing 
metabolic enzyme (Figure C1b). To assess the performance of our method we relied on a 
self-rank measure, which is the rank of a known enzyme-encoding gene among the set of 
candidates prioritized for its own metabolic function (see Methods). We developed 
techniques for combining multiple types of association evidence and show that 
significantly better prediction performance can be achieved based on combined 
association evidence.
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5.2. Results and discussion 
 
Similarity of phylogenetic profiles 
A number of earlier studies have explored using patterns of gene co-occurrence or 
absence in the phylogenetic lineages to infer functional association between gene pairs 
(Huynen and Bork 1998; Pellegrini et al. 1999). The basic premise of the method is that a 
function is likely to be encoded by several associated genes; therefore lineages 
maintaining only some of these genes will have lower evolutionary fitness. For instance, 
enzymes catalyzing successive steps of a linear metabolic pathway are likely to be 
present together in an organism relying on that metabolic pathway, and absent together 
from an organism that does not require that pathway. 
 
A phylogenetic profile of a given gene on a set of GN  genomes can be encoded as binary 
string of length GN , with each position marking presence (1) or absence (0) of an 
ortholog in the corresponding genome. Functional association between a pair of genes is 
assessed by the degree of similarity of their phylogenetic profiles. A number of different 
distance measures have been used to calculate such similarity, including Hamming string 
distance, mutual information and hypergeometric distribution (Bowers et al. 2004; 
Pellegrini et al. 1999, Huynen, 2000 #546; Wu et al. 2003). We find that the performance 
of different distance measures is very similar.  These profile similarity measures do not 
take into account variable degree of divergence between genomes comprising the 
orthology dataset. This is particularly clear in the case of Hypergeometric distribution 
measure (Bowers et al. 2004; Wu et al. 2003), which assumes that ortholog occurrences 
are independently and identically distributed across the set of included genomes (see 5.3 
Methods).  
 
The identity assumption would suggest that the total number of ortholog occurrences 
within each genome should be approximately the same, and the distribution of the 
number of orthologs should form a single, narrow peak around an average ortholog 
number. The empirical distribution, however, is quite different from the expected form, 
lacking a peak around the mean, and showing substantial density over almost an entire 
range of ortholog numbers. When the identity assumption is relaxed, profile similarity 
probability is described by the Extended Multivariable Hypergeometric distribution 
(Harkness 1965). Because probability functions of this distribution have not been derived 
in a closed form, we developed a numerical algorithm for estimating these probabilities 
(see 5.3 Methods). 
 
Bias stemming from the violation of the independence assumption can be minimized by 
exclusion or reduction of closely related species in the ortholog occurrence dataset. We 
developed an approach similar to previously published work (von Mering et al. 2003), 
which reduces the bias by folding together phylogenetic branches containing closely 
related species, and using an ortholog occurrence pattern based on the agreement within 
the folded branch (see 5.3 Methods). 
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The effect of both corrections on the ability to predict enzyme-encoding genes in E. coli 
is illustrated by the cumulative self-rank distributions (see 5.3 Methods) in Figure C2a. 
The extended hypergeometric distribution correction for the variable genome divergence 
from E. coli target genome (violation of the identity assumption) provides a noticeable 
improvement in prediction performance (8% at self-rank threshold of 50). On the other 
hand, the folding method correcting for variable divergence with the set of query 
genomes (violation of independence assumption) does not significantly improve the 
results. 
 
The phylogenetic profile co-occurrence method depends on identification of orthologous 
genes across potentially diverse lineages. Existing investigations have used a variety of 
methods, including readily available Clusters of Orthologous Groups (COG) database 
(Tatusov et al. 2001), (von Mering et al. 2003; Wu et al. 2003), closest homologs 
(Bowers et al. 2004), and best bi-directional homology pairs (Huynen et al. 2000). The 
results presented in our work rely on two alternative sets of orthology data. The first set 
comes from KEGG SSDB database (Itoh et al. 2004), and includes closest homologs and 
best bi-directional hits as determined by the Smith and Waterman algorithm (we will 
refer to it as KEGG-based dataset). The second set was constructed based on results of 
BLAST (Altschul et al. 1990) queries against a “non-redundant” set of known protein 
sequences maintained by NCBI (see Methods). The set also includes information on 
reverse BLAST searches to determine best bi-directional hits (referred to as BLAST-
based dataset). 
 
Predictive performance of different orthology datasets is compared in Figure C2b. We 
note that coverage of the COG orthology data is biased towards genes encoding known 
metabolic enzymes, and the self-rank performance of this dataset was estimated by 
normalizing with respect to the non-metabolic gene coverage. Figure C2b shows that 
profile associations calculated using BLAST-based dataset provide better predictions of 
enzyme-encoding genes than association based on the KEGG orthology dataset. We also 
find that in the case of both datasets better performance is attained when using best bi-
directional homology pairs instead of closest homologs.  
 
As a consequence of gene duplications, metabolism contains a significant number of 
paralogous enzyme pairs (Maltsev et al. 2005). In many cases, such enzymes continue to 
catalyze the same reactions. Such pairs will frequently have similar or identical orthology 
mappings, and their inclusion can lead to a significant bias in estimation of the predictive 
performance. The results presented in this work, therefore, exclude self-ranks of any 
metabolic enzymes that have high sequence homology to any other metabolic enzyme in 
the organism (see 5.3 Methods). 
 
Co-expression of orthologous genes 
The approach for identifying enzyme-encoding genes based on the similarity of mRNA 
expression profiles (Kharchenko et al. 2004) can be extended to include co-expression 
information of orthologous genes in other organisms. Conservation of mRNA co-
expression across different species has been investigated by a number of recent studies 
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(Bergmann et al. 2004; Snel et al. 2004; Teichmann and Babu 2002; van Noort et al. 
2003). For example, analysis of co-expressed gene pairs between S. cerevisiae and C. 
elegans shows statistically significant (P value < 10-3) level of conservation (van Noort et 
al. 2003). Although the number of pairs with highly conserved co-expression is small, 
incorporating ortholog co-expression can provide significant improvements to the 
accuracy of functional predictions based on the mRNA expression data (Teichmann and 
Babu 2002; van Noort et al. 2003). 
 
We find that enzyme-encoding gene predictions based on the co-expression of E. coli 
orthologs in S. cerevisiae achieve good performance on the enzymes covered by the 
dataset. Although S. cerevisiae orthologs can be identified for only 40.1% of E. coli 
metabolic genes, combining native and ortholog co-expression scores provides noticeable 
improvements. Combination of native and ortholog co-expression increases the fraction 
of metabolic enzymes predicted within the top 50 candidates from 27% to 36%. 
Similarly, using E. coli expression data improves prediction results for enzyme-encoding 
genes of S. cerevisiae metabolic network. Overall self-rank performance based on 
combined co-expression data is included in Figure C4. 
 
Clustering of genes on the chromosome 
Relative positions of genes on the chromosome have also been successfully used to infer 
functional associations. Most notably, analysis of prokaryotic genomes focused on 
identifying pairs of orthologs located close to each other on the chromosome, as well as 
sets of such pairs (Overbeek et al. 1999; von Mering et al. 2003; Yanai et al. 2002). Such 
clustering is also observed in the eukaryotic genomes, even though they lack well-
defined operon structures. A recent study by Lee et al. (Lee and Sonnhammer 2003) 
analyzed clustering of genes in KEGG pathways for 5 distant eukaryotic species. The 
study demonstrated that depending on the genome, 30% to 98% of the pathways exhibit 
statistically significant levels of gene clustering on the chromosome. A variety of 
methods have been developed for identifying chromosome gene clusters and evaluating 
their significance (Durand and Sankoff 2003). To generate association scores we use a 
simple statistical evaluation strategy based on the chromosome gene order, which allows 
for computationally efficient treatment of large number of genomes (see Methods). 
 
The self-rank performance based on the chromosome clustering association is shown in 
Figure C4. The overall performance for known E. coli metabolic enzymes is better than 
for the S. cerevisiae enzymes, which is expected given the prominent role of operons in 
prokaryotic transcriptional regulation. 
 
Other association measures 
Interacting proteins encoded by separate genes in some species, may sometimes occur as 
a single, multi-domain fusion protein in other species. Detecting fusion of non-
homologous proteins in another organism has been shown to be a significant predictor of 
functional association between genes (Enright et al. 1999; Marcotte et al. 1999; Yanai et 
al. 2001). Our calculations of a fusion association score are based on a combination of 
fusions detected at several sequence homology thresholds. The overall performance of 
the method is included in Figure C4. Although protein fusion associations are only able 



 

  56

to predict relatively small fraction of enzyme-encoding genes (18% for E. coli), almost 
all of predicted enzymes are returned within the top 20 candidates. 
 
A number of metabolic reactions are catalyzed by well established protein complexes, 
such as the phosphofructokinase complex. Furthermore, metabolic processes commonly 
involve interactions between multiple metabolic enzymes. For instance, the 
phosphofructokinase alpha subunit encoded by Pfk1 also interacts with a product of 
Fba1, fructose-biphosphate adolase II, catalyzing an adjacent reaction in the glycolysis 
pathway (Matic et al. 2001). Large protein-protein interaction datasets have been 
generated by studies using yeast two-hybrid systems (Ito et al. 2000; Uetz et al. 2000) 
and, more recently, mass spectrometry-based techniques (Gavin et al. 2002; Ho et al. 
2002). In the framework of our approach, candidate genes can be evaluated by assessing 
the overall amount of interactions between a candidate gene and the metabolic network 
neighborhood of a missing enzyme. To assess confidence of individual interactions, our 
analysis makes use of the probabilistic protein interaction dataset from Jansen et al. 
(Jansen et al. 2003), which combines results of four high-throughput interaction datasets 
(Gavin et al. 2002; Ho et al. 2002; Ito et al. 2000; Uetz et al. 2000) . The performance of 
our prediction method on the protein interaction data is significantly lower than that of 
other association scores, nevertheless it is above what is expected from a random 
association score (Figure C4b). 
 
Functional association can also be assessed through similarity of deletion mutant 
phenotypes under a large set of environmental conditions. For example, deletions of 
genes that are adjacent to each other in a linear metabolic pathway are likely to result in 
identical mutant phenotypes. A recent work by Dudley et al. (Dudley et al. 2005) 
experimentally measured growth phenotypes of 4710 S. cerevisiae mutants under 21 
experimental conditions, including different carbon sources, nutrient limitations, stress 
and others conditions. We tested the performance of our prediction algorithm on a set of 
53 known metabolic enzyme-encoding genes for which high-confidence data was 
available. While the results illustrate predictive power of phenotypic profile associations, 
overall contribution of this score to the predictions of unidentified enzyme-encoding 
genes is very small. This is expected, because available high-confidence phenotypic data 
covers only 14% of S. cerevisiae genes. 
 
Overall enhancements of the individual association scores 
Description of a metabolic network neighborhood can be enhanced by considering 
relative strength of metabolic connections established by different metabolites. 
Metabolites connecting many enzyme-encoding genes pairs establish, on average, weaker 
functional associations (Kharchenko et al. 2005). The performance of our predictive 
method can be improved by weighting the contribution of each neighbor in evaluating the 
overall association of a candidate gene with the metabolic network neighborhood of a 
missing enzyme. The weight is assigned according to the total number of enzyme pairs 
associated with a connecting metabolite (see 5.3 Methods). 
 
Distributions of association scores between a given gene and all other genes in an 
organism tend to differ from one gene to another. For instance, a gene whose orthologs 
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can be identified in many organisms will typically have more high-confidence 
chromosome clustering associations than a gene with relatively few detected orthologs. 
This introduces bias when evaluating overall association with a metabolic network 
neighborhood. The association-rank rescaling reduces this bias by translating raw 
association scores into probabilities of metabolic adjacency, calculated based on the rank 
of raw association score within a distribution of all scores for a particular gene. The 
rescaling procedure also reduces the number of false positives by considering raw 
association score of a gene pair with respect to organism-wide score distributions of both 
genes and choosing a more conservative adjacency probability value.  

 
The predictive performance of all association scores is improved by either correction, 
with the exception of the protein fusion score, where application of metabolite weighting 
results in weaker performance. 
 
Predictions based on combined association evidence 
Enzyme-encoding gene predictions based on the individual association scores can be 
combined to achieve better performance. Normalizing relative strength of different 
association scores requires informative priors. Such priors can be either constructed 
manually, for example by consulting experts (Troyanskaya et al. 2003), or learned from 
known test-cases. This problem has been extensively considered with respect to 
confidence in pair-wise gene functional associations, and test cases for learning the priors 
were based on known functional groupings, such as GO annotations (Lee et al. 2004) or 
membership in KEGG pathways (von Mering et al. 2003). For the current problem of 
prioritizing enzyme-encoding gene candidates, such priors can be learned from known 
enzyme-encoding genes (Green and Karp 2004).  
 
Towards the goal of integrating multiple types of association evidence, we have 
developed two distinct methods. The first approach is based on a direct likelihood-ratio 
(DLR) evaluation of the association score probability distributions. The likelihood that a 
given candidate gene encodes the desired metabolic enzyme is calculated under the 
simplifying assumptions that individual association scores are independent and 
monotonic. The monotonic assumption states that for every association score, the 
likelihood of association increases monotonically with the absolute value of the score. 
Both assumptions allow for useful approximations, but in general can be shown to be 
incorrect. For example, clustering of genes on the chromosomes in E. coli is statistically 
significantly correlated with the similarity in expression profiles (Spearman rank 
correlation P value < 10-10), violating the independence assumption. The DLR method 
calculates overall likelihood ratio of a candidate gene encoding the desired enzyme as a 
product of likelihood ratios for each individual association score (see Methods). 
 
The second approach uses a general machine learning method called Adaboost (Freund 
and Schapire 1997; Schapire 2002), and does not rely on independence or monotonicity 
of the association scores. The generated classifiers are in the form of alternating decision 
trees (ADT), which are generalization of decision stumps, decision trees, and their 
combination (Freund and Mason 1999). In addition to flexible semantic representation, 
ADT-based classifiers provide a real-valued measure of confidence, called classification 
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margin, which can be related to the probability of a given classification being correct 
(Schapire et al. 1997). The Adaboost method has been successfully applied to several 
large-scale biological problems, including detection of transcription factor binding motifs 
and prediction of regulatory response (Middendorf et al. 2005; Middendorf et al. 2004). 
 
We find that in identifying missing metabolic genes both ADT and DLR methods achieve 
comparable levels of performance (Figure C3). The ADT method performs slightly better 
on E. coli metabolic enzymes and DLR on S. cerevisiae. Success of the DLR method 
relative to a general classifier, such as ADT, suggests that the derived association scores 
are largely consistent with the underlying assumptions of monotonicity and 
independence, and allow quality predictions to be made based on a straightforward 
evaluation of the score probability distributions. The ADT method, however, does not 
require such assumptions, and may be used to incorporate in the future a wide variety of 
unrestricted descriptors, such as sequence homology data or expression variability 
(Kharchenko et al. 2004). 
 
Prediction performance of individual functional association scores and their combination 
using ADT method is shown for E. coli metabolic enzymes in Figure 4a. The figure 
illustrates that predictions based on the combined evidence are clearly superior to what is 
achieved by any individual type of functional association evidence, with 43% of known 
enzymes predicted as number one candidates for their enzymatic function, and 60% 
within the top 10 candidates. Associations based on the chromosome clustering provide 
the best predictions of any single evidence type, and are able to predict almost half of the 
metabolic enzymes within the top 10 candidates. It is also important to note that different 
association evidence types are not redundant – none of the predictions based on a 
particular association score are completely covered by the predictions of another 
association score. 
 
Individual and combined prediction performance for enzymes of S. cerevisiae metabolic 
network is illustrated in Figure 4b. Relative to E. coli predictions, co-expression score in 
S. cerevisiae tends to perform better; however chromosome clustering and phylogenetic 
profile association scores perform worse. The overall level of performance is also lower, 
with approximately 60% of the enzymes predicted within top 50 candidates (compared to 
71% in E. coli). The performance difference can be partially attributed to lower number 
of candidate genes in E. coli (3351 as opposed to 5252 in S. cerevisiae) and wider 
availability of the genomic data for bacterial organisms. For example, chromosome 
clustering associations were calculated on a dataset that contains nearly a hundred 
bacterial species and only a handful of eukaryotic genomes. 
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5.3. Methods, Assumptions, and Procedures  
 
Metabolic neighborhoods and network representation 
The metabolic network was represented as a graph, with nodes corresponding to 
metabolic enzyme-encoding genes and edges to connections established by the metabolic 
reactions (Kharchenko et al. 2005). Two metabolic genes are connected if the enzymes 
they encode share a metabolite among the set of reactants or products of the reactions 
they catalyze. Metabolic network distance between enzyme-encoding genes is calculated 
as a shortest path in the graph. Distance of directly connected genes is taken to be 1. A 
metabolic neighborhood layer of a radius R  around a metabolic enzyme X  is defined as 
a set of all enzyme-encoding genes that are at the distance R  from the enzyme X . A 
metabolic neighborhood of radius R  is a set of neighborhood layers of radii Rr ≤  
(Figure C1a). 
 
Detailed metabolic models of E. coli (Reed et al. 2003) and S. cerevisiae (Forster et al. 
2003) were used to compile comprehensive connectivity graphs for these organisms, 
excluding metabolic connections established by the following top 14 most common 
metabolites: ATP, ADP, AMP, CO2, CoA, glutamate, H, NAD, NADH, NADP, NADPH, 
NH3, orthophosphate and pyrophosphate (and corresponding mitochondrial and external 
species). 
  
Self-rank validation 
To assess performance of our method we use self-rank measure, which quantifies the 
ability to predict known metabolic enzymes. A self-rank of a known enzyme-encoding 
gene is defined as a rank of that gene among a set of candidates in an ordering 
determined by our algorithm (Figure C1b). A set of candidates consist of all genes in the 
organism that do not already appear in the metabolic graph (i.e. non-metabolic genes) 
and the known enzyme-encoding gene that is being tested. A candidate set for E. coli 
contained 3351 open reading frames (ORFs), and for S. cerevisiae 5252 ORFs. A perfect 
prediction algorithm would result in a self-rank of 1 (top candidate) for every metabolic 
enzyme, and a completely non-informative method would result in a uniform distribution 
of ranks (on the range from 1 to the size of the candidate set). 
 
 
The overall performance of the method was measured by evaluating self-ranks of a set of 
known enzyme-encoding genes. This set contains all known metabolic enzymes in an 
organism, except for the enzymes that have high sequence homology (BLASTp E value 
below 1010− ) to some other known metabolic enzyme in that organism (paralogs). The 
exclusion of such paralogous pairs aims to avoid bias stemming from overlapping 
ortholog mappings. The resulting set contained 351 enzymes from E. coli metabolism, 
and 240 from S. cerevisiae. 
 
Orthology datasets 
The KEGG ortholog dataset was retrieved from Sequence Similarity Data  
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Base (SSDB) (01/2005). All available closest homologs and best bi-directional hits of E. 
coli and S. cerevisiae genes were recorded. The BLAST-based dataset was constructed 
using BLASTp queries against NCBI NR protein dataset (03/2005), using E-value cutoff 
of 10-3 and limiting the maximum number of homologs per query to 6000. To determine 
best bi-directional hits, reverse BLASTp queries were run for every hit against target 
genome (E. coli or S. cerevisiae). NCBI taxonomy identifiers were used to group hits 
belonging to the same organism. For E. coli only organisms containing orthologs to more 
than 4% of genes were considered (7% for S. cerevisiae). We found that performance of 
analogous datasets constructed using TBLASTN queries was similar. 
 
Phylogenetic profile co-occurrence 
Given a set of genomes { }

GNGGG ..1= , a phylogenetic profile of a gene was represented 
as a binary vector p  of length GN , such that 1=ip  if an orthologous gene is present in 
genome iG , and 0=ip  otherwise.  
 
Assuming that orthologs are independently identically distributed (IID) within each 
genome iG , the probability of observing two profiles of a given similarity under the null 
hypothesis is calculated using hypergeometric distribution (Wu et al. 2003): 
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where k  is the number of ortholog co-occurrences, N is the size of the genome set  G , n  
and m  correspond to the number of orthologs in the two profiles being compared. The 
probability of functional association is then given by ( )∑

>

−=
Kk

nassociatio NmnkPP ,,1 , 

where K  is the number of actual ortholog co-occurrences observed between two specific 
profiles (Bowers et al. 2004). 
 
If the assumption of identical ortholog distribution within each genome is relaxed, 
probability ( )NmnkP ,,  is distributed as a sum of independent, non-identical Bernoulli 

variables ix : ∑
),min(

~
mn

ixk , with )( ixp  corresponding to the probability of observing a 

match in a given genome i . This is a special case of the Extended Multivariable 
Hypergeometric distribution (Harkness 1965). 
 
To determine the probability of observing k  ortholog co-occurrences between profiles of 
a given gene x  and some other gene y , ( )NmnkP ,, , we calculate ( )mnkPN ,  given by 

the recursive formula below. In general, ( )mnkPi ′′′ ,  is the probability of observing k ′  
ortholog co-occurrences at a current ( iG ) or subsequent genomes as we walk along a 
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predefined genome order, where n′ and m′  is the number of orthologs of gene x  and 
gene y respectively in genomes jG  such that ij ≤ . ( )mnkPi ′′′ ,  is defined recursively as: 

( ) ( ) ( ) ( )[ ] ( ) ( )mnkPpmnkPpmnkPppmnkP i
o

mii
c
ii

c
i

o
mii ′′′−+−′′′−+−′−′−′=′′′ −′−−′ ,11,11,11, 1,11,  

where i  is the genome index, o
mip ′,  is the probability of one of the remaining  m′  

orthologs of gene y  occurring in genome iG , and c
ip  is the probability of ortholog co-

occurrence in the genome iG . 
 
Given the values of probabilities o

mip ′,  and c
ip , the value of ( )mnkPi ′′′ ,  is computed 

using a dynamic programming approach. c
ip  is equal to 0  or 1, depending on whether an 

ortholog of gene x  is present in genome iG . The consideration of non-identical 
distribution of ortholog frequency within each genome is then localized to o

mip ′, , which in 
this case is distributed according to the marginal Extended Hypergeometric distribution. 
The marginal form of the distribution is more amenable to the computational 
approximations than the regular form. Since o

mip ′,  does not depend on the choice of genes 

x  and y , we sample o
mip ′,  computationally, taking into account individual ortholog 

occurrence frequencies of each genome. The probability of ortholog occurrence in a 
specific genome ( o

mip ′, ) was sampled computationally by drawing from the set of 
organisms without replacement with relative probabilities corresponding to the rate of 
ortholog occurrences in each genome. In each iteration, draws were performed until all of 
the organisms were drawn. A total of 106 such iterations were performed. 
 
To correct for non-independent ortholog occurrence rates, we first evaluate the distance 

between a pair of query genomes X  and Y  as ( ))(),(min
),(),(

YHXH
YXMIYXd = , where 

),( YXMI  is mutual information between ortholog occurrence vectors for genomes X  
and Y , and ()H  is Shannon entropy of each vector. The ortholog occurrence vector for a 
query genome X is a binary vector of length Ngenes (number of genes in a target organism, 
i.e. E. coli), such that the value of the ith element is 1 if ortholog of an ith gene is found in 
X, and 0 otherwise. Clusters of closely related organisms ( 8.0<d ) were determined by 
the greedy neighbor-joining method. Several ways of summarizing the ortholog co-
occurrence vector for a cluster of closely related organisms were tested: selecting the 
organism with highest entropy, using AND/OR functions, and using majority rule. We 
find that performance of AND function is optimal for the threshold of 8.0<d , however 
for higher thresholds selecting an organism with highest entropy results in better 
performance. 
 
In evaluating performance without adjacency-rank rescaling (Figure C2), total 
phylogenetic profile association score between a candidate gene x  and a metabolic 

neighborhood layer L  was calculated as ∑
∈

=
Lg

L gxP
xscore

),(
1)( , where ()P  is the 
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probability of observing a given number of ortholog co-occurrences calculated using one 
of described probability distributions. 
 
To estimate self-rank performance of the COG dataset correcting for the bias in orthology 
dataset coverage (Figure C2b), the fraction of true enzyme-encoding genes, f  predicted 
within a particular self-rank threshold t  was calculated as ( ) ( )tftf CM αα ′= , where Mα  
is the fraction of test metabolic enzyme-encoding genes covered by the COG dataset, Cα  
is the fraction of candidate set genes (non-metabolic) covered by the dataset, and f ′  is 
the performance on the set of metabolic and candidate genes covered by the COG dataset. 
 
Gene co-expression 
The co-expression association value was calculated as a Spearman rank correlation (Press 
et al. 2002) between expression profiles. E. coli co-expression was calculated based on 
the 180 conditions from the Stanford Microarray Database (Sherlock et al. 2001). S. 
cerevisiae co-expression was measured based on the mRNA expression profiles from 
Rosetta “compendium” dataset (Hughes et al. 2000). Log10 intensity ratio data was used. 
Co-expression of orthologous genes was determined using the KEGG ortholog dataset. 
 
Clustering on the chromosome 
The degree to which orthologs of two genes are clustered on the chromosome was 
calculated based on the null hypothesis that genes are randomly distributed across the 
chromosomes. Instead of considering gene sizes and exact nucleotide positions, we 
concentrated on gene order statistics. The association strength was determined as the 
probability of chromosome gene order position of a candidate gene x for a metabolic 
neighborhood layer lN : ( )∏∏

∈ ∈

=
lNy Gg

gl yxdPNxP ),()|( , where G  is a set of query 

genomes in which orthologs of both x and y can be found, and ( )),( yxdP g  is the 
probability of observing gene order distance ),( yxdg  between genes x and y in a genome 
g.  This was calculated directly, based on the organism chromosome sizes under the null 
hypothesis. The above formulation is based on two major assumptions: (1) gene order 
distances to different genes of the neighborhood layer lN  are independent, and (2) gene 
order distances between a specific pair of genes are independent across different 
organisms. 
 
The results are based on a set of 105 bacterial and three eukaryotic genomes (S. 
cerevisiae, S. pombe, C. elegans) from Genbank. The set was screened to eliminate 
closely related species using ortholog occurrence mutual information threshold of 0.9. 
Orthology mapping was established using KEGG SSDB best bi-directional hits. 
 
Protein interactions 
Interaction likelihood ratios from the PIE dataset by Jansen et al. (Jansen et al. 2003) 
were used as pair-wise protein interaction association values. 
 
Protein fusions 
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Two proteins x and y of a target genome (S. cerevisiae and E. coli) were taken to be 
associated through a protein fusion event if both of the following conditions were met:  
1.) x and y are homologous to the same protein z in one of the query genomes with a 

BLASTp E value below a specified threshold ( thresholdE ), and with at least 70% of 
their sequences aligned to z.   

2.) x and y align to different regions of z, or to regions overlapped by no more than 10% 
of the shorter protein among x and y. If x or y align to multiple regions of z, then any 
two regions must not overlap. 

A set of 70 query genomes, based on the study by Bowers et al. (Bowers et al. 2004), was 
downloaded from the Entrez Genome database: 
 (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome).  
Several values of thresholdE  were used in generating enzyme-encoding gene predictions 
(Figures C3 and C4), with thresholdE =10-2, 10-5 and 10-10 for E. coli; thresholdE =10-3, 10-5 and 
10-10 for S. cerevisiae. 
 
Adjacency-rank score rescaling, metabolite weighting and calculation of layer 
association scores 
To perform adjacency-rank score rescaling of raw pair-wise association values, we 
calculate the adjacency likelihood ratio for a pair of genes x  and y  as: 

{ } { }( )x
y

y
xadjx

y
y

x

genes rrrP
rr

N
yxalr ,max

,max
),( ≤= , where x

yr is a rank of gene y  among a set of 

raw association values between gene x  and all other genes in the organism. Lower ranks 
correspond to higher stringency of association. The probability adjP  is calculated from an 

empirical distribution of all ranks b
ar , such that genes a  and b  are adjacent to each other 

(i.e. directly connected) in the metabolic network. genesN  is the number of genes in an 
organism.  
 
Without metabolite weighting, the total association score between a candidate gene x  
and a metabolic neighborhood layer L  is calculated as: [ ]∑

∈

=
Lg

L gxalrxscore ),(exp)( .  

Metabolite weighting is incorporated by calculating total association score as: 

[ ]∑
∈

=
Lg

gL gxalrwxscore ),(exp)( , where ∏
Θ∈

=
i

i
m

m
pairs

g N
w 1 , im  is the ith metabolite in the 

shortest path Θ  connecting neighborhood gene g  with the missing enzyme. im
pairsN  is the 

total number of gene pairs connected by a metabolite im . If more than one metabolite 
connects genes along the path Θ , a metabolite with the smallest pairsN  is used.  
 
Direct likelihood-ratio predictor method 
The placement algorithm considers each candidate gene by evaluating )|( DMP , which 
is the conditional probability that a given candidate encodes the desired enzyme 
(model, M ) given all available evidence (data, D ). Following Bayes rule we can 
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calculate that probability (up to a constant) using: 
)(

)|()|(
DP

MDPDMP ∝ , where 

)|( MDP  is the probability of observing existing associating evidence for a true enzyme-
encoding gene. Assuming that different types of associative evidence scores are 
independent, we calculate probabilities as: ∏=

e
ee DPDP )()( , where )( ee DP  

corresponds to the posterior of evidence type e . The problem is therefore transformed 
into estimating tails of association score probability distributions over all genes, and 
enzyme-encoding genes. For different types of associating evidence scores these 
probabilities were evaluated empirically from the gene counts, assuming that the 
likelihood of association increases monotonically with the absolute value of the score. 
 
The self-rank evaluations of known E. coli and S. cerevisiae metabolic enzyme-encoding 
genes (see Self-rank validation section in 5.3 Methods) were performed using a leave-
one-out validation strategy. In other words, in each case, scores of the candidate being 
evaluated are not included when calculating )|( DMP . 
 
Alternating decision tree predictor 
The mljava implementation of the AdaBoost algorithm (Freund and Mason 1999) was 
used to build ADT classifiers based on a set of descriptors, corresponding to different 
association scores with individual layers of the metabolic network neighborhood. The 
results presented in Figures C3 and C4 are based on 10-fold validation, 100 iterations of 
boosting. The training sets included data on only 60% of the true negative (non-
metabolic) genes in order to minimize computational time. The candidate genes were 
prioritized according to the value of the classification margin. 
 
Predictions with combined association evidence 
The self-rank performance illustrated in Figures C3 and C4 was calculated based on 
candidate association with first three layers of metabolic network neighborhood. 
Association with respect to each layer was described by a separate association score. The 
predictions were performed using association score ranks: given a candidate gene x  for a 
missing enzyme e , the value of a descriptor was calculated as a rank of )(xscoreL  in a 
set of scores { } CyL yscoreS ∈= )( , where C  is a set of all candidates for a missing enzyme 
e , with higher ranks corresponding to stronger associations. For the E. coli metabolic 
model, the following association scores were used:  
- Phylogenetic profile co-occurrence, calculated with extended hypergeometric and 

folding corrections, on orthologs established by best bi-directional homology 
relationship. Separate scores were calculated using BLAST-based and KEGG-based 
orthology data. 

- Chromosome clustering. 
- Gene co-expression. Separate scores were calculated for E. coli expression data, and 

for expression of E. coli orthologs in S. cerevisiae dataset. 
- Protein fusion. Separate scores were calculated for different values of thresholdE : 10-2, 

10-5 and 10-10. 
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Analogous scores were used for predictions on S. cerevisiae metabolic model, with 
addition of a protein interaction score. In the case of protein fusion, the scores were 
calculated for the following values of thresholdE : 10-3, 10-5 and 10-10. 

 

5.4. Conclusion 
The results presented in this work demonstrate that the gene encoding a specific 
metabolic function can be effectively identified from combined functional association 
with the metabolic network neighborhood of the desired function. This indicates that the 
relationships established by the local structure of the metabolic network impose 
constraints on a wide range of natural processes, such as gene expression or evolutionary 
processes on both molecular and genomic scales. Our tests used a combination of 
genome context and expression data to identify known E. coli metabolic enzymes, 
predicting them within the top 10 (out of 3351) candidates in 60% of the cases. We show 
that in the case of both E. coli and S. cerevisiae, combining multiple types of association 
evidence results in a significantly better prediction performance than that of any 
individual association score. 
 
In validating the performance of our method, we relied on the metabolic network 
neighborhood as the sole source of information about the desired enzymatic activity. In 
practice, additional clues regarding activity or physical properties of the unidentified 
enzyme can often be used to narrow down the set of candidates. These additional clues 
may provide restrictions on the phylogenetic profile pattern, protein size, presence or 
absence of membrane spanning regions or specific protein domains. For example, for E. 
coli  arabinose-5-phosphate isomerase, yrbH (Meredith and Woodard 2003) is predicted 
as a 10th candidate among all genes, but is the only candidate within the top 50 with a 
putative sugar isomerase domain.  
 
Sequence homology to known proteins remains the primary method of identifying 
missing enzymes (Huynen et al. 2003; Osterman and Overbeek 2003). Predictions based 
on the association evidence considered in this work are complementary to homology-
based methods, and can be used to target enzymes that have not been identified in any 
organism (referred to as globally missing enzymes by Osterman et al.). Integration of 
genome context information into the refined sequence homology searches has been 
shown to improve the predictions (Green and Karp 2004). It will be important to analyze 
how incorporation of diverse association evidence presented in this work would improve 
the performance, in particular with respect to the difficult cases of weak or ambiguous 
sequence homology. The overall performance of the presented method can be improved 
in a number of ways. The datasets underlying individual scores can be expanded. 
Genome divergence corrections for the chromosome clustering score are also likely to 
improve the results. Further extensions can provide better identification in the cases 
where multiple missing genes appear within the same metabolic neighborhood. We hope 
that the  
presented method, and its future derivations, will be important in completing metabolic 
models of different organisms. 
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Table C1:  Association scores used in self-rank tests on combined evidence 
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Figure C1.a. Illustration of the missing gene problem.  
Figure C1.b. Illustration of the Self-rank validation test 

Metabolic network neighborhood of a missing metabolic enzyme is shown. The 
neighborhood comprises layers with increasing radii (indicated by shading). Majority of 
the enzyme-encoding genes in the neighborhood are known. b. Illustration of the self-
rank validation test. Ability to predict known enzyme-encoding genes is tested by 
measuring the rank of a true enzyme-encoding gene in the candidate set. The candidates 
are ordered according to overall strength of functional association with the metabolic 
network neighborhood of the enzyme. The set contains all genes that are not already part 
of the metabolic network. 
 

 
Figure C2a. Performance of different phylogenetic profile datasets and corrections..  

Figure C2b. The self-rank performance of the 1st layer phylogenetic profile score 
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a. A cumulative self-rank distribution is shown for E. coli enzymes, as predicted based on 
the phylogenetic profile associations with the 1st layer of the metabolic network 
neighborhood. Performance of a regular hypergeometric distribution is shown (HG), 
together with extended hypergeometric (xHG) and folding (xHG+folding) corrections. 
The scores are calculated on the BLAST-based dataset. b. The self-rank performance of 
the 1st layer phylogenetic profile score, calculated using extended hypergeometric 
distribution with folding is shown for BLAST-based, KEGG-based and COG orthology 
datasets. The performance of the COG orthology dataset is corrected for the metabolic 
gene coverage bias. 
 

 

 

 
 

Figure C3. Comparison of ADT and DLR methods for combining multiple association evidence 
types.  

 
Cumulative self-rank distribution is shown for E. coli and S. cerevisiae metabolic 
enzymes based on the combined association evidence (see Methods). The performance is 
compared for DLR (dashed curves) and ADT (solid curves) methods.  
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Figure C4. Enzyme predictions based on individual and combined types of association evidence.  

 
Cumulative self-rank distribution is shown for the metabolic enzymes of a. E. coli 
metabolism and b. S. cerevisiae metabolism. Predictions are generated based on 
association with the first three layers of the metabolic network neighborhood, using ADT 
classifier with 10-fold validation. 
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6 Conclusion 
 

The ideas in our 2001 DARPA grant proposal about design of complex synthetic 
biological polymers and software to aid this have coalesced into a vibrant field (e.g. the 
recent Dec 2005 issue of Nature has a collection of articles related to the new discipline 
of Synthetic Biology).  Initial designs focused on biopolymer synthesis (DNA, RNA, 
protein), in vitro.  That project was expanded with supplementary funding to include 
experimental work which was then transitioned out to a DOE GtL Center grant which 
resulted in a Nature paper and commercial licensing (to CodonDevices).  The metabolic 
modeling (MOMA) has developed as very useful in stand-alone software and as an 
example of the successes and challenges on merging such software into the 
BioSPICE/BioCOMP community vision.  The metabolic modeling has also been very 
successful and lives on in our Harvard/MIT DOE GTL Center.  The BioSpice component 
led by Sri Kumar and others in our DARPA BioCOMP grant program aimed to develop 
interoperability and constituted a longer-term community-building exercise.  
 
Technology Transition:  
 
How the impact of this work is measured: Literature citations and milestones of licensees 
set by Harvard Medical School Office of Technical Licensing (HMS OTL) (Maryanne 
Fenerjian <maryanne_fenerjian@hms.harvard.edu>) 
 
Prototype available for dissemination: In situ fluorescent base extension. Purpose: 
Identity and quantitation based on single DNA molecules.  Environment requirements: 
Research laboratory.  Point of contact / email address: Jay Shendure 
<jay_shendure@student.hms.harvard.edu>  http://arep.med.harvard.edu/Polonator/ 
 
Systems available for dissemination:  
MapQuant.  Purpose: New Open-Source Software for Large-Scale Protein Quantitation  
Environment requirements: Research computers supporting Linux or Windows.   Point of 
contact / email address: Kyriacos Leptos <leptos@fas.harvard.edu>  
http://club.med.harvard.edu/MapQuant/ 
 
Minimization of Metabolic Adjustments (MOMA). Purpose: Optimization of metabolic 
network utilization in engineered (or mutant) genomes.  Environment requirements: 
Research computers supporting Perl & C.   Point of contact / email address: Daniel Segre 
<dsegre@genetics.med.harvard.edu> 
http://arep.med.harvard.edu/moma/  



 

  71

7 Bibliography 
 
Section 3 
 
Andachi, Y., Yamao, F., Muto, A., and Osawa, S. (1989). Codon recognition patterns as 

deduced from sequences of the complete set of transfer RNA species in Mycoplasma 
capricolum. Resemblance to mitochondria. J Mol Biol 209, 37-54. 

Bjork, G. R. (1995). Biosynthesis and function of modified nucleosides. In tRNA: 
structure, biosynthesis, and function (ASM Press, Washington D.C.). 

Carr, P. A., Park, J. S., Lee, Y. J., Yu, T., Zhang, S., and Jacobson, J. M. (2004). 
Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res 32, 
e162. 

Cho, M. K., Magnus, D., Caplan, A. L., and McGee, D. (1999). Policy forum: genetics. 
Ethical considerations in synthesizing a minimal genome. Science 286, 2087-2090. 

Culver, G. M., and Noller, H. F. (1999). Efficient reconstitution of functional 
Escherichia coli 30S ribosomal subunits from a complete set of recombinant small 
subunit ribosomal proteins. RNA 5, 832-843. 

Dahl, F., Baner, J., Gullberg, M., Mendel-Hartvig, M., Landegren, U., and Nilsson, M. 
(2004). Circle-to-circle amplification for precise and sensitive DNA analysis. Proc 
Natl Acad Sci U S A 101, 4548-4553. 

Del Campo, M., Kaya, Y., and Ofengand, J. (2001). Identification and site of action of 
the remaining four putative pseudouridine synthases in Escherichia coli. RNA 7, 
1603-1615. 

Diaconu, M., Kothe, U., Schlunzen, F., Fischer, N., Harms, J. M., Tonevitsky, A. G., 
Stark, H., Rodnina, M. V., and Wahl, M. C. (2005). Structural basis for the function 
of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991-
1004. 

El Hage, A., Sbai, M., and Alix, J. H. (2001). The chaperonin GroEL and other heat-
shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. 
Mol Gen Genet 264, 796-808. 

Forster, A. C., and Altman, S. (1990). External guide sequences for an RNA enzyme. 
Science 249, 783-786. 

Forster, A. C., Cornish, V. W., and Blacklow, S. C. (2004). Pure translation display. 
Anal Biochem 333, 358-364. 

Forster, A. C., and Symons, R. H. (1987). Self-cleavage of virusoid RNA is performed 
by the proposed 55-nucleotide active site. Cell 50, 9-16. 

Forster, A. C., Tan, Z., Nalam, M. N. L., Lin, H., Qu, H., Cornish, V. W., and Blacklow, 
S. C. (2003). Programming peptidomimetic syntheses by translating genetic codes 
designed de novo. Proc Natl Acad Sci U S A 100, 6353-6357. 

Forster, A. C., Weissbach, H., and Blacklow, S. C. (2001). A simplified reconstitution of 
mRNA-directed peptide synthesis: activity of the epsilon enhancer and an unnatural 
amino acid. Anal Biochem 297, 60-70. 



 

  72

Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, 
R. D., Bult, C. J., Kerlavage, A. R., Sutton, G., Kelley, J. M., and et al. (1995). The 
minimal gene complement of Mycoplasma genitalium. Science 270, 397-403. 

Fromont-Racine, M., Senger, B., Saveanu, C., and Fasiolo, F. (2003). Ribosome 
assembly in eukaryotes. Gene 313, 17-42. 

Giege, R., Sissler, M., and Florentz, C. (1998). Universal rules and idiosyncratic 
features in tRNA identity. Nucleic Acids Res 26, 5017-5035. 

Gitai, Z. (2005). The new bacterial cell biology: moving parts and subcellular 
architecture. Cell 120, 577-586. 

Green, R., and Noller, H. F. (1996). In vitro complementation analysis localizes 23S 
rRNA posttranscriptional modifications that are required for Escherichia coli 50S 
ribosomal subunit assembly and function. RNA 2, 1011-1021. 

Green, R., and Noller, H. F. (1999). Reconstitution of functional 50S ribosomes from in 
vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38, 1772-
1779. 

Heurgue-Hamard, V., Champ, S., Engstrom, A., Ehrenberg, M., and Buckingham, R. H. 
(2002). The hemK gene in Escherichia coli encodes the N(5)-glutamine 
methyltransferase that modifies peptide release factors. EMBO J 21, 769-778. 

Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., 
Smith, H. O., and Venter, J. C. (1999). Global transposon mutagenesis and a minimal 
Mycoplasma genome. Science 286, 2165-2169. 

Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., and Collins, J. J. 
(2004). Engineered riboregulators enable post-transcriptional control of gene 
expression. Nat Biotechnol 22, 841-847. 

Jaffe, J. D., Berg, H. C., and Church, G. M. (2004). Proteogenomic mapping as a 
complementary method to perform genome annotation. Proteomics 4, 59-77. 

Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H. C., Stines, A. P., 
Georgopoulos, C., Frishman, D., Hayer-Hartl, M., Mann, M., and Hartl, F. U. (2005). 
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. 
Cell 122, 209-220. 

Khaitovich, P., Tenson, T., Kloss, P., and Mankin, A. S. (1999). Reconstitution of 
functionally active Thermus aquaticus large ribosomal subunits with in vitro-
transcribed rRNA. Biochemistry 38, 1780-1788. 

Khan, S. A. (1997). Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol 
Rev 61, 442-455. 

Koonin, E. V. (2000). How many genes can make a cell: the minimal-gene-set concept. 
Annu Rev Genomics Hum Genet 1, 99-116. 

Krzyzosiak, W., Denman, R., Nurse, K., Hellmann, W., Boublik, M., Gehrke, C. W., 
Agris, P. F., and Ofengand, J. (1987). In vitro synthesis of 16S ribosomal RNA 
containing single base changes and assembly into a functional 30S ribosome. 
Biochemistry 26, 2353-2364. 

Kung, H.-F., Chu, F., Caldwell, P., Spears, C., Treadwell, B. V., Eskin, B., Brot, N., and 
Weissbach, H. (1978). The mRNA-directed synthesis of the alpha-peptide of beta-
galactosidase, ribosomal proteins L12 and L10, and elongation factor Tu, using 
purified translational factors. Arch Biochem Biophys 187, 457-463. 

Lewin, B. (2004). Genes VIII, 8th edn (Upper Saddle River, NJ: Pearson Prentice Hall). 



 

  73

Li, Z., and Deutscher, M. P. (1996). Maturation pathways for E. coli tRNA precursors: a 
random multienzyme process in vivo. Cell 86, 503-512. 

Lietzke, R., and Nierhaus, K. H. (1988). Total reconstitution of 70S ribosomes from 
Escherichia coli. Methods Enzymol 164, 278-283. 

Luisi, P. L. (2002). Toward the engineering of minimal living cells. Anat Rec 268, 208-
214. 

Maki, J. A., and Culver, G. M. (2005). Recent developments in factor-facilitated 
ribosome assembly. Methods 36, 313-320. 

Mills, D. R., Peterson, R. L., and Spiegelman, S. (1967). An extracellular Darwinian 
experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A 
58, 217-224. 

Mitra, R. D., and Church, G. M. (1999). In situ localized amplification and contact 
replication of many individual DNA molecules. Nucleic Acids Res 27, e34. 

Mushegian, A. R., and Koonin, E. V. (1996). A minimal gene set for cellular life derived 
by comparison of complete bacterial genomes. Proc Natl Acad Sci U S A 93, 10268-
10273. 

Nakahigashi, K., Kubo, N., Narita, S., Shimaoka, T., Goto, S., Oshima, T., Mori, H., 
Maeda, M., Wada, C., and Inokuchi, H. (2002). HemK, a class of protein methyl 
transferase with similarity to DNA methyl transferases, methylates polypeptide chain 
release factors, and hemK knockout induces defects in translational termination. Proc 
Natl Acad Sci U S A 99, 1473-1478. 

Nierhaus, K. H., and Dohme, F. (1974). Total reconstitution of functionally active 50S 
ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A 71, 4713-4717. 

Nomura, M., and Erdmann, V. A. (1970). Reconstitution of 50S ribosomal subunits 
from dissociated molecular components. Nature 228, 744-748. 

Ogle, J. M., and Ramakrishnan, V. (2005). Structural insights into translational fidelity. 
Annu Rev Biochem 74, 129-177. 

Pohorille, A., and Deamer, D. (2002). Artificial cells: prospects for biotechnology. 
Trends Biotechnol 20, 123-128. 

Richmond, K. E., Li, M. H., Rodesch, M. J., Patel, M., Lowe, A. M., Kim, C., Chu, L. 
L., Venkataramaian, N., Flickinger, S. F., Kaysen, J., et al. (2004). Amplification and 
assembly of chip-eluted DNA (AACED): a method for high-throughput gene 
synthesis. Nucleic Acids Res 32, 5011-5018. Print 2004. 

Sauer, B. (2002). Cre/lox: one more step in the taming of the genome. Endocrine 19, 
221-228. 

Semrad, K., and Green, R. (2002). Osmolytes stimulate the reconstitution of functional 
50S ribosomes from in vitro transcripts of Escherichia coli 23S rRNA. RNA 8, 401-
411. 

Semrad, K., Green, R., and Schroeder, R. (2004). RNA chaperone activity of large 
ribosomal subunit proteins from Escherichia coli. RNA 10, 1855-1860. 

Service, R. F. (2005). How far can we push chemical self-assembly? Science 309, 95. 
Shimizu, Y., Kanamori, T., and Ueda, T. (2005). Protein synthesis by pure translation 

systems. Methods 36, 299-304. 
Soma, A., Ikeuchi, Y., Kanemasa, S., Kobayashi, K., Ogasawara, N., Ote, T., Kato, J., 

Watanabe, K., Sekine, Y., and Suzuki, T. (2003). An RNA-modifying enzyme that 



 

  74

governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell 12, 
689-698. 

Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988). 
A continuous cell-free translation system capable of producing polypeptides in high 
yield. Science 242, 1162-1164. 

Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990). Use of T7 
RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89. 

Szostak, J. W., Bartel, D. P., and Luisi, P. L. (2001). Synthesizing life. Nature 409, 387-
390. 

Takyar, S., Hickerson, R. P., and Noller, H. F. (2005). mRNA helicase activity of the 
ribosome. Cell 120, 49-58. 

Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X., and Church, G. (2004). 
Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 
1050-1054. 

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y., Miyoshi, F., 
Saito, K., Tanida, S., Yugi, K., Venter, J. C., and Hutchison, C. A., 3rd. (1999). E-
CELL: software environment for whole-cell simulation. Bioinformatics 15, 72-84. 

Traub, P., and Nomura, M. (1968). Structure and function of E. coli ribosomes. V. 
Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. 
Proc Natl Acad Sci U S A 59, 777-784. 

Zhong, X. B., Lizardi, P. M., Huang, X. H., Bray-Ward, P. L., and Ward, D. C. (2001). 
Visualization of oligonucleotide probes and point mutations in interphase nuclei and 
DNA fibers using rolling circle DNA amplification. Proc Natl Acad Sci U S A 98, 
3940-3945. 

Zhou, X., Cai, S., Hong, A., You, Q., Yu, P., Sheng, N., Srivannavit, O., Muranjan, S., 
Rouillard, J. M., Xia, Y., et al. (2004). Microfluidic PicoArray synthesis of 
oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. 
Nucleic Acids Res 32, 5409-5417. 

Zvereva, M. I., Shpanchenko, O. V., Dontsova, O. A., Nierhaus, K. H., and Bogdanov, 
A. 6 A. (1998). Effect of point mutations at position 89 of the E. coli 5S rRNA 
on the assembly and activity of the large ribosomal subunit. FEBS Lett 421, 249-251. 

 
 
Section 4 
 
 
Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local 

alignment search tool. J Mol Biol 215: 403-410. 
Asthana, S., O.D. King, F.D. Gibbons, and F.P. Roth. 2004. Predicting protein complex 

membership using probabilistic network reliability. Genome Res 14: 1170-1175. 
Bergmann, S., J. Ihmels, and N. Barkai. 2004. Similarities and differences in genome-

wide expression data of six organisms. PLoS Biol 2: E9. 
Bishop, A.C., J. Xu, R.C. Johnson, P. Schimmel, and V. de Crecy-Lagard. 2002. 

Identification of the tRNA-dihydrouridine synthase family. J Biol Chem 277: 25090-
25095. 



 

  75

Bobik, T.A. and M.E. Rasche. 2001. Identification of the human methylmalonyl-CoA 
racemase gene based on the analysis of prokaryotic gene arrangements. Implications 
for decoding the human genome. J Biol Chem 276: 37194-37198. 

Borodina, I., P. Krabben, and J. Nielsen. 2005. Genome-scale analysis of Streptomyces 
coelicolor A3(2) metabolism. Genome Res 15: 820-829. 

Bowers, P.M., M. Pellegrini, M.J. Thompson, J. Fierro, T.O. Yeates, and D. Eisenberg. 
2004. Prolinks: a database of protein functional linkages derived from coevolution. 
Genome Biol 5: R35. 

Dudley, A.M., D.M. Janse, A. Tanay, R. Shamir, and G.M. Church. 2005. A global view 
of pleiotropy and phenotypically derived gene function in yeast. Nature Molecular 
Systems Biology: doi: 10.1038/msb4100004. 

Durand, D. and D. Sankoff. 2003. Tests for gene clustering. J Comput Biol 10: 453-482. 
Enright, A.J., I. Illopoulos, N.C. Kyrpides, and C.A. Ouzounis. 1999. Protein interaction 

maps for complete genomes based on gene fusion events. Nature 402: 80-83. 
Forster, J., I. Famili, P. Fu, B.O. Palsson, and J. Nielsen. 2003. Genome-scale 

reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13: 
244-253. 

Freund, Y. and L. Mason. 1999. The alternating decision tree learning algorithm. In 16th 
International Conference on Machine Learning, pp. 124-133. 

Freund, Y. and R. Schapire. 1997. A decision-theoretic generalization of on-line 
learning and an application to boosting. J. Computer and System Sci. 55: 119-139. 

Gavin, A.C., M. Bosche, R. Krause, and P. Grandi. 2002. Functional organization of the 
yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147. 

Green, M.L. and P.D. Karp. 2004. A Bayesian method for identifying missing enzymes 
in predicted metabolic pathway databases. BMC Bioinformatics 5: 76. 

Harkness, W.L. 1965. Properties of the extended hypergeometric distribution. Annals of 
Mathematical Statistics 36: 938-945. 

Ho, Y., A. Gruhler, A. Heilbut, G.D. Bader, L. Moore, S.L. Adams, A. Millar, and P. 
Taylor. 2002. Systematic identification of protein complexes in Saccharomyces 
cerevisiae by mass spectrometry. Nature 415: 180-183. 

Hughes, T.R., M.J. Marton, A.R. Jones, C.J. Roberts, R. Stoughton, C.D. Armour, and 
H.A. Bennett. 2000. Functional discovery via a compendium of expression profiles. 
Cell 102: 109-126. 

Huynen, M., B. Snel, W. Lathe, 3rd, and P. Bork. 2000. Predicting protein function by 
genomic context: quantitative evaluation and qualitative inferences. Genome Res 10: 
1204-1210. 

Huynen, M.A. and P. Bork. 1998. Measuring genome evolution. Proc Natl Acad Sci U S 
A 95: 5849-5856. 

Huynen, M.A., B. Snel, C. von Mering, and P. Bork. 2003. Function prediction and 
protein networks. Curr Opin Cell Biol 15: 191-198. 

Ito, T., K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. 
Kuhara, and Y. Sakaki. 2000. Toward a protein-protein interaction map of the 
budding yeast: A comprehensive system to examine two-hybrid interactions in all 
possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97: 
1143-1147. 



 

  76

Itoh, M., T. Akutsu, and M. Kanehisa. 2004. Clustering of database sequences for fast 
homology search using upper bounds on alignment score. Genome Inform Ser 
Workshop Genome Inform 15: 93-104. 

Jansen, R., H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung, A. Emili, M. 
Snyder, J.F. Greenblatt, and M. Gerstein. 2003. A Bayesian networks approach for 
predicting protein-protein interactions from genomic data. Science 302: 449-453. 

Kharchenko, P., G.M. Church, and D. Vitkup. 2005. Expression dynamics of a cellular 
metabolic. Molecular Systems Biology. 

Kharchenko, P., D. Vitkup, and G.M. Church. 2004. Filling gaps in a metabolic network 
using expression information. Bioinformatics 20 Suppl 1: I178-I185. 

Lee, I., S.V. Date, A.T. Adai, and E.M. Marcotte. 2004. A probabilistic functional 
network of yeast genes. Science 306: 1555-1558. 

Lee, J.M. and E.L. Sonnhammer. 2003. Genomic gene clustering analysis of pathways 
in eukaryotes. Genome Res 13: 875-882. 

Maltsev, N., E.M. Glass, G. Ovchinnikova, and Z. Gu. 2005. Molecular Mechanisms 
Involved in Robustness of Yeast Central Metabolism against Null Mutations. J 
Biochem (Tokyo) 137: 177-187. 

Marcotte, E.M., M. Pellegrini, H.L. Ng, D.W. Rice, T.O. Yeates, and D. Eisenberg. 
1999. Detecting protein function and protein-protein interactions from genome 
sequences. Science 285: 751-753. 

Matic, S., S. Widell, H.E. Akerlund, and G. Johansson. 2001. Interaction between 
phosphofructokinase and aldolase from Saccharomyces cerevisiae studied by aqueous 
two-phase partitioning. J Chromatogr B Biomed Sci Appl 751: 341-348. 

Meredith, T.C. and R.W. Woodard. 2003. Escherichia coli YrbH is a D-arabinose 5-
phosphate isomerase. J Biol Chem 278: 32771-32777. 

Middendorf, M., A. Kundaje, Y. Freund, C. Wiggins, and C. Leslie. 2005. Motif 
discovery through predictive modeling of gene regulation. Proc. RECOMB: 538-552. 

Middendorf, M., A. Kundaje, C. Wiggins, Y. Freund, and C. Leslie. 2004. Predicting 
genetic regulatory response using classification. Bioinformatics 20 Suppl 1: I232-
I240. 

Osterman, A. and R. Overbeek. 2003. Missing genes in metabolic pathways: a 
comparative genomics approach. Curr Opin Chem Biol 7: 238-251. 

Overbeek, R., M. Fonstein, M. D'Souza, G.D. Pusch, and N. Maltsev. 1999. The use of 
gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96: 2896-2901. 

Pellegrini, M., E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O. Yeates. 1999. 
Assigning protein functions by comparative genome analysis: protein phylogenetic 
profiles. Proc Natl Acad Sci U S A 96: 4285-4288. 

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 2002. Numerical 
Recipes in C++: The Art of Scientific Computing. Cambridge University Press, 
Cambridge, UK. 

Reed, J.L., T.D. Vo, C.H. Schilling, and B.O. Palsson. 2003. An expanded genome-scale 
model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54. 

Schapire, R. 2002. The boosting approach to machine learning: An overview. MSRI 
Workshop on Nonlinear Estimation and Classification. 

Schapire, R., Y. Freund, P. Barlett, and W.S. Lee. 1997. Boosting the margin: A new 
explanation for the effectiveness of voting methods. Ann. Stat. 26: 1651-1686. 



 

  77

Sherlock, G., T. Hernandez-Boussard, A. Kasarskis, G. Binkley, J.C. Matese, S.S. 
Dwight, M. Kaloper, S. Weng, H. Jin, C.A. Ball, M.B. Eisen, P.T. Spellman, P.O. 
Brown, D. Botstein, and J.M. Cherry. 2001. The Stanford Microarray Database. 
Nucleic Acids Res 29: 152-155. 

Snel, B., V. van Noort, and M.A. Huynen. 2004. Gene co-regulation is highly conserved 
in the evolution of eukaryotes and prokaryotes. Nucleic Acids Res 32: 4725-4731. 

Tatusov, R.L., A.R. Mushegian, P. Bork, N.P. Brown, W.S. Hayes, M. Borodovsky, 
K.E. Rudd, and E.V. Koonin. 1996. Metabolism and evolution of Haemophilus 
influenzae deduced from a whole-genome comparison with Escherichia coli. Curr 
Biol 6: 279-291. 

Tatusov, R.L., D.A. Natale, I.V. Garkavtsev, T.A. Tatusova, U.T. Shankavaram, B.S. 
Rao, B. Kiryutin, M.Y. Galperin, N.D. Fedorova, and E.V. Koonin. 2001. The COG 
database: new developments in phylogenetic classification of proteins from complete 
genomes. Nucleic Acids Res 29: 22-28. 

Teichmann, S.A. and M.M. Babu. 2002. Conservation of gene co-regulation in 
prokaryotes and eukaryotes. Trends Biotechnol 20: 407-410; discussion 410. 

Troyanskaya, O.G., K. Dolinski, A.B. Owen, R.B. Altman, and D. Botstein. 2003. A 
Bayesian framework for combining heterogeneous data sources for gene function 
prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci U S A 100: 8348-8353. 

Uetz, P., L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. 
Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, 
T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J.M. 
Rothberg. 2000. A comprehensive analysis of protein-protein interactions in 
Saccharomyces cerevisiae. Nature 403: 623-627. 

van Noort, V., B. Snel, and M.A. Huynen. 2003. Predicting gene function by conserved 
co-expression. Trends Genet 19: 238-242. 

von Mering, C., M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel. 2003. 
STRING: a database of predicted functional associations between proteins. Nucleic 
Acids Res 31: 258-261. 

Wong, S.L., L.V. Zhang, A.H. Tong, Z. Li, D.S. Goldberg, O.D. King, G. Lesage, M. 
Vidal, B. Andrews, H. Bussey, C. Boone, and F.P. Roth. 2004. Combining biological 
networks to predict genetic interactions. Proc Natl Acad Sci U S A 101: 15682-
15687. 

Wu, J., S. Kasif, and C. DeLisi. 2003. Identification of functional links between genes 
using phylogenetic profiles. Bioinformatics 19: 1524-1530. 

Yamanishi, Y., J.P. Vert, and M. Kanehisa. 2004. Protein network inference from 
multiple genomic data: a supervised approach. Bioinformatics 20 Suppl 1: I363-I370. 

Yamanishi, Y., J.P. Vert, and M. Kanehisa. 2005. Supervised enzyme network inference 
from the integration of genomic data and chemical information. Bioinformatics 21 
Suppl 1: i468-i477. 

Yanai, I., A. Derti, and C. DeLisi. 2001. Genes linked by fusion events are generally of 
the same functional category: a systematic analysis of 30 microbial genomes. Proc. 
Natl. Acad Sci. 98: 7940-7945. 

Yanai, I., J.C. Mellor, and C. DeLisi. 2002. Identifying functional links between genes 
using conserved chromosomal proximity. Trends Genet 18: 176-179. 

 



 

  78

 

8 Publication List  
 
 
Aach JA and Church GM. (2004) Mathematical models of diffusion-constrained 

polymerase chain reactions: basis of high-throughput nucleic acid assays and simple 

self-organizing systems. J Theor. Biol. May 7;228(1):31-46. 

Forster, AC & Church, GM (2006) Synthesizing a Minimal Cell  (submitted)  

Jaffe, JD, Stange-Thomann, N, Smith, C, DeCaprio, D, Sheila Fisher, S, Butler, J, 

Calvo, S, Elkins, T, FitzGerald, MG, Hafez, N, Kodira CD, Major J, Wang S, 

Wilkinson, J, Nicol, R, Nusbaum, C, Birren, B, Berg, HC, Church GM (2004) The 

complete genome and proteome of Mycoplasma mobile. Genome Res. 2004 

Aug;14(8):1447-61. 

Kharchenko, P, Church, GM, Vitkup, D. (2004) Filling gaps in a metabolic network 

using expression information. Bioinformatics. 2004 Aug 4;20 Suppl 1:I178-I185. 

Kharchenko, P., G.M. Church, and D. Vitkup. 2005. Expression dynamics of a cellular 

metabolic. Molecular Systems Biology. doi:10.1038/msb4100023 

Lelandais, G, Le Crom,S, Devaux, F, Vialette, S, Church, GM, Jacq, C and Marc,P 

(2003) yMGV : a cross-species expression data mining tool. Nucleic Acids Res. 

90001 D323-D325.  

Leptos, KC, Sarracino, DA, Church, GM (2006) MapQuant: A New Open-Source 

Software for Large-Scale Protein Quantitation Proteomics. 2006 Mar;6(6):1770-82. 

Mikkilineni V, Mitra RD, Merritt J, DiTonno JR, Church GM, Ogunnaike B, Edwards 

JS. Digital quantitative measurements of gene expression. Biotechnol Bioeng. 2004 

Apr 20;86(2):117-24.  

Segre, D, Zucker, J, Katz, J, Lin, X, D'haeseleer, P, Rindone, W, Karchenko, P, Nguyen, 

D, Wright, M, and Church, GM (2003) From annotated genomes to metabolic flux 

models and kinetic parameter fitting. Omics 7:301-16. 

Tian J, Gong H, Sheng N, Zhou X, Gulari E, Gao X, & Church GM (2004) Accurate 

Multiplex Gene Synthesis from Programmable DNA Chips. Nature. 2004 Dec 

23;432(7020):1050-4. 



 

  79

 




