US Army Corps of Engineers<sub>®</sub> Engineer Research and Development Center

# Assessing Fog Oil Deposition to Simulated Plant Surfaces during Military Training

Thomas A. Douglas, Jerome B. Johnson, Charles M. Collins, Charles M. Reynolds, Karen L. Foley, Lawrence B. Perry, Arthur B. Gelvin, and Susan E. Hardy November 2006



| <b>Report Documentation Page</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |                     |                   | Form Approved<br>OMB No. 0704-0188          |                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------|-------------------|---------------------------------------------|---------------------|--|--|
| Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlin VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information does not display a currently valid OMB control number. |                                                                         |                     |                   |                                             |                     |  |  |
| 1. REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | 3. DATES COVERED    |                   |                                             |                     |  |  |
| NOV 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | N/A                 |                   | -                                           |                     |  |  |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                     |                   | 5a. CONTRACT                                | NUMBER              |  |  |
| Assessing Fog Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deposition to Simula                                                    | ated Plant Surfaces | During Military   | 5b. GRANT NUM                               | 1BER                |  |  |
| Training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                     |                   | 5c. PROGRAM ELEMENT NUMBER                  |                     |  |  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                     |                   | 5d. PROJECT NU                              | JMBER               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                     |                   | 5e. TASK NUMBER                             |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                     |                   | 5f. WORK UNIT NUMBER                        |                     |  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br>U.S Army Engineer Research and Development Center Cold Regions<br>Research and Engineering Laboratory 72 Lyme Road Hanover, NH<br>03755-1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                     |                   | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER |                     |  |  |
| 9. SPONSORING/MONITO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RING AGENCY NAME(S) A                                                   | AND ADDRESS(ES)     |                   | 10. SPONSOR/M                               | ONITOR'S ACRONYM(S) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                     |                   | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)   |                     |  |  |
| 12. DISTRIBUTION/AVAIL<br>Approved for publ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LABILITY STATEMENT<br>ic release, distributi                            | on unlimited        |                   |                                             |                     |  |  |
| 13. SUPPLEMENTARY NO<br>The original docum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13. SUPPLEMENTARY NOTES<br>The original document contains color images. |                     |                   |                                             |                     |  |  |
| 14. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                     |                   |                                             |                     |  |  |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |                     |                   |                                             |                     |  |  |
| 16. SECURITY CLASSIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CATION OF:                                                              |                     | 17. LIMITATION OF | 18. NUMBER                                  | 19a. NAME OF        |  |  |
| a. REPORT b. ABSTRACT c. THIS PAGE UUU unclassified unclassified UUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                     | 65                | KESPONSIBLE PERSON                          |                     |  |  |

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

# Assessing Fog Oil Deposition to Simulated Plant Surfaces during Military Training

Thomas A. Douglas, Jerome B. Johnson, Charles M. Collins, Charles M. Reynolds, Karen L. Foley, Lawrence B. Perry, Arthur B. Gelvin, and Susan E. Hardy

Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755-1290

Approved for public release; distribution is unlimited.

Prepared for U.S. Army Garrison Alaska, Directorate of Public Works

**Abstract:** Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations 60% higher than filters. In the winter, TPH concentrations on polypropylene leaves and silk flowers were not correlated with concentrations measured on glass membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.

**DISCLAIMER:** The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

# Contents

| Ter | minology / Abbreviations                                     | vi  |
|-----|--------------------------------------------------------------|-----|
| Pre | face                                                         | vii |
| 1   | Background                                                   | 1   |
|     | Fog Oil Properties                                           | 1   |
|     | Monitoring Hydrocarbon Deposition to Natural Surfaces        | 2   |
| 2   | Objectives                                                   | 4   |
| 3   | Approach                                                     | 5   |
| 4   | Methods and Materials                                        | 6   |
|     | Sample Collection                                            |     |
|     | Filter Paper and Plant Sample Extraction                     | 9   |
|     | Snow Sample Solid Phase Extraction                           |     |
|     | Analytical methods                                           |     |
|     | Fog Oil Concentration Calculations                           | 11  |
| 5   | Fog Oil Event #1 (26 March 2001)                             | 13  |
|     | Deposition to Snow                                           |     |
|     | Deposition Versus Exposure Time                              |     |
|     | Deposition Versus Distance from the Fog Oil Source           |     |
| 6   | Fog Oil Event #2 (3 July 2001)                               | 20  |
|     | Deposition Versus Distance from the Source and Exposure Time |     |
|     | Relationship to Natural Vegetation                           | 24  |
| 7   | Fog Oil Event #3 (31 January 2002)                           | 22  |
|     | Deposition on Filters and Synthetic Leaves and Flowers       | 25  |
|     | Deposition Versus Distance from the Fog Oil Source           | 28  |
| 8   | Fog Oil Event #4 (12 September 2002)                         | 32  |
|     | Deposition to Filters and Synthetic Leaves and Flowers       |     |
|     | Deposition Versus Distance from the Fog Oil Source           | 35  |
| 9   | Evaporation Experiment                                       |     |
| 10  | Fairbanks Area Snow                                          |     |
| 11  | Conclusions                                                  | 40  |
|     | Discussion                                                   |     |
|     | Recommendations for Designing Monitoring Programs            | 43  |
| Ref | erences                                                      | 45  |

| Appendix A. Results of Laboratory Analyses4 | 7 |
|---------------------------------------------|---|
| Report Documentation Page                   | 7 |

# **Figures and Tables**

#### Figures

| Figure 1. Filter papers on foil backing used for fogging event #1                                                                                                                                      | 7  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2. Arrays of nine 7-cm-diameter glass microfiber filters used for fogging events #2, #3, and #4                                                                                                 | 8  |
| Figure 3. Silk flowers with polypropylene leaves and stems used in fogging events #3 and #4                                                                                                            | 9  |
| Figure 4. Road track used during event #1 winter obscurants training exercise                                                                                                                          | 13 |
| Figure 5. Event #1 north corner filter deployment grid                                                                                                                                                 | 14 |
| Figure 6. Event #1 south corner filter deployment grid                                                                                                                                                 | 15 |
| Figure 7. Total petroleum hydrocarbon deposition concentration measured on filters as a function of distance from the fog oil aerosol source for event #1                                              | 19 |
| Figure 8. Site map for event #2 summer exercise                                                                                                                                                        | 21 |
| Figure 9. Event #2 total petroleum hydrocarbon deposition as a function of distance from the center of the drive track, near the fogging source, for filters with exposure times of 77, 57, and 49 min | 23 |
| Figure 10. Filter distribution and total petroleum hydrocarbon concentration measured on filters, flowers, and leaves by sample location for winter fogging event #3                                   | 26 |
| Figure 11. Silk flower and polypropylene leaf distribution and total petroleum hydrocarbon concentration measured on flowers and leaves for event #3                                                   | 29 |
| Figure 12. Total petroleum hydrocarbon concentration versus distance from the fog oil aerosol source for filters, flowers, and leaves after event #3                                                   | 30 |
| Figure 13. Meteorological data for event #3                                                                                                                                                            | 31 |
| Figure 14. Filter distribution and total petroleum hydrocarbon concentration measured on filters for event #4                                                                                          | 33 |
| Figure 15. Silk flower and polypropylene leaf distribution and total petroleum hydrocarbon concentration measured on flowers and leaves for event #4                                                   | 34 |
| Figure 16. Total petroleum hydrocarbon concentration measured on filters, silk flowers, and polypropylene leaves versus distance from the fog oil aerosol generators for event #4                      | 36 |
| Figure 17. Results from the indoor and outdoor Standard Grade Fuel #2 (fog oil) evaporation tests                                                                                                      | 38 |
| Figure 18. Silk flower and polypropylene leaf total petroleum hydrocarbon concentrations versus filter TPH concentrations for events #3 and #4                                                         | 42 |

#### Tables

| Table 1. Fog oil training events                                                               | 5  |
|------------------------------------------------------------------------------------------------|----|
| Table 2. Total fog oil on filter pads and snow samples during event #1                         | 17 |
| Table 3. Total fog oil on filters for exposure times of 77, 56, and 49 minutes during event #2 | 22 |
| Table 4. Fog oil residues measured on sample media during event #3                             | 26 |
| Table 5. Fog oil residues measured on sample media during event #4                             | 33 |
| Table 6. Fairbanks snow samples collected on 26 March 2002                                     | 40 |
|                                                                                                |    |

# **Terminology / Abbreviations**

| DRO    | diesel range organics                         |
|--------|-----------------------------------------------|
| GC     | gas chromatography                            |
| GC-FID | gas chromatography-flame ionization detection |
| GC-MS  | gas chromatography-mass spectrometry          |
| PAH    | polycyclic aromatic hydrocarbon               |
| RRO    | residual range organics                       |
| RT     | retention time                                |
| SGF2   | Standard Grade Fuel Number 2                  |
| SPE    | solid phase extraction                        |
| TPH    | total petroleum hydrocarbons                  |

### Preface

This report was prepared by Dr. Thomas A. Douglas, Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory (CRREL), Engineer Research and Development Center (ERDC); Dr. Jerome B. Johnson, Terrestrial and Cryospheric Branch, CRREL; Charles M. Collins, Biogeochemical Sciences Branch, CRREL; Dr. C. Michael Reynolds, Biogeochemical Sciences Branch, CRREL; Karen L. Foley, Biogeochemical Sciences Branch, CRREL; Lawrence B. Perry, Biogeochemical Sciences Branch, CRREL; Arthur Gelvin, Engineering Resources Branch, CRREL; and Susan E. Hardy, Biogeochemical Sciences Branch, CRREL. The report was reviewed for technical merit by Beth Astley and Marianne Walsh, both of CRREL.

Members of the Chemical Platoon, Headquarters-Headquarters Company, 172<sup>nd</sup> Support Battalion, Fort Wainwright, Alaska, provided the aerosol generation for this study.

Funding for this work was provided by the U.S. Army Garrison Alaska, Directorate of Public Works, under the sponsorship of Douglas Johnson and Gary Larsen.

The Commander and Executive Director of ERDC is COL Richard B. Jenkins. The Director is Dr. James R. Houston.

### **1** Background

The U.S. Army maintains an active role in assessing the potential environmental impacts associated with military training exercises. One training activity includes the use of smoke-like obscurants, such as fog oil, as a force multiplier designed to confuse enemy sensors and reduce enemy command and control capabilities. To minimize the potential negative environmental effects of fog oil obscurant operations, we need to understand the deposition, fate, and consequence of products generated by fog oil. Seasonal controls on fogging may be significant. If managers can reliably predict the nature and concentrations of fog oil deposition following training in different environmental conditions, they can more successfully monitor and mitigate the effects of this component of Army training.

#### **Fog Oil Properties**

Standard Grade Fuel Number 2 (SGF2), otherwise known as fog oil, is the most common obscurant used in military operations. SGF2 aerosol is also well suited for use as a tracer of atmospheric motions and dispersion because it meets many of the prerequisites for a tracer outlined by Johnson (1983). Foremost in these requirements is the fact that SGF2 aerosol is conservative in nature because of its low evaporation rate (Lowry et al. 1951). SGF2 is a refined petroleum product in the middle distillate range, like mineral oil or SAE 20 grade motor oil, with a density of 0.9 g/mL, a flash point of 160°C, and a boiling point of 300°C.

A dense, grey to white, suspended, smoke-like plume of aerosols is generated as a result of vaporization of liquid SGF2 in a pulse jet mechanical generator. SGF2 vapors leave the aerosol generator at an elevated temperature. Upon ejection the vaporized oil cools and condenses after traveling approximately 1 m to form a fine oil aerosol that produces a dense white smoke plume. The oil droplets in the aerosol range from 0.9 to 1.9  $\mu$ m in diameter (Driver et al. 1993). Generators are usually mounted on a vehicle and can be operated either in the static position with the vehicle parked or as a mobile generator with the vehicle in motion. Generators consume an average of roughly 150 L of SGF2 per hour, with maximum and minimum rates of 95 and 190 L per hour, respectively.

Most of the research on SGF2 has focused on the environmental impact associated with the deposition and fate of SGF2 oils and fog oil aerosol deposited on vegetation (Shinn et al. 1987), avian wildlife (Albers and Heinz 1983, Getz 1996, Driver 2002, Driver et al. 2002), and aquatic wildlife (Poston et al. 1986, 1988). The most common environmental risk associated with the use of SGF2 aerosol for training is the potential coating of plant or other biological surfaces with a thin layer of coalesced oil droplets. This coat of oil is postulated to affect soil and plant respiration processes and could inhibit photochemical reactions. These potential negative effects of aerosols on ecosystem properties could be attributed to deposition of atmospheric contaminants (i.e., soot from coal burning, diesel exhaust, or wood smoke) or anthropogenic aerosols (sulfate or black carbon). Aerosol concentrations measured on filter surfaces used as passive collectors are generally assumed to accurately represent particle deposition of these atmospheric aerosols (Jaffrezo et al. 1994, Bergin et al. 1994, 1995).

The diameter of fog oil aerosol droplets is within the range of environmental concern for anthropogenic aerosols in the accumulation mode size fraction (diameters between 0.1 and 2.5  $\mu$ m). Aerosols including sulfate and black carbon can travel thousands of kilometers in this size range (Pacyna et al. 1984). As such, fog oil could serve as a proxy for the dispersion and deposition of these and perhaps other common aerosol environmental contaminants. Knowing the spatial and temporal loading rates of atmospheric aerosols is paramount to accurately monitoring and modeling aerosol deposition. As a consequence, it is possible that our work in assessing the deposition of fog oil aerosol to passive sample media has applicability to other environmental monitoring programs for aerosols.

#### Monitoring Hydrocarbon Deposition to Natural Surfaces

An important objective of any environmental monitoring campaign is to be able to extend the results from one specific field case to many others. In the case of fog oil deposition a major environmental monitoring goal is to estimate the deposition of the fog oil aerosol to natural plant surfaces over a range of field conditions. Leaves and needles have myriad shapes, sizes, and orientations that govern their presentation as a potential receptor for aerosol deposition or retention. A detailed understanding of the deposition rates of fog oil aerosol to different sample media morphologies should allow us to extrapolate the results from a given test at one site to testing at other locations.

An important initial evaluation in this study was to identify low-cost yet effective field sampling protocols. The concept was to optimize the tradeoff between the number of sample types and deployment locations and the analytical cost per sampling device. Leaves and needles provide the most obvious sample media in support of environmental monitoring in the boreal forest of the Alaskan Interior. However, analytical methods commonly used to determine concentrations of hydrocarbons and oils cannot accurately distinguish natural plant oils on plant surfaces from fog oil aerosol. As a consequence, it is difficult to estimate the deposition of fog oil to leaf plant surfaces using gas chromatographic (GC) techniques. We therefore used glass membrane fiber filters, silk flowers, and polypropylene leaves in this investigation because they provided sample media that represented a range of deposition surfaces, could be readily deployed, and could be used in both winter and summer conditions. The silk flowers and polypropylene leaves were selected for their ability to represent the morphologies of different plant types. As such, they were used as proxies to evaluate the effectiveness of the glass membrane fiber filters as passive collectors of fog oil aerosol.

## **2 Objectives**

The principal objective of this study was to develop and implement a monitoring program to determine the deposition rate and fate of fog oil from obscurant plumes produced during military training. The monitoring program was required under the terms of the permit issued by the Alaska Department of Environmental Conservation to U.S. Army Alaska allowing the use of obscurants on military training lands in Alaska. A second objective was to determine whether glass membrane filters are an acceptable proxy for measuring petroleum hydrocarbon deposition to leaf and flower surfaces.

## **3** Approach

We first developed and tested simple methods for collecting and characterizing fog oil residues deposited from a vehicle-mounted fog oil generator. We then developed and implemented methodologies to characterize the amount of fog oil residues deposited from a plume during four training events involving multiple vehicle-mounted generators (Table 1). These training events were conducted in March and July 2001 and January and September 2002. The field sampling was augmented with an investigation of fog oil evaporation over time. In addition, petroleum hydrocarbon concentrations were measured from snow samples obtained along heavily used roadways in Fairbanks, Alaska, to place the hydrocarbon values associated with training in perspective.

| Event | Date        | Location                                 | Description                                                                                                                                                        | Average deposition<br>(mg/m <sup>2</sup> )*             |
|-------|-------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1     | 26 Mar 2001 | Bear Drop Zone<br>Fort Greely            | Late winter / early spring (-3°C)<br>Moving sources<br>700 gal. (2650 L) fog oil used<br>~ 10-20 min exposure time<br>Snow samples taken                           | 24.7 (filter)<br>41.6 at north end<br>5.12 at south end |
| 2     | 3 Jul 2001  | Firebird Landing Zone<br>Fort Wainwright | Summer (19–21°C)<br>Moving sources<br>960 gal. (3633 L) fog oil used<br>Three exposure times (77, 57, 49 min)                                                      | 3.5 (filter)                                            |
| 3     | 31 Jan 2002 | Firebird Landing Zone<br>Fort Wainwright | Winter (–15°C)<br>Stationary sources<br>200 gal. (760 L) fog oil used<br>Two exposure times for filters (93, 68 min)<br>Synthetic flowers and leaves used (93 min) | 10.4 (filter)<br>14.1 (leaf)<br>7.3 (flower)            |
| 4     | 12 Sep 2002 | Firebird Landing Zone<br>Fort Wainwright | Late summer / early fall (10–15°C)<br>Stationary sources<br>111 gal. (420 L) fog oil used<br>One exposure time (110 min)<br>Synthetic flowers and leaves used      | 48.4 (filter)<br>77.1 (leaf)<br>85.5 (flower)           |

#### Table 1. Fog oil training events.

\*Deposition is reported as TPH in milligrams divided by the surface area of the sample collector.

### 4 Methods and Materials

Chemical Platoon, HHC 172<sup>nd</sup> Infantry Brigade (Separate), on Fort Wainwright, Alaska, has twelve M157A2 fog oil aerosol generators, with two mounted on each of six High Mobility Multi Wheeled Vehicles (HMMWV). The generators can be operated in either a static position with the vehicle parked or as a mobile generator with the vehicle in motion. Each generator consumes roughly 40 gallons (151 L) of fog oil per hour, with maximum and minimum rates ranging from 25 to 50 gallons (95 to 190 L) per hour, respectively.

Prior to field use, we obtained the fog oil mixes that are used in support of training in Alaska. These include a standard fog oil and, for use at temperatures below  $-18^{\circ}$ C (0°F), a 70:30 fog oil:diesel fuel mix.

We first observed a fogging exercise on 21 and 22 February 2001 at Firebird Landing Zone in the Yukon Maneuver Area on Fort Wainwright. This was the first time many of the Chemical Platoon personnel had used the generators in the field in winter conditions. Mechanical problems with the equipment precluded any meaningful production of fog oil aerosols. We spent the time observing the equipment and discussing standard operating procedures with the Chemical Platoon personnel. We did not collect any samples during this curtailed training exercise. A total of 150 gallons (568 L) of fog oil was used over the two days.

#### Sample Collection

Samples were collected during both winter and summer fog oil training exercises on 26 March 2001 at the Donnelly Training Area, Alaska, and on 3 July 2001, 31 January 2002, and 12 September 2002 in the Yukon Maneuver Area at Fort Wainwright, Alaska. Sample surfaces used in the study included surface snow, filter papers (52- by 52-cm filter pads), glass microfiber filters (7-cm-diameter binder-free borosilicate glass-membrane fiber filters with a 0.7- $\mu$ m pore size), snow, vegetation, and synthetic plants.

Snow samples were collected during the first field sampling event. Surface, midlevel, and bottom snow samples were collected from the snow cover at each location within the grid area. Samples were collected over a known surface area with a vertical thickness of 4 cm. Samples were also collected at locations upwind from the training area for use as controls. The snow was placed in precleaned 125-mL wide-mouth glass jars.

The large 52- by 52-cm filter papers (2704 cm<sup>2</sup> area) used in fogging event #1 had a foil backing to eliminate potential interference from oil residues that might have been present on the soil or snow prior to deployment of the filters (Fig. 1). These paper filters provided initial estimates of fog oil deposition, but background interferences associated with the paper filters and sorption of fog oil and solvent onto paper filters made the extraction tedious and increased the chances of error. To improve extraction efficiency, 7-cm-diameter Whatman<sup>®</sup> glass microfiber filters were used for the remaining fogging events. Because the glass microfiber filters was stapled to a 21- by 28-cm cardboard backing at each sampling location (Fig. 2). Each array of nine filters gave a total of 350 cm<sup>2</sup> of filter surface area.



Figure 1. Filter papers (52 by 52 cm) on foil backing used for fogging event #1.



Figure 2. Arrays of nine 7-cm-diameter glass microfiber filters used for fogging events #2, #3, and #4. The arrays were used with synthetic vegetation, as shown above, in events #3 and #4.

The synthetic plant stalks were 0.75 m in height and included 0.5 m of polypropylene stem with 0.25 m of equally spaced silk flowers and polypropylene leaves (Fig. 2 and 3). The synthetic plants closely represent valerian (*Valeriana capitata*), a three-lobed, stem-leaved plant with a corolla of pistillate flowers that is found in semi-moist soils of subalpine meadows throughout Alaska and the western United States. The leaf and flower samples were pushed into the snow or gravel until the base of the leaf and flower region was even with the snow or ground surface. The silk flowers were sampled by removing the flowers and leaves from the stems. The silk flowers for each sample site were collected into one precleaned glass sample jar while the leaves were placed in another jar.

Personnel wearing powder-free latex gloves collected samples into precleaned glass jars. Filters were placed into 500-mL jars, and snow samples were placed into 125-mL jars. The jars were packed in bubble pack, placed in a cooler, and shipped back to CRREL for extraction and analysis by gas chromatography-flame ionization detection (GC-FID). All glassware used during collection and extraction was baked out in a furnace at 450°C for a minimum of 4 hours prior to use.



Figure 3. Silk flowers with polypropylene leaves and stems used in fogging events #3 and #4.

#### Filter Paper and Plant Sample Extraction

To effectively extract the oil from the larger 52- by 52-cm filter papers used in the first sampling event, we removed the filters and foil backing from the jars in the lab, placed them on a clean surface, and cut them into four strips. The filter strips were then placed on top of each other and loosely rolled into a tube shape and placed back in the sample jar. The goal was to reduce the likelihood of forming constricted areas where the solvent could not effectively extract oil. This process was not necessary with the smaller, 7-cm-diameter glass microfiber filters.

Hexane was used to extract the oil from the filter papers, silk flowers, and silk leaves. Each sample was extracted three times with 400 mL of hexane (when 52- by 52-cm filter pads were used) or 100-200 mL of hexane (when 7-cm-diameter glass microfiber filters were used), using sonication for 60 minutes. Samples were quantitatively transferred into a round-bottomed boiling flask and evaporated using a rotary evaporator set at 69°C and 120 rpm. After evaporation, the flasks were rinsed four times with three 2.0-mL washes of hexane and gently swirled, and the contents were transferred to a 10-mL glass sample tube using Pasteur pipettes. These were then evaporated to dryness under nitrogen. The samples were solubilized by the addition of two internal standards: 1.0 mL of 500-ppm 1-phenylhexane and 1.0 mL of 500-ppm alpha cholestane. A 100- $\mu$ L aliquot of the sample was transferred to a GC autosampler vial with mini-insert for analysis by gas chromatography-flame ionization detection (GC-FID). The remaining 1.9 mL was archived.

#### **Snow Sample Solid Phase Extraction**

Snow samples were allowed to thaw in the glass jars, a mark was made at the level of the meniscus, and the volume was determined using a graduated cylinder. The sample volume following snowmelt was typically 25–30 mL. We used a mini-extraction, solid phase extraction (SPE) method. The SPE tube (LC-18) was conditioned with 2.0 mL of hexane to elute any impurities, followed by a 5.0-mL addition of Milli-Q water to remove all the hexane. A 2.0-mL aliquot of the snow sample was transferred via Pasteur pipette to the SPE tube, where the sample was allowed to pass through the tube under a low vacuum at a flow rate of 2–5 mL/min. The tube was rinsed with five washes of 1.0 mL of hexane, and a 0.5- to 1.0minute contact was maintained for each solvent wash. Samples were collected in culture tubes and evaporated to dryness in a nitrogen atmosphere. The samples were then solubilized to 2.0 mL by the addition of internal standards: 1.0 mL of 1-phenylhexane and 1.0 mL of alpha cholestane. A 100- $\mu$ L aliquot of the sample was transferred to an autosampler vial with a mini-insert for analysis by GC-FID. The results were recorded as concentrations of total petroleum hydrocarbons (TPH) in micrograms. Concentrations were related over the surface area represented by the sample and converted to milligrams, so that the final concentration is reported as total petroleum hydrocarbons in milligrams per square meter.

#### **Analytical methods**

Gas chromatography followed a modified EPA Method (8015M) and guidelines of Alaska methods AK101, 102, and 103 (http://www.state.ak. us/dec/eh/docs/lab/CS/manual.pdf). A 1.0-µL extract was analyzed with a 6890 GC (Agilent Technologies, formerly Hewlett Packard Co., Palo Alto California) equipped with a flame ionization detector (FID). The capillary column was a 25-m HP-1 (cross-linked methyl siloxane; internal diameter, 0.2 mm; film thickness, 0.33  $\mu$ m). The injector temperature was 250°C, and the detector temperature was 300°C. The carrier gas was hydrogen with a flow rate of 2.8 mL/min. Detector gases were 30 mL of hydrogen/min, 400 mL of air/min, and 30 mL of nitrogen/min. Fog oil was analyzed with the following heating program: an initial temperature of 60°C was held for 1 minute followed by a ramp at 6°C/min until temperatures reached 300°C, where they were held for 19.0 minutes. The total run time was approximately 60 minutes. Standards were made to determine the ranges of organics from C10-C36. A standard of C10-C28 was first analyzed to establish the range of retention times for the diesel range organics (DRO) (retention time = 7.1-31.4 min). Standards of fog oil from 10 to 50,000  $\mu$ g/mL) were run for the range of residual oil (RRO, C25– C36; retention time = 31.4-60.0 min.). Sample quantities were based on comparison to a 5,000- $\mu$ g/mL fog oil standard. The calibration table included standards with retention times of 9.3 minutes for 1-phenylhexane and 35.5 minutes for alpha cholestane. Polycyclic aromatic hydrocarbon (PAH) 610 standards and diesel fuel #2 standards were also analyzed.

#### **Fog Oil Concentration Calculations**

Total petroleum hydrocarbon (TPH) concentrations for each sample were determined by summing the diesel range organic (DRO) and the residual range organic (RRO) fractions and correcting for the internal standard, filter blank, foil blank, and reagent blank. Filter areas were calculated and final data were expressed as milligrams of fog oil per square meter of sample surface (mg/m<sup>2</sup>). For the synthetic plant samples, the average surface areas of leaves and flowers were calculated by removing all the leaves and all the flowers from a single synthetic flower stem and measuring their surface area with a Win Rhizo<sup>™</sup> root measuring system (Régent Instruments Inc. 2002). The surface area of each sample was used to calculate the milligrams of fog oil per square meter of surface area on the leaves and on the flowers.

## 5 Fog Oil Event #1 (26 March 2001)

The 26 March 2001 training exercise took place in the Ober training area at Bear Drop Zone, Fort Greely, near Donnelly Dome, Alaska. The area used was a road-track rectangle 1.3 by 0.3 km on a side (Fig. 4). The exercise started at 1615 at a temperature of  $-3^{\circ}$ C and wind speeds of 1.5–2.5 m/s. The predominant wind direction was west-northwest. Fog oil generators were carried on HMMWVs moving counterclockwise around the track at varying speeds. One HMMWV continued generating fog oil while parked near the north corner (Fig. 5) for about 10 minutes. A total of approximately 700 gallons (2650 L) of fog oil was used during the training exercise. Exposure times for the samples are difficult to estimate because the vehicles were in a constant state of motion. However, the best estimated time frame for the test is 10–30 minutes.



Figure 4. Road track used during event #1 (26 March 2001) winter obscurants training exercise. The north and south corner filter deployment sites are shown in the upper left and lower right corners of the drive track.

Before the exercise started, we placed sample collection filter pads, consisting of large filter papers (52 by 52 cm) with a foil backing, in a grid pattern at the north and south corners of the road track (Fig. 5 and 6). The locations of the collection pads were designed to maximize our ability to obtain representative fog oil samples given the layout of the site, the direction of prevailing winds, and the driving pattern of the vehicles. Filter pads and snow samples were collected after the fogging event.



Figure 5. Event #1 (26 March 2001) north corner filter deployment grid, showing the location of the HMMWV that generated fog oil aerosol while parked for roughly 10 minutes. The marker size is proportional to the total petroleum hydrocarbon concentration. Numbers next to the markers with the S prefix are identification numbers for filters, while numbers without a prefix correspond to the TPH concentration.





Figure 6. Event #1 (26 March 2001) south corner filter deployment grid. The size of the markers is proportional to the total petroleum hydrocarbon concentration. Numbers next to the markers with the S prefix are identification numbers for filters, while numbers without a prefix correspond to the TPH concentration.

#### **Deposition to Snow**

Snow samples, each collected from the top 4 cm of the snowpack, were collected after fogging at eight locations adjacent to filters at the north corner site and at control sites located upwind. Fog oil aerosol deposition should be concentrated at the snow surface as the oil droplets adhere to snow grains. Little fog oil would be expected to penetrate to more than a few centimeters depth through the top of the snowpack. Thus, our sample included the surface 0.5 cm of the snowpack, where we would expect fog oil aerosol deposition, and the next 2 cm of snow, where we would expect to find little to no fog oil aerosol deposition.

Total petroleum hydrocarbon concentrations measured on filters at the north corner site ranged from 2.3 to 302.7 mg/m<sup>2</sup>, while at the south corner site they ranged from 3.0 to 10.9 mg/m<sup>2</sup>. TPH concentrations measured in snow at the north corner site ranged from 9.0 to 298.0 mg/m<sup>2</sup>. At sample locations where both a snow sample and a filter sample were obtained, there was no apparent relationship between TPH concentrations on the filter pads and TPH concentrations from the surface snow (Table 2). At four of the sample locations the snow yielded higher TPH concentrations than was measured on the nearby filters, while at the other four locations the filter paper had greater values than the snow. This could be the result of either a different scavenging efficiency of fog oil by the snow surface compared to the filters or of exposure of the snow to petroleum hydrocarbons prior to the winter fog oil training exercise we monitored. The training area used for this test was utilized for vehicle maneuvers regularly throughout the winter.

The two control site filter samples yielded TPH concentrations of 2.3 and 12.7 mg/m<sup>2</sup>, while the three control site snow samples had TPH concentrations ranging from 77.0 to 247.5 mg/m<sup>2</sup>. These values from snow are alarmingly high because the control site was located upwind of the fogging area and had no visible fog oil deposition during the event we monitored. At some sample locations, there was a noticeable sheen of oil on the snow before the fogging event began, suggesting previous field exercises were responsible for the presence of petroleum in the snow. No previous fog oil training occurred during the winter at this site prior to our field test, so this oil was likely the result of other training exercises.

Table 2. Total fog oil on filter pads (0.27  $m^2$  filter area each) and snow samples during event #1 (26 March 2001).

|                     | Fogoilon    | For oil on foil         | Total for ail         | Total fact ail | Crow             | Total fog oil      |
|---------------------|-------------|-------------------------|-----------------------|----------------|------------------|--------------------|
| Sample <sup>1</sup> | filter (µg) | rog oli on ioli<br>(µg) | iotal log oli<br>(μg) | (mg/m²)        | Snow<br>sample#1 | in snow<br>(mg/m²) |
| South corr          | ner         | ., e.                   |                       |                | •                |                    |
| S1F1                | 2,700       | BDL                     | 2,700                 | BDL            |                  |                    |
| S1F2                | 1,500       | BDL                     | 1,500                 | BDL            |                  |                    |
| S1F3                | 3,000       | BDL                     | 3,000                 | BDL            |                  |                    |
| S1F4                | 1,200       | BDL                     | 1,200                 | BDL            |                  |                    |
| S1F5                | 1,200       | BDL                     | 1,200                 | BDL            |                  |                    |
| S1F6                | 1,300       | BDL                     | 1,300                 | BDL            |                  |                    |
| S1F7                | 1,200       | BDL                     | 1,200                 | BDL            |                  |                    |
| S1F8                | 800         | BDL                     | 800                   | BDL            |                  |                    |
| S1F9                | 600         | BDL                     | 600                   | BDL            |                  |                    |
| S1F10               | 1,300       | BDL                     | 1,300                 | BDL            |                  |                    |
| S1F11               | 1,200       | BDL                     | 1,200                 | BDL            |                  |                    |
| S1F12               | 2,300       | BDL                     | 2,300                 | BDL            |                  |                    |
| S1F13               | 800         | BDL                     | 800                   | BDL            |                  |                    |
| S1F14               | 1,400       | 50                      | 1,400                 | 6              |                  |                    |
| S1F15               | 900         | BDL                     | 900                   | BDL            |                  |                    |
| S1F16               | 1,000       | BDL                     | 1,000                 | BDL            |                  |                    |
| S1F17               | 1,000       | 70                      | 1,100                 | 4              |                  |                    |
| S1F18               | 800         | BDL                     | 800                   | 3              |                  |                    |
| S1F19               | 1,500       | 400                     | 1,900                 | 7              |                  |                    |
| North corn          | er          | •                       |                       |                |                  |                    |
| S2F1                | 6,000       | BDL                     | 6,000                 | BDL            | S2S1             | 150                |
| S2F2                | 5,000       | 301                     | 5,300                 | 20             |                  |                    |
| S2F3                | 2,400       | 229                     | 2,600                 | 10             |                  |                    |
| S2F4                | 73,800      | 8,041                   | 81,800                | 300            | S2S4             | 10                 |
| S2F5                | 14,200      | 758                     | 15,000                | 60             | S2S5             | 40                 |
| S2F6                | 1,300       | BDL                     | 1,300                 | BDL            |                  |                    |
| S2F7                | 3,100       | BDL                     | 3,100                 | BDL            |                  |                    |
| S2F8                | 23,100      | 635                     | 23,800                | 90             |                  |                    |
| S2F9                | 3,100       | BDL                     | 3,100                 | BDL            | S2S9             | 20                 |
| S2F10               | 4,000       | BDL                     | 4,100                 | BDL            |                  |                    |
| S2F11               | 1,700       | 86                      | 1,800                 | 7              | S2S11            | 60                 |
| S2F12               | 8,200       | 495                     | 8,700                 | 32             |                  |                    |
| S2F13               | 25,100      | 1,713                   | 26,800                | 100            | S2S13            | 90.5               |
| S2F14               | 1,600       | BDL                     | 1,600                 | BDL            |                  |                    |
| S2F15               | 4,900       | 233                     | 5,200                 | 19             |                  |                    |
| S2F16               | 1,200       | BDL                     | 1,200                 | BDL            | S2S16            | 300                |
| S2F17               | 4,400       | 495                     | 4,900                 | 18             |                  |                    |
| S2F18               | 2,800       | BDL                     | 2,800                 | BDL            |                  |                    |
| S2F19               | 37,400      | 736                     | 38,100                | 140            | S2S19            | 80                 |
| S2F20c              | 600         | BDL                     | 600                   | BDL            |                  |                    |
| S2F21c              | 2,400       | 1,030                   | 3,400                 | 13             |                  |                    |
|                     |             |                         |                       |                | S2S25c           | 250                |
|                     |             |                         |                       |                | S2S28c           | 100                |
|                     |             |                         |                       |                | S2S30c           | 70                 |

 $^{1}$  c = control site sample.

BDL= Below TPH detection limit of 50  $\mu$ g/mL.

#### **Deposition Versus Exposure Time**

Three to five HMMWVs, each carrying two fog oil generators, participated in the exercise. About half of the time only one of the two fog oil generators was working on each HMMWV. During the exercise, the HMMWVs drove around the road track in a counterclockwise direction at varying speeds (Fig. 4). Because of windy conditions, a fog oil cloud covered the filter pads only when the fog oil generators were on the immediate upwind side of the sampling area. We set up an observation post at the north corner and estimated that the fog covered filter pads for between 15 and 20 seconds per vehicle pass. The counterclockwise travel direction appeared to result in a longer period of fog oil cloud coverage for the north corner filters than for the south corner filters because of the difference in time between deceleration and acceleration at the corners and the prevailing wind direction. The time of deceleration on the upwind side of the south corner was significantly shorter than the time of acceleration on the upwind side of the north corner. It is difficult to estimate the exposure times, however, because the aerosol source was in a constant state of motion, except for the time one HMMWV was parked near the north corner. The presumed longer exposure time for filters at the north corner site resulted in higher fog oil deposition than for the south corner site filters (Fig. 5, 6, and 7). The highest fog oil deposition (300 mg/m<sup>2</sup>) occurred on filter S2F4, which was immediately downwind of the location where a HMMWV had parked for about 10 minutes with its fog oil generator running while the driver examined the vehicle (Fig. 5). This parked vehicle event at the north corner added an additional 10 minutes of exposure to a narrow band defined by the line of filters S2F2-S2F4 (Fig. 5).

#### **Deposition Versus Distance from the Fog Oil Source**

In addition to the correlation of fog oil deposition with exposure time, there was also an apparent correlation between fog oil concentrations and distance from the fog oil generator source at the north corner site (Fig. 5 and 7). In the north corner, the highest fog oil concentrations are those closest to the upwind side of the road and concentrations decrease exponentially with distance from the road (Fig. 7). The south corner site does not show a similar correlation of fog oil magnitude with distance from the road. This may be a result of shorter exposure times caused by the rapid deceleration of the HMMWVs as they approached the south corner (Fig. 6).



Figure 7. Total petroleum hydrocarbon deposition concentration measured on filters as a function of distance from the fog oil aerosol source for event #1 (26 March 2001). N represents north corner filters and S represents south corner filters.

### 6 Fog Oil Event #2 (3 July 2001)

The 3 July 2001 summer fog oil exercise conducted at the Firebird Landing Zone in the Yukon Maneuver Area, Fort Wainwright, Alaska, was more extensive than the winter training event and the sampling program was more detailed. The Firebird Landing Zone runs northeast to southwest for 1.5 km at the top of a linear shaped hill. Fog was produced for a total of 77 minutes spread over three hours. Five HMMWVs, each carrying two fog oil generators, participated in the exercise, although not all ten generators were operating all the time. The HMMWVs started out in a static position (Fig. 8) and then began several mobile "racecourse" patterns adjacent to and across the airstrip to try to provide a continuous smog plume. Two of the tracks were across the airstrip, and the third track was located northwest of the airstrip (Fig. 8). A set of 0.035-m<sup>2</sup> round microfiber filters was deployed prior to the commencement of fogging, a second set was deployed 20 minutes into the fogging event, and a smaller third set was deployed 28 minutes into the event. Total exposure times were 77 minutes for the first set, 57 minutes for the second set, and 49 minutes for the third set. The generators used a total of 960 gallons (3633 L) of fog oil.

The fog oil sample arrays were laid out along the edges of the airstrip and among the vegetation about 15 m northeast from the edge of the airstrip downwind from the location of the vehicles. The sample arrays along the edges of the airstrip were placed flat on the ground. Four towers were also placed across the runway, with sample arrays placed perpendicularly to the ground at 1- and 2-m elevations (4–11, Fig. 8). The location of the collection pads was designed to maximize our ability to obtain consistent fog oil sample collection given the topography of the Firebird Landing Zone, the direction of prevailing winds, the locations of the fog oil aerosol generators, and the driving patterns of the drivers. Filter samples from locations downwind from the fog oil generators were collected at the conclusion of the training exercise (Fig. 8).



Figure 8. Site map for event #2 summer exercise (3 July 2001). Marker size is proportional to the total petroleum hydrocarbon concentration. The numbers are identification numbers for the filter samples in Table 3.

#### **Deposition Versus Distance from the Source and Exposure Time**

TPH deposition was nearly uniform over the training areas for the filters with exposure times of 77 and 49 minutes, with no discernible relationship between TPH concentration and distance from the source (Table 3 and Fig. 8, 9). However, TPH deposition for the filters exposed for 57 minutes was strongly related to distance (Fig. 9). If we interpret the deposition magnitude at S50 as an anomalous value, then the differences between the deposition for the three exposure times were insignificant. However, if the relatively high deposition measured at S50 is accurate and the trend of decreasing deposition with distance from the fogging source for the 57minute exposure is valid, then a complex set of conditions is acting that we do not understand.

| Somplo                 | Total fog oil  | Total fog oil | Somplo                | Total fog oil  | Total fog oil |
|------------------------|----------------|---------------|-----------------------|----------------|---------------|
| Sample<br>Exposure tin | on filter (µg) | (ing/in-)     | Sample<br>Exposure ti | on filter (μg) | (IIIg/III-)   |
|                        |                |               |                       | 170            | 5<br>5        |
| 1                      | 00             | 2             | 40                    | 165            | 5             |
| 5                      | 105            | 2             | 49<br>50              | 207            | <br>          |
| 5                      | 102            | 3             | 50                    | 152            | 9             |
| 6                      | 02             | 2             | 51                    | 192            | 4             |
| 1                      | 02             | 2             | 52                    |                |               |
| <u> </u>               | 70             | 3             | 55                    | BDL<br>62      |               |
| 9                      | 10             | 2             | 55                    | 106            | 2             |
| 11                     | 93<br>69       | 2             | 56                    | 122            | 3             |
| 12                     | 115            | 2             | 50                    | 122            | 2             |
| 14                     | 117            | 2             | 57                    | 90             | 5             |
| 16                     | 102            | 2             | 50                    | 214            | 0             |
| 10                     | 103            | 2             | Evpocuro ti           | no: 40 minuto  |               |
| 10                     | 90             | 3             |                       |                | 5             |
| 10                     |                |               | 59                    | 130            |               |
| 19                     | BDL            |               | 60                    | 95             | 3             |
| 20                     |                | 3             | 62                    | 120            | 2             |
| 21                     | 79             | 2             | 62                    | 120            | 4             |
| 22                     | 09             | 3             | 64                    | 101            | 3             |
| 23                     | 231            | 1             | 65                    | 07             | 3             |
| 24                     | 99             | 3             | 60                    | 97             | 3             |
| 25                     | 233            | 7             | 67                    | 129            |               |
| 20                     | 234            | 7             | 67                    | BDL            | BDL           |
| 27                     | 04             | 2             |                       |                |               |
| 28                     | 134            | 4             |                       |                |               |
| 29                     | 57             | 2             |                       |                |               |
| 30                     | 135            | 4             |                       |                |               |
| 31                     | 121            | 4             |                       |                |               |
| 32                     | 85             | 3             |                       |                |               |
| 33                     | 90             |               |                       |                |               |
| 34                     | BDL<br>02      |               |                       |                |               |
| 30                     | 03             | 2             |                       |                |               |
| 30                     |                |               |                       |                |               |
| 37                     | 152            |               |                       |                |               |
| 38                     | 152            | 4             |                       |                |               |
| 39                     | 93             | 3             |                       |                |               |
| 40                     | 115            | 22            |                       |                |               |
| 41                     | TT2            | 3             |                       |                |               |
| 42                     | C0<br>100      |               |                       |                |               |
| 43                     |                | BDL           |                       |                |               |
| 44                     | 104            | 3             |                       |                |               |
| 45                     | 64             | 2             |                       |                |               |
| 4/                     | 414            | 12            |                       |                |               |

Table 3. Total fog oil on filters (surface area  $0.035 \text{ m}^2$ ) for exposure times of 77, 56, and 49 minutes during event #2 (3 July 2001).

BDL= Below TPH detection limit of 50  $\mu$ g/mL.



Distance from the aerosol source (m)

Figure 9. Event #2 (3 July 2001) total petroleum hydrocarbon deposition as a function of distance from the center of the drive track, near the fogging source, for filters with exposure times of 77, 57, and 49 min.

Results from an analysis of variance (ANOVA) suggest that there was no statistical relationship between exposure time and TPH concentration. This is contrary to our expectation that fog oil aerosol deposition to the filters would increase with exposure time. It is possible that the different loadings over time were within the error of the areal TPH concentrations we calculated from our measurements. Perhaps a wider range of exposure times would yield a more robust trend. In addition, the inhomogeneity associated with TPH deposition during an outdoor test may be large enough to prevent the quantification of subtle differences in deposition.

#### **Relationship to Natural Vegetation**

Initial attempts to measure TPH deposition to natural vegetation were unsuccessful because techniques to differentiate between the chemical signal for the very low TPH concentrations present on the vegetation and the natural chemical signal of the vegetation were not adequate. As a result, we decided to use synthetic stalks of silk flowers and polypropylene leaves as a passive sampling device selected to represent the size and morphology of vegetation. The synthetic plants are ideal because they can be placed at varied orientations and distances from the fogging sources and their silk (flowers) and polypropylene (leaves) composition does not interfere with measurement of TPH concentrations by gas chromatography.

### 7 Fog Oil Event #3 (31 January 2002)

The 31 January 2002 winter fog oil exercise was also undertaken at the Firebird Landing Zone in the Yukon Maneuver Area, Fort Wainwright. The exercise started at 1342 at a temperature of -15°C and wind speeds of 0-3.5 m/s. The predominant wind direction was from the north-northeast. A snow pack roughly 1 m deep covered the sample site. Sampling media for this study included filter arrays on cardboard backing and synthetic silk flowers with polypropylene leaves. Ten sets of filter arrays and flowers were placed at 50-m intervals along a 300-m line downslope and downwind from four stationary fog oil generators. The generators were mounted on three HMMWVs separated 5 m apart from one another in the middle of the airstrip along a line trending northeast-southwest (Fig. 10). Additional glass fiber filters without flowers were placed before fogging commenced and 25 minutes after fogging began to increase the spatial coverage of samples. The filter boards were placed on top of the snowpack, while the synthetic plant stalks were planted 25 cm into the snow so that the leaves were even with the top of the snowpack.

The flowers and the first filter sets were exposed to fogging for 93 minutes, while a second filter set was exposed for 68 minutes. The middle HMMWV ran both of its generators continuously throughout the test, while the other two HMMWVs used only one of their generators at a time. The four generators, which ran nonstop throughout the exercise, used a total of 200 gallons (760 L) of fuel. Because of low air temperatures, the fuel mix in the winter test was 70:30 SGF2:diesel fuel to decrease viscosity.

#### **Deposition on Filters and Synthetic Leaves and Flowers**

Filter samples yielded TPH values ranging from 4.8 to 32.3 mg/m<sup>2</sup>, with an average TPH deposition for all 35 filters of 10.4 mg/m<sup>2</sup> (Table 4). Leaf sample TPH concentrations ranged from 4.3 to 35.7 mg/m<sup>2</sup>, with an average value of 14.1 mg/m<sup>2</sup>. Flower samples yielded TPH values ranging from 0.6 to 15.8 mg/m<sup>2</sup>, with an average TPH deposition of 7.3 mg/m<sup>2</sup>. Results from an analysis of variance for the two sample exposure times for filter samples show no statistical difference between TPH deposition on filters exposed for the two time intervals.



Figure 10. Filter distribution and total petroleum hydrocarbon concentration measured on filters, flowers, and leaves by sample location for winter fogging event #3 (31 January 2002).

|        | Exposure<br>time | Filter total<br>TPH | Leaf total<br>TPH | Flower total<br>TPH |
|--------|------------------|---------------------|-------------------|---------------------|
| Sample | (min)            | (mg/m²)             | (mg/m²)           | (mg/m²)             |
| 1      | 93               | 8                   |                   |                     |
| 2      | 68               | 9                   |                   |                     |
| 3      | 68               | 7                   |                   |                     |
| 4      | 93               | 6                   |                   |                     |
| 5      | 93               | 5                   |                   |                     |
| 6      | 93               | 7                   |                   |                     |
| 7      | 93               | 6                   |                   |                     |
| 8      | 93               | 5                   |                   |                     |
| 9      | 93               | 6                   |                   |                     |
| 10     | 93               | 10                  |                   |                     |
| 11     | 93               | 12                  |                   |                     |
| 12     | 93               | 10                  |                   |                     |
| 13     | 93               | 9                   |                   |                     |
| 14     | 68               | 12                  |                   |                     |
| 15     | 68               | 13                  |                   |                     |
| 16     | 68               | 10                  |                   |                     |
| 17     | 68               | 10                  |                   |                     |
| 18     | 68               | 10                  |                   |                     |
| 19     | 68               | 10                  |                   |                     |
| 21     | 68               | 5                   |                   |                     |
| 53     | 68               | 9                   |                   |                     |
| 54     | 93               | 10                  | 12                | 7                   |
| 55     | 93               | 9                   | 6                 | 4                   |
| 56     | 93               | 9                   |                   |                     |
| 57     | 93               | 14                  | 10                | 6                   |
| 58     | 93               | 11                  | 9                 | 11                  |
| 59     | 93               | 16                  | 28                | 16                  |
| 60     | 68               | 8                   |                   |                     |
| 61     | 68               | 12                  |                   |                     |
| 62     | 68               | 10                  |                   |                     |
| 63     | 93               | 12                  | 5                 | 1                   |
| 64     | 93               | 13                  | 16                | 2                   |
| 65     | 93               | 25                  | 14                | BDL                 |
| 66     | 93               | 16                  | 4                 | 13                  |
| 67     | 93               | 32                  | 36                | NS                  |

Table 4. Fog oil residues measured on sample media during event #3 (30 January 2001).

BDL= Below TPH detection limit of 50  $\mu$ g/mL

NS= no sample

The coefficient of determination (r<sup>2</sup>) between filter and leaf TPH concentrations was 0.49, suggesting little linear relationship between filter and leaf TPH concentrations. The coefficient of determination between filter and flower sample TPH concentrations was 0.06, while the coefficient of determination between flower and leaf TPH concentrations was 0.11. Taken in total, these results suggest that during our winter field test there was almost no correlation between TPH concentrations on the filter and leaf sample media and no correlation between these media and the flowers. Some of this lack of correlation could be related to the unique meteorological conditions occurring at the site during the winter field test. This is discussed in more detail below.

#### **Deposition Versus Distance from the Fog Oil Source**

During the fogging event, we observed the fog oil plumes leaving the generators and traveling down the airstrip, with the base of the plume remaining 1-2 m above the snow surface for roughly 150-200 m downwind of the fogging source. There, the bottom of the plume dropped in elevation to the top of the snowpack. The fog oil plume then rose slightly off the snow surface and traveled downwind another 50 m, again with the base of the plume remaining 1-2 m above the surface of the snowpack. Then the base of the plume dropped back to contact the snow surface again.

This "bouncing" evolution of the fog oil plume and its relationship to fog oil deposition rates on the snow surface are supported by results from the filter, flower, and leaf samples. Plots of the filter, flower, and leaf TPH deposition by sample location (Fig. 10, 11, and 12) show the highest TPH values in samples located approximately 120 m downwind of the fogging source. Furthermore, the results from filter samples indicate that the second highest TPH values are located 150–175 m downwind of the fogging source. These results support the visual observations of the movement of the fog oil plume over the snow surface.

Meteorological conditions present during this test (Fig. 13) probably included a cold-air boundary layer above the snow surface, which is common during cold winter days in interior Alaska. This prevented the warmer, lower-density fog oil air mass from contacting the top of the snow surface. Such boundary layers are common over snow as cold, dense air settles to the snow surface and radiational cooling under clear sky conditions further cools the snow surface. Future fogging events during inversion conditions could be designed to further investigate this phenomenon and to assess the efficacy of using fog oil as an obscurant during temperature inversions. Since the bouncing process raised the lower boundary of the fog oil plume up to 2 m above the ground surface, this limits the ability of fog oil to provide obscurance when metrorological conditions favor the development of an inversion.



Figure 11. Silk flower and polypropylene leaf distribution and total petroleum hydrocarbon concentration measured on flowers and leaves for event #3 (31 January 2002).



Distance from the aerosol source (m)

Figure 12. Total petroleum hydrocarbon concentration versus distance from the fog oil aerosol source for filters, flowers, and leaves after event #3 (31 January 2002).



Figure 13. Meteorological data for event #3 (31 January 2002). The arrows on the plot indicate when the exercise started, when filters were deployed, and when the exercise ended.

## 8 Fog Oil Event #4 (12 September 2002)

On 12 September 2002 we monitored fog oil emission and deposition at the Firebird Landing Zone from two stationary HMMWVs spaced 5 m apart (Fig. 14). Both HMMWVs were oriented to send fog oil aerosol in a southeasterly direction from two fog oil generators that were run on static mode for 110 minutes between 1232 and 1342. A total of 111 gallons (420 L) of SGF2 was used. This summer field test was undertaken during mild temperatures ranging from 10 to 15°C, gusting winds (up to 8.6 m/s, predominantly in a northwest to southeast direction heading sideways across the Firebird Landing Zone), and cloudy sky conditions.

Synthetic plants were placed in the ground adjacent to glass microfiber filter arrays at each of 20 sample locations in a grid roughly 60 m on a side (Fig. 15). A portable drill was used to excavate a small hole (0.5 cm diameter, 25 cm deep) in which the flower stems were placed. The samples ran perpendicularly to the long axis of the gravel pad, allowing 70 m of distance between the generators and the edge of the airstrip.

#### **Deposition to Filters and Synthetic Leaves and Flowers**

Total petroleum hydrocarbon deposition to filters during this test ranged from 2.4 to 330.5 mg/m<sup>2</sup>, with an average value of 48.4 mg/m<sup>2</sup>. Leaf TPH concentrations ranged from 0.9 to 437.0 mg/m<sup>2</sup>, with an average value of 77.1 mg/m<sup>2</sup>, while flower TPH concentrations ranged from 21.8 to 281.6 mg/m<sup>2</sup>, with an average value of 85.8 mg/m<sup>2</sup> (Table 5).

The coefficient of determination (r<sup>2</sup>) between filter and leaf TPH concentrations was 0.95, suggesting an extremely strong linear relationship between filter and leaf TPH concentrations. The coefficient of determination between filter and flower sample TPH concentrations was 0.57, while the coefficient of determination between flower and leaf TPH concentrations was 0.73. These results suggest that TPH concentrations measured on the three sample media are correlated, especially between the filters and polypropylene leaves.



East distance from the aerosol source (m)



Figure 14. Filter distribution and total petroleum hydrocarbon concentration measured on filters for event #4 (12 September 2002).



East distance from the aerosol source (m)



Figure 15. Silk flower and polypropylene leaf distribution and total petroleum hydrocarbon concentration measured on flowers and leaves for event #4 (12 September 2002).

|        | Distance to the    | Filter total             | Flower total | Leaf total TPH |
|--------|--------------------|--------------------------|--------------|----------------|
| Sample | aerosol source (m) | TPH (mg/m <sup>2</sup> ) | TPH (mg/m²)  | (mg/m²)        |
| 1      | 36                 | 8                        | 22           | 5              |
| 2      | 45                 | 15                       | 30           | 14             |
| 3      | 54                 | 21                       | 26           | 16             |
| 4      | 73                 | 22                       | 67           | 44             |
| 5      | 65                 | 18                       | 38           | 33             |
| 6      | 48                 | 32                       | 53           | 74             |
| 7      | 34                 | 23                       | 80           | 59             |
| 8      | 21                 | 34                       | 99           | 75             |
| 9      | 10                 | 160                      | 203          | 221            |
| 10     | 14                 | 153                      | 246          | 302            |
| 11     | 30                 | 46                       | 103          | 81             |
| 12     | 43                 | 35                       | 77           | 97             |
| 13     | 61                 | 28                       | 100          | 36             |
| 14     | 60                 | 12                       | 68           | 18             |
| 15     | 61                 | 9                        | 38           | 3              |
| 16     | 49                 | 7                        | 64           | 11             |
| 17     | 40                 | 5                        | 34           | BDL            |
| 18     | 32                 | 2                        | NS           | BDL            |
| 19     | 21                 | 8                        | 60           | 17             |
| 20     | 9                  | 331                      | 282          | 437            |

Table 5. Fog oil residues measured on sample media during event #4 (12September 2002). The exposure time for all samples was 110 minutes.

BDL= Below TPH detection limit of 50 μg/mL. NS= no sample

#### **Deposition Versus Distance from the Fog Oil Source**

Contour plots of the filter, flower, and leaf samples (Fig. 14 and 15) and a plot of TPH concentration versus distance from the aerosol source (Fig. 16) show a distinct trend of high values within 20 m of the fog oil generators decreasing rapidly to consistently low values more than 20 m away from the generators. TPH concentrations in all three sample media were below 100 mg/m<sup>2</sup> for all samples greater than 20 m from the aerosol source. These differences are most likely attributable to the proximity of the sample media to the generators and the fact that gusty winds precluded uniform deposition of fog oil as the plume moved farther away from the fogging source.

Throughout most of the test, the fog oil aerosol plume emanated from the source generators as a bulbous mass that thinned horizontally after traveling roughly 20 m from the source. Beyond 20 m from the aerosol source,

the plume traveled consistently along the gravel pad, with the bottom of the plume maintaining contact with the top of the gravel surface. Occasional wind gusts drove boundary layer turbulence that stirred the plume, generally in a vertical direction. During a gusting event, the aerosol plume would rise off the ground, swirling skyward, and the aerosol plume had minimal contact with the ground surface, generally traveling off the sampling area within seconds. As a consequence, these gusting events can be best described as periods of up to five seconds when there was minimal aerosol deposition to the sample array. Within seconds of cessation of a wind gust, the fog oil plume resumed its stable plume morphology.



Distance from the aerosol source (m)

Figure 16. Total petroleum hydrocarbon concentration measured on filters, silk flowers, and polypropylene leaves versus distance from the fog oil aerosol generators for event #4 (12 September 2002).

### **9** Evaporation Experiment

Indoor and outdoor experiments were performed to determine the relationship between air temperature and evaporation of fog oil and a fog oil-diesel fuel mixture. Two 300-mL high-density polyethylene pans of fog oil and two pans containing a 50:50 mixture of fog oil:diesel fuel were prepared for the evaporation tests. A pan of 100% fog oil and a pan of fog oil-diesel mix were placed in an exhaust hood at 20°C for 2016 hours (84 days). Laminar flow through the hood was held constant at 0.5 m/s. The second set of fog oil and fog oil-diesel mix was placed outdoors protected from the wind at air temperatures that remained below  $-35^{\circ}$ C for 264 hours (11 days). The mass of each pan of oil was measured repeatedly during the evaporation test.

The results (Fig. 17) indicate that evaporation rates of fog oil are highly temperature and wind dependent. After four days, the pure fog oil held at temperatures below  $-35^{\circ}$ C with no air flow had lost 0.2% of its original mass, while the fog oil kept at 20°C with a steady air flow had lost 0.5% of its original mass. After 11 days, the fog oil-diesel mix kept at temperatures below  $-35^{\circ}$ C with no air flow had lost 1% of its original mass, while the fog oil-diesel mix kept at 20°C with air flow had lost 20% of its original mass.

The fog oil evaporation tests yield three important results. First, the fog oil-diesel mix undergoes more rapid evaporation than the pure fog oil. This is likely attributable to the higher vapor pressure for diesel fuel (0.44 mm of mercury at 20°C) than for SGF2 (<0.007 mm of mercury at 20°C). Second, at 20°C the pure fog oil evaporates at twice the rate that it evaporates at  $-35^{\circ}$ C. Third, pure fog oil does not evaporate readily regardless of the temperature or air flow (wind) conditions. It is important to note that these tests were performed on a pool of stationary oil. Natural conditions, including soil and vegetation morphology, increased surface-area-to-volume ratios in fog oil aerosols deposited to natural surfaces, and constantly changing meteorological events should lead to a far greater evaporation rate of fog oil aerosols deposited on leaf and soil surfaces.



Figure 17. Results from the indoor (top) and outdoor (bottom) Standard Grade Fuel #2 (fog oil) evaporation tests.

### **10 Fog Oil Deposition to Urban Snow**

To assess the deposition of petroleum hydrocarbons by human activities in a populated area, eight snow core samples were taken from four locations along roadways in Fairbanks, Alaska, on 3 March 2002. The snow was collected to provide a reference for the TPH concentrations we measured during fog oil training. Snow samples consisted of cores of the entire snowpack collected in a SIPRE snow sampling tube (5.7 cm diameter). The surface area of snow represented by the core samples was 25.5 cm<sup>2</sup> (2.6 ×  $10^{-3}$  m<sup>2</sup>). Samples were selected from regions of undisturbed snow 5 m away from the road surface. All eight samples were gray to brown and contained layers of darker colored snow. These snow samples contained no vegetation.

The results from the snow samples are included as Table 6. The total mass of the measured oil in the snow was used to calculate the oil per unit area to be consistent with the filter and synthetic flower results reported as milligrams per square meter. TPH deposition in the nine samples taken at these sites ranged from 47.9 to 116.6 g/m<sup>2</sup>, while the average TPH deposition value from these samples was 74.7 g/m<sup>2</sup>. These values are over 450 times greater than the maximum TPC concentration measured in snow exposed to fog oil training and are 250 times greater than the values from filter samples taken during winter tests. As another reference, the lowest value of these nine urban snow samples is over 100 times greater than the highest concentration of any sample media measured during a fog oil exercise (polypropylene leaf sample #20 from event #4 had a TPH concentration of 0.4 g/m<sup>2</sup>).

| Sample | Туре   | Volume<br>(mL) | TPH<br>(µg) | Surface<br>area (m <sup>2</sup> ) | TPH<br>(g/m²) |
|--------|--------|----------------|-------------|-----------------------------------|---------------|
| 1      | Snow   | 96             | 1,980       | 0.00255                           | 75            |
| 2      | Snow   | 124            | 1,870       | 0.00255                           | 91            |
| 3      | Snow   | 128            | 1,860       | 0.00255                           | 93            |
| 4      | Snow   | 110            | 1,550       | 0.00255                           | 67            |
| 5      | Snow   | 120            | 1,250       | 0.00255                           | 59            |
| 7      | Snow   | 130            | 2,290       | 0.00255                           | 117           |
| 8      | Snow   | 128            | 970         | 0.00255                           | 49            |
| 9      | Snow   | 129            | 950         | 0.00255                           | 48            |
| Blank1 | Filter | 1              | BDL         | 0.0346                            | BDL           |
| Blank2 | Filter | 1              | BDL         | 0.0346                            | BDL           |

Table 6. Fairbanks snow samples collected on 26 March 2002.

BDL= Below TPH detection limit of 50  $\mu\text{g/mL}$ 

## **11 Conclusions**

#### Discussion

We collected fog oil aerosol on glass membrane fiber filters, polypropylene leaves, and silk flowers in an attempt to quantify aerosol deposition to these three sample media. The focused objective was to quantify total petroleum hydrocarbon (TPH) deposition to synthetic plant surfaces during a typical fog oil training exercise. Tests were conducted in winter and summer field conditions. Three important results emerged from this study: 1) there is a statistical relationship between flower, filter, and leaf TPH concentrations during the summer field test but not during the winter test, 2) meteorological conditions can greatly affect the migration of a fog oil plume, especially in the winter, and 3) the maximum total petroleum hydrocarbon concentration we measured during four fogging events is over 100 times lower than TPH concentrations present in snow along city roadways. These results are discussed in detail below.

First, our results show that glass membrane fiber filters, silk flowers, and polypropylene leaves yield similar TPH concentrations in summer field conditions (Fig. 18 bottom). In the summer test the polypropylene leaves yielded TPH concentrations 1.7 times that of filters, with good correlation ( $r^2 = 0.95$ , n = 19), while the silk flowers yielded TPH concentrations 1.6 times that of filters ( $r^2 = 0.73$ , n = 18). Polypropylene, silk, and SGF2 aerosol are all hydrophobic surfaces, while glass membrane fiber filters are not. As a consequence the elevated TPH concentrations measured on the polypropylene and silk surfaces may be due to the preferential sorbing of SGF2 aerosol to these surfaces. The lower correlation between flowers and filters may be attributable to the more intricate morphology of the flowers; the polypropylene leaves present a surface area that is more similar to the glass fiber filters than the silk flowers. However, both types of sample media appeared to collect and retain fog oil aerosol more conservatively than the fiber filters. The reason for this is unclear.

Unlike the summer test, there was little to no correlation in TPH concentrations measured on silk flowers, polypropylene leaves, and filters during winter field conditions (Fig. 18 top). In addition, the overall range of concentrations measured during the summer  $(0-300 \text{ mg/m}^2)$  was far





Figure 18. Silk flower and polypropylene leaf total petroleum hydrocarbon concentrations versus filter TPH concentrations for events #3 (31 January 2001) and #4 (12 September 2002). For event #3 there is minimal correlation in TPH concentrations between the filters, flowers, and leaves. For event #4 there is considerable correlation with flowers and leaves, yielding TPH concentrations that are 1.7 and 1.6 times that of the filters, respectively.

greater than that measured during the winter  $(8-35 \text{ mg/m}^2)$ . We believe the lower TPH concentrations measured during the winter test are related to a low level inversion present during this winter test.

Meteorological conditions likely play a large role in controlling the evolution of the fog oil plume and the subsequent deposition of fog oil to environmental media. The meteorological conditions during the summer test were not remarkable. As a consequence, the fog oil aerosol plume behaved as would be expected: the warm aerosol mass rose slightly following emission from the generator source. Over a distance of tens of meters, the aerosol particles cooled in the ambient air and slowly settled to the ground surface. This process occurred consistently throughout the test. The winter field test, however, was characterized by the presence of a strong temperature inversion, which we believe caused the anomalous deposition pattern and general lack of correlation between TPH concentrations on filter, flower, and leaf surfaces. TPH concentrations measured on filters, flowers, and leaves exposed during the winter test were highest at a distance of roughly 100 m from the source. This matches the visible evolution of the unique aerosol plume we witnessed. It is possible that there is an effect of cold temperatures on the adsorption of fog oil aerosol to the three sample media; however, we have no information to support this.

Third, maximum TPH concentrations measured in a range of sample media were less than a percent of what is represented by snow along city streets in Fairbanks, Alaska. This suggests that the loading of SGF#2 at a training area, even following multiple events, is substantially lower than the loading attributable to automobile emissions. This result also places the TPH concentrations we measured from environmental media in perspective with a common environmental occurrence.

#### **Recommendations for Designing Monitoring Programs**

The results from these experiments suggest that glass microfiber filters can be used to accurately represent leaf surfaces during summer field conditions. The concentrations measured on filters are generally 60% lower than those measured on polypropylene leaves and silk flowers but the filters are a good proxy for leaf and flower surfaces. The lower deposition to filters is most likely caused by the irregular morphology (more intricate surfaces) of the synthetic plants compared to that of the filters. The relationship between filters and synthetic plants is important in environmental monitoring investigations, especially where gas chromatographic techniques cannot discern plant oils secreted during natural processes from hydrocarbon aerosol contaminants like fog oil. This finding can be used to design sampling strategies where the deposition of fog oil aerosols (or other petroleum hydrocarbon-based aerosols) to vegetation can be accurately quantified. The TPH concentrations we measured on glass microfiber filters can be corrected (by a factor of roughly 1.6) to better estimate the commensurate deposition to leaf surfaces. Future expansion of this research could include comparing TPH deposition to bird feathers, conifer needles, or grasses to filters to assess the ability of filters to represent a wider range of environmental media. Additionally, future work could include deploying sample collectors at a range of heights above the ground surface to investigate the micrometeorological controls on SGF2 deposition.

## References

- Albers, P.H., and G.H. Heinz. 1983. FLIT-MLO and No. 2 fuel oil: Effects of aerosol applications to mallard eggs on hatchability and behavior of ducklings. *Environmental Research* 30: 381–388.
- Bergin, M.H., J.-L. Jaffrezo, C.I. Davidson, R. Caldow, and J.E. Dibb. 1994. Fluxes of chemical species to the Greenland ice sheet at Summit by fog and dry deposition. *Geochimica et Cosmochimica Acta* 58(15): 3207–3215.
- Bergin, M.H., J.-L. Jaffrezo, C.I. Davidson, J.E. Dibb, S.N. Pandis, R. Hillamo, W. Maenhaut, H.D. Kuhns, and T. Makela. 1995. The contribution of snow, fog and dry deposition to the summer fluxes of anions and cations at Summit, Greenland. *Journal of Geophysical Research* 100(D8): 16,275–16,288.
- Driver, C.J., M.W. Ligotke, J.L. Downs, B.L. Tiller, T.M. Poston, E.B. Moore, Jr., and D.A. Cataldo. 1993. *Environmental and health effects review for obscurant fog oil*. Report Number ERDEC-CR-071. Aberdeen Proving Ground, Maryland: U.S. Army Chemical and Biological Defense Agency, Edgewood Research, Development and Engineering Center.
- Driver, C.J. 2002. Effects of fog oil smoke on the hatchability and fledgling survival of the house sparrow (Passer domesticus), a nestling surrogate for the redcockaded woodpecker. Report 2002-12. Champaign, Illinois: U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory.
- Driver, C.J., M.W. Ligotke, H. Galloway-Gorby, G. Dennis, K.A. Reinbold, and H.E.
  Balbach. 2002. Acute inhalation toxicity of fog oil smoke in the red-winged blackbird, a size-specific inhalation surrogate for the red-cockaded woodpecker.
  ERDC/CERL Technical Report TR-02-6. Champaign, Illinois: U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory.
- Getz, L.L. 1996. *Preliminary assessment of the potential impact of fog oil smoke on selected threatened and endangered species*. Report 1996-01. Champaign, Illinois: U.S. Army Corps of Engineers, Construction Engineering Research Laboratory.
- Jaffrezo, J.L., C.I. Davidson, M. Legrand, and J.E. Dibb. 1994. Sulfate and MSA in the air and snow on the Greenland ice sheet. *Journal of Geophysical Research* 99: 1241– 1254.
- Johnson, W.B. 1983. Meteorological tracer techniques for parameterizing atmospheric dispersion. *Journal of Climate and Applied Meteorology* 22: 931–946.
- Lowry, P.H., D.A. Mazzerella, and M.E. Smith. 1951. Ground-level measurements of oilfog emitted from a hundred-meter chimney. *Meteorological Monographs* 1: 30– 35.

- Pacyna, J.M., A. Semb, and J.E. Hanssen. 1984. Emission and long-range transport of trace elements in Europe. *Tellus* 368: 163–178.
- Poston, T.M., R.M. Bean, D.R. Kalkwark, B.L. Thomas, M.L. Clark, and B.W. Killand. 1988. Photooxidation products of smoke generator fuel (SGF) No. 2 fog oil and toxicity to *Hyallela azteca*. *Environmental Toxicology and Chemistry* 7: 753– 762.
- Poston, T.M., K.M. McFadden, R.M. Bean, M.L. Clark, R.L. Thomas, B.W. Killand, L.A. Prohammer, and D.R. Kalkwarf. 1986. Acute toxicity of smoke screen materials to aquatic organisms, white phosphorus-felt, red phosphorus-butyl rubber, and SGF No. 2 fog oil. Report Number PNL-5584. Richland, Washington: Pacific Northwest Laboratory.

Régent Instruments Inc. 2002. WinRhizo, version 2002b. Quebec.

Shinn, J.H., L. Sharmer, M. Novo, and L.F. Katz (1987) *Smokes and obscurants: A guidebook of environmental assessment.* Unpublished report. Livermore, California: Lawrence Livermore National Laboratory.

# **Appendix A. Results of Laboratory Analyses**

Table A-1. Results of laboratory analysis of fog oil residues on filters from the fog oil sampling event on 26 March 2001 (Event #1).

| Sample   | Туре   | DRO1 <sup>1</sup><br>(µg/mL) | DRO2<br>(µg/mL) | RRO1 <sup>2</sup><br>(µg/mL) | RRO2<br>(µg/mL) | Mean<br>DRO<br>(µg/mL) | Mean<br>RRO<br>(µg/mL) | Fog oil<br>on filter<br>(µg) | Fog oil<br>on foil<br>(µg) | Total<br>fog oil<br>(µg) | Surf.<br>area<br>(m²) | Total<br>fog oil<br>(mg/m²) |
|----------|--------|------------------------------|-----------------|------------------------------|-----------------|------------------------|------------------------|------------------------------|----------------------------|--------------------------|-----------------------|-----------------------------|
| South co | orner  |                              |                 |                              |                 |                        |                        |                              |                            |                          |                       | _                           |
| S1F1     | filter | 1032                         | 1142            | 1617                         | 1674            | 1087                   | 1645                   | 2732                         | BDL                        | 2732                     | 0.27                  | 10                          |
| S1F2     | filter | 814                          | 811             | 706                          | 732             | 812                    | 719                    | 1531                         | BDL                        | 1531                     | 0.27                  | 6                           |
| S1F3     | filter | 845                          | 835             | 2112                         | 2120            | 840                    | 2116                   | 2956                         | BDL                        | 2956                     | 0.27                  | 11                          |
| S1F4     | filter | 669                          | 632             | 502                          | 592             | 651                    | 547                    | 1197                         | BDL                        | 1197                     | 0.27                  | 4                           |
| S1F5     | filter | 578                          | 623             | 485                          | 696             | 601                    | 590                    | 1191                         | BDL                        | 1191                     | 0.27                  | 4                           |
| S1F6     | filter | 568                          | 590             | 713                          | 772             | 579                    | 742                    | 1321                         | BDL                        | 1321                     | 0.27                  | 5                           |
| S1F7     | filter | 530                          | 476             | 740                          | 675             | 503                    | 707                    | 1210                         | BDL                        | 1210                     | 0.27                  | 5                           |
| S1F8     | filter | 242                          | 239             | 577                          | 608             | 240                    | 593                    | 833                          | BDL                        | 833                      | 0.27                  | 3                           |
| S1F9     | filter | 279                          | 189             | 385                          | 411             | 234                    | 398                    | 632                          | BDL                        | 632                      | 0.27                  | 2                           |
| S1F10    | filter | 447                          | 459             | 746                          | 876             | 453                    | 811                    | 1264                         | BDL                        | 1264                     | 0.27                  | 5                           |
| S1F11    | filter | 437                          | 494             | 707                          | 786             | 466                    | 747                    | 1212                         | BDL                        | 1212                     | 0.27                  | 5                           |
| S1F12    | filter | 596                          | 579             | 1622                         | 1872            | 587                    | 1747                   | 2334                         | BDL                        | 2334                     | 0.27                  | 9                           |
| S1F13    | filter | 294                          | 291             | 482                          | 536             | 292                    | 509                    | 802                          | BDL                        | 802                      | 0.27                  | 3                           |
| S1F14    | filter | 410                          | 405             | 987                          | 1056            | 407                    | 1021                   | 1428                         | 51                         | 1479                     | 0.27                  | 6                           |
| S1F15    | filter | 311                          | 352             | 485                          | 562             | 332                    | 523                    | 855                          | BDL                        | 855                      | 0.27                  | 3                           |
| S1F16    | filter | 350                          | 321             | 636                          | 604             | 335                    | 620                    | 955                          | BDL                        | 955                      | 0.27                  | 4                           |
| S1F17    | filter | 433                          | 370             | 535                          | 597             | 402                    | 566                    | 967                          | 76                         | 1043                     | 0.27                  | 4                           |
| S1F18    | filter | 277                          | 323             | 456                          | 629             | 300                    | 543                    | 843                          | BDL                        | 843                      | 0.27                  | 3                           |
| S1F19    | filter | 1357                         |                 | 1523                         |                 | 678                    | 762                    | 1440                         | 445                        | 1884                     | 0.27                  | 7                           |
| North co | orner  |                              |                 |                              |                 |                        |                        |                              |                            |                          |                       |                             |
| S2F1     | filter | 2697                         | 2738            | 3182                         | 3395            | 2717                   | 3288                   | 6006                         | BDL                        | 6006                     | 0.27                  | 22                          |
| S2F2     | filter | 2163                         | 2247            | 2724                         | 2875            | 2205                   | 2800                   | 5005                         | 301                        | 5306                     | 0.27                  | 20                          |
| S2F3     | filter | 999                          | 939             | 1393                         | 1406            | 969                    | 1399                   | 2368                         | 229                        | 2597                     | 0.27                  | 10                          |
| S2F4     | filter | 51646                        | 51606           | 21900                        | 22467           | 51626                  | 22183                  | 73809                        | 8041                       | 81850                    | 0.27                  | 300                         |
| S2F5     | filter | 2592                         | 2459            | 11894                        | 11597           | 2525                   | 11745                  | 14270                        | 758                        | 15028                    | 0.27                  | 60                          |
| S2F6     | filter | 489                          | 548             | 769                          | 842             | 519                    | 806                    | 1324                         | BDL                        | 1324                     | 0.27                  | 5                           |
| S2F7     | filter | 1700                         | 1725            | 1420                         | 1435            | 1713                   | 1427                   | 3140                         | BDL                        | 3140                     | 0.27                  | 12                          |
| S2F8     | filter | 15250                        | 15343           | 7880                         | 7826            | 15296                  | 7853                   | 23149                        | 635                        | 23784                    | 0.27                  | 90                          |
| S2F9     | filter | 1275                         | 1256            | 1846                         | 1824            | 1266                   | 1835                   | 3101                         | BDL                        | 3101                     | 0.27                  | 12                          |
| S2F10    | filter | 1844                         | 1764            | 2269                         | 2211            | 1804                   | 2240                   | 4044                         | BDL                        | 4044                     | 0.27                  | 15                          |

| Sample | Туре   | DRO1 <sup>1</sup><br>(µg/mL) | DRO2<br>(µg/mL) | RRO1 <sup>2</sup><br>(µg/mL) | RRO2<br>(µg/mL) | Mean<br>DRO<br>(µg/mL) | Mean<br>RRO<br>(µg/mL) | Fog oil<br>on filter<br>(µg) | Fog oil<br>on foil<br>(µg) | Total<br>fog oil<br>(µg) | Surf.<br>area<br>(m <sup>2</sup> ) | Total<br>fog oil<br>(mg/m²) |
|--------|--------|------------------------------|-----------------|------------------------------|-----------------|------------------------|------------------------|------------------------------|----------------------------|--------------------------|------------------------------------|-----------------------------|
| S2F11  | filter | 758                          | 760             | 868                          | 956             | 759                    | 912                    | 1671                         | 86                         | 1757                     | 0.27                               | 7                           |
| S2F12  | filter | 4948                         | 4901            | 3425                         | 3055            | 4924                   | 3240                   | 8164                         | 495                        | 8659                     | 0.27                               | 32                          |
| S2F13  | filter | 17489                        | 17303           | 7380                         | 7997            | 17396                  | 7688                   | 25084                        | 1713                       | 26797                    | 0.27                               | 99                          |
| S2F14  | filter | 606                          | 627             | 926                          | 981             | 616                    | 954                    | 1570                         | BDL                        | 1570                     | 0.27                               | 6                           |
| S2F15  | filter | 2979                         | 2480            | 2375                         | 2038            | 2729                   | 2207                   | 4936                         | 233                        | 5169                     | 0.27                               | 19                          |
| S2F16  | filter | 574                          | 557             | 584                          | 631             | 565                    | 607                    | 1173                         | BDL                        | 1173                     | 0.27                               | 4                           |
| S2F17  | filter | 2167                         | 2279            | 2067                         | 2281            | 2223                   | 2174                   | 4397                         | 495                        | 4892                     | 0.27                               | 18                          |
| S2F18  | filter | 1470                         | 1633            | 1152                         | 1432            | 1551                   | 1292                   | 2843                         | BDL                        | 2843                     | 0.27                               | 11                          |
| S2F19  | filter | 25896                        | 26165           | 11128                        | 11573           | 26031                  | 11351                  | 37381                        | 736                        | 38117                    | 0.27                               | 141                         |
| S2F20  | filter | 117                          | 148             | 440                          | 493             | 133                    | 466                    | 599                          | BDL                        | 599                      | 0.27                               | 2                           |
| S2F21  | filter | 291                          | 246             | 2283                         | 1993            | 268                    | 2138                   | 2406                         | 1030                       | 3436                     | 0.27                               | 13                          |

Table A-1 (cont.).

<sup>1</sup>DR01=Diesel Range Organics concentration measurement one.

<sup>2</sup>RR01=Residual Range Organics concentration measurement one.

BDL=Below Detection level of 50 µg.

Table A-2. Results of laboratory analysis of fog oil residues on snow from the north corner site following the fog oil sampling event on 26 March 2001 (Event #1). The first eight samples correspond to filters in the north corner; the last three samples are control samples taken upwind.

| Sample | Туре | DRO1<br>(µg/mL) | DRO2<br>(µg/mL) | RRO1<br>(µg/mL) | RRO2<br>(µg/mL) | Mean DRO<br>(µg/mL) | Mean RRO<br>(µg/mL) | TPH in snow<br>(mg/m²) |
|--------|------|-----------------|-----------------|-----------------|-----------------|---------------------|---------------------|------------------------|
| 1      | snow | 69              | 75              | 85              | 65              | 72                  | 75                  | 147                    |
| 4      | snow | 0               | 3               | 18              | 1               | 1.5                 | 10                  | 9                      |
| 5      | snow | 2               | BDL             | 40              | 42              | 1                   | 41                  | 42                     |
| 9      | snow | BDL             | BDL             | 20              | 22              | BDL                 | 21                  | 19                     |
| 11     | snow | BDL             | BDL             | 81              | 58              | BDL                 | 70                  | 67                     |
| 13     | snow | 20              | 12              | 88              | 53              | 16                  | 71                  | 87                     |
| 16     | snow | 45              | 19              | 272             | 260             | 32                  | 266                 | 298                    |
| 19     | snow | 1               | BDL             | 81              | 89              | 1                   | 85                  | 84                     |
| 25     | snow | 31              | 4               | 270             | 190             | 18                  | 230                 | 248                    |
| 28     | snow | 2               | 4               | 142             | 61              | 3                   | 102                 | 105                    |
| 30     | snow | 1               | BDL             | 99              | 55              | 1                   | 77                  | 77                     |

BDL=Below Detection level of 50 µg/mL.

|        |        | Exposure   | DR01    | DR02    | RR01    | RRO2    | Mean<br>DRO | Mean<br>RRO | TPH on      | Surface   | TPH by<br>area       |
|--------|--------|------------|---------|---------|---------|---------|-------------|-------------|-------------|-----------|----------------------|
| Sample | Туре   | time (min) | (µg/mL) | (µg/mL) | (µg/mL) | (µg/mL) | (µg/mL)     | (µg/mL)     | filter (µg) | area (m²) | (mg/m <sup>2</sup> ) |
| 1      | filter | 77         | 29      | 45      | 37      | 25      | 37          | 31          | 68          | 0.035     | 2                    |
| 4      | filter | 77         | 77      | 37      | 26      | 23      | 57          | 25          | 82          | 0.035     | 2                    |
| 5      | filter | 77         | 75      | 65      | 33      | 36      | 70          | 35          | 105         | 0.035     | 3                    |
| 6      | filter | 77         | 35      | 37      | 38      | 54      | 36          | 46          | 82          | 0.035     | 2                    |
| 7      | filter | 77         | 77      | 54      | 8       | 24      | 66          | 16          | 82          | 0.035     | 2                    |
| 8      | filter | 77         | 62      | 47      | 61      | 63      | 55          | 62          | 117         | 0.035     | 3                    |
| 9      | filter | 77         | 39      | 29      | 43      | 44      | 34          | 44          | 78          | 0.035     | 2                    |
| 10     | filter | 77         | 36      | 62      | 37      | 50      | 49          | 44          | 93          | 0.035     | 3                    |
| 11     | filter | 77         | 37      | 24      | 39      | 38      | 31          | 39          | 69          | 0.035     | 2                    |
| 12     | filter | 77         | 51      | 24      | 79      | 76      | 38          | 78          | 115         | 0.035     | 3                    |
| 14     | filter | 77         | 80      | 56      | 11      | 87      | 68          | 49          | 117         | 0.035     | 3                    |
| 16     | filter | 77         | 29      | 15      | 91      | 71      | 22          | 81          | 103         | 0.035     | 3                    |
| 17     | filter | 77         | 37      | 34      | 61      | 59      | 36          | 60          | 96          | 0.035     | 3                    |
| 18     | filter | 77         | 23      | 8       | 39      | 49      | 16          | 44          | 60          | 0.035     | 2                    |
| 19     | filter | 77         | 33      | 12      | 8       | 29      | 23          | 19          | BDL         | 0.035     | BDL                  |
| 20     | filter | 77         | 11      | 20      | 90      | 56      | 16          | 73          | 89          | 0.035     | 3                    |
| 21     | filter | 77         | 54      | 64      | 30      | 9       | 59          | 20          | 79          | 0.035     | 2                    |
| 22     | filter | 77         | 36      | 22      | 54      | 65      | 29          | 60          | 89          | 0.035     | 3                    |
| 23     | filter | 77         | 61      | 51      | 194     | 155     | 56          | 175         | 231         | 0.035     | 7                    |
| 24     | filter | 77         | 65      | 71      | 44      | 18      | 68          | 31          | 99          | 0.035     | 3                    |
| 25     | filter | 77         | 33      | 26      | 201     | 205     | 30          | 203         | 233         | 0.035     | 7                    |
| 26     | filter | 77         | 95      | 98      | 140     | 135     | 97          | 138         | 234         | 0.035     | 7                    |
| 27     | filter | 77         | 27      | 30      | 40      | 30      | 29          | 35          | 64          | 0.035     | 2                    |
| 28     | filter | 77         | 80      | 118     | 32      | 37      | 99          | 35          | 134         | 0.035     | 4                    |
| 29     | filter | 77         | 16      | 23      | 38      | 36      | 20          | 37          | 57          | 0.035     | 2                    |
| 30     | filter | 77         | 58      | 27      | 97      | 87      | 43          | 92          | 135         | 0.035     | 4                    |
| 31     | filter | 77         | 9       | 39      | 100     | 94      | 24          | 97          | 121         | 0.035     | 4                    |
| 32     | filter | 77         | 25      | 40      | 50      | 55      | 33          | 53          | 85          | 0.035     | 3                    |
| 33     | filter | 77         | 77      | 67      | 16      | 20      | 72          | 18          | 90          | 0.035     | 3                    |
| 34     | filter | 77         | 21      | 19      | 26      | 19      | 20          | 23          | BDL         | 0.035     | BDL                  |
| 35     | filter | 77         | 6       | 2       | 72      | 85      | 4           | 79          | 83          | 0.035     | 2                    |
| 36     | filter | 77         | 124     | BDL     | 48      | BDL     | 62          | 24          | 86          | 0.035     | 3                    |
| 37     | filter | 77         | 44      | 27      | 18      | 4       | 36          | 11          | BDL         | 0.035     | BDL                  |
| 38     | filter | 77         | 68      | 86      | 60      | 89      | 77          | 75          | 152         | 0.035     | 4                    |

Table A-3. Results of laboratory analysis of fog oil residues from the fog oil sampling event on 3 July 2001 (Event #2).

| Table A-3 | (cont.). |
|-----------|----------|
|-----------|----------|

| Sample | Туре   | Exposure<br>time (min) | DRO1<br>(µg/mL) | DRO2<br>(µg/mL) | RRO1<br>(µg/mL) | RRO2<br>(µg/mL) | Mean<br>DRO<br>(µg/mL) | Mean<br>RRO<br>(µg/mL) | TPH on<br>filter (μg) | Surface<br>area (m²) | TPH by<br>area<br>(mg/m²) |
|--------|--------|------------------------|-----------------|-----------------|-----------------|-----------------|------------------------|------------------------|-----------------------|----------------------|---------------------------|
| 39     | filter | 77                     | 78              | 91              | 5               | 11              | 85                     | 8                      | 93                    | 0.035                | 3                         |
| 40     | filter | 77                     | 675             | 640             | 104             | 132             | 658                    | 118                    | 776                   | 0.035                | 22                        |
| 41     | filter | 77                     | 90              | 100             | 25              | 15              | 95                     | 20                     | 115                   | 0.035                | 3                         |
| 42     | filter | 77                     | 105             | N/A             | 24              | N/A             | 53                     | 12                     | 65                    | 0.035                | 2                         |
| 43     | filter | 77                     | 41              | 39              | BDL             | BDL             | 40                     | BDL                    | BDL                   | 0.035                | BDL                       |
| 44     | filter | 77                     | 49              | 121             | 17              | 21              | 85                     | 19                     | 104                   | 0.035                | 3                         |
| 45     | filter | 77                     | 51              | 10              | 21              | 46              | 31                     | 34                     | 64                    | 0.035                | 2                         |
| 47     | filter | 77                     | 163             | 117             | 249             | 298             | 140                    | 274                    | 414                   | 0.035                | 12                        |
| 48     | filter | 57                     | 94              | 73              | 112             | 77              | 84                     | 95                     | 178                   | 0.035                | 5                         |
| 49     | filter | 57                     | 57              | 72              | 83              | 118             | 65                     | 101                    | 165                   | 0.035                | 5                         |
| 50     | filter | 57                     | 14              | 34              | 294             | 271             | 24                     | 283                    | 307                   | 0.035                | 9                         |
| 51     | filter | 57                     | 39              | 28              | 118             | 119             | 34                     | 119                    | 152                   | 0.035                | 4                         |
| 52     | filter | 57                     | 123             | 127             | 59              | 59              | 125                    | 59                     | 184                   | 0.035                | 5                         |
| 53     | filter | 57                     | 16              | 17              | 25              | 15              | 17                     | 20                     | BDL                   | 0.035                | BDL                       |
| 54     | filter | 57                     | 31              | 26              | 27              | 40              | 29                     | 34                     | 62                    | 0.035                | 2                         |
| 55     | filter | 57                     | 38              | 30              | 58              | 85              | 34                     | 72                     | 106                   | 0.035                | 3                         |
| 56     | filter | 57                     | 30              | 16              | 100             | 98              | 23                     | 99                     | 122                   | 0.035                | 4                         |
| 57     | filter | 57                     | 33              | 52              | 34              | 60              | 43                     | 47                     | 90                    | 0.035                | 3                         |
| 58     | filter | 57                     | 98              | 120             | 93              | 116             | 109                    | 105                    | 214                   | 0.035                | 6                         |
| 59     | filter | 49                     | 161             | 123             | 10              | 22              | 142                    | 16                     | 158                   | 0.035                | 5                         |
| 60     | filter | 49                     | 42              | 48              | 50              | 50              | 45                     | 50                     | 95                    | 0.035                | 3                         |
| 61     | filter | 49                     | 37              | 35              | 31              | 14              | 36                     | 23                     | 59                    | 0.035                | 2                         |
| 62     | filter | 49                     | 51              | 45              | 69              | 75              | 48                     | 72                     | 120                   | 0.035                | 4                         |
| 63     | filter | 49                     | 36              | 48              | 71              | 59              | 42                     | 65                     | 107                   | 0.035                | 3                         |
| 64     | filter | 49                     | 66              | 56              | 19              | 31              | 61                     | 25                     | 86                    | 0.035                | 3                         |
| 65     | filter | 49                     | 66              | 58              | 39              | 30              | 62                     | 35                     | 97                    | 0.035                | 3                         |
| 66     | filter | 49                     | 92              | 68              | 17              | 81              | 80                     | 49                     | 129                   | 0.035                | 4                         |
| 67     | filter | 49                     | 40              | 20              | 10              | 7               | 30                     | 9                      | BDL                   | 0.035                | BDL                       |

Table A-4. Results of laboratory analysis of fog oil residues on filters from the fog oil sampling event on 31 January 2002 (Event #3).

|        |        | Exposure   | DR01    | DR02    | RR01    | RR02    | Mean<br>DRO | Mean<br>RRO | TPH on      | Surface   | TPH by               |
|--------|--------|------------|---------|---------|---------|---------|-------------|-------------|-------------|-----------|----------------------|
| Sample | Туре   | time (min) | (µg/mL) | (µg/mL) | (µg/mL) | (μg/mL) | (µg/mL)     | (µg/mL)     | filter (µg) | area (m²) | (mg/m <sup>2</sup> ) |
| 1      | filter | 93         | 263     | 233     | 50      | 15      | 248         | 33          | 281         | 0.035     | 8                    |
| 2      | filter | 68         | 261     | 261     | 33      | 34      | 261         | 34          | 295         | 0.035     | 9                    |
| 3      | filter | 68         | 198     | 210     | 20      | 23      | 204         | 22          | 226         | 0.035     | 7                    |
| 4      | filter | 93         | 197     | 186     | 38      | 22      | 192         | 30          | 222         | 0.035     | 6                    |
| 5      | filter | 93         | 159     | 155     | 27      | 11      | 157         | 19          | 176         | 0.035     | 5                    |
| 6      | filter | 93         | 230     | 219     | 6       | 14      | 225         | 10          | 235         | 0.035     | 7                    |
| 7      | filter | 93         | 178     | 197     | 32      | 3       | 188         | 18          | 205         | 0.035     | 6                    |
| 8      | filter | 93         | 156     | 159     | 28      | 27      | 158         | 28          | 185         | 0.035     | 5                    |
| 9      | filter | 93         | 130     | 168     | 81      | 51      | 149         | 66          | 215         | 0.035     | 6                    |
| 10     | filter | 93         | 317     | 327     | 35      | 35      | 322         | 35          | 357         | 0.035     | 10                   |
| 11     | filter | 93         | 375     | 411     | 41      | 24      | 393         | 33          | 426         | 0.035     | 12                   |
| 12     | filter | 93         | 288     | 290     | 36      | 48      | 289         | 42          | 331         | 0.035     | 10                   |
| 13     | filter | 93         | 294     | 271     | 7       | 57      | 283         | 32          | 315         | 0.035     | 9                    |
| 14     | filter | 68         | 391     | 395     | 22      | 5       | 393         | 14          | 407         | 0.035     | 12                   |
| 15     | filter | 68         | 411     | 427     | 31      | 31      | 419         | 31          | 450         | 0.035     | 13                   |
| 16     | filter | 68         | 322     | 319     | 24      | 47      | 321         | 36          | 356         | 0.035     | 10                   |
| 17     | filter | 68         | 331     | 321     | 29      | 36      | 326         | 33          | 359         | 0.035     | 10                   |
| 18     | filter | 68         | 286     | 315     | 41      | 42      | 301         | 42          | 342         | 0.035     | 10                   |
| 19     | filter | 68         | 303     | 306     | 24      | 23      | 305         | 24          | 328         | 0.035     | 10                   |
| 21     | filter | 68         | 137     | 137     | 30      | 29      | 137         | 30          | 167         | 0.035     | 5                    |
| 53     | filter | 68         | 252     | 283     | 48      | 32      | 268         | 40          | 308         | 0.035     | 9                    |
| 54     | filter | 93         | 258     | 238     | 104     | 63      | 248         | 84          | 332         | 0.035     | 10                   |
| 55     | filter | 93         | 255     | 281     | 58      | 49      | 268         | 54          | 322         | 0.035     | 9                    |
| 56     | filter | 93         | 264     | 277     | 34      | 41      | 271         | 38          | 308         | 0.035     | 9                    |
| 57     | filter | 93         | 432     | 416     | 26      | 62      | 424         | 44          | 468         | 0.035     | 14                   |
| 58     | filter | 93         | 343     | 345     | 39      | 38      | 344         | 39          | 383         | 0.035     | 11                   |
| 59     | filter | 93         | 480     | 458     | 89      | 74      | 469         | 82          | 551         | 0.035     | 16                   |
| 60     | filter | 68         | 241     | 230     | 37      | 68      | 236         | 53          | 288         | 0.035     | 8                    |
| 61     | filter | 68         | 344     | 362     | 25      | 68      | 353         | 47          | 400         | 0.035     | 12                   |
| 62     | filter | 68         | 325     | 311     | 31      | 37      | 318         | 34          | 352         | 0.035     | 10                   |
| 63     | filter | 93         | 357     | 369     | 58      | 44      | 363         | 51          | 414         | 0.035     | 12                   |
| 64     | filter | 93         | 415     | 453     | 21      | 12      | 434         | 17          | 451         | 0.035     | 13                   |
| 65     | filter | 93         | 848     | 823     | 21      | 43      | 836         | 32          | 868         | 0.035     | 25                   |
| 66     | filter | 93         | 471     | 465     | 94      | 78      | 468         | 86          | 554         | 0.035     | 16                   |
| 67     | filter | 93         | 1055    | 1099    | 53      | 28      | 1077        | 41          | 1118        | 0.035     | 32                   |
| TB2    | filter | 93         | 9       | 7       | 18      | 13      | 8           | 16          | BDL         | 0.035     | BDL                  |
| TB4    | filter | 93         | 8       | 6       | 10      | 17      | 7           | 14          | BDL         | 0.035     | BDL                  |

| Somelo | Turne   | Exposure<br>time | DR01      | DRO2      | RRO1      | RRO2      | Mean<br>DRO | Mean<br>RRO | TPH on     | Surface     | TPH by<br>area |
|--------|---------|------------------|-----------|-----------|-----------|-----------|-------------|-------------|------------|-------------|----------------|
| Sample | Type    | (11111)          | (µg/111L) | (µg/IIIL) | (µg/IIIL) | (µg/111L) | (µg/mL)     | (µg/mL)     | niter (µg) | area (III-) | (ing/in-)      |
| 54     | leaves  | 93               | 562       | 551       | 184       | 243       | 557         | 214         | 770        | 0.063       | 12             |
| 55     | leaves  | 93               | 330       | 344       | 39        | 42        | 337         | 41          | 378        | 0.063       | 6              |
| 57     | leaves  | 93               | 580       | 534       | 63        | 53        | 557         | 58          | 615        | 0.063       | 10             |
| 58     | leaves  | 93               | 454       | 489       | 57        | 77        | 472         | 67          | 539        | 0.063       | 9              |
| 59     | leaves  | 93               | 1664      | 1650      | 99        | 117       | 1657        | 108         | 1765       | 0.063       | 28             |
| 63     | leaves  | 93               | 218       | 300       | 46        | 90        | 259         | 68          | 327        | 0.063       | 5              |
| 64     | leaves  | 93               | 614       | 606       | 391       | 411       | 610         | 401         | 1011       | 0.063       | 16             |
| 65     | leaves  | 93               | 313       | 373       | 500       | 590       | 343         | 545         | 888        | 0.063       | 14             |
| 66     | leaves  | 93               | 123       | 134       | 148       | 132       | 129         | 140         | 269        | 0.063       | 4              |
| 67     | leaves  | 93               | 1443      | 1478      | 769       | 784       | 1461        | 777         | 2237       | 0.063       | 36             |
| 54     | flowers | 93               | 131       | 159       | 286       | 274       | 145         | 280         | 425        | 0.06        | 7              |
| 55     | flowers | 93               | 217       | 189       | 42        | 44        | 203         | 43          | 246        | 0.061       | 4              |
| 57     | flowers | 93               | 281       | 341       | 52        | 21        | 311         | 37          | 348        | 0.056       | 6              |
| 58     | flowers | 93               | 449       | 453       | 188       | 198       | 451         | 193         | 644        | 0.061       | 11             |
| 59     | flowers | 93               | 899       | 894       | 97        | 72        | 897         | 85          | 981        | 0.062       | 16             |
| 63     | flowers | 93               | 32        | 10        | 40        | 33        | 21          | 37          | 58         | 0.063       | 1              |
| 64     | flowers | 93               | 22        | 8         | 84        | 90        | 15          | 87          | 102        | 0.065       | 2              |
| 65     | flowers | 93               | 40        | 30        | 2         | 9         | 35          | 6           | BDL        | 0.068       | BDL            |
| 66     | flowers | 93               | 182       | 255       | 577       | 611       | 219         | 594         | 813        | 0.065       | 13             |

Table A-5. Results of laboratory analysis of fog oil residues on leaves and flowers from the fog oil sampling event on 31 January 2002 (Event #3).

Table A-6. Results of laboratory analysis of fog oil residues on filters from the fog oil sampling event on 12 September 2002 (Event #4).

| Sample | Туре   | Exposure<br>time (min) | DRO1<br>(µg/mL) | DRO2<br>(µg/mL) | RRO1<br>(µg/mL) | RRO2<br>(µg/mL) | Mean<br>DRO<br>(µg/mL) | Mean<br>RRO<br>(µg/mL) | TPH on<br>filter (µg) | Surface<br>area (m²) | TPH by<br>area<br>(mg/m²) |
|--------|--------|------------------------|-----------------|-----------------|-----------------|-----------------|------------------------|------------------------|-----------------------|----------------------|---------------------------|
| 1      | filter | 110                    | 79              | 112             | 196             | 191             | 96                     | 194                    | 289                   | 0.035                | 8                         |
| 2      | filter | 110                    | 264             | 169             | 353             | 141             | 217                    | 247                    | 464                   | 0.031                | 15                        |
| 3      | filter | 110                    | 387             | 382             | 384             | 270             | 385                    | 327                    | 712                   | 0.035                | 21                        |
| 4      | filter | 110                    | 528             | 492             | 246             | 261             | 510                    | 254                    | 764                   | 0.035                | 22                        |
| 5      | filter | 110                    | 424             | 472             | 163             | 188             | 448                    | 176                    | 624                   | 0.035                | 18                        |
| 6      | filter | 110                    | 863             | 785             | 381             | 212             | 824                    | 297                    | 1121                  | 0.035                | 32                        |
| 7      | filter | 110                    | 361             | 462             | 254             | 528             | 412                    | 391                    | 803                   | 0.035                | 23                        |
| 8      | filter | 110                    | 1014            | 974             | 180             | 206             | 994                    | 193                    | 1187                  | 0.035                | 34                        |
| 9      | filter | 110                    | 4227            | 3899            | 1801            | 1130            | 4063                   | 1466                   | 5529                  | 0.035                | 160                       |
| 10     | filter | 110                    | 4535            | 4571            | 486             | 964             | 4553                   | 725                    | 5278                  | 0.035                | 153                       |
| 11     | filter | 110                    | 1366            | 1379            | 246             | 195             | 1373                   | 221                    | 1593                  | 0.035                | 46                        |
| 12     | filter | 110                    | 991             | 966             | 271             | 180             | 979                    | 226                    | 1204                  | 0.035                | 35                        |
| 13     | filter | 110                    | 649             | 549             | 570             | 167             | 599                    | 369                    | 968                   | 0.035                | 28                        |
| 14     | filter | 110                    | 365             | 336             | 97              | 33              | 351                    | 65                     | 416                   | 0.035                | 12                        |
| 15     | filter | 110                    | 157             | 109             | 231             | 110             | 133                    | 171                    | 304                   | 0.035                | 9                         |
| 16     | filter | 110                    | 232             | 306             | BDL             | BDL             | 269                    | BDL                    | 246                   | 0.035                | 7                         |
| 17     | filter | 110                    | 98              | 97              | 51              | 84              | 98                     | 68                     | 165                   | 0.035                | 5                         |
| 18     | filter | 110                    | 220             | 198             | BDL             | BDL             | 209                    | BDL                    | 82                    | 0.035                | 2                         |
| 19     | filter | 110                    | 134             | 143             | 73              | 229             | 139                    | 151                    | 290                   | 0.035                | 8                         |
| 20     | filter | 110                    | 9532            | 9484            | 1804            | 2063            | 9508                   | 1934                   | 11442                 | 0.035                | 331                       |
| TB1    | filter | N/A                    | BDL             | 60              | 138             | 194             | BDL                    | 166                    | 203                   | 0.035                | 6                         |

Table A-7. Results of laboratory analysis of fog oil residues on flowers from the fog oil sampling event on 12 September 2002 (Event #4).

| Sample | Type      | Exposure | Flower | DRO1       | DRO2      | RRO1      | RRO2      | Mean<br>DRO<br>(ug/ml ) | Mean<br>RRO<br>(ug/ml ) | TPH on<br>flowers | Flower<br>surface<br>area<br>(m <sup>2</sup> ) | TPH by<br>area<br>(mg/m <sup>2</sup> ) |
|--------|-----------|----------|--------|------------|-----------|-----------|-----------|-------------------------|-------------------------|-------------------|------------------------------------------------|----------------------------------------|
|        | (Januara) | 440      | 70     | (µg/ IIIL) | (µg/IIIL) | (µg/IIIL) | (µg/1112) | (µg/IIIE)               | (µg/ IIIE)              | (PB)              |                                                | (116/11)                               |
| 1      | tiowers   | 110      | 70     | 294        | 254       | 991       | 1311      | 274                     | 1151                    | 1425              | 0.065                                          | 22                                     |
| 2      | flowers   | 110      | 71     | 594        | 564       | 1448      | 1375      | 579                     | 1412                    | 1991              | 0.066                                          | 30                                     |
| 3      | flowers   | 110      | 70     | 808        | 794       | 827       | 973       | 801                     | 900                     | 1701              | 0.065                                          | 26                                     |
| 4      | flowers   | 110      | 62     | 1176       | 1135      | 2819      | 2662      | 1156                    | 2741                    | 3896              | 0.058                                          | 67                                     |
| 5      | flowers   | 110      | 71     | 1376       | 1357      | 1142      | 1113      | 1367                    | 1128                    | 2494              | 0.066                                          | 38                                     |
| 6      | flowers   | 110      | 72     | 2632       | 2700      | 829       | 955       | 2666                    | 892                     | 3558              | 0.067                                          | 53                                     |
| 7      | flowers   | 110      | 72     | 3183       | 3125      | 2277      | 2188      | 3154                    | 2233                    | 5387              | 0.067                                          | 80                                     |
| 8      | flowers   | 110      | 72     | 3508       | 3692      | 2966      | 3141      | 3600                    | 3054                    | 6654              | 0.067                                          | 99                                     |
| 9      | flowers   | 110      | 72     | 10777      | 10705     | 3137      | 2700      | 10741                   | 2919                    | 13660             | 0.067                                          | 203                                    |
| 10     | flowers   | 110      | 72     | 11366      | 10818     | 6166      | 4806      | 11092                   | 5486                    | 16578             | 0.067                                          | 246                                    |
| 11     | flowers   | 110      | 72     | 4237       | 4156      | 2799      | 2603      | 4197                    | 2701                    | 6898              | 0.067                                          | 103                                    |
| 12     | flowers   | 110      | 71     | 3770       | 3733      | 1389      | 1272      | 3752                    | 1331                    | 5082              | 0.066                                          | 77                                     |
| 13     | flowers   | 110      | 72     | 2062       | 2048      | 4593      | 4771      | 2055                    | 4682                    | 6737              | 0.067                                          | 100                                    |
| 14     | flowers   | 110      | 69     | 1290       | 1335      | 3029      | 3146      | 1313                    | 3088                    | 4400              | 0.065                                          | 68                                     |
| 15     | flowers   | 110      | 73     | 276        | 385       | 2148      | 2333      | 331                     | 2241                    | 2571              | 0.068                                          | 38                                     |
| 16     | flowers   | 110      | 71     | 497        | 567       | 3717      | 3764      | 532                     | 3741                    | 4273              | 0.066                                          | 64                                     |
| 17     | flowers   | 110      | 54     | 139        | 140       | 1656      | 1460      | 140                     | 1558                    | 1698              | 0.050                                          | 34                                     |
| 19     | flowers   | 110      | 72     | 782        | 800       | 3309      | 3186      | 791                     | 3248                    | 4039              | 0.067                                          | 60                                     |
| 20     | flowers   | 110      | 72     | 14043      | 13422     | 5582      | 4865      | 13733                   | 5224                    | 18956             | 0.067                                          | 282                                    |
| Blank1 | flowers   | N/A      | 72     | 108        | 136       | 1032      | 821       | 122                     | 927                     | 1049              | 0.067                                          | 16                                     |
| Blank2 | flowers   | N/A      | 72     | 289        | 341       | 1875      | 1892      | 315                     | 1884                    | 2199              | 0.067                                          | 33                                     |

Table A-8. Results of laboratory analysis of fog oil residues on leaves from the fog oil sampling event on 12 September 2002 (Event #4).

| Sample | Туре   | Exposure<br>time (min) | DRO1<br>(µg/mL) | DRO2<br>(µg/mL) | RRO1<br>(µg/mL) | RRO2<br>(µg/mL) | Mean<br>DRO<br>(µg/mL) | Mean RRO<br>(µg/mL) | TPH on<br>leaves<br>(μg) | Leaf<br>surface<br>area (m²) | TPH by<br>area<br>(mg/m²) |
|--------|--------|------------------------|-----------------|-----------------|-----------------|-----------------|------------------------|---------------------|--------------------------|------------------------------|---------------------------|
| 1      | leaves | 110                    | 208             | 152             | 155             | 45              | 180                    | 100                 | 280                      | 0.063                        | 5                         |
| 2      | leaves | 110                    | 361             | 328             | 572             | 511             | 345                    | 542                 | 886                      | 0.063                        | 14                        |
| 3      | leaves | 110                    | 757             | 756             | 163             | 376             | 757                    | 270                 | 1026                     | 0.063                        | 16                        |
| 4      | leaves | 110                    | 939             | 881             | 1863            | 1776            | 910                    | 1820                | 2730                     | 0.063                        | 44                        |
| 5      | leaves | 110                    | 1577            | 1365            | 842             | 396             | 1471                   | 619                 | 2090                     | 0.063                        | 33                        |
| 6      | leaves | 110                    | 3447            | 3294            | 1422            | 1036            | 3371                   | 1229                | 4600                     | 0.063                        | 74                        |
| 7      | leaves | 110                    | 2971            | 2985            | 733             | 716             | 2978                   | 725                 | 3703                     | 0.063                        | 59                        |
| 8      | leaves | 110                    | 3704            | 3728            | 980             | 941             | 3716                   | 961                 | 4677                     | 0.063                        | 75                        |
| 9      | leaves | 110                    | 11686           | 11527           | 2231            | 2232            | 11607                  | 2232                | 13838                    | 0.063                        | 221                       |
| 10     | leaves | 110                    | 14832           | 14817           | 4149            | 3981            | 14825                  | 4065                | 18890                    | 0.063                        | 302                       |
| 11     | leaves | 110                    | 4120            | 4095            | 939             | 1024            | 4108                   | 982                 | 5089                     | 0.063                        | 81                        |
| 12     | leaves | 110                    | 4675            | 4736            | 1232            | 1443            | 4706                   | 1338                | 6043                     | 0.063                        | 97                        |
| 13     | leaves | 110                    | 1672            | 1591            | 689             | 598             | 1632                   | 644                 | 2275                     | 0.063                        | 36                        |
| 14     | leaves | 110                    | 713             | 721             | 324             | 429             | 717                    | 377                 | 1094                     | 0.063                        | 18                        |
| 15     | leaves | 110                    | 78              | 88              | 100             | 51              | 83                     | 76                  | 159                      | 0.063                        | 3                         |
| 16     | leaves | 110                    | 89              | 84              | 570             | 582             | 87                     | 576                 | 663                      | 0.063                        | 11                        |
| 17     | leaves | 110                    | BDL             | BDL             | BDL             | BDL             | BDL                    | BDL                 | 56                       | 0.063                        | BDL                       |
| 18     | leaves | 110                    | BDL             | BDL             | 88              | BDL             | BDL                    | 44                  | 76                       | 0.056                        | 1                         |
| 19     | leaves | 110                    | 793             | 727             | 292             | 266             | 760                    | 279                 | 1039                     | 0.063                        | 17                        |
| 20     | leaves | 110                    | 20843           | 19934           | 7861            | 6080            | 20389                  | 6971                | 27359                    | 0.063                        | 437                       |
| LB1    | leaves | N/A                    | 217             | 177             | 226             | 193             | 197                    | 210                 | 407                      | 0.063                        | 7                         |
| LB2    | leaves | N/A                    | 264             | 281             | 241             | 285             | 273                    | 263                 | 536                      | 0.063                        | 9                         |

| Sample | Туре   | Volume<br>(mL) | TPH<br>(µg/mL) | Surface<br>area (m <sup>2</sup> ) | TPH<br>(mg) | TPH<br>(g/m²) |
|--------|--------|----------------|----------------|-----------------------------------|-------------|---------------|
| 1      | Snow   | 96             | 1981           | 0.00255                           | 190         | 75            |
| 2      | Snow   | 124            | 1867           | 0.00255                           | 231         | 91            |
| 3      | Snow   | 128            | 1857           | 0.00255                           | 238         | 93            |
| 4      | Snow   | 110            | 1546           | 0.00255                           | 170         | 67            |
| 5      | Snow   | 120            | 1255           | 0.00255                           | 151         | 59            |
| 7      | Snow   | 130            | 2287           | 0.00255                           | 297         | 117           |
| 8      | Snow   | 128            | 972            | 0.00255                           | 124         | 49            |
| 9      | Snow   | 129            | 947            | 0.00255                           | 122         | 48            |
| Blank1 | Filter | 1              | 39             | 0.0346                            | BDL         | BDL           |
| Blank2 | Filter | 1              | 37             | 0.0346                            | BDL         | BDL           |

Table A-9. Results of laboratory analysis of Fairbanks snow samples taken on 26 March 2002.

BDL = Below detection level.

| Delta concentration         Delta Concentration         Delta Concentration         Delta Concentration           Delta concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta Concentration         Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    | Form Approved                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|-------------|--------------------|---------------------------------------------------------------------------------|--|
| ht dat notes and excepting and power proceeding of the balance of the data control in the data control in the data control in the balance of the data contro     | Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                                    |             |                    | OMB No. 0704-0188<br>searching existing data sources, gathering and maintaining |  |
| 1. REPORT DATE (20-34/97/97) 2. REPORT TYPE Technical Report S. DATES COVERED (Fem. 7.6) DATES COVERED (FEM. 7     | the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for<br>reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,<br>VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not<br>display a currently valid OMB control number. <b>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                    |             |                    |                                                                                 |  |
| A. TITLE AND SUBTITLE     Assessing Fog Oil Deposition to Simulated Plant Surfaces during Militury Training     So. CONTRACT NUMBER     So. GRANT NUMBER     So. TASK NUMBER             | <b>1. REPORT DATE</b> (DD<br>November 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -ММ-ҮҮҮҮ)   | 2. REPORT TYPE<br>Technical Report |             | 3                  | . DATES COVERED (From - To)                                                     |  |
| Assessing Fog Oil Deposition to Simulated Plant Surfaces during Military Training 6. AUTHOR(S) 5. GRANT NUMBER 5. ORGANI ELEMENT NUMBER 6. AUTHOR(S) 5. AUTHOR(S)     | 4. TITLE AND SUBTIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                    | 5           | a. CONTRACT NUMBER |                                                                                 |  |
| 6. AUTHOR(S)       5c. PROGRAM ELEMENT NUMBER         6. AUTHOR(S)       5d. PROJECT NUMBER         Thomas Douglas, Jerome Johnson, Charles Collins, Charles Reynolds, Karen Foley, Lawrence Perry, Arthur Gelvin, and Susan Hardy       5d. PROJECT NUMBER         7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)       8. PERFORMING ORGANIZATION REPORT         U.S. Carrison Andska       10. SPONSOR/MONTORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S REPORT         U.S. Carrison Alaska       Directorate of Public Works       11. SPONSOR/MONITOR'S REPORT         12. DISTRIBUTION / AVAILABILITY STATEMENT       Available from NTIS, Springfield, Virginia 22161.       13. SUPPLEMENTARY NOTES         13. SUPPLEMENTARY NOTES       14. MSSTRACT       This project had two goals: to assess fog oil aerosol deposition to environmental media and to quantify whither glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters are a suitable proxy of plant surfaces. In support of these goals we exposed glass membrane fiber filters are a suitable proxy of plant surfaces. In support of these goals we exposed glass membrane fiber filters are a suitable proxy of plant surfaces. In support of these goals we exposed glass membrane fiber filters are a suitable proxy of plant surfaces. In support of these goals were strongly correlated, though flowers and leaves and suffice for eoncentrations on Golymproprive leaves, flowers, and filters w                                                                                                                                                                                                                                                                                                                                                                 | Assessing Fog Oil Deposition to Simulated Plant Surfaces during Milit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                    |             | 5                  | b. GRANT NUMBER                                                                 |  |
| 6. AUTHOR(6)<br>Thomas Douglas, Jerome Johnson, Charles Collins, Charles Reynolds, Karen Foley,<br>Lawrence Perry, Arthur Gelvin, and Susan Hardy 5. PROJECT NUMBER 5. PROJECT NUM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    | C. PROGRAM ELEMENT NUMBER                                                       |  |
| Thomas Douglas, Jerome Johnson, Charles Collins, Charles Reynolds, Karen Foley,<br>Lawrence Perry, Arthur Gelvin, and Susan Hardy       5c. TASK NUMBER         7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br>U.S. Army Engineer Research and Development Center<br>Cold Regions Research and Engineering Laboratory<br>72 Lyme Road<br>Hanover, NII 03755-1290       8. PERFORMING ORGANIZATION REPORT<br>NUMBER         9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>U.S. Garrison Alaska<br>Directorate of Public Works       10. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release; distribution is unlimited.       10. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)         13. SUPPLEMENTARY NOTES       14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by<br>volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored log oil aerosol deposition to<br>environmental undia and to quantify whether glass membrane fiber filters and collectors simulating plant surfaces (silk Rovers and polypropylene leaves) to<br>fog oil ining. Samplers were deployed during winter and summar events. In the summer, TH concentrations on leaves, flowers, and<br>filters were strongly correlated, though Infovers and leaves consistently yielded TH concentrations and leaves flowers, and<br>filters were strongly correlated, though Infovers and collectors simulating plant surfaces (silk Rovers and polypropylene leaves) to<br>fog oil taining. Samplers were deployed during the winter were 100 times lower than in the summer. We attribute the winter<br>anomalis to the presence of a low-level inversion at the ground surface that could have                                                                                                                                                                                                                                     | 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                    |             | 5                  | d. PROJECT NUMBER                                                               |  |
| 5. WORK UNIT NUMBER         5. WORK UNIT NUMBER         7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$)         U.S. Army Engineer Research and Development Center<br>Cold Regions Research and Engineering Laboratory         7. 2Lyme Rood         Hanover, NH 03755-1290         9. SPONSORING / MONITORING AGENCY NAME(\$) AND ADDRESS(E\$)         U.S. Garrison Alaska<br>Directorate of Public Works         11. SPONSOR/MONITOR'S AGRONYM(\$)         12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release: distribution is unlimited.         Available from NTIS, Springfield, Virginia 22161.         13. SUPPLEMENTARY NOTES         14. ABSTRACT         For ourigina during military operations. A smoke-like aerosol is emitted from mobile generators by volaitilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental undia and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (slik flowers and olypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and elaves consistently yielded TPH concentrations on leaves, flowers, and elaves consistently yielded TPH concentrations measured on glass membrane fiber filters and collectors simulating plant surfaces (slik flowers and olyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thomas Douglas, Jerome Johnson, Charles Collins, Charles Reynolds, Karen Foley, Lawrence Perry, Arthur Gelvin, and Susan Hardy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                    |             |                    | e. TASK NUMBER                                                                  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)       8. PERFORMING ORGANIZATION REPORT         U.S. Army Engineer Research and Engineering Laboratory       7. June Research and Engineering Laboratory         7. JUne Research and Engineering Laboratory       10. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)         U.S. Garrison Alaska       10. SPONSOR/MONITOR'S ACRONYM(S)         9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION / AVAILABILITY STATEMENT       11. SPONSOR/MONITOR'S REPORT         Approved for public release; distribution is unlimited.       Available from NTIS, Springfield, Virginia 22161.         13. SUPPLEMENTARY NOTES       14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like acrosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil acrosol deposition to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces, no support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypopylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations of blaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations on leaves, flowers, and filters were strongly correlated, stronger during winter ads summer ev                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    | f. WORK UNIT NUMBER                                                             |  |
| U.S. Army Engineer Research and Development Center<br>Cold Regions Research and Engineering Laboratory<br>72 Lyme Road<br>Hanover, NH 03755-1290<br>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>U.S. Garrison Alaska<br>Directorate of Public Works<br>11. SPONSOR/MONITOR'S ACRONYM(S)<br>12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release; distribution is unlimited.<br>Available from NTIS, Springfield, Virginia 22161.<br>13. SUPPLEMENTARY NOTES<br>14. ABSTRACT<br>Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by<br>volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to<br>environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition to<br>environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition to<br>environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition to<br>environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition to<br>environmental market (hough flowers and loulectors simulating plant surfaces (silk flowers and polypropylene leaves) to<br>fog oil training. Samplers were deployed during winter and summer ervents. In the summer, TPH concentrations neasured ong lass<br>membrane filters. TPH concentrations neasured during the winter were not correlated with concentrations neasured ong lass<br>membrane filters. TPH concentrations neasured during the winter were 100 times lower than in the summer. We attribute the winter<br>anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and<br>deposition.<br>15. SUBJECT TERMS<br>Deposition.<br>16. SUBJECT TERMS<br>U U U U U Gén                                                                                                               | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                    |             |                    | . PERFORMING ORGANIZATION REPORT<br>NUMBER                                      |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSOR/MONITOR'S ACRONYM(S)         U.S. Garrison Alaska<br>Directorate of Public Works       11. SPONSOR/MONITOR'S ACRONYM(S)         12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release; distribution is unlimited.       11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)         13. SUPPLEMENTARY NOTES       11. SPONSOR/MONITOR'S ACRONYM(S)         14. ABSTRACT       For an antipation of the state of                                                                                                                                                                                | U.S. Army Engineer Research and Development Center<br>Cold Regions Research and Engineering Laboratory<br>72 Lyme Road<br>Hanover, NH 03755-1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                    |             |                    | ERDC/CRREL TR-06-19                                                             |  |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)       10. SPONSORIMO/ITOR'S ACRONYM(S)         U.S. Garrison Alaska       11. SPONSOR/MONITOR'S REPORT         11. SPONSOR/MONITOR'S REPORT       11. SPONSOR/MONITOR'S REPORT         NUMBER(S)       11. SPONSOR/MONITOR'S REPORT         Available from NTIS, Springfield, Virginia 22161.       13. SUPPLEMENTARY NOTES         14. ABSTRACT       Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental edia and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of fog oil aerosol deposition to fog oil raining. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on polypropylene leaves and alk flowers were not correlated with concentrations flow, fligher than filters. In the winter, TPH concentrations on polypropylene leaves and slik flowers were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       17. LIMITATION of ABSTRACT         0       I. MUSTRAT         0       C. THIS PAGE         16. SECURITY CLASSIFICATION OF:       17. LIMITATION of ABSTRACT         0       I. MUMBER (include and count of upple thas and count of the pres                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    |                                                                                 |  |
| Directorate of Public Works       11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)         12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                    |             |                    | 0. SPONSOR/MONITOR'S ACRONYM(S)                                                 |  |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT         Approved for public release; distribution is unlimited.         Available from NTIS, Springfield, Virginia 22161.         13. SUPPLEMENTARY NOTES         14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations on glass membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       Obscurants         Deposition       Or Pages         16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT         17. B. YUBJECT TERMS       Obscurants         Deposition       OF ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                  | Directorate of Public Works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                    |             |                    |                                                                                 |  |
| 12. DISTRIBUTION / AVAILABILITY STATEMENT<br>Approved for public release; distribution is unlimited.         Available from NTIS, Springfield, Virginia 22161.         13. SUPPLEMENTARY NOTES         14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by<br>volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to<br>environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon,<br>TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of<br>these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to<br>fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and<br>filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations neasured on glass<br>membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter<br>anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and<br>deposition.         15. SUBJECT TERMS<br>Deposition       Obscurants         16. SECURITY CLASSIFICATION OF:<br>U       17. LIMITATION<br>OF ABSTRACT       18. NUMBER<br>OF RESPONSIBLE<br>PERSON       19a. NAME OF RESPONSIBLE<br>PERSON         16. SECURITY CLASSIFICATION OF:<br>U       U       U       66       19b. TELEPHONE NUMBER (include<br>area code) <td colspan="5"></td> <td>NUMBER(S)</td>                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    | NUMBER(S)                                                                       |  |
| Available from NTIS, Springfield, Virginia 22161.         13. SUPPLEMENTARY NOTES         14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total peroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations on leaves, flowers, and filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       17. LIMITATION of ABSTRACT         16. SECURITY CLASSIFICATION OF:       17. LIMITATION of ABSTRACT         U       U       U         U       U       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12. DISTRIBUTION / AVAILABILITY STATEMENT         Approved for public release; distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                    |             |                    |                                                                                 |  |
| 13. SUPPLEMENTARY NOTES         14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on polypropylene leaves and silk flowers were not correlated with concentrations measured on glass membrane fiber filters. In the winter, TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       17. LIMITATION of ABSTRACT         16. SECURITY CLASSIFICATION OF:       17. LIMITATION of ABSTRACT         17. B. NUMBER       19a. NAME OF RESPONSIBLE PERSON         19b. TELEPHONE NUMBER (include are code)       19b. TELEPHONE NUMBER (include area code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Available from NTIS, Springfield, Virginia 22161.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                    |             |                    |                                                                                 |  |
| 14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations measured on glass membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       Fog oil         16. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT       18. NUMBER OF RESPONSIBLE PERSON         10. U       U       U       66       19b. RELEPHONE NUMBER (include area code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                    |             |                    |                                                                                 |  |
| 14. ABSTRACT         Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations measured on glass membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       If LIMITATION oF:         16. SECURITY CLASSIFICATION OF:       17. LIMITATION of ABSTRACT         0       Hb. ABSTRACT       c. THIS PAGE         U       U       U         0       Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    |             |                    |                                                                                 |  |
| Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers and leaves consistently yielded TPH concentrations 60% higher than filters. In the winter, TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition.         15. SUBJECT TERMS       Obscurants         Deposition       17. LIMITATION of ABSTRACT         C       THIS PAGE         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U         U       U       U <td colspan="7">14. ABSTRACT</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                    |             |                    |                                                                                 |  |
| 15. SUBJECT TERMS       Obscurants         Deposition       Fog oil         T6. SECURITY CLASSIFICATION OF:       17. LIMITATION OF ABSTRACT       19a. NAME OF RESPONSIBLE PERSON         a. REPORT       b. ABSTRACT       c. THIS PAGE       19. U       U         U       U       U       U       66       19a. NAME OF RESPONSIBLE PERSON       19b. TELEPHONE NUMBER (include area code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fog oil is used as a battlefield obscurant during military operations. A smoke-like aerosol is emitted from mobile generators by volatilizing standard grade fuel #2 and blowing it through a heated manifold. In this study we monitored fog oil aerosol deposition to environmental surfaces during training. This project had two goals: to assess fog oil aerosol deposition (as total petroleum hydrocarbon, TPH) to environmental media and to quantify whether glass membrane fiber filters are a suitable proxy for plant surfaces. In support of these goals we exposed glass membrane fiber filters and collectors simulating plant surfaces (silk flowers and polypropylene leaves) to fog oil training. Samplers were deployed during winter and summer events. In the summer, TPH concentrations on leaves, flowers, and filters were strongly correlated, though flowers and leaves consistently yielded TPH concentrations 60% higher than filters. In the winter, TPH concentrations on polypropylene leaves and silk flowers were not correlated with concentrations measured on glass membrane filters. TPH concentrations measured during the winter were 100 times lower than in the summer. We attribute the winter anomalies to the presence of a low-level inversion at the ground surface that could have affected fog oil aerosol transport and deposition. |             |                                    |             |                    |                                                                                 |  |
| Deposition       Fog oil       16. SECURITY CLASSIFICATION OF:     17. LIMITATION OF ABSTRACT     18. NUMBER OF RESPONSIBLE PERSON       a. REPORT     b. ABSTRACT     C. THIS PAGE     19b. TELEPHONE NUMBER (include area code)       U     U     U     66     19b. TELEPHONE NUMBER (include area code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Obscurants                         |             |                    |                                                                                 |  |
| Fog oil       16. SECURITY CLASSIFICATION OF:     17. LIMITATION OF ABSTRACT       a. REPORT     b. ABSTRACT       U     U       U     U         Image: Description of the second se                                                                                                                                                                                 | Deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                    |             |                    |                                                                                 |  |
| a. REPORT     b. ABSTRACT     c. THIS PAGE     OF ABSTRACT     OF PAGES     PERSON       U     U     U     U     66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fog oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                    |             |                    | 19a, NAME OF RESPONSIBLE                                                        |  |
| a. REPORT     b. ABSTRACT     c. THIS PAGE       U     U     U       U     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                    | OF ABSTRACT | OF PAGES           | PERSON                                                                          |  |
| U U U U 66 4.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a. REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. ABSTRACT | c. THIS PAGE                       |             |                    | <b>19b. TELEPHONE NUMBER</b> (include area code)                                |  |
| Oten dand Farm 000 / Dave 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U           | U                                  | U           | 66                 | Standard Farm 200 (Day: 0.00)                                                   |  |

Prescribed by ANSI Std. 239.18