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Introduction

In the last few years, advances in computing power and algorithm development have
allowed the creation of highly accurate nonlinear aero-elastic simulation codes [1,2].
These codes typically have fluid meshes with a very large number of nodes, and a lesser
(but still large) number of structural nodes. System orders in the millions of degrees of
freedom are not uncommon. Designing control systems using these models is not
feasible with current techniques due to these large sizes. Instead, some method or
combination of methods for reduced order modeling must be employed to create a low
order model of the aeroelastic system.

The most obvious model reduction method to try on a large-scale system is eigen
truncation. Reduced order models based on eigenreduction techniques are attractive to
the control designer because of their common usage in structural dynamics control (see
review in [3]). Many nonlinear solvers have built in parallelization and linear equation
solvers than can be adapted to solve for the first few eigenvectors, which can then be
used as a basis for a reduced order model. The current paradigm is that modal truncation
is not a good technique to use in aeroelasticity because the fluid eigenvalues tend to be
closely spaced, necessitating a large number of retained eigenmodes to achieve accurate
results. Instead, emphasis has been placed on methods that map system inputs to system
outputs directly, including approximate balanced truncation methods [4] and the Proper
Orthogonal Decomposition (POD) method [5,6]. The impetus for this paper grew out of a
desire to use a reduced order model of the fluid coupled to a reduced order modal
truncation model of the structure.

Once a reduced order model is created, a controller can then be designed about it
using conventional techniques. Problems can arise once the controller based on the
reduced order model is applied to the full order system. Since the controller has no
knowledge built into it about the unmodelled states in the full system, interactions can
excite those states into instability. Previous work using modal truncation based ROMs
[7] as well as coupled systems of modal based ROMs [8] has shown that by using a
Residual Mode Filter (RMF) to filter out the unwanted interaction, stability can be
restored to the system. These previous stability proofs rely on the modal nature of the
systems and are not valid once the coupling terms created by balanced truncation
methods are considered.

1 Residual Mode Filters and Actuated Systems

The Residual Mode Filter (RMF) is a technique that can be used to regain stability in a
high order system driven by a reduced order controller when unmodelled interactions
have caused instability. In general, RMF's work by splitting the state vector x into
components XN, XR, and xQ where xN contains those states in the reduced order model
(including all initially unstable states), xr contains the remaining stable modes, and xQ
contains those modes that have been driven unstable through feedback control. The RMF
is then applied to cancel the xQ modes from interacting with the controller, thereby
causing the system to regain stability.
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Now if instead of a single dynamical system there is a coupled problem, things
become more complicated. Utilizing the method described in [9], the system can be split
into a coupled aeroelastic response and an aerodynamic actuation dynamic. In this
formulation, one system can be seen acting as an actuator on the other, and the combined
system can be denoted as:

xi Ax+ Bu

y=Cx+Du; x(O)= x 0  (1)

= Fz+Hu,.
u= LZ

where z denotes actuator states (aerodynamic actuation dynamic) and x system states
(coupled aeroelastic reponse). The system for the case we are considering can then be
decomposed into modal form:

"{.N =ANXN +BNU

.iR = A RXR + B Ru(2
Ax+B~u(2)2o. = A QxoQ + BQu

y=C xN + CRXR + CQxQ + Du

where XN, XR, and XQ are defined as before. Note that all the inherently unstable modes
are collected in XN, therefore AR and AQ will be stable matrices (in the sense that all the
eigenvalues will lie in the left half plane). An output feedback state estimator controller
designed for this system will have the following form:

"xN = ANXN + BNL2+KN (y- )

=CNiN + DLý (3)

l = F2 +Hu,.
u,. = GNi•N

Because of how we have defined the states, this controller applied to the full order
system will be stable if the XQ terms are deleted. If the following error terms are then
defined:

eX = "• N (4)e, = i - z(4

Then the complete set of equations with the XQ modes deleted is:
"XN AN 0 0 BNL 0 XN

eN 0 (AN-KNCN) KNCR 0 (BNL-KNDL) eN (5)

XR 0 0 AR BRL 0 XR

! HGIN HGN 0 F 0 z

0 0 0 0 F _ez
This system is by definition stable. Note in particular the stable sub-block consisting of
the first 4 rows and columns of eqn. (5), we will be using this sub-block later. If we next
introduce the unstable modes xQ back into our system, some method to compensate for
their instability is required. A RMF can be used to filter the output signal y being fed into
the state estimator in this manner:
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"XN = ANiN +BNLZ+KN(Y - N -5'Q)

YN = CNXN + DL2

Z = F2+Hu, (6)
XQ =AQJQ + BQL2
YQ = CQ Q

u,.= GNixN

By introducing a new error term eQ defined as:
e. = xQ - XQ (7)

a new matrix equation can be written that now incorporates the entire system:
XN AN 0 0 BNL0 0 0 XN

eN 0 (A,-KNCN) KNC, 0 0 -KNCQ (BL-KDL)[e,

4 0 0 AR BRL0 0 0 XR(8)

= HGN HG, 0 F 0 0 0 z
XQ 0 0 0 BQL AQ 0 0 xQ
eQ 0 0 0 0 10 AQ BQL eQ

0 0 0 0 0 0 F e-

Note the sub-block formed by the first four rows and columns; this is the same sub-block
as in eqn. (5), and was by definition stable. Because of this, the stability of the entire
matrix is seen by successively including an additional row and column of eqn. (8) and
noting the diagonal nature of subsequent subsystems. Since all the inherently unstable
modes were collected into AN, AQ is stable, and F is also stable. Therefore the entire
matrix given in eqn. (8) is stable.

2 Residual Mode Filters with Reduced Order Balanced Actuators

For the actual problems of interest in this work, which consist of fluid systems acting as
actuators and coupled to structural systems, it is not practical to include the entire model
of the fluid system within the controller. If a ROM of the fluid is used that is based on a
balanced reduction method, the actuator can be represented by:

2i FNZN + FNRZR +HNuC

ZR FRZR + FRNZN + HRU,R (9)

U =LNZN +LRzR

where ZN represents those states that are retained in the ROM and ZR those states that are
discarded. Note that the key difference to the work described in [8] is the inclusion of the
cross-coupling terms FNR and FRN. Because of the nature of a balancing reduction, the
influence the ZR states have on the output u and the retained states ZN is small (and can be
made smaller by including more states in ZN). Because of this, it is natural to introduce a
singular perturbation term in front of the ZR equation, and analyze what happens as this
term is varied from zero to some small positive value:
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IN = FNZN + FNRZR + HNu,.

EZR = FRZR + FRNZN + HRUC (10)

u = LNZN + LRZR

When • = 0, ZR can be solved for in terms of ZN and u,:

zR =--FR'FRNZN -F RHRU,.

N= FNzN + FNR(-FI'FRNZN-F-'HRU.)+HNu. (11)

U = LNzN + LR(- FR'FRNzN -F 'HRU,.)

If the following substitutions are then made:

R = -LRFR'HRGN
R FF (12)

R R RRN

Then the actuation equations can be written as:

tZN=(FN--FNRFR'FRN)ZN+(HN--FNRFT'HR )NiN

= FRzR + FRNzN + HRuC (13)

{= (LN + T~z R X

Based on this definition of the actuator, the control equations become:

"XN =AN.N +BNLN2N +KN(Y--N--Q)

YN = CN-N
ZN =(FN-FNRFR'FRN)ZN+(HN -FNRFRHR YHN)G N (1ZN = (N N N (14)
x= AQx + B (LN + FR)ZNBQFRiN

Q = CQ'Q

Uc G•Ci

The system (defined to be stable) with the XQ modes deleted and , = 0 is given by:
0)= Allo (15)

Where:
XN

eN

Co- XR (16)
ZN

_ ez

And:

(AN +BNFR) B NFR 0 BN(LN + FR) 0

N KN R NR (BNL N
All= BRFR B R R AR BR(LN+FI$) 0 (17)

zI z 0 Z2 0

0 0 0 0 Z2
With:
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EN =AN -KNCN -BNFR

ZI =(H - FRFR'H)GN (18)
Z2 =F - NFR' FRN

Proving that the system is stable with the XQ modes added back in and an epsilon
not equal to zero requires the use of the Klimushchev-Krasovskii theorem [10],
formulated for the following equation:

6) = A 11o)+ A 12zZR (19)

PZR = A2 CO+A22zZR

Given a linear singularly perturbed system of the form in eqn. (19) with A22 and A,,-
A, 2A22vA 21 stable, then there exists some eo>O such that for each O<c<eo, eqn. (19) is
stable.

We will use this lemma by writing the complete system in the form of eqn. (19),
with:

XN

eN

XR

CO ZN (20)

XQ

e.
Lez J

The matrices AI,, A12, A21 , and A22 are then:
-(AN + B R) BNFR 0 BN(L + F) 0 0 0

(-B, T") EN KNCR -BNF,' 0 KNCO (B,~F)

BRFR BRFR AR BR(L + F,) 0 o o
A= Z) Z) 0 Z2 0 0 0

BQFR BQF, 0 BQ(LN + F•) AQ 0 0 (21)
0 0 0 0 0 AQ BQL_

0 0 0 0 0 0 Z2
"0
0
0

A12 0 A2, =[HRGN HRGN 0 FRNI 0 0 0] A22 FR

0

0

0

To use the K-K theorem, we need to show that AII is stable and that A, I- A12A2•

'A21 is stable. The stability of All can be seen from examining All in eqn. (17) and then
applying the successive partitions as shown in eqn. (21), since AQ is defined to be stable
and Z2 is shown to be stable from eqn. (17). All - A12A 22-1'A 21 is also stable since it equals

A, 1. Therefore, the entire system is stable due to the K-K theorem for some epsilon 0 < c
< Co.



3 Results

This proof followed the outline for a modal based actuator given in [8], where an
example using an Aeroelastic Piston model was given, which is based on the ideas
developed in [ 11 ]. The same model was used, but now with a reduced order balanced
model of the actuator. An output feedback state estimator controller was designed using
the reduced order system and actuator that gave good results when applied to the ROM.
When the same controller was applied to the FOM, the interaction with an unmodeled
mode drove the response unstable. Including a RMF as in eqn. (14) causes the full order
response to be stabilized, as seen in Figure 1.

A. Piston Velocity - Reduced System with Output Feedback Control

-0. .So

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
B. Piston Velocity - Full Order System with Reduced Order Controller

5-
So 0 dvvN,

I -5-

-10 i t

0 0.05 0.1 0,15 0.2 0.25 0.3 0.35 0.4 0.45 0.5C. Piston Velocity with RMF and Reduced Order Controller

0.5-,

I -0.5 -

-1-
0 0.05 0.1 0,15 0.2 025 0.3 0.35 04 0.45 0.5

Time (sec.)

Figure 1: Residual Mode Filter Example
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