
Coherent Change Detection: Theoretical

Description and Experimental Results

Mark Preiss and Nicholas J. S. Stacy

Intelligence, Surveillance and Reconnaissance Division

Defence Science and Technology Organisation

DSTO–TR–1851

ABSTRACT

This report investigates techniques for detecting fine scale scene changes
using repeat pass Synthetic Aperture Radar (SAR) imagery. As SAR is a
coherent imaging system two forms of change detection may be considered,
namely incoherent and coherent change detection. Incoherent change detec-
tion identifies changes in the mean backscatter power of a scene typically via
an average intensity ratio change statistic. Coherent change detection on the
other hand, identifies changes in both the amplitude and phase of the trans-
duced imagery using the sample coherence change statistic. Coherent change
detection thus has the potential to detect very subtle scene changes to the
sub-resolution cell scattering structure that may be undetectable using inco-
herent techniques. The repeat pass SAR imagery however, must be acquired
and processed interferometrically. This report examines the processing steps
required to form a coherent image pair and describes an interferometric spot-
light SAR processor for processing repeat pass collections acquired with DSTO
Ingara X-band SAR. The detection performance of the commonly used average
intensity ratio and sample coherence change statistics are provided as well as
the performance of a recently proposed log likelihood change statistic. The
three change statistics are applied to experimental repeat pass SAR data to
demonstrate the relative performance of the change statistics.
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Coherent Change Detection: Theoretical Description and
Experimental Results

EXECUTIVE SUMMARY

In this report techniques for detecting fine scale scene changes using repeat pass spot-
light Synthetic Aperture Radar (SAR) imagery are examined. Change detection is an
application to which SAR is particularly well suited since SARs can consistently produce
high quality fine resolution imagery from multiple repeat pass collections. Furthermore
the precise flight track measurements necessary for synthetic aperture formation allows
imagery to be acquired with good radiometric and geometric calibration as well as good
geolocation accuracy.

As SAR is a coherent imaging system two forms of change detection may be considered,
namely incoherent and coherent change detection. Incoherent change detection identifies
changes in the mean backscatter power of a scene. Typically the average image intensity
ratio of the image pair is computed to detect such changes. Coherent change detection
on the other hand, identifies changes in both the amplitude and phase of the transduced
imagery that arise in the interval between collections. The sample coherence of the image
pair is commonly used to quantify such changes. As the SAR image amplitude and phase
are sensitive to changes in the spatial distribution of scatterers within a resolution cell,
coherent change detection has the potential to detect very subtle scene changes that may
remained undetected using incoherent techniques. In order to realise the full potential of
coherent change detection however, SAR imagery must be acquired and processed inter-
ferometrically. In particular the image pair must be acquired with careful control of the
repeat pass imaging geometries. Furthermore additional processing steps are required to
model, estimate and compensate for any mismatch between the SAR acquisition functions
and image formation processors employed to form the primary and repeat image pair.

This report describes the processing steps required to form a coherent image pair
suitable for interferometric processing. In particular imaging collection constraints are
discussed and the various sources of image decorrelation present in a repeat pass image
pair are described and quantified. A practical interferometric SAR processor for processing
repeat pass collections obtained from the DSTO Ingara X-band SAR is described. Results
from a change detection experiment conducted with Ingara are given in which changes,
possibly due to the movement of sheep, are presented.

The theoretical detection performance of the incoherent average image intensity ratio
and the sample coherence are quantified in terms of receiver operator curves (ROC) i.e.,
the probability of detection plotted against probability of false alarm. A third recently
proposed coherent log likelihood change statistic is described and its theoretical detection
performance is shown to be superior to the commonly used average image intensity ratio
and the sample coherence.

The three change statistics are applied to two different experimental repeat pass SAR
collections each with controlled scene changes created using a rotary hoe and lawn mower.
In the first collection the repeat pass delay is 24 hours and for a false alarm rate of 1 in 20
the probability of detecting the rotary hoe changes is 0.23 in the sample coherence image
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and 0.71 in the log likelihood ratio image. The changes are also detected in the averaged
image intensity ratio image with a probability of detection of 0.42. The second collection
was acquired over a different scene with a repeat pass delay of 2 hours. In this experiment
the rotary hoe changes are only detected in the sample coherence and log likelihood ratio
change images. For a false alarm rate of 1 in 55 the probability of detection in the sample
coherence image is 0.3 and in the log likelihood change image it is 0.68. Theoretical and
simulated ROC plots for the two experimental cases show that for a fixed probability of
detection of 0.7 the log likelihood change statistic has approximately an order of magnitude
lower false alarm rate than the sample coherence. The improved detection performance of
the log likelihood change statistic is a step towards robust computer assisted exploitation
of coherent change detection data.
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1 Introduction

Synthetic Aperture Radar (SAR) is a coherent standoff imaging technique capable
of generating fine resolution images of the complex radar backscatter (i.e. magnitude
and phase) of a scene from large standoff ranges. An important application of SAR is the
detection of temporal changes in a scene. Change detection is an application to which SAR
is particularly well suited as SARs can consistently produce high quality, well calibrated
imagery with good geolocation accuracy.

Two forms of change detection in repeat pass SAR imagery may be considered, namely
coherent and incoherent change detection. Incoherent change detection identifies changes
in the mean backscatter power of the scene by comparing sample estimates of the mean
backscatter power taken from the repeat pass image pair. Typically the sample estimates
are obtained by spatially averaging the image pixel intensities (amplitude squared) over
local regions in the image pair. The mean backscatter power of a scene is determined by
the structural and dielectric properties of the scene and thus may be used to detect changes
in soil or vegetation moisture content or surface roughness. Coherent Change Detection
(CCD), on the other hand, uses the magnitude of the sample complex cross correlation of
an interferometric SAR image pair to quantify changes in the transduced amplitude and
phase of the image pixels. Since the transduced pixel amplitude and phase is sensitive to
the relative spatial geometry of the scattering contributions within a pixel CCD has the
potential to detect very subtle scene changes.

The average mean backscatter power ratio and the magnitude of the sample cross cor-
relation coefficient, commonly referred to as the sample coherence, have been employed
in the literature to detect a variety of different types of scene change as well as classify
different target types. A number of papers [1], [2], [3] have demonstrated the ability to dis-
criminate between different crops and vegetation types using the sample mean backscatter
power and coherence and classifiers have been proposed [4], [5]. The scene coherence has
also been used to identify areas inundated by flood [6] and its use in monitoring urban
development has been examined [7]. The sensitivity of the scene coherence in detecting
subtle man-made scene changes has been demonstrated in [8] in which ERS-1,2 imagery
was processed interferometrically and the passage of vehicles over an open field was de-
tected. While in [9] interferometric processing of 1 m resolution airborne X-band SAR
imagery was used to identify changes in an earthworks site.

In order to realise the full potential of CCD the primary and repeat pass imagery
must be acquired and processed interferometrically. Since CCD identifies scene changes
through changes in the transduced amplitude and phase of the image pixels the technique
is highly sensitive to mismatch in the acquisition apertures and processing aberrations in
the image formation. Coherent change detection thus requires additional interferometric
processing steps to mitigate these sources of image decorrelation. In particular differences
in the imaging geometry between the primary and repeat pass collections result in a loss
of coherence of the image pair, commonly referred to as baseline decorrelation. This can
be largely mitigated by extracting a common collection aperture from the two data sets,
which may result in degraded image resolution. Decorrelation between the image pair may
also arise as a result of residual uncompensated phase errors in the primary and repeat pass
images. Such phase errors may occur through errors in the platform navigation information
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or due to approximations in the design image formation processor. The impact of these
errors can be minimised by constraining the image size and resolution and also by using
autofocus techniques. Coherent change detection also requires the primary and repeat
pass images to be registered to sub-resolution accuracy, typically a tenth of a resolution
cell is required [10].

The requirements on the image acquisition and focusing for incoherent change detection
on the other hand are less severe. The imagery should be acquired with approximately the
same imaging geometry to ensure false detections due to variations in radar shadowing,
occlusion and differences in transduced backscatter power due to variations in incidence
angle are minimised. The constraint on the baseline offset between the image collections
however, is less severe than that associated with CCD. The impact of residual phase errors
is also less severe as change detection is based on a comparison the image intensity data
only. Furthermore registration accuracy needs to be only of the order of a resolution cell
for reliable change detection performance.

The detection performance of a change statistic is dependent on its ability to discrim-
inate between those areas of the scene affected by the change of interest and those areas
which are affected by other noise sources. These noise sources may include other sources of
scene change for example weathering due to wind and rain as well as the multiplicative and
additive system noise sources discussed above. The mean backscatter power and complex
correlation coefficient are sensitive to different properties of a scene thus the detection
performance of these change statistics will vary depending on the nature of the scene
changes and noise sources. Indeed Rignot [11] cites examples of repeat pass imagery in
which changes are detected in a scene via changes in the mean backscatter power without
a corresponding change in the sample coherence and vice versa. Thus as scene changes
may affect a broad range of scene properties both coherence and incoherent change detec-
tion statistics should be considered to properly characterise scene changes. Discrimination
between scene changes of interest and other sources of change in the transduced imagery
may also be assisted by spatial averaging, i.e., evaluating the change statistics over a local
spatial neighbourhood. In detecting fine-scale scene changes such as, for example vehicle
tracks however, the spatial estimation window must be commensurate with the size of
the scene changes. Otherwise the change statistic incorporates contributions from a mix-
ture of scene change processes thereby limiting the change statistic’s ability to distinguish
between them.

In this report the detection of fine-scale scene changes using both coherent and incoher-
ent change detection techniques is examined. In Section 2 the formation of fine resolution
spotlight SAR imagery using the Polar Format Algorithm (PFA) is examined. This allows
the imaging equations describing a repeat pass interferometric pair to be specified in Sec-
tion 3. From the imaging equations the decorrelation resulting from mismatch between
the acquisition and image formation functions is quantified and techniques to minimise
these effects are discussed. A practical interferometric SAR processor developed to process
repeat pass SAR data acquired with the DSTO Ingara X-band airborne SAR is described
in Section 3. Results from a change detection experiment conducted with Ingara are given
in which changes, possibly due to the movement of sheep, are presented. Section 4 de-
scribes the commonly used mean backscatter power ratio and sample coherence change
statistics for detecting scene changes. Assuming the primary and repeat pass images in an
interferometric pair are described by a jointly Gaussian random process, the theoretical
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detection performance for these change statistics is derived. Section 5 describes a recently
proposed log likelihood change statistic for detecting scene changes in an interferometric
SAR image pair. The theoretical detection performance is given and shown to be superior
to the commonly used mean backscatter power ratio and sample coherence change statis-
tics. The three change statistics namely the mean backscatter power ratio, the sample
coherence and log likelihood ratio change statistics are applied to experimental repeat
pass data acquired with the Ingara X-band SAR in Section 6.

2 Spotlight SAR Image Formation

Synthetic Aperture Radar (SAR) imaging is a two step process of coherent data ac-
quisition and subsequent coherent processing of a series of radar range echoes to recover
a fine resolution image of a scene. The resolution of the focused SAR imagery is an im-
portant parameter in determining the interpretability of the imagery and the quality of
the information that may be extracted [12]. In particular the performance of post pro-
cessing applications such as target detection, classification [13] as well as interferometry
applications such as change detection [1], [9] are all sensitive to the image resolution.

Synthetic aperture radar transduces a fine resolution image of the complex radar
backscatter of a scene. Fine range resolution is readily achieved using large bandwidth
transmit pulses and pulse compression techniques. Indeed airborne radars with 1.8 GHz
transmit bandwidths have been demonstrated with corresponding range resolutions of 0.1
m [14], [15]. The transduced range echoes however contain contributions from all scatterers
illuminated by the antenna footprint. The range echo data thus represents an integrated
scene response and the ability to resolve scatterers displaced in azimuth, without further
processing, is limited by the size of the antenna footprint as determined by the antenna
beamwidth and the slant range to the scene. Finer azimuth resolution may be achieved
by using a spatially longer antenna to obtain a narrower azimuth beamwidth. For typical
SAR standoff ranges however, the antenna size required to achieve azimuth resolutions
commensurate with commonly achieved range resolutions is generally impractical.

In synthetic aperture radar fine azimuth resolution is achieved using an antenna of
modest size by coherently processing a series of range echoes obtained as the radar moves
past the scene. The coherent processing combines the information from the series of range
echoes to, in effect, synthesize a large spatial array. This permits the inversion of the
integrated scene response into a fine resolution two dimensional estimate of the complex
reflectivity of the scene. In spotlight SAR, in which the antenna is continually steered
onto the scene as the radar moves past, very large spatial arrays may be synthesized to
achieve very fine azimuth resolution imagery over a limited spatial area.

2.1 SAR Data Acquisition and Range Processing

In the typical airborne spotlight SAR data acquisition geometry the SAR antenna is
steered, nominally perpendicular to the flight path, so as to continually illuminate a ground
patch using the side looking geometry shown in Figure 1. While moving past the scene
the SAR periodically transmits a wide bandwidth electromagnetic pulse, typically a chirp
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Figure 1: A typical spotlight SAR imaging geometry. As the radar moves past the
scene the antenna is steered so as to continually illuminate the same ground patch. The
radar location at a particular transmit/receive point is given by the spherical coordinates
(R0, θ0, ψ0).

signal, of duration T at the radar centre frequency f0. The transmit chirp signal may be
represented by,

s(t) = rect

(

t

T

)

cos
(

2π
(

f0t+ αt2
))

. (1)

where s(t) is zero outside the interval −T/2 ≤ t ≤ T/2 and α is the chirp rate. The
instantaneous bandwidth of the signal is given by fbw = 2αT . A small portion of the
transmitted energy, incident on the scene, is re-radiated back towards the radar by the
scattering elements in the scene. The received signal at location (R0, θ0, ψ0) (where R0

is the line of sight distance to the scene centre and θ0 and ψ0 are the azimuth and el-
evation angles respectively as shown in Figure 1) along the radar flight track may thus
be considered to be the superposition of delayed copies of the transmit chirp waveform
each modulated by a complex value describing the complex reflectivity of the scattering
elements in the scene.

The task of the SAR processor is to recover a two dimensional image of the scene’s
complex reflectivity from the transduced echoes. The first step to achieving this is to
demodulate the received echoes and apply range compression. In spotlight SAR, as the
image patch size is typically small, a demodulation technique commonly referred to as
deramp demodulation [9], [16] is used. In this approach the received signal is demodulated
by mixing it with a delayed copy of the transmit waveform where the delay is the two way
propagation delay to the scene centre. A range compressed range echo is subsequently
obtained by applying an inverse Fourier transform to the demodulated echo.
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Figure 2: Plan view of spotlight mode imaging collection. At each transmit/receive point
along the collection aperture the radar transduces the integrated reflectivity function ppol(r).
The value of ppol(r) at a given range is the superposition of all scattering contributions
lying along a contour of equirange from the radar transmit/receive point.

With reference to Figure 2 the deramp demodulated and inverse Fourier transformed
signal obtained at the transmit/receive location (R0, θ0, ψ0) is given by ppol(r). The vari-
able r is the propagation range measured along the radar’s line of sight to the scene centre.
At a given value of r, ppol(r) is the superposition of all scatterer contributions lying along
the equi-range contour R = R0 − r centred about the radar location (R0, θ0, ψ0). Figure
3 shows the unfocused image (plot of range compressed echoes as a function of propaga-
tion range r and position along the synthetic aperture) obtained from a series of deramp
demodulated inverse Fourier transformed range echo pulses collected as the radar moves
past the scene. In this case the variation in the propagation range r = R−R0 determines
the range migration of the individual scatterer responses in the range compressed signal
history. It can be seen from Figure 3 that scatterers displaced in azimuth with respect
to the focus point are subject to a sinusoidal range variation while scatterers displaced
in range are subject to a co-sinusoidal response. A scatterer at the scene centre however
is compensated for exactly and is subject to no pulse-to-pulse range variation over the
collection aperture.

The task of the spotlight image formation processor is to “compress” each of the
“smeared” scatterer responses to a point and so recover a focused image. The complexity of
SAR processing algorithms arises due to the significant migration of the scatterer responses
through range resolution cells over the synthetic aperture. Also the nature of the range
echo response varies as a function of the scatterer’s spatial location relative to the scene
centre. Most imaging algorithms employ some degree of approximation to the scattering
response to allow a computationally efficient processor to be implemented.
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Figure 3: Range compressed raw echo data collected for three point scatterers where the
demodulation reference function is the transmit chirp waveform delayed by the propagation
distance to the scene centre. The point at the scene centre undergoes no range migration,
while the scatterers offset in azimuth and range undergo a sinusoidal like range migration.

2.2 The Polar Format Algorithm

The Polar Format Algorithm (PFA) for spotlight SAR image formation is an efficient,
readily implemented algorithm for the focusing of deramp demodulated echo data. The
PFA compensates for the migration of the scatterer’s response through range resolution
cells for all scatterers in the scene via resampling operations carried out in the frequency
domain i.e., on the deramp demodulated range echoes obtained prior to the inverse Fourier
transform.

The origins of the polar format technique may be traced back to research conducted
by the University of Michigan in the early 1960s into fine resolution imaging of rotating
objects using radar. In this research the coherent doppler filtering of fine resolution range
echo data collected from targets placed on a rotating platform was found to produce poorly
focused imagery. This was attributed to the pronounced scatterer migration through range
resolution cells as the scene rotated past the radar. In [17], Walker proposed placing
the range echo data in a polar grid to compensate for the observed sinusoidal variation
of the range migration. This effectively compensates for the range cell migration in a
simple and efficient step for all scatterers in the illuminated scene, obviating the need
for a two dimensional focusing correlation kernel. Subsequent range doppler processing
generates the desired fine resolution spotlight SAR imagery using simple Fourier transform
techniques.

Considerable insight into the spotlight mode SAR image formation problem and the
inherent polar alignment of the data was gained by the discovery that the image formation
problem could be formulated as a tomographic reconstruction problem. In [16] Munson
was able to demonstrate that the deramp demodulated range echo samples could be re-
lated directly to the spatial frequency domain description of the scene reflectivity via the
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Figure 4: The acquired deramp demodulated range echo Ppol(kr, θ0, ψ0) obtained at loca-
tion (R0, θ0, ψ0) evaluates the scene’s reflectivity in the spatial frequency domain along the
radial in the direction (θ0, ψ0).

projection-slice theorem. In the context of spotlight SAR imaging the projection-slice
theorem states that the deramp demodulated range echo data collected in a given look
direction (θ, ψ), measured from the scene focus point to the radar, is equal to the scene’s
reflectivity in the spatial frequency domain measured along a radial with the same look
direction (θ, ψ). The offset of the data samples along the frequency domain radial from
the origin is proportional to the radar centre frequency f0 while the length of support
along the radial is determined by the chirp signal bandwidth fbw. This is illustrated in
the Figure 4.

In Figure 4 the scene is described by a reflectivity function r(x, y, z) while ppol(r, θ0, ψ0)
denotes the deramped inverse Fourier transformed scene response as the radar location
(R0, θ0, ψ0). The scene response after deramp demodulation, prior to the inverse Fourier
transform may be denoted by Ppol(kr, θ0, ψ0) where kr is the Fourier transform variable
associated with r in ppol. The function Ppol(kr, θ0, ψ0) is related to the scene reflectiv-
ity r(x, y, z) via the slice projection theorem. That is, applying a Fourier transform to
r(x, y, z) to give R(kx, ky, kz) and defining a change of variables from cartesian (kx, ky, kz)
to spherical coordinates (kr, θ, ψ) where,







kx

ky

kz






=







k cosψ sin θ
k cosψ cos θ
k sinψ






, (2)

gives Rpol(kr, θ, ψ). The projection-slice theorem states that Ppol(kr, θ0, ψ0) equals Rpol

evaluated at along the radial in the three dimensional Fourier space defined by the look
angles (θ, ψ) = (θ0, ψ0) i.e.,

Ppol(kr, θ0, ψ0) = rect

(

kr − k0

kbw

)

Rpol(kr, θ0, ψ0), (3)

7



DSTO–TR–1851

y

ψ

kk

Aperture of support: A

zk

0g

the scene’s spatial frequency domain
Acquired signal history data in Spotlight SAR imaging geometry

xk

Length L
Synthetic Aperture

0
ψ

0

z

Rbs g1

Data acquisition plane

y
x

 acq

Figure 5: As the radar moves past the scene the acquired deramp demodulated echo data
are samples of the scene’s reflectivity evaluated over an acquisition surface in the scene’s
spatial frequency domain.

where k0 = 2πf0/c and kbw = 2πfbw/c.

As the radar moves past the scene the range echo data samples will sweep out a
polar raster grid in the spatial frequency domain defined by variation in the azimuth and
elevation angles θ and ψ respectively, i.e., the imaging geometry. This is illustrated in
Figure 5.

Fast, efficient image reconstruction subsequently proceeds by direct Fourier domain
reconstruction: The collected deramp data Ppol(kr, θ, ψ) residing on the polar grid are
firstly resampled onto a uniformly spaced rectangular grid (kx, ky) in the kz = 0 plane,
see Figure 6.

Ppol(kr, θ, ψ) −→ P (kx, ky, kz = 0). (4)

An image of the scene may subsequently be recovered by applying a two dimensional
inverse Fourier transform to a subset or windowed portion of the available interpolated
data set P (kx, ky, kz = 0).

The nature of the image recovered by the PFA may be ascertained by considering a
scene consisting of an elementary point scatter with reflectivity qsexp(jφs) at location
(xs, ys, zs),

r(x, y, z) = qsexp(jφs)δ(x− xs, y − ys, z − zs), (5)

where δ(x, y, z) is the Dirac delta function. In the Fourier domain the reflectivity function
is given by,

R(kx, ky, kz) =

∫∫∫

r(x, y, z)exp(−j(xkx + yky + zkz))dxdydz,
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Figure 6: Polar to rectangular resampling of the acquired deramp demodulated range echo
data.

= qsexp(jφs)exp(−j(xskx + ysky + zskz)). (6)

The deramp demodulated data set acquired over a collection aperture can be expressed in
terms of the scene reflectivity as,

P (kx, ky, kz) = Aacq(kx, ky, kz)R(kx, ky, kz), (7)

where Aacq describes the acquisition aperture in the three dimensional Fourier space. For
the case of straight and level flight without squint the elevation angle varies in such a way
that the polar grid lies in a plane in the three dimensional spatial Fourier domain given
by,

kz = β0ky, (8)

where β0 = tanψ0 with ψ0 being the elevation angle at aperture centre. The aperture of
support Aacq may subsequently be expressed as,

Aacq(kx, ky, kz) = Aac(kx, ky)δ(kz − β0ky). (9)

Given that the aperture of support for the collected data in the spatial frequency domain
is offset from the origin, as illustrated in Figure 5, it is convenient to define the following
baseband form of equation (7),

Pb(kx, ky, kz) = P (kx, ky + k0g , kz),

= Aacq(kx, ky + k0g , kz)R(kx, ky + k0g , kz). (10)

The variable k0g is the location of the aperture centre along the ky axis as shown in Figure
5. An image is recovered from the collected data Pb(kx, ky, kz) by applying a window
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function Aifp(kx, ky) typically chosen to be a rectangular region lying wholely within the
acquisition aperture of support in the the (kx, ky) plane (see Figure 6) such that,

Aifp(kx, ky)Aacq(kx, ky + k0g , kz) = Aifp(kx, ky)δ(kz − β0(ky + k0g)). (11)

For an unweighted window function Aifp(kx, ky) is defined as,

Aifp(kx, ky) = rect

(

kx

kbwx

)

rect

(

ky

kbwy

)

. (12)

The recovered image of the point scatterer is subsequently obtained by applying an
inverse Fourier transform to Aifp(kx, ky, kz)Pb(kx, ky, kz), i.e.,

f(x, y, z) =

∫ ∫ ∫

Aifp(kx, ky, kz)Pb(kx, ky, kz)exp(j(xkx + yky + zkz))dkxdkydkz. (13)

Substituting (10) for Pb in (13) gives

f(x, y, z) =

∫ ∫ ∫

Aifp(kx, ky)Aacq(kx, ky + k0g , kz)R(kx, ky + k0g , kz)

exp(j(xkx + yky + zkz))dkxdkydkz. (14)

Substituting (6) and (11) into (14) gives,

f(x, y, z) = qsexp(jφs)

∫ ∫ ∫

Aifp(kx, ky)δ(kz − β0(ky + k0g))exp(−jysk0g)

exp(j((x− xs)kx + (y − ys)ky + (z − zs)kz))dkxdkydkz,

= qsexp(jφs)exp(−j(ys + zsβ0)k0g)

∫ ∫

Aifp(kx, ky)

exp(j((x− xs)kx + (y − ys + zβ0 + zsβ0)ky))dkxdky. (15)

The inverse Fourier transform expression in (15) may expressed as a convolution of a SAR
point spread function with a modified form of the point scatterer reflectivity,

f(x, y, z) = a(x, y) ⊗ fp(x, y, z). (16)

The function a(x, y) is the inverse Fourier transform of the aperture window Aifp(kx, ky)
and may be interpreted as the point spread function of the SAR image processor,

a(x, y) =
1

4π2

∫ ∫

Aifp(kx, ky)exp(j(xkx + yky))dkxdky. (17)

For the rectangular windowing function in (12) the point spread function a(x, y) takes the
form of a two dimensional sinc function,

a(x, y) =
1

4π2

∫ ∫

Aifp(kx, ky)exp(j(xkx + yky))dkxdky,

=
kbwx

kbwy

4π2
sinc

(

xkbwx

2π

)

sinc

(

ykbwy

2π

)

. (18)
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The resolution of the recovered PFA image is defined by the distance from the mainlobe
peak to the first null of the point spread function a i.e.,

Azimuth Resolution: ρx =
2π

kbwx

, (19)

Range Resolution: ρy =
2π

kbwy

. (20)

The point scatterer reflectivity, as transduced by the radar, is given by the function fp(x, y)
in (16) where,

fp(x, y, z) = qsexp(jφs)exp(j(ys + zsβ0)k0g)δ(x− xs, y − ys + zβ0 − zsβ0). (21)

The point scatterer appears in the recovered image at location,

x = xs (22)

y = ys + (zs − z)β0 (23)

Observe that the location of the point scatterer in the z dimension is not uniquely deter-
mined, i.e., it is not possible to resolve the scatterer’s location above the ground plane
z = 0 based on the single collection Pb(kx, ky, kz). To determine the scatterer’s height zs,
two or more collections over a range of elevation angles ψ is required [18]. This allows
an aperture in the kz dimension of Figure 5 to be formed. The acquired data from the
multiple collections can be placed in a three dimensional data “cube” in the Fourier space
and a three dimensional image formed via a three dimensional inverse Fourier transform.
For the case of a single collection however, since the height location of the scatterer is not
uniquely determined it is common to consider forming a ground plane image for which z
in (21) is set to zero. It can be seen from (23) that in a ground plane image the scatterer
appears, not at its true location of (xs, ys), but at location (xs, ys + zsβ0). This is the
layover phenomenon in which elevated targets appear laid over towards the radar thus
appearing in range bins closer to the radar.

From (21) the point scatterer as transduced by the radar is also subject to a phase
modulation φ = (ys +zsβ0)k0g . While this phase is of no significance in the case of a single
image collection if two images are acquired of the scene with slightly different depression
angles ψ0 and ψ1 and the images “interfered” then the phase difference between the image
pair is related to the depression angle difference and the point scatterer height. This forms
the basis for the terrain height mapping application of SAR interferometry which shall be
discussed in Section 3.

While equation (16) describes the spotlight SAR image of a point scatterer the analysis
may be extended to encompass an scene of arbitrary reflectivity. Of particular interest
are scenes described by a surface reflectivity rs(x, y) as well as a terrain height function
h(x, y),

r(x, y, z) = rs(x, y)δ(z − h(x, y)). (24)

The same approach as described in equations (6) to (16) may be applied to (24) to deter-
mine the transduced SAR image. It may be shown [9] that the ground plane SAR image
takes the form,

r̂(x, y + ∆y) = a(x, y) ⊗ r′s(x, y). (25)
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The function a(x, y) is the SAR point spread function as defined in (18) while r′s(x, y) is
related to the surface reflectivity,

r′s(x, y) = rs(x, y)exp(−j(y + β0h(x, y))k0g). (26)

∆y is the layover term and is given by β0h(x, y).

2.3 Comments on the PFA

The PFA is an efficient readily implemented algorithm for forming imagery using de-
ramp demodulated data. In particular the range cell migration correction required (see
Figure 3) is efficiently carried out in the frequency domain via the resampling operation
which transforms the data Gpol(kr, θ, ψ) acquired on a polar grid into data sampled on
a rectangular, cartesian grid G(kx, ky, kz). In practice this operation is typically carried
out in a two step process using one dimensional interpolators [9]. Indeed this represents
a considerable portion of the overall computational burden of the PFA. The design of the
interpolators, in particular the use of more appropriate three dimensional interpolators,
as well as the use of fast Fourier transforms for use on irregular sample grids remains an
active area of research.

Critical to the PFA is the projection-slice theorem which relates the evaluation of a
line integral of a two dimensional function to the Fourier transform of the function. In the
context of spotlight SAR the projection-slice is applied in an approximate sense. Provided
the imaged scene is sufficiently small and the radar sensor is sufficiently far away from
the scene then the propagating electromagnetic waves incident on the scene and received
by the radar may be modelled as plane waves. Under this approximation the transduced
reflectivity at propagation range delay will be given by the integral of the scene reflectivity
over a line perpendicular to the direction of wave propagation. and the projection-slice
theorem may be applied. A more accurate description of the incident electromagnetic wave
however, is to use a spherically propagating wave model. In this model the integrated scene
response at a given demodulation delay is formed by taking an integral along a circular
arc rather than along a straight line. In this case the PFA doesn’t completely compensate
for the range migration and the associated phase modulation of the scatterer response in
the acquired signal history data. As a consequence the recovered PFA image is subject
to a defocus and geometric distortion that varies spatially over image [9]. Two conditions
must be satisfied if the line integral approximation is to be applied. Firstly, the range
migration error due to wavefront curvature over the imaged scene must be less than the
resolution cell size. Secondly, over the coherent processing interval the range error due to
wavefront curvature for a particular scatterer must vary by no more than a small fraction
of a wavelength. With these constraints [19] limits on the resolution and image patch size
that may be recovered using the PFA can be derived,

x < ρx

√

Rbsg
k0g

2π cos2 ψ0
, (27)

y <
ρx

cosψ0

√

Rbsg
k0g

2π cos2 ψ0
, (28)
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where Rbsg
is the standoff range of the radar from the scene centre measured in the ground

plane at the aperture centre. For imaging scenarios beyond these limits image formation
algorithms must address the effects of wavefront curvature on the scatterer point response
in the acquired signal history data.

3 Spotlight SAR Interferometry

Synthetic Aperture Radar Interferometry (InSAR) employs two complex valued SAR
images to derive additional information about a scene by exploiting differences in the
amplitude and phase of the image pair. The information made available by the joint
processing of an interferometric image pair is determined by the difference between the
imaging geometries used for each collection and any scene changes arising in the temporal
delay between the collections.

In single pass interferometry the two complex SAR images are acquired simultaneously
via two independent receive antennas located on the same moving platform. In the terrain
mapping application of SAR interferometry the antennas are configured to give an across
and/or above track baseline offset. Due to these baseline offsets the scene is viewed
with a slightly different imaging geometry. In particular the two imaging collections have
slightly different mid-aperture elevation angles ψ1 and ψ2 as well as slightly different
standoff ranges. Given accurate measurements of ψ1 and ψ2 an estimate of terrain height
as a function of ground plane location h(x, y) may be retrieved from the pixel-wise phase
difference between the image pair. The accuracy of this approach is of the order of the radar
wavelength and thus can potentially provide highly accurate estimates of the scatterer
elevation.

An alternative application of the joint processing of a SAR image pair arises when the
image pair are acquired at different times but using the same imaging geometry. In this
imaging modality differences in the amplitude and phase between the image pair may be
attributed to changes in the scene that arise in the time interval between collections. For
example, by placing two antennas, displaced in the along track direction, on the same
sensor platform image pairs may be acquired with a temporal delay of the order of a
few milliseconds. Such Along Track Interferometers (ATI) allow the suppression of static,
stable clutter scattering contributions to identify the presence of slow moving targets in a
scene [20], [21] and may also be used for mapping ocean currents [22]. Alternatively, using
repeat pass collections, changes in the scene that occur over hours, days and even years
may be transduced by using coherent change detection techniques. In coherent change
detection scene changes are detected by comparing the amplitude and phase of a repeat
pass image pair using the complex cross correlation coefficient change detection metric.
As the transduced pixel phase is sensitive to displacements of scattering elements in the
scene of the order of a fraction of the radar wavelength, coherent change detection may be
used to detect very subtle disturbances such as the vehicle tracks and other subtle surface
deformations [23], [24] and [25].
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Figure 7: Repeat pass spotlight SAR imaging geometry acquired with an across track
baseline Bx and an above track baseline of Bz. The acquired range echo data in the
primary and repeat pass are samples of the scene’s complex reflectivity evaluated over two
offset acquisition planes in the scene’s spatial frequency domain.

3.1 Forming an Interferometric Image Pair

Figure 7 illustrates an interferometric spotlight SAR collection in which the primary
and secondary collection apertures have an across and above track baseline offset of Bx

and Bz respectively. In the case of single pass interferometry these offsets are defined by
the relative locations of the two receive antennas on the radar platform. In a repeat pass
interferometric acquisition on the other hand, the offsets would represent the differences
between the primary and repeat pass flight tracks of the radar platform. Due to these
baseline offsets the scene is viewed with a slightly different imaging geometry in each
acquisition. In particular the primary and secondary acquisitions have slightly different
mid-aperture elevation angles of ψ1 and ψ2 respectively as well as slightly different standoff
ranges: Rbsg1

in the primary collection and Rbsg2
in the secondary collection. As a conse-

quence, using the projection-slice theorem, the acquired deramped signal history data in
the primary and secondary acquisitions are samples of the scene’s spatial frequency domain
representation on two slightly different planes defined by kz = tanψ1ky and kz = tanψ2ky

respectively as illustrated in Figure 7 (assuming straight and level flight without squint).

Defining the scene complex reflectivity in the primary acquisition as,

r1(x, y, z) = r1s(x, y)δ(z − h(x, y)), (29)
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and in the secondary acquisition as,

r2(x, y, z) = r2s(x, y)δ(z − h(x, y)), (30)

(Note that in the case of single pass interferometry the scene reflectivity is the same in
each channel in which case r1(x, y, z) = r2(x, y, z).) the acquired deramp signal history
data for the two acquisitions may be written as,

P1(kx, ky, kz) = Aacq1
(kx, ky, kz)R1(kx, ky, kz), (31)

and,

P2(kx, ky, kz) = Aacq2
(kx, ky, kz)R2(kx, ky, kz), (32)

whereR1(kx, ky, kz) andR2(kx, ky, kz) are the Fourier transforms of r1(x, y, z) and r2(x, y, z)
respectively. Note it has been assumed that there has been no surface deformation in the
interval between collections so that the terrain height h(x, y) is the same in both acquisi-
tions.

Due to the different acquisition geometries, the offsets as well as the dimensions of
the apertures of support in the (kx, ky) plane for the acquired deramp demodulated signal
history differ, as illustrated in Figure 7. In defining the baseband signal history P1b

and P2b

for the primary and secondary acquisitions however, a common baseband spatial frequency
k0g is employed and is chosen to be the centre of the overlapping portion of the acquisition
apertures such that,

P1b
(kx, ky, kz) = P1(kx, ky + k0g , kz),

= Aacq1
(kx, ky + k0g , kz)R1(kx, ky + k0g , kz), (33)

and,

P1b
(kx, ky, kz) = P2(kx, ky + k0g , kz),

= Aacq2
(kx, ky + k0g , kz)R2(kx, ky + k0g , kz). (34)

As a consequence the acquisition apertures of support for P1b
and P2b

are misaligned in the
baseband spatial frequency domain as illustrated in Figure 8. The primary and secondary
ground plane image formation window functions Aifp1

and Aifp2
may be defined as,

Aifp1
(kx, ky)Aacq1

(kx, ky + k0g , kz) = Aifp1
(kx, ky)δ(kz − β1(ky + k0g)), (35)

Aifp2
(kx, ky)Aacq2

(kx, ky + k0g , kz) = Aifp2
(kx, ky)δ(kz − β2(ky + k0g)), (36)

where, using an unweighted rectangular window function, Aifp1
(kx, ky) and Aifp2

(kx, ky)
have the form,

Aifp1
(kx, ky) = rect

(

kx

kbwx1

)

rect

(

ky − ∆1

kbwy1

)

, (37)

Aifp2
(kx, ky) = rect

(

kx

kbwx2

)

rect

(

ky + ∆2

kbwy2

)

. (38)
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The image formation window dimensions (kbwx1
, kbwy1

) and (kbwx2
, kbwy2

) are chosen such
that window functions Aifp1

(kx, ky) and Aifp2
(kx, ky) lie wholely within the acquisition

apertures of support as illustrated in Figure 8. The terms ∆1 and ∆2 describe the offset
of the window functions from the baseband ky origin that arises due to the use of the
common baseband spatial frequency k0g , see Figure 8.

Applying the image formation windows to the primary and secondary acquisition signal
history data given in (33) and (34) followed by an inverse Fourier transform gives the
following ground plane interferometric image pair,

f(x, y + ∆1y) = a1(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g), (39)

g(x, y + ∆2y) = a2(x, y) ⊗ r2s(x, y)exp(−j(y + β2h(x, y))k0g), (40)

where ⊗ is the convolution operator and ∆1y and ∆2y are the layover terms associated
with the terrain height function h(x, y) given by,

∆1y = h(x, y)β1, (41)

∆2y = h(x, y)β2. (42)

The convolution kernels a1(x, y) and a2(x, y) are the point spread functions of the primary
and secondary acquisitions respectively and are given by,

a1(x, y) =
1

8π3

∫ ∫ ∫

Aifp1
(kx, ky)Aacq1

(kx, ky + k0g , kz)

exp(j(xkx + yky))dkxdkydkz,

=
kbwx1

kbwy1

4π2
sinc

(

xkbwx1

2π

)

sinc

(

ykbwy1

2π

)

exp(jy∆1), (43)

and,

a2(x, y) =
1

8π3

∫ ∫ ∫

Aifp2
(kx, ky)Aacq2

(kx, ky + k0g , kz)

exp(j(xkx + yky))dkxdkydkz,

=
kbwx2

kbwy2

4π2
sinc

(

xkbwx2

2π

)

sinc

(

ykbwy2

2π

)

exp(−jy∆2). (44)

3.2 Interferometric Processing Modes

It can be seen that the interferometric image pair in equations (39) and (40) contain
terms that are dependent on the imaging geometry as well as the surface reflectivity of
the scene and the terrain height. The imaging geometry manifests as a height dependent
phase modulation in the transduced imagery as well as a height dependent misregistration
in the range dimension. The elevation angle also contributes to the size and overlap of the
aperture of support functions Aifp1

and Aifp2
which define the point spread functions a1

and a2 respectively. By “interfering” the images the scene reflectivity component that is
common to both images may be cancelled. The nature of the common scene reflectivity
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Figure 8: Apertures of support in the (kx, ky) plane for the acquisition and image forma-
tion transfer functions for a repeat pass image pair after baseband translation. Also shown
is the common overlapping aperture of support.

component that is removed by interferometric processing and hence the information con-
tent of the interferometric product is dependent on the temporal and geometric baseline
between the collections.

The application of SAR interferometry that has received the most attention in the
literature has been the topographic mapping application as this allows digital elevation
maps of a scene to be generated with unprecedented accuracy, resolution and coverage.
Interferometric terrain height mapping is most effective when the image pair acquired
simultaneously i.e., without a temporal baseline so that r1s = r2s , and with a carefully
controlled geometric baseline i.e., with a small difference in the depression angle. Returning
to equations (39) and (40) and setting r1s = r2s the phase term φ = (−jβ1h(x, y)k0g) may
be added and subtracted from (40) giving,

f(x, y + ∆1y) = a1(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g), (45)

g(x, y + ∆2y) = a2(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g)exp(j(∆β)h(x, y)k0g)).

(46)

where ∆β = β1 − β2. Assuming that the terrain height function varies slowly over the
scene and that ∆β is small then the term exp(j(∆β)h(x, y)k0g)) may be taken out of the
convolution to give,

f(x, y + ∆1y) = a1(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g), (47)
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g(x, y + ∆2y) = exp(j(∆β)h(x, y)k0g))
[

a2(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g)
]

.

(48)

By employing an image registration and resampling algorithm the misregistration (∆1y −
∆2y) may be estimated and removed. The image pair thus differ by the phase term,

∆Φ = (β1 − β2)h(x, y)k0g , (49)

and the point spread functions a1 and a2. Techniques referred to as aperture trimming may
be applied in the image formation algorithm to achieve a common point spread function
in which case the image pair differ only by the phase term ∆Φ.

The elevation angles ψ1 and ψ2 that determine β1 and β2 in (49) may be computed
from the radar platform navigation information while k0g is dependent on the radar centre
frequency and the common baseline offset chosen during image formation. It is thus
possible to compute h(x, y) given ∆Φ. The phase difference between the interferometric
image pair is obtained as the phase of the pixel-wise complex conjugate product of the
registered, aperture trimmed image pair,

∆Φmod = arg{f(x1, y1)g
∗(x1, y1)}, (50)

where (x1, y1) are the spatial dimensions of the registered image pair. However, the phase
of the complex conjugate product only gives ∆Φ modulo 2π. The terrain elevation must
subsequently be retrieved via application of a phase unwrapping algorithm to remove the
2π ambiguity.

The first demonstration of interferometric SAR applied to topographic mapping was
obtained using radar observations of the Moon in 1972 [26], [27], [28]. In [27], [28] a radar
interferometer was constructed using the Haystack radar system and a nearby communica-
tions antenna with subsequent interferometric height measurements yielding an accuracy
of better than 500 m. In 1974 Graham [29] applied the technique to radar data of the
Earth acquired using an airborne platform followed by more extensive demonstrations of
the technique in 1986 by Zebker and Goldstein [30]. However, it wasn’t until the launch of
the ERS-1 C-band SAR satellite in 1991 by the European Space Agency that high qual-
ity, modest resolution imagery, suitable for repeat pass interferometric processing become
readily available. The high stability of the satellite and accurate knowledge of its orbital
parameters allowed the generation of high quality interferometric phase estimates to assist
in the development of phase unwrapping algorithms for the retrieval of terrain topography.

While the terrain mapping application of SAR interferometry uses the geometric base-
line to determine terrain height, the change detection application utilises a temporal base-
line to measure and detect scene disturbances. By utilising repeat pass acquisitions, each
having the same imaging geometry, differences in the amplitude and phase of the trans-
duced imagery may be associated with changes in the scene that arise in the interval
between collections.

This method of change detection, commonly referred to as coherent change detection,
has the potential to detect very subtle scene changes. From equations (39) and (40) it
can be seen that the SAR image is essentially a two dimensional, bandpass filtered version
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of the scene’s radar reflectivity. In the case of natural distributed scenes such as forests,
agricultural fields and bare earth surfaces the scene reflectivity may be decomposed into
a large number of independent randomly oriented scatterers each with a random complex
reflectivity value. The transduced reflectivity in a given SAR image resolution cell is thus
a coherent sum of scattering contributions where the contribution of a given scattering
centre is weighted by the point spread function. The transduced reflectivity in a given
resolution cell f(x, y) may be described as a random walk in the complex plane where the
measured return is given by vector sum,

f(x, y) =
N
∑

k=1

Akexp(jφk). (51)

The amplitude Ak, of each step in the random walk, is given by the amplitude of the
scattering centre and the weighting imposed by the SAR point spread function. The
phase φk is determined by the phase of the scattering centre as well as a geometrical
component dependent on the line of sight distance from the radar to the scattering centre
measured in terms of the radar wavelength. Since the scattering centres are randomly
located throughout the scattering scene the phase values φk are completely random. From
this description it can be seen that any disturbance in the scene, such as a random re-
arrangement of the scatterers, can lead to significant changes in the phase associated
with each scattering centre. This in turn leads to changes in the random walk and hence
the transduced amplitude and phase in a given resolution cell. Furthermore while a re-
arrangement in the scatterer locations will result in a change in the random walk the total
backscattered energy from the scene will not necessarily change as the amplitude of the
individual scatterers Ak has not changed. Consequently such changes will not necessarily
be detected by conventional incoherent change detection schemes such as image intensity
change detection.

While the coherent change detection technique potentially allows for the detection
of very subtle man-made scene changes the sensitivity of the technique also makes it
susceptible to high false alarm rates. In particular changes in the scattering nature of the
scene due to environmental effects such as wind and rain can obscure changes of interest
and lead to false detections. Furthermore the presence of receiver noise in the transduced
imagery as well as acquisition and image formation differences that arise due to slight
differences in the acquisition geometries can also lead to differences in the transduced
amplitude and phase in each resolution cell.

In order to provide some measure of discrimination between such sources of difference
in the image pair and accommodate the random noise fluctuations the degree of similarity
between the image pair is quantified by the sample coherence. The sample coherence is
defined as the magnitude of the sample complex cross correlation coefficient between the
image pair,

γ̂ =
|∑N

k=1 fkg
∗

k|
√

∑N
k=1 |fk|2

∑N
k=1 |gk|2

. (52)

The sample cross cross correlation coefficient measures the average correlation between
an image pair over an N pixel local area in the scene and encodes the degree of scene
similarity as a value in the range 0 to 1. Where a scene disturbance causes significant
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change in the scattering behaviour the cross correlation coefficient tends to zero. In the
absence of scene changes the presence of receiver noise, processing differences will tend to
cause small differences between the image pair resulting in coherence values close to but
less than one. Environmental effects on the other hand can cause scene changes with the
extent of the decorrelation depending on the severity of the effects and the nature of the
backscattering scene. In general however, man-made changes of interest such as vehicle
tracks can generally be identified as localised areas of low coherence against “undisturbed”
areas exhibiting some modest loss of coherence. The scene changes can thus be detected
by applying a simple threshold to the sample coherence map evaluated over the scene.

While the potential of interferometric change detection for detecting very subtle scene
changes has been known for some time [9] only a few applications of the technique have
been reported in the literature. In [1] Corr was able to use imagery acquired with the
European ERS-1,2 tandem satellites to detect scene changes caused by the movement
of large vehicles over a grassed area in Salisbury Plain, United Kingdom. The modest
resolution of the ERS imagery (20 m in range by 6 m in azimuth) however ultimately
limited the detection performance achieved by Corr. In order to realise the full potential of
the interferometric change detection technique fine resolution imagery commensurate with
the size of the changes to be detected is required. This can be seen from an inspection of
(52), where if the scene change only occupies a fraction of the local N pixel area under test
then the sample cross correlation coefficient contains a mixture of changed and unchanged
pixels thereby giving a non-zero coherence. In [9] results from a coherent change detection
experiment carried out using a 1 m resolution X-band airborne SAR developed by Sandia
National Laboratories were presented. In these results, changes arising due to earthworks
in a land fill site are readily identified including tracks made by a self-loading earthmover
as well as the grading of an unpaved road. The finer resolution measurements facilitate
the formation of a more robust coherence estimate through increased spatial averaging as
well as improving the detection of finer scale scene disturbances.

3.3 Processing Effects

In the previous section the utility of the sample cross correlation coefficient for identify-
ing areas subject to scene change was discussed. The sample cross correlation coefficient is
an estimate of the true or expected cross correlation coefficient obtained by averaging over
a local N pixel neighbourhood. The true cross correlation coefficient may be decomposed
into three main components [2],

γ = γsnrγtempγproc. (53)

In the coherent change detection application of interferometry the temporal correlation
γtemp is the correlation term of interest as it provides information about scene disturbances.
It can be related to the relative backscatter contributions of the stable unchanged scatterers
in the scene and the unstable changed scatterers in the scene. Where there are no unstable
scatterers γtemp = 1 while if there are no stable scatterers γtemp = 0. In the transduced
image pair however, γtemp is modulated by the noise and processing correlations γsnr and
γproc respectively. These terms reduce the overall correlation of the transduced image pair
and so limit the contrast between regions free of scene change and those subject to some
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disturbance. As a consequence the performance of γ and hence its sample estimate γ̂ as a
change detection statistic is degraded by these terms.

The noise correlation γsnr is a real valued quantity that is determined by the radar
hardware and thus is fixed for a given sensor and imaging geometry. The processing
correlation γproc on the other hand is a complex quantity determined by the mismatch
between the transfer functions of the primary and repeat pass SAR image formation
processors. This mismatch is a source of decorrelation and phase bias in the complex
correlation estimate that shall vary spatially over the image. The mismatch must therefore
be adequately compensated for if the full potential of interferometric processing is to be
realised.

3.3.1 Receiver Noise Decorrelation

Coherent radar echo data acquired at each transmit/receive point along the coherent
processing aperture is subject to radar receiver noise. The level of this noise is determined
by the RF hardware, in particular the amplifying stages in the receive chain, as well as
the operating temperature of the system [31]. In the transduced imagery the presence of
radar receiver noise is generally modelled as an independent, additive noise source and the
cross correlation coefficient associated with the noise terms is given by,

γsnr =
1

√

1 + SNR−1
1

√

1 + SNR−1
2

, (54)

where SNR1 and SNR2 are the signal to noise ratios in the primary and repeat pass images
respectively. Generally for a repeat pass SAR system the noise levels in each acquisition
are the same thus the noise component of the cross correlation may be simplified to,

γsnr =
1

1 + SNR−1
, (55)

where SNR = SNR1 = SNR2. Radar systems are generally designed to a satisfy some
prescribed system noise level in absolute power. Thus the signal to noise power ratio varies
as a function of the scene backscatter power. As a consequence the noise component of
the cross correlation can vary spatially over the scene as the backscattering nature of the
scene changes.

3.3.2 Baseline Decorrelation

In acquiring image pairs for change detection analysis it is desirable to acquire the
data using exactly the same imaging flight tracks. In this case there is no geometric
baseline offset hence the point spread functions and the height dependent image domain
phase modulation and layover are the same. Amplitude and phase differences between
the image pair may thus be attributed to changes in the scene. In practice however it
is not possible to fly the same flight track due to inaccuracies in the platform navigation
information. This is particularly true in airborne systems where the effects of wind and
turbulence can result in significant flight track offsets. Thus both across and above track
offsets can exist between the repeat pass image pair.
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Figure 9: Apertures of support in the (kx, ky) plane for the acquisition and image forma-
tion transfer functions for a repeat pass image pair after baseband translation. Also shown
is the common overlapping aperture of support.

As a consequence the acquired signal history data in the primary and repeat pass
acquisitions evaluate samples of the scene’s spatial frequency domain representation on
two slightly different surfaces. In the ground plane projection (kz = 0) the acquisition
apertures of support may be partitioned into three non-overlapping areas: an area common
to both the ground plane projection apertures of support, Ac in Figure 9; an area present
in the primary acquisition and not in the secondary acquisition Ap in Figure 9; an area
present in the secondary acquisition and not in the primary acquisition As in Figure 9.

For natural terrain where the scene is described by a large number of independent
scatterering elements the scene reflectivity varies independently from resolution cell to
resolution cell without any spatial correlation between neighbouring cells. In the spatial
frequency domain the energy of the scene is therefore distributed over all frequencies. Fur-
thermore the scene energy at any one frequency is independent of the energy at any other
frequency. In forming primary and repeat pass images from the full available apertures
Ac + Ap and Ac + As respectively it is therefore only the common overlapping area Ac

that contributes to the correlation of the image pair. The non-overlapping areas Ap and
As on the other hand only contribute uncorrelated components to the images. It can be
shown that the correlation of an image pair formed with a baseline offset is given by,

γbaseline =
Ac

√

(Ac +Ap)(Ac +As)
. (56)

It can be seen from Figure 9 that increasing the depression angle difference ∆Ψ = ψ1 −ψ2

between the image acquisitions reduces the overlapping aperture sizeAc and hence γbaseline.
As the difference is increased a critical baseline is reached for which Ac = 0 and the
correlation of the interferometric pair falls to zero. Image pairs suitable for interferometric
processing must be acquired so that ∆ψ is within the critical baseline limits.

A simple approach to mitigating the baseline decorrelation is to restrict the image
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formation processors to only process the common overlapping portion of the acquired
data aperture defined by Ac, such that,

Aipf1
(kx, ky) = Aifp2

(kx, ky) = Ac(kx, ky), (57)

in which case γbaseline = 1. This method is commonly referred to as aperture trimming.
While this approach reduces the processed range and azimuth spatial frequency bandwidth,
leading to a reduction in the range and azimuth resolution of the images, the improve-
ment in the processing correlation improves the quality of the subsequent interferometric
products.

Another approach to minimising baseline decorrelation proposed in [32] is to consider
a Tunable Interferometric SAR system in which the radar transmit frequency is shifted
by an amount corresponding to the collection aperture mismatch. In this case the full
system bandwidth may be processed giving full resolution interferogram at the expense
of increased radar hardware complexity. The approach also facilitates the processing
of interferometric pairs with larger baselines than is allowed in a fixed frequency radar
collection.

3.3.3 Registration

A crucial step to forming an interferometric image pair is to accurately register the
image pair. In the presence of geometric baseline offsets geometric misregistration between
an image pair naturally arises as a consequence of the differential layover that exists. For
a target at location (xs, ys, hs) imaged with a mid-aperture depression angle of ψ1, the
target appears at location (xs, ys + hs tanψ1) in the resulting ground plane image. The
differential layover for the same target imaged at a different mid-aperture depression angle
ψ2 is ∆y = hs(tanψ1−tanψ2) = hs∆β. The resulting decorrelation arising from this range
misregistration ∆y is governed by the point spread function of the acquisition and image
formation processor. For the case of an unweighted aperture the decorrelation takes the
form of a sinc function namely,

γrego = sinc

(

hs∆β

ρres

)

. (58)

Observe that for a misregistration of one resolution cell hs∆β = ρres the correlation falls to
zero. An important aspect of the design and implementation of a practical interferometric
processor is the estimation and compensation of image misregistration. For fine resolution
SAR systems small, sub-resolution cell image misregistrations can have a significant dele-
terious effect on the performance of interferometric processing. In the change detection
application of interferometry, the loss in correlation between a misregistered interfero-
metric pair reduces the contrast between changed and unchanged regions in the scene.
Similarly for terrain mapping the loss in correlation contributes to a noisier estimate of
the interferometric phase. Aside from layover, other sources contributing to image mis-
registration in range and azimuth include deviations from the ideal desired flight path as
well as navigation measurement errors. An accuracy of 0.1 of a resolution cell is generally
considered necessary to achieve high quality coherence estimates [10], [33].
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3.3.4 Higher Order Effects

Image misregistrations and baseline decorrelation represent the dominant first order
effects that must be accurately measured and compensated for to reliably generate good
quality coherence estimates. Additional decorrelation sources arise as a result of unmod-
elled phase terms due to mismatch between the acquisition and image formation functions.
In particular the PFA image formation algorithm used in the development of the imaging
equations in Section 2 is based on a plane wave model to describe the propagation of the
transmitted and received electromagnetic radiation to and from the scene. In the case
of wide-band, wide-angle, near-field imaging the plane wave propagation assumption be-
gins to break down and unmodelled wavefront curvature effects appear in the acquisition
function which will remain uncompensated by the PFA processor. In the case of SAR in-
terferometry these uncompensated terms manifest themselves as a relative image defocus
and misregistration between the primary and secondary images which varies spatially over
the images and become progressively larger at the outer edges of the image. These effects
however, can be mitigated by using alternative image formation algorithms that explicitly
account for wavefront curvature effects.

3.4 A Model for a Repeat Pass Image Pair

With accurate image domain registration and aperture trimming the image pair model
given in equation (48) may be written as,

f(x1, y1) = r′1s
(x, y),

g(x1, y1) = r′2s
(x, y)exp(jΦ), (59)

where (x1, y1) describe the spatial dimensions of the registered image pair, The angle Φ is
the interferometric height dependent phase term,

Φ = (β1 − β2)h(x, y)k0g . (60)

The scene reflectivity functions r′1s
(x, y) and r′2s

(x, y) are given by,

r′1s
(x, y) = a(x, y) ⊗ r1s(x, y)exp(−j(y + β1h(x, y))k0g), (61)

r′2s
(x, y) = a(x, y) ⊗ r2s(x, y)exp(−j(y + β1h(x, y))k0g), (62)

where a(x, y) is the point spread function defined by the common aperture of support
obtained after aperture trimming.

In practice however, the common overlap cannot be precisely defined due to errors
in the knowledge of the baseline offsets of the image pair over the acquisition apertures.
As a result r1 and r2 in (59) will contain uncorrelated contributions. Furthermore errors
can arise both in the estimation of the image misregistration as well as in the subsequent
resampling of the images onto a common spatial grid. Finally additive receiver noise will
also contribute to the decorrelation of the primary and repeat pass image pair. Assuming
that all these sources of scene decorrelation are independent and contribute as additive
decorrelation components to the image pair they can be modelled in the image domain as
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additive, mutually independent noise sources n1 and n2 in the primary and repeat pass
images respectively. Thus a more accurate model to describe the image pair is,

f(x1, y1) = r′1s
(x, y) + n1(x1, y1), (63)

g(x1, y1) = r′2s
(x, y)exp(jΦ) + n2(x2, y2), (64)

where n1 and n2 are mutually independent of each other and the scene reflectivity functions
r′1s

(x, y) and r′2s
(x, y).

Comparing the amplitude and phase of the image pair by taking the complex conjugate
product gives,

fg∗ = r′1s
r′

∗

2s
exp(−jΦ) + r′1s

n∗2 + n1r
′
∗

2s
+ n1n

∗

2. (65)

The first term in (65) depends on the scene’s reflectivity function and thus contains the
useful interferometric information, i.e., it represents the useful signal component in fg∗.
The useful signal component however, is corrupted by contributions dependent on the noise
terms n1 and n2. Thus taking the pixel-wise complex conjugate product yields only a poor
estimate of the interferometric information. In order to extract the useful interferometric
information averaging over a local N pixel area must be carried out to form a sample
complex conjugate product. Considering image pixels in a local area in the scene where
the terrain height is approximately constant and the area is subject to the same degree of
scene change then the average complex conjugate product is,

σ2
fg = E{fg∗} ≈

N
∑

k=1

fkg
∗

k. (66)

In this case the useful signal components associated with each pixel in the window will
add coherently (in phase) while the noise contributions will add incoherently. The useful
interferometric signal component is thus “emphasised” by the summation and yields more
robust estimates of the interferometric information. Note that while increasing the esti-
mation window size N yields improved sample estimates, the size of the window must be
restricted to homogeneous areas, that is areas which have the same backscattering char-
acteristics, are subject to the same temporal change processes and have the same terrain
height.

3.5 A Practical Interferometric Processor

Figure 10 is a flow chart describing the interferometric processing chain required to
process the repeat pass interferometric SAR data. The details of the components in the
processing chain shall now be discussed.

3.5.1 Compute Acquisition Apertures of Support

Given the radar deramp demodulated echo data and associated navigation data the
first step in the interferometric processing chain is the computation of the pointing vectors
[R, θ, ψ]T describing the location of the radar with respect to the scene focus point at each
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Figure 10: Flow chart of the processing steps required to generate an image pair repeat
pass SAR data suitable for applying interferometric change detection algorithms.

transmit/receive point along the radar flight track. The radar flight track is measured
with high precision using the combined INU and GPS information recorded during the
data collection and a common scene focus point is used for the imaging collections. Over
a coherent processing interval the pointing vectors associated with each imaging collection
define the acquisition apertures of support Aacq1

(kx, ky, kz) and Aacq2
(kx, ky, kz) for the

primary and repeat pass collections respectively.

3.5.2 Determine the Common Overlapping Aperture of Support

Given the acquisition apertures of support Aacq1
(kx, ky, kz) and Aacq2

(kx, ky, kz) for the
primary and repeat pass collections the next step is to compute the centre frequency k0g

and bandwidths kbwxc
and kbwyc

of the region given by the common overlapping intersection
of Aacq1

and Aacq2
in the (kx, ky) plane. The depression angles at mid aperture will

determine the acquisition aperture mismatch along the ky axis and hence the location and
size of the common overlapping region.

3.5.3 Image Formation

The choice of image formation processor is governed by the processor’s ability to ade-
quately focus the scatterer signal history over the coherent processing interval. Generally,
efficient frequency domain processors, such as the PFA, make approximations to the scat-
terer signal history which break down in wideband, wide-angle, near-field imaging. Under
these scenarios the imagery suffers from distortion, defocus and a loss in contrast, while
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interferometric products suffer from a loss in coherence and increased noise and bias on
the interferometric phase estimates. It is thus necessary to ensure the image formation
algorithm is able to adequately focus the imagery to the required resolutions given the
image size and standoff range, (see (27) and (28)).

3.5.4 Image Pair Registration

A plethora of registration techniques exists in the literature for estimating the pixel
by pixel misregistration and the subsequent resampling step. In [9] the misregistration
over a local neighbourhood of pixels is found by maximizing the complex cross correlation
between the image pair over the local area. By obtaining a number of such local spot
estimates of the misregistration distributed over the scene a model of the misregistration
at all points in the transduced image pair may be obtained by fitting a two dimensional
surface function to the sample estimates. An alternative approach proposed in [10] makes
use of the phase information available in interferograms obtained from different spectral
subapertures. The phase differences may be used to obtain local estimates of the misreg-
istration.

The registration processor used to process the repeat interferometric pairs considered
in this work uses a multistage approach similar to that described in [9]:

1. Estimate a coarse global misregistration of the image pair by finding the range and
azimuth shift that maximizes the cross correlation of the intensity images.

2. Based on the global misregistration partition the image pair into multiple corre-
sponding image subchips. Compute the intensity cross correlation of the image
subchips as a function of misregistration in range and azimuth. Interpolation of the
cross correlation map to find the sub-resolution cell location of the correlation map
maximum gives a fine registration estimate.

3. Using the multiple local misregistration estimates obtained over the entire scene
model the misregistration using a pair of thin plate splines [34], [35]. These splines
will describe, for each pixel (x, y) in the primary image, the location (x+∆x, y+∆y)
of the corresponding scene resolution cell in the repeat pass image.

4. Using the spline warping function resample the complex repeat pass image onto the
sample grid of the primary image using a two dimensional truncated sinc interpolator.

5. Using the complex registered image pair estimate any dominant relative linear phase
term between the primary image and the resampled repeat pass image and remove
this linear phase term from the repeat pass image.

6. Having removed the dominant relative linear phase from the repeat pass image,
recompute the fine registration estimates for the image subchips used in step 2 based
on cross correlation of the complex image pair. Cross correlation of the complex
transduced imagery produces a sharper correlation peak than cross correlating the
image intensities as the cross correlation estimate is now computed using coherent,
or vector addition, as opposed to scalar addition. As a consequence a more accurate
estimate of the correlation peak lag can be obtained.
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7. Recompute the warping surface to describe the misregistration and resample the
images to obtained a registered image pair.

3.5.5 Interferogram Estimation

A sample complex cross correlation coefficient is formed from an aperture trimmed,
registered interferometric image pair by computing,

γ̂exp(jφ̂) =

∑N
k=1 fkg

∗

k
√

∑N
k=1 |fk|2

∑N
k=1 |gk|2

, (67)

over a sliding estimation window. The size of the estimation window is a compromise
between obtaining a sufficiently fine resolution cross correlation map, capable of tracking
the spatial variation in the underlying complex correlation coefficient and the required
accuracy of the estimated quantities. For example, in the change detection application of
SAR interferometry wherein man-made scene disturbances such as vehicle tracks are to be
detected, the scene correlation can be highly spatially non-stationary with spatially small
isolated, abrupt changes. Thus a small window commensurate with the spatial size of the
scene disturbances is required. However, if the number of independent pixel samples in the
window is too small the estimate will be excessively noisy making it difficult to distinguish
between the changed and unchanged regions of the scene.

Another consideration in the formation of an interferogram is the image pixel sampling
requirements to ensure alias free interferometric measurements. Given the bandlimited
image pair f and g, with range and azimuth bandwidths of kbwcx

and kbwcy
respectively,

the coherence is estimated by firstly forming the three product images |f |2 = f · f∗,
|g|2 = g · g∗ and fg∗. These product images are noisy single point estimates of the mean
backscatter and cross correlation of the primary and repeat pass images. As multiplication
in the image domain corresponds to convolution in the spatial frequency domain the range
and azimuth bandwidth of the product images are 2kbwcy

and 2kbwcx
respectively. Thus

in order to avoid aliasing in the product images the image pair f and g must first be
oversampled by a factor of two.

While the range and azimuth bandwidths of the product images are 2kbwcy
and 2kbwcx

respectively the underlying scene statistics are assumed to vary only slowly over the spatial
estimation window and are modeled as being stationary in increments [36]. High spatial
frequency energy in the product images may thus be attributed to noise, while low spatial
frequency energy corresponds to the slow variations in the scene statistics permitted by
the stationary in increments model. The product images |f |2 = f · f∗, |g|2 = g · g∗ and
fg∗ may thus each be spatially averaged using a N pixel sliding estimation window which
simply functions as a low pass filter that attenuates the high spatial frequency “noise”
content of the product image and gives an improved local estimate of the slowly varying
scene statistics. As the product images have been low pass filtered they may be used
directly in (67) to compute the interferogram without significant aliasing.
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3.6 Experimental Results

Experimental repeat pass interferometric SAR data collected with the DSTO Ingara
SAR has been processed using the techniques discussed in the previous section. Figures 11
and 12 shows the intensity images of a registered, aperture trimmed primary and repeat
pass interferometric image pair collected at a nominal depression angle of 30 degrees. The
images have been processed using the PFA algorithm and have a 3 dB resolution of 0.58
m in range and 0.15 m in azimuth with a Hamming spectral window applied and a pixel
spacing of 0.41 m by 0.1 m. The image is of an open field with a building visible in
the lower middle of the image. A drainage trench runs along the left side of the image
and a dirt track lies in the upper portion of the image. Both of these scene features
appear in the images as areas of low backscatterer return. In the case of the drainage
trench the area of low backscatter corresponds to radar shadow while in the case of the
dirt track the low backscatterer is possibly due to the passage of vehicles compacting and
smoothing the soil and the absence of vegetation in these areas. The baseline offset for
this image pair is very small with a depression angle difference of 0.012 degrees and a
ground range offset difference of 4.59 m. The temporal baseline for this collection is only
12 minutes corresponding to the time required to maneuver the aircraft back to the start
of the imaging track for the repeat pass collection. For this experiment no controlled
scene changes were carried out and no ground truth observations were made during the
collection interval.

Figures 13 and 14 show the sample coherence and interferometric phase obtained from
the repeat pass pair using a 2 (range) by 6 (azimuth) pixel spatial estimation window.
The coherence in the field is measured at 0.94 consistent with the small temporal delay
and baseline offset between the repeat pass collections. Figure 15 is an enlarged view of
the coherence map over the dirt track in the upper portion of the scene. As the track
has a low backscatter power the transduced image has a low signal to noise level in these
regions and hence there is significant decorrelation. On the other hand the areas between
the tracks show high coherence due to the stronger vegetation and ground returns in these
areas.

A feature of particular interest in Figure 13 is the random track-like areas of low
coherence in the middle of the field. Figure 16 shows an enlarged view of these track-like
disturbances. The tracks appear to have a low but non zero coherence possibly because
the tracks are on a much finer scale that the resolution of the sample coherence map so
the estimation window includes pixels containing both changed and unchanged scattering
contributions. In addition a number of the tracks appear to be terminated by a somewhat
larger area of very low coherence. It is believed that these low coherence tracks may be
due to the movement of sheep while grazing during the 12 minute temporal baseline with
the “ends” of the tracks being the sheep themselves. Figure 17 shows an enlarged view of
the primary and repeat pass intensity images obtained over one of the tracks. It can be
seen that the speckle pattern of the pair of intensity images is nearly identical and there is
a significantly stronger return (approximately 3.9 dB stronger) appearing in the centre of
the repeat pass image subchip shown in Figure 17 that is absent in the primary intensity
image. Unfortunately no ground truth observation were made on the day of the repeat
pass collections however grazing sheep were present in the field on the following day.
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Figure 11: Primary collection intensity image. The image has been processed to a reso-
lution of 0.58 m (range) by 0.150 m (azimuth) with a Hamming window applied.
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Figure 12: Repeat pass collection intensity image. The image has been processed to a
resolution of 0.58 m (range) by 0.150 m (azimuth) with a Hamming window applied. The
temporal baseline for the repeat pass interferometric pair is approximately 12 minutes.
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Figure 13: Magnitude image of the sample complex cross correlation coefficient obtained
by spatially averaging over a sliding estimation window (2 by 6 pixels in range and azimuth
respectively).
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Figure 14: Phase image of the sample complex cross correlation coefficient obtained by
spatially averaging over a sliding estimation window (2 by 6 pixels in range and azimuth
respectively).
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Figure 15: Enlarged view of the coherence map over the dirt track that appears along the
top of the scene image.
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Figure 16: Enlarged view of the coherence map over the low coherence random tracks
appearing in middle portion of the scene.
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Repeat Intensity ImagePrimary Intensity ImageCoherence Map

Figure 17: Enlarged view of the coherence map as well as the primary and repeat pass
intensity images over one of the track like disturbances.
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4 Interferometric Change Detection

The design of appropriate change statistics for repeat pass interferometric SAR re-
quires an understanding of the information content in a SAR image pair. In the previous
section a description of natural distributed scenes was discussed and it was demonstrated
that the interferometric information in the repeat pass pair could be recovered by comput-
ing the sample complex cross correlation coefficient. In particular the phase of the sample
complex cross correlation coefficient could be related to the terrain height while the coher-
ence (i.e., the magnitude sample complex cross correlation coefficient) is a measure of the
degree of similarity in the image pair. The scene coherence could subsequently be used as
a scene change statistic to identify areas of disturbance in the scene. In this section the
distributed target model will be considered to derive a statistical description for repeat
pass interferometric SAR in terms of a few key underlying statistical parameters. These
parameters may subsequently be used in conjunction with proper statistically based deci-
sion/detection theory to obtain scene change metrics and also allow the derivation of their
theoretical detection performance.

4.1 Statistical Description of Interferometric Image Pair

In Section 3 the random walk model describing the transduced reflectivity in a reso-
lution cell was described for natural distributed scenes such as forests, agricultural fields,
soil and rock surfaces. In this model the transduced reflectivity f in a resolution cell is
the coherent sum of a large number of scattering contributions,

f =
N
∑

k=1

Akexp(jφk). (68)

The amplitude Ak is the kth point scatterer amplitude weighted by the SAR point spread
function while φk is determined by the phase of the point scatterer and its line of sight
distance from the radar. In the transduced image the scattering centres however, cannot
be resolved. Therefore they are not directly observable and a unique description for
each scatterer in terms of its spatial location and complex reflectivity is unattainable.
Furthermore an arbitrary number of scattering centre realisations will yield the same
transduced backscatter in a given resolution cell. The observed scattering behaviour in
a resolution cell thus may only be described in a statistical sense in terms of its average
characteristics which may be estimated from the transduced image.

Assuming that the scatterers are randomly distributed throughout the scene and given
that a resolution cell is typically many wavelengths across, the phase contributions of
the scatterers may be considered to be uniformly distributed. Assuming also that the
scattering amplitude and phase are statistically independent then, for large N , it may be
shown [37], [38] that the real and imaginary components of the transduced scene reflectivity
fr = ℜ{f} and fi = ℑ{f}, are asymptotically, jointly circular zero mean Gaussian random
variables with probability density function given by,

p(f) =
1

πσ2
f

exp

(

−
(

f2
r + f2

i

σ2
f

))

, (69)
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where the σ2
f is the expected value of ff∗,

σ2
f = E{f(x, y)f∗(x, y)},

= σ2
q

∫ ∫

|a(x, y)|2dxdy. (70)

The term σ2
q is the backscatter power per unit area associated with the point scatterers in

the scene while the integral in (70) describes the area footprint of a resolution cell. The
distributed scene is thus completely described by a single parameter, namely σ2

f , which is
the mean power in a resolution cell of the transduced image. With this result in mind the
transduced scene backscatter may be re-written as,

f = σf (nr + jni), (71)

where nr and ni are jointly circular, zero mean Gaussian random variables with variances
of 1

2 . In this form the transduced reflectivity may be interpreted as a mean backscatter
value σf that is modulated by a random noise like term (nr + jni) that manifests in the
transduced imagery as speckle noise. In a single SAR image the noise term does not
contribute any useful information to the analysis and interpretation of the imagery, other
than indicating that the resolution cells are made up of many individual scattering centres.

In a repeat pass interferometric SAR collection it can be shown that, under certain
conditions [12], the joint distribution of the complex interferometric image pair X = [f, g]T

is a jointly circular, zero mean, Gaussian random vector with density function given by,

p(X) =
1

π2|Q|exp
(

−XHQ−1X
)

, (72)

where Q is the covariance matrix of the transduced pixel pair given by,

Q = E{X XH} =

[

σ2
f σfσgγexp(jΦ)

σfσgγexp(−jΦ) σ2
g

]

, (73)

and |Q| is the determinant of Q. The terms down the leading diagonal of Q, namely σ2
f

and σ2
g , are the mean backscatter power transduced by the SAR in a pixel for the primary

and repeat pass image respectively and have the form,

σ2
f = E{ff∗},

= σ2
p

∫ ∫

|a1(x, y)|2dxdy, (74)

and

σ2
g = E{gg∗},

= σ2
q

∫ ∫

|a2(x, y)|2dxdy, (75)

where σ2
p and σ2

q are the mean backscatter power per unit area associated with the point
scatterers in the primary and repeat pass collections respectively. The functions a1 and
a2 are the point spread functions of the SAR processor in the primary and repeat pass
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collections respectively. The additional information made available by considering the in-
terferometric image pair is encapsulated in the complex cross channel correlated coefficient,
γexp(jΦ), given by,

γexp(jΦ) =
E{fg∗}

√

E{|f |2}E{|g|2}
, (76)

where γ takes values in the range 0 to 1 from the Cauchy-Schwartz inequality.

An examination of the statistical description of a repeat pass interferometric SAR
image pair given in (72) and (73) shows that it is possible to identify man-made scene
changes by comparing the mean backscatter power terms σ2

f and σ2
g of the primary and

repeat pass images and/or by identifying areas of low coherence γ. In regions not affected
by man-made scene disturbances, changes in the mean backscatter power and scene decor-
relation may still arise due to other sources of scene disturbance such as environmental
effects as well as system noise and processing aberrations. Discrimination between these
sources of scene change will depend on the nature of the disturbance and its interaction
with the scene’s scattering layer as well as the sensitivity of the change detection statistic.

4.2 Incoherent Change Detection

Incoherent change detection seeks to identify changes in the underlying mean backscat-
ter power of a scene. An estimate of the mean backscatter power σ2

f may be obtained from

a single pixel by computing the pixel intensity I = |f |2. This estimate however is cor-
rupted by the speckle noise component, see (71), and in general some form of averaging is
required to yield a good quality estimate.

In a homogeneous region, wherein the underlying scattering properties and mechanisms
are uniform over the region, the mean backscatter power describing the scene in the
transduced image will be constant in that region. The multiplicative speckle noise that
manifests itself in each image pixel however, will vary from pixel to pixel due to the
particular coherent interfering sub-resolution scattering contributions associated with each
resolution cell. Each image pixel may thus be interpreted as a particular realisation of
the same underlying random scattering phenomenon and may be averaged to yield an
improved estimate of the mean backscatter. An estimate of the mean backscatter power
obtained by spatially averaging over N resolution cells is given by,

I =
1

N

N
∑

k=1

Ik, (77)

where Ik = |fk|2. Provided the N pixel realisations, Ik, are independent then I in (77)
has a gamma distribution with order parameter N given by,

P (I|σ2
f ) =

1

Γ(N)

(

N

σ2
f

)N

IN−1exp

(

−NI
σ2

f

)

. (78)

The N look intensity average is a consistent estimator of the mean backscatter σ2
f as the

expected value E{I} = σ2
f , and the variance, V AR{I} = σ4

f/N , tends to zero as N tends
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to infinity. The Equivalent Number of Looks (ENL), defined as,

ENL =
E2{I}
V AR{I} , (79)

indicates the number of independent observations used in a sample estimate of the backscat-
ter. If all N samples used in (77) are independent then ENL = N . However, when the
N samples are correlated via the point spread function of the SAR then the ENL will, in
general, be some non-integer value less than N .

For a repeat pass SAR image pair the N look sample estimates of the mean backscatter
of the primary and repeat pass image pair have density functions given by,

P (If |σ2
f ) =

1

Γ(N)

(

N

σ2
f

)N

IN−1
f exp

(

−NIf
σ2

f

)

, (80)

P (Ig|σ2
g) =

1

Γ(N)

(

N

σ2
g

)N

IN−1
g exp

(

−NIg
σ2

g

)

, (81)

where If and Ig are the spatially averaged pixel intensities of the primary and repeat pass
images respectively and σ2

f and σ2
g are the associated scene mean backscatter powers. In

the absence of calibration errors such as radiometric miscalibration and antenna pointing
errors, regions in the scene that remain undisturbed in the interval between collections have
the same mean backscatter power i.e., σ2

f = σ2
g . Areas in which σ2

f 6= σ2
g , are indicative of

areas of scene change.

A common approach to detecting changes in the image intensity of non-coherent data
sets (eg: passively sensed data) [39] is to consider the difference statistic,

D = If − Ig =
N
∑

k=1

|fk|2 −
N
∑

k=1

|gk|2. (82)

This statistic however is found to be ill-suited to change detection in SAR imagery [23], [36]
and [40]. Under the premise that the two measurements of the scene’s radar reflectivity are
independent [23], the variance of the difference statistic is simply the sum of the variances
of the two intensity estimates,

var{D} =
σ2

f + σ2
g

N
. (83)

Therefore application of a simple threshold detector to the difference statistic to distinguish
between areas of differing mean backscatter will have an error performance dependent on
the mean backscatter. For example, in areas of no change in backscatter, σ2

f = σ2
g , the

probability of false alarm for the threshold detector (i.e., labelling a pixel pair in an
unchanged scene as having changed backscatter values) will be lower in areas of lower
mean backscatter power.

An alternative approach to forming a change statistic is to consider the log intensity
estimate as it has a variance independent of the absolute value of the mean backscatter.
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The difference of the log intensity estimates,

DL = log(If ) − log(Ig), (84)

= log

(

If
Ig

)

, (85)

or alternatively the ratio change statistic,

R̂ = exp(DL) =
If
Ig
, (86)

are commonly used in SAR image change statistics. The ratio change statistic has a
density function given by [41],

p(R̂|R) =
(2N − 1)!

((N − 1)!)2
RN R̂N−1

(R+ R̂)2N
, (87)

where R =
σ2

f

σ2
g
. The mean and variance of R̂ are given,

E{R̂} =
N

N − 1
R, (88)

V ar{R̂} =

(

N(2N − 1)R

(N − 1)2(N − 2)

)2

, (89)

and are dependent only on the relative backscatter ratio R = σ2
f/σ

2
g and the number of

independent samples N . The ratio statistic R̂ takes values in the range (0,∞) and in
practice requires two thresholds to identify scene changes causing either a reduction or an
increase in the mean backscatter power. A more convenient detector proposed by Touzi
[41] based on the ratio statistic is,

r̂ =

{

R̂, if R̂ ≤ 1,

R̂−1, if R̂ > 1.
(90)

This statistic takes values between 0 and 1 and a single threshold may be applied to
generate change detections. The probability density function is given by [41],

p(r̂|R) =
Γ(2N)

Γ(N)2

(

RN

(r̂ +R)2N
+

R−N

(r̂ +R−1)2N

)

r̂N−1. (91)

Figure 18 shows simulated and theoretical density functions for the ratio statistic for an
unchanged scene in the absence of calibration errors (equal mean backscatter power) and
a scene with a 3 dB change in the mean backscatter power between image collections
obtained using N = 9 independent samples. The performance of the ratio statistic
r̂ may be gauged by the degree of overlap of the two density functions shown in Figure
18. Using a simple threshold detector, pixel pairs with ratio values greater than some
threshold T , (r̂ > T ), are labelled as being unchanged and pixel pairs with ratio values
less than T , (r̂ < T ), are labelled as being changed. The probability of correctly making
a change detection corresponds to the area under the changed density function in Figure
18 to the left of the ratio threshold T , while the probability of a false alarm corresponds
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Figure 18: Simulated and theoretically obtained density functions for the mean backscatter
ratio change statistic corresponding to an unchanged scene and a scene with a 3 dB change
in the backscatter. The number of independent averages used in the intensity estimates is
N = 9.

to the area under the unchanged density function to the left of the ratio threshold T .
Analytical expressions for the probability of detection and the probability of false alarm
may be computed by evaluating the following integrals. The probability of false alarm is
given by,

Pfa =

∫ T

0
p(r̂|R = R0)dr̂,

=
Γ(2N)

Γ2(N)

∫ T

0

(

RN
0

(r̂ +R0)2N
+

R−N
0

(r̂ +R−1
0 )2N

)

r̂N−1dr̂,

=
Γ(2N)TN

Γ(N − 1)

(

1

RN
0

1F2

(

2N,N,N − 1,
T

R0

)

+RN
0 1F2 (2N,N,N − 1, TR0)

)

, (92)

where R0 = σ2
f/σ

2
g with σ2

f and σ2
g taken to be the mean backscattered power in the

unchanged regions of the scene. In the absence of miscalibration errors R0 = 1 however,
in practice radiometric miscalibration and antenna pointing errors may yield R0 6= 1. The
probability of detection is,

Pd =

∫ T

0
p(r̂|R = R1)dr̂,

=
Γ(2N)

Γ2(N)

∫ T

0

(

RN
1

(r̂ +R1)2N
+

R−N
1

(r̂ +R−1
1 )2N

)

r̂N−1dr̂,

=
Γ(2N)TN

Γ(N − 1)

(

1

RN
1

1F2

(

2N,N,N − 1,
T

R1

)

+RN
1 1F2 (2N,N,N − 1, TR1)

)

, (93)

42



DSTO–TR–1851

where R1 = σ2
f/σ

2
g with σ2

f and σ2
g taken to be the mean backscattered power in the

changed regions of the scene in the primary and repeat pass images respectively. In
equations (92) and (93) 1F2 is the hypergeometric function given in equation 15.3.1 in
[42].

Figure 19 shows simulated and theoretical ROC curves (plots of the probability of
detection versus the probability of false alarm) for the ratio detector obtained with R0 = 0
dB and R1 = 1, 3, 5 and 10 dB and N = 9. It is clear that for small changes in the mean
backscatter power the detector suffers from a significant false alarm rate. To achieve a
probability of detection of 0.7 for a mean backscatter power change of 3 dB the associated
probability of false alarm is unacceptably high at 0.35. The false alarm rate may be
reduced by increasing the estimation window size and hence the value of N . Figure 20
shows the ROC performance associated with a mean backscatter power change of 3 dB
as the ENL is increased. Increasing the ENL from 9 to 36 provides approximately an
order of magnitude improvement in the false alarm rate. This performance improvement
however, is only realised if the scene’s mean backscatter power over the estimation window
is locally stationary. In the change detection application the estimation window must be
commensurate with the size of the scene disturbances to be detected otherwise the change
statistic local estimate contains contributions from changed and unchanged image pixels
and the improvements suggested in Figure 20 are not realised.
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Figure 19: Simulated and theoretical ROC curves for the intensity ratio change statistic
obtained using an N = 9 and mean backscatter power changes of 1, 3, 5 and 10 dB.
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Figure 20: Simulated and theoretical ROC curves for the intensity ratio change statistic
for a mean backscatter power change of 3 dB and values of N of 9, 16, 25 and 36.
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4.3 Coherent Change Detection

The true underlying complex cross correlation coefficient of two complex SAR images
f and g given by,

γexp(jΦ) =
E{fg∗}

√

E{|f |2}E{|g|2}
, (94)

quantifies the extent to which the scene reflectivities and associated SAR image processors
are common between the two transduced images. Provided the image pair are appropri-
ately aperture trimmed and registered the impact of image processor mismatch may be
minimised and the cross correlation is a measure of the scene disturbance between the
imaging collections.

The interferometric phase Φ, in the absence of any processing aberrations and scene
disturbances, is determined by the baseline offset between the primary and repeat pass
collections and the terrain topography plus any bulk displacement of the scattering scene
between the two data collections. Change detection based on measurement of the phase
shift associated with the bulk displacement is called differential interferometry and may be
used to monitor small scale surface deformations that typically arise in glaciers or tectonic
plate activity such as earthquakes [43]. For the case of random, zero mean scatterer
displacement there is no bulk displacement and change detection can be performed on the
associated loss in the magnitude of the cross correlation coefficient, γ, commonly referred
to as the coherence. The coherence takes values in the range 0 to 1 and is sensitive to
relatively small changes in the distribution of scatterers within a resolution cell.

For the case when the two channels are jointly Gaussian the image pair f and g may be
expressed as a mean backscatter power coefficient modulated by a unit variance complex
Gaussian speckle noise,

f = σf (mr + jmi), (95)

g = σg(nr + jni), (96)

where mr + jmi and nr + jni are the unit variance speckle noise components of the two
channels and σ2

f and σ2
g are the mean backscatter powers. In analyzing a single SAR image

the information bearing quantity is the mean backscatter, while the speckle noise simply
indicates that the resolution cell consists of interfering contributions from a large number
of scattering centres. In interferometric analysis however, the speckle noise is the source
of the additional information that is provided by the joint processing of an image pair.
Substituting (95) and (96) into (94) gives,

γ =
σfσg|E{(mr + jmi)(nr − jni)}|

σfσg

,

= E{(mr + jmi)(nr − jni)}. (97)

The correlation coefficient is thus statistically independent of the mean backscatter power
σ2

f and σ2
g of the scene and is solely determined by the speckle noise in the two channels.

The sensitivity of the coherence as a change statistic arises because the speckle component
of the transduced complex reflectivity is dependent on the coherent interference of a large
number of complex scattering contributions.
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The sensitivity of the correlation coefficient to perturbations to the scatterers and their
relative arrangement within a resolution cell has been investigated by Zekber [2]. In [2]
Zebker considered the point scatterer model for a natural distributed target scene and pro-
posed a probabilistic model for the scatterer displacement between imaging observations.
Assuming that each scattering centre in the scene is subject to a random independent
displacement in all three dimensions: range, azimuth and height, each described by a
Gaussian probability density function Zebker found that the cross correlation coefficient
is given by,

γphase = exp



−1

2

(

4π

λeff

)2
(

σ2
y cos2(ψ2) + σ2

z sin2(ψ2)
)



 , (98)

where,

λeff =
4π

k0g

cos(ψ2), (99)

ψ2 is the repeat pass depression angle at aperture centre. and σ2
y and σ2

z are the variances
of the random Gaussian displacements in the range and height dimensions respectively.

Figure 21 shows the cross correlation coefficient in (98) as a function of the RMS
displacement, normalised by the radar wavelength (σy/λeff ), for a Gaussian random dis-
placement in range only (i.e., σ2

z = 0). The cross correlation coefficient has been computed
for depression angles of 15 and 45 degrees. It can be seen that total decorrelation of the
image pair occurs for an RMS displacement of approximately 20 percent of the radar wave-
length. For an X-band radar with a wavelength of the order of 3.2 cm this corresponds
to a standard deviation of 0.64 cm. Man-made disturbances such as vehicle tracks across
a grass field which can cause significant scatterer displacement can thus potentially cause
complete loss in coherence without any appreciable change in the mean backscatter power
of the scene. The detectability of such man-made disturbances however may be compro-
mised by other sources of temporal disturbance such as wind and rain. Such disturbances
can cause a change in the complex reflectivity of the scattering contributions within reso-
lution cells as well as random perturbations in the scatterer spatial locations leading to an
overall loss in the scene coherence. Change detection using the scene coherence thus relies
on adequate contrast between the man-made disturbance and other sources of temporal
decorrelation.

4.3.1 The Sample Cross Correlation Coefficient Change Statistic

A simple threshold change detector based on the sample coherence evaluated over an
N pixel window,

γ̂ =
|∑N

k=1 fkg
∗

k|
√

∑N
k=1 |fk|2

∑N
k=1 |gk|2

, (100)

may be used to identify regions of low coherence and hence detect areas of man-made
scene change. The performance of this detector however, is dependent on the statistical
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properties of the sample coherence and the contrast in coherence between the disturbed
low coherence areas and the unchanged partial coherence areas.

The density function of the sample coherence is given by [44],

p(γ̂|γ,N) = 2(N − 1)(1 − γ2)N γ̂(1 − γ̂2)(N−2)
2F1(N,N ; 1; γ2γ̂2),

=
2(1 − γ2)N γ̂(1 − γ̂2)(N−2)

Γ(N)Γ(N − 1)

∞
∑

l=0

[

Γ(N + l

Γ(l + 1)

]2

(γγ̂)2l, (101)

where 2F1 is the Gauss hypergeometric function. The density function is dependent on the
underlying scene coherence γ and the number of independent pixels N used in the estima-
tion window. Insight into the nature of this dependence may be obtained by computing
the mean of the sample coherence which is given by,

E{γ̂} = (1 − γ2)NΓ(N)
Γ
(

1
2 + 1

)

Γ
(

1
2 +N

)3F2

(

1

2
+ 1, N,N ; 1,

1

2
+N ; γ2

)

, (102)

where aFb is the generalised hypergeometric function [42]. Figure 22 shows the mean
of the sample coherence γ̂ as a function of the true coherence γ for various values for
N . From Figure 22 it is clear that for low values of underlying coherence the sample
coherence is significantly biased towards higher values. This reduces the contrast of the
sample coherence map especially in regions of differing low coherence indicating that large
values of N are required to achieve good change detection performance from the sample
coherence.

The detection performance of the sample coherence change statistic may be quantified
by comparing the probability density functions of the change statistic for changed and
unchanged scenarios. The preceding discussion indicated that man-made changes such
as vehicle tracks may be characterised by γchanged = 0. The degree of partial coherence
characterising the undisturbed regions on the other hand will depend on the nature of the
distributed target, the duration between imaging passes and the severity of the temporal
sources of decorrelation as well as the sensor and processing parameters.

The temporal decorrelation of a variety of different target types, sensor bands and
repeat pass delays has been studied in the literature [45], [3], [36], [7] and [46]. In [7] Corr
examined the coherence of tandem ERS SAR images of forested and cultivated scenes
in south east England. Temporal baselines of 3, 6, 12, 21 and 69 days were obtained
over the scenes during summer and a 35 day separation was recorded during winter.
For temporal baselines of 35 days or more the coherence of the woodland was found to
be around 0.2 irrespective of the season while the 3 day coherence was reported to be
approximately 0.4. Over the cultivated fields a high scene coherence of approximately 0.9
was obtained in the 3 day coherence map and this decreased slowly to around 0.4 in the
case of the 69 day temporal separation. In summer it was found the 35 day coherence
was only 0.2 owing to the rapid growth of the field crops. These observations are in
broad agreement with numerous other analyses reported in the literature [45], [3] over
similar target types. Thus for a range of target scenes, temporal delays and environmental
conditions, the “unchanged” areas of a scene may be characterised by some non-zero
coherence γunchanged > 0 thereby allowing coherent change detection to be performed.
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Figure 21: Phase component of the cross correlation coefficient of an interferometric
image pair where the scatterers in the scene have been subject to a random Gaussian
displacement in range and imaged with depression angles of 15 and 45 degrees. The RMS
displacement has been normalised to the effective radar wavelength.
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Figure 22: Expected value of the coherence estimate plotted against the underlying true
coherence for a range of sample estimate sizes.
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Figure 23 shows the density functions associated with a scene characterised by an un-
derlying coherence of γunchanged = 0.6 (this being the aggregate decorrelation attributed
to environmental effects, processing mismatch and system noise) and a man-made distur-
bance characterised by a total loss in coherence γchanged = 0.
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Figure 23: Simulated and theoretical probability density functions of the sample coherence
corresponding to a true underlying coherence of 0 and 0.6. The sample estimate has been
obtained by averaging over N = 9 independent pixel pairs.

A simple threshold detector applied to the sample coherence may be used distinguish
between the changed and unchanged regions in the scene. The performance of the detector
may be evaluated by computing the associated ROC curve which indicates, for a given de-
tection threshold T , the probability of detecting a changed pixel Pd and the corresponding
probability of a false alarm Pfa,

Pd =

∫ T

0
p(γ̂|γ = γchanged)dγ̂, (103)

Pfa =

∫ T

0
p(γ̂|γ = γunchanged)dγ̂. (104)

Substituting the density function given in (101) into (103) and (104) gives the following
series solution for the probability of detection and false alarm as a function of the number
of samples N , γunchanged and γchanged,

P =
2(N − 1)(1 − γ2)N

Γ(N)Γ(N − 1)

N−2
∑

k=0

[(

N − 2
k

)

(−1)N−2−k

∞
∑

l=0

[

Γ(N + l)

Γ(l + 1)

]2

γ2l T 2N+2l−2−2k

2N + 2l − 2 − 2k

]

,

(105)
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where,

P =

{

Pd, for γ = γchanged,
Pfa, for γ = γunchanged.

(106)

In the case when γchanged = 0 then P = Pd reduces to the following form,

P = 2(N − 1)2
N−2
∑

k=0

(

N − 2
k

)

(−1)N−2−k T 2N−2−2k

2N − 2 − 2k
. (107)

Figure 24 shows the ROC curves for N = 9, γchanged = 0 and γunchanged = 0.45, 0.6,
0.75 and 0.9. A comparison of Figure 24 with the ROC curve for the backscatter ratio
change statistic in Figure 19 shows that for an estimation window size of N = 9 pixels
and a Pd = 0.7 a change in the mean backscatter power of 5 dB and γunchanged = 0.6 give
a similar false alarm rate of 0.07.

The detection performance of the sample coherence change statistic may be improved
by increasing the estimation window size. Figure 25 shows the ROC curves for γunchanged =
0.6 and γchanged = 0.0 and increasing values of N. It can be seen that increasing the
estimation window size from 9 to 16 pixels reduces the false alarm rate by an order of
magnitude. The window size however must be commensurate with the size of the scene
disturbances to be detected otherwise the sample coherence contains contributions from
changed and unchanged pixels.
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Figure 24: Simulated and theoretical ROC curves for sample coherence change statistic
obtained with an unchanged scene partial coherence γunchanged = 0.45, 0.6, 0.75 and 0.9,
a changed scene coherence of γchanged = 0 and an estimation window size of N = 9
independent pixels
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Figure 25: Simulated and theoretical ROC curves for sample coherence change statistic
obtained with an unchanged scene partial coherence of γunchanged = 0.6, a changed scene
coherence of γchanged = 0 and estimation window sizes of N =4, 9, 16 and 25 independent
pixels
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5 Log Likelihood Change Statistic

In the previous section it has been shown that in repeat pass interferometric SAR
scene disturbances may be identified as areas of low coherence or possibly as areas of
changed mean backscatter power. The performance of sample coherence as a change
statistic depends on its ability to distinguish between the decorrelation due to the man-
made scene disturbances as opposed to other possible sources of temporal decorrelation.
While man-made changes typically cause total decorrelation in localised areas of the scene,
environmental effects such as wind and rain can also lead to significant decorrelation across
the scene, especially for image pairs collected with long revisit periods. As a consequence
the sample coherence change detector is susceptible to high false alarm rates. The mean
backscatter power of a scene on the other hand is less susceptible to environmental effects
such as wind and processing aberrations. However, in order to produce a measurable
change in the scene backscatter any man-made disturbances must cause a significant mod-
ification to the physical properties of the scattering layer of the scene.

The poor false alarm rate of the sample coherence and mean backscatter power ratio,
in cases where there is significant temporal decorrelation or only modest changes in the
mean backscatter power, may be mitigated if extensive averaging is carried out. Increased
averaging via spatial windows however degrades the resolution of the change maps. Fur-
thermore in regions of scene change local estimates of the change statistics may contain
contributions from both changed and unchanged pixels leading to a degradation in the
detection performance.

The analysis of the previous section also indicated that the sample coherence and mean
backscatter power ratio are sensitive to different, independent properties of a SAR image.
The mean backscatter power ratio is sensitive to changes in the average backscattered
energy in the transduced imagery. The sample coherence on the other hand is sensitive
to changes in the speckle noise pattern in the repeat pass image pair. Scene disturbances
arising from man-made changes however, can potentially cause changes over a broad range
of scattering properties. In [11] the sample coherence and mean backscatter power ratio
were used to detect changes in repeat pass ERS-1 SAR imagery. It was found that the
areas of disturbance identified by each method did not necessarily agree and each method
gives complementary characterisations of scene changes. Therefore both change statistics
should be considered to provide a complete description of scene changes. In the context
of change detection this presents problems in fusing the detections from the two change
statistics to achieve a single combined detection list in which the probability of detection
is maximised whilst minimising the false alarm rate.

An alternative approach to discriminating between those regions affected by man-made
scene changes and those that are not can be achieved by formulating the detection problem
in an hypothesis tesing framework. In this approach the change detection problem is to
determine whether pixel pairs Xk = [fk, gk]

T , k = 1 · · ·N in a local area are realisations
of a null (unchanged scene) hypothesis H0 or an alternative (changed scene) hypothesis
H1. Based on the jointly Gaussian model for a repeat pass interferometric image pair the
density function for a single pixel pair X = [f, g]T is given by,

p(X) =
1

π2|Q|exp
(

−XHQ−1X
)

. (108)
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where Q is the covariance matrix associated with the pixel pair and |Q| is the determinant
of Q. Based on the scene change models used in the previous section, under the unchanged
scene hypothesis H0 the covariance matrix takes the from,

Q0 =

[

σ2
f σfσg0

γ0exp(jΦ0)

σfσg0
γ0exp(−jΦ0) σ2

g0

]

, (109)

while under the changed scene hypothesis H1 the covariance matrix takes the form,

Q1 =

[

σ2
f 0

0 σ2
g1

]

, (110)

The mean backscatter terms σ2
g0

and σ2
g1

describe the mean backscatter power in the repeat
pass image under the unchanged and changed scene hypotheses respectively. The scene
coherence under the unchanged hypothesis is γ0 while under the changed hypothesis total
loss in coherence is assumed.

Given a local neighbourhood of N independent pixels Xk = [fk, gk]
T , k = 1 · · ·N a sim-

ple decision statistic for determining whether the pixels are realisations of the unchanged
hypothesis or changed hypothesis is the likelihood ratio defined as,

L =
P (X1, X2, · · ·XN ;H0)

P (X1, X2, · · ·XN ;H1)
,

=
N
∏

k=1

P (Xk;H0)

P (Xk;H1)
. (111)

Substituting Q = Q0 in (108) gives the density function p(Xk;H0) and Q = Q1 gives
p(Xk;H1). Thus (111) becomes,

L =

( |Q1|
|Q0|

)N

exp

(

−Tr
{

(

Q−1
0 −Q−1

1

)

N
∑

k=1

XkX
H
k

})

, (112)

where Tr{A} denotes the trace of matrix A. Taking the log of (112) and ignoring the
constant term yields the following decision statistic for discriminating between the two
hypotheses,

z = Tr

{

(

Q−1
0 −Q−1

1

)

N
∑

k=1

XkX
H
k

}

,

= Tr {QdG} , (113)

where G =
∑N

k=1XkX
H
k andQd = Q−1

0 −Q−1
1 . Discrimination between the two hypotheses

is achieved by evaluating z over the local N pixel neighbourhood and applying a threshold
T . For z > T the pixels are labelled as being realisations of the H1 hypothesis and for
z < T the pixels labelled as being realisations of the H0 hypothesis.

Note that the matrices Q0 and Q1 describing the H0 and H1 hypotheses consist of
a number of unknown parameters, thus the hypotheses are composite and z in (113)
is referred to as a clairvoyant detector [47]. A clairvoyant detector yields the optimal
detection performance achievable given perfect knowledge of the unknown parameters. In
practice suboptimal tests are implemented in which the unknown parameters are specified
by their maximum likelihood estimates obtained from the data to form a Generalised
Likelihood Ratio Test (GLRT) [47].
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5.1 PDF of Clairvoyant Log Likelihood Change Statistic

Assuming perfect knowledge of the unknown parameters in H0 and H1 the probability
density function of the clairvoyant detector z in (113) may be derived by applying a linear
transform P to the image pixel pair vector Xk = [fk, gk]

T . The matrix P is chosen such
that it diagonalises the rank two matrix Qd,

PHQdP =

[

λ1 0
0 λ2

]

,

= diag(λ1, λ2), (114)

where λ1 and λ2 are the eigenvalues of Qd and the columns of P are the corresponding
eigenvectors [48]. Furthermore it may be shown that, given the forms for Q0 in (109) and
Q1 in (110), one of the eigenvectors is negative while the other is positive. In the following
analysis it will be assumed that the first eigenvalue is negative and λ1 will be taken to
mean the absolute value of the first eigenvalue. (Similar forms for the density functions
as those derived in the following analysis may be obtained for the case when the second
eigenvalue is negative.) Defining the new transform variables u and v such that,

X =

[

f
g

]

= P

[

u
v

]

, (115)

the decision statistic may subsequently be written as,

z = Tr

{

Qd

N
∑

k=1

(

[

f∗k g∗k

]

[

fk

gk

])}

,

= Tr

{

PHQP
N
∑

k=1

(

[

u∗k v∗k

]

[

uk

vk

])}

,

= −λ1

N
∑

k=1

|uk|2 + λ2

N
∑

k=1

|vk|2. (116)

In general under the transform P the new transform variables u and v are dependent, zero
mean, circular, complex Gaussian random variables with a covariance matrix of the form,

C =

[

C11

√
C11C22ρe

jθ

√
C11C22ρe

−jθ C22

]

, (117)

where,

C =











PHQ0P, for u and v realisations of H0,

PHQ1P, for u and v realisations of H1.
(118)

Therefore the variables a = λ1
∑N

k=1 |uk|2 and b = λ2
∑N

k=1 |vk|2 that form the decision
statistic (116) are mutually dependent Chi square random variables with 2N degrees of
freedom [47]. Using the joint density function of two independent Chi square random
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variables derived by Lee [49] and computing the appropriate marginal distribution it can
be shown that the PDF of z is, for z ≤ 0,

p(z) =
(1 − ρ2)Ne(

z
α)

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

Γ(2k + 2N − p− 1)

ν2k+2N−p−1
(−z)p

]



 ,

(119)

and for z > 0,

p(z) =
(1 − ρ2)Ne

(

−z
β

)

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

Γ(2k + 2N − p− 1)

ν2k+2N−p−1
(−z)p

]



 ,

(120)

where,

α = λ1C11(1 − ρ2), (121)

β = λ2C22(1 − ρ2), (122)

µk =
1

Γ(N + k)k!

(

ρ2

αβ

)k

, (123)

ν =
1

α
+

1

β
. (124)

To obtain p(z;H0) and p(z;H1) the appropriate values for C11, C22 and ρ, defined in (117)
and (118) are used.

To illustrate the detection performance of the log likelihood change statistic and com-
pare with the sample coherence and sample mean backscatter power ratio a scene change
scenario described by the following covariance matrices is considered,

Unchanged Hypothesis:

Q0 = 1 × 108

[

2.2686 0.45 · 2.0121 · exp(jΦ)
0.45 · 2.0121 · exp(−jΦ) 1.7847

]

, (125)

Changed Hypothesis:

Q1 = 1 × 108

[

2.2686 0
0 0.95070

]

. (126)

The values for the scene coherence in Q0 and the mean backscatter powers in the primary
and repeat pass images in Q0 and Q1 are in fact experimental values obtained from a
scene change experiment conducted with the DSTO Ingara SAR, see Section 6. Observe
that under H0 there is a 1.04 dB reduction in the transduced mean backscatter power
due to a radiometric miscalibration. Under H1 however, there is a 3.77 dB reduction in
the mean backscatter power between the primary and repeat pass images, indicating that
scene changes have caused a 2.73 dB reduction in the mean backscatter power of the scene.
The coherence under H0 is 0.45 while the interferometric phase Φ for the scene change
scenario considered here has been set to zero. Figure 26 shows simulated and theoretical
density functions for the decision statistic z under each hypothesis obtained using (119)
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Figure 26: Simulated and theoretical density functions of the likelihood ratio change
statistic for the unchanged H0 hypothesis and the changed H1 hypothesis. The mean
backscatter ratio of the primary and repeat pass images is 1.04 dB under H0 and 3.77
dB under H1, N = 9 and γ = 0.45.

and (120) with N = 9. For comparison, Figures 27 and 28 show the density functions
of the sample coherence and mean backscatter power ratio change statistic for the same
change scenario.

Change detections based on the log likelihood decision statistic, the sample coherence
and mean backscatter ratio statistic may be obtained by evaluating the particular decision
statistic over the scene, applying a threshold to the decision statistic map and assigning
the values to either the changed or unchanged hypotheses. The ability of a change statis-
tic to distinguish between the two hypotheses is determined by the degree of overlap of
the density functions of the decision statistic under each hypothesis which, in turn, is
predominantly dependent on the mean and “spread” of the density functions under each
hypothesis. An examination of Figures 27 and 28 shows that while the mean values of the
PDFs under the changed and unchanged hypotheses appear reasonably well separated, the
spreads of the PDFs are large hence there is considerable overlap of the density functions.
These change statistics will therefore suffer from significant false alarms and missed detec-
tions. The PDFs for the log likelihood change statistic under the changed and unchanged
hypotheses shown in Figure 26 however have a much “narrower” spread and exhibit less
overlap. The log likelihood statistic thus provides better discrimination between the two
hypotheses. The detection performance improvement in terms of the probability of detec-
tion as a function of the probability of false alarm for a given decision threshold will be
quantified in Section 5.2.
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Figure 27: Simulated and theoretical density functions of the sample coherence for the
unchanged H0 hypothesis and the changed H1 hypothesis. Under H0 the true underlying
coherence is γ = 0.45 while under H1 γ = 0 and N = 9.
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Figure 28: Simulated and theoretical density functions of the ratio statistic r for the
unchanged H0 hypothesis and the changed H1 hypothesis. The mean backscatter ratio of
the primary and repeat pass images is 1.04 dB under H0 and 3.77 dB under H1 and N = 9.
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Figure 29: Density functions for the decision statistic under H0 and H1 for the case
of equal backscatter powers σ2

f = σ2
g with a partial coherence under H0 of γ = 0.45 and

N = 9.

5.1.1 Special Case of Equal Mean Backscatter Power

Scene disturbances arising from subtle man-made changes eg: disturbances due to the
passage of vehicles through a scene, are commonly characterised by an absence of any
measurable change in the mean backscatter power coupled with a complete loss in scene
coherence. In such cases, for calibrated image pairs σ2

f = σ2
g0 = σ2

g1 and a simpler closed
form solution for the density function of the clairvoyant decision statistic may be derived.
For z ≤ 0,

p(z) =
exp

(

z
λ1C11

)

Γ2(N)(λ1C11λ2C22)N

N−1
∑

p=0

[(

N − 1
p

)

Γ(2N − p− 1)

ν2N−p−1
(−z)p

]

, (127)

and for z > 0,

p(z) =
exp

(

−z
λ2C22

)

Γ2(N)(λ1C11λ2C22)N

N−1
∑

p=0

[(

N − 1
p

)

zp Γ(2N − p− 1)

ν2N−p−1

]

. (128)

Note that these equations are general expression of the density function of z. To obtain
p(z;H0) and p(z;H1) the appropriate values for C11 and C22, defined in (117) are used.
Figure 29 shows the density function of the decision statistic z for bothH0 andH1 obtained
by direct computation of (127) and (127) and also obtained via simulation for a coherence
under H0 of γ = 0.45. Comparison of Figure 29 with the PDF of the sample coherence
change statistic under the same change scenario in Figure 27 shows that the log likelihood
change statistic provides better discrimination between the H0 and H1 hypotheses.

58



DSTO–TR–1851

5.2 Detection Performance of the Clairvoyant Detector

Expressions for the probability of detection and false alarm for the clairvoyant log
likelihood detector, as a function of the decision threshold T , may be derived using the
probability density functions p(z;H0) and p(z;H1) given in the previous section by eval-
uating the integrals,

Pfa =

∫

∞

T
p(z;H0)dz, (129)

Pd =

∫

∞

T
p(z;H1)dz. (130)

Using (119) and (120) the Pd and Pfa both take the following general form for T > 0,

P =
(1 − ρ2)N

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

Γ(2N + 2k − p− 1)

ν2k+2N−p−1

∫

∞

T
e
(

−
z
β

)

(z)pdz

]



 ,

=
(1 − ρ2)N

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

βp+1 Γ(2N + 2k − p− 1)

ν2k+2N−p−1

Γinc

(

p+ 1,
T

β

)]]

, (131)

where Γinc is the complementary incomplete gamma function given by,

Γinc(a, t) =

∫

∞

t
exp(−x)xa−1dx. (132)

For T ≤ 0 the integrals giving the probability of false alarm (129) and probability of
detection (130) must be partitioned into an integral from T to 0 where p(z) is given by
(119) plus an integral from 0 to ∞ where p(z) is given by (120). The probability of
detection and probability of false alarm thus both take the following form for T < 0,

P =
(1 − ρ2)N

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

Γ(2N + 2k − p− 1)

ν2k+2N−p−1
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∞

0
e
(− z

β
)
(z)pdz +

∫ 0

T
e(

z
α

)(−z)pdz

]]]

,

=
(1 − ρ2)

Γ(N)(αβ)N

∞
∑

k=0



µk

N+k−1
∑

p=0

[(

N + k − 1
p

)

Γ(2N + 2k − p− 1)

ν2k+2N−p−1

[

βp+1Γ(p+ 1)

+αp+1
(

Γ(p+ 1) − Γinc

(

p+ 1,
−T
α

))]]]

,

(133)

where the following relation has been used [42],

∫ t

0
exp(−x)x(a−1)dx = Γ(a) − Γinc(a, t). (134)

The values for C11, C22 and ρ used in the computation of µk, α and β in (131) and (133)
are defined in (118) for each hypotheses.
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In the case where the primary and repeat pass images have equal mean backscatter
parameters under both H0 and H1 the following simpler general forms for the probability
of detection or probability of false alarm are obtained, for T > 0,

P =
1

Γ2(N)(λ1C11λ2C22)N

N−1
∑

p=0

[(

N − 1
p

)

Γ(2N − p− 1)

ν2N−p−1

∫

∞

T
exp

( −z
λ2C22

)

zpdz

]

,

=
1

Γ2(N)(λ1C11λ2C22)N

N−1
∑
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[(

N − 1
p

)

Γ(2N − p− 1)

ν2N−p−1

(λ2C22)
p+1Γinc

(

p+ 1,
T

λ2C22

)]

, (135)

and for T ≤ 0,

P =
1

Γ2(N)(λ1C11λ2C22)N
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∑

p=0

[(

N − 1
p
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0
exp

( −z
λ2C22

)

(z)pdz

]]

,

=
1

Γ2(N)(λ1C11λ2C22)N

N−1
∑

p=0

[(

N − 1
p

)

Γ(2N − p− 1)

ν2N−p−1

[

(λ2C22)
p+1Γ (p+ 1) + (λ1C11)

p+1Γinc

(

p+ 1,
−T
λ1C11

)]]

. (136)

Figures 30 and 31 give the theoretical and simulated ROC curves of the clairvoyant
decision statistic for the equal backscatter power case for various values of coherence γ
and various values of N respectively. From Figure 30 the sensitivity of the clairvoyant
decision statistic to the scene coherence can be assessed. For N = 9 and a probability of
detection of 0.7 the probability of false alarm for γ = 0.45 is approximately 0.05 while at
γ = 0.6 the probability of false alarm is reduced by over an order to magnitude to 0.002.
Increasing the coherence to γ = 0.75 yields false alarm rates of well below 10−4. From
Figure 31 it can be seen that increasing the number of pixels N in the decision statistic
calculation can provide significant improvements in the detection performance albeit at
the expense of resolution in the change detection map. At a probability of detection of
0.7 and N = 4 the probability of false alarm is approximately 0.06 while for N = 9 this is
reduced by over an order to magnitude to 0.002.

As Figures 30 and 31 describe the ROC performance of the log likelihood change statis-
tic where discrimination between the hypotheses is based solely on the scene coherence
under H0, these ROC curves may be directly compared with those of the sample coherence
change statistic examined in Section 4.3. A comparison of Figures 30 and 31 with the cor-
responding ROC curves of the sample coherence given in Figures 24 and 25 indicates that
the log likelihood change statistic offers a significantly improved detection performance
with false alarm rates typically an order of magnitude better than those of the sample
coherence. For a probability of detection of 0.7 at a coherence of γ = 0.45 the probability
of false alarm for the sample coherence is 0.25 while for the log likelihood statistic it is
0.05. For a coherence of 0.6 the improvement is more pronounced with the probability of
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Figure 30: Theoretical and simulated ROC curves for equal channel powers and coherence
values of 0.45, 0.6, 0.75 and 0.9 with N = 9.

false alarm for the sample coherence being 0.06 compared to 0.003 for the log likelihood
statistic.

Figure 32 shows the ROC curves for the clairvoyant log likelihood decision statistic,
the sample coherence and the mean backscatter ratio statistic for the experimental scene
change scenario, i.e., a mean backscatter change of 1.04 dB under H0 and 3.77 dB under
H1, a coherence γ = 0.45 for H0 and N = 9. It can be seen from Figure 32 that the
sample coherence and mean backscatter ratio statistics have similar detection performance.
The clairvoyant log likelihood statistic however provides a significantly better detection
performance. For a probability of detection of 0.7 the probability of false alarm in the
log likelihood detector is 0.03 which is almost an order of magnitude better than that of
either the sample coherence or the mean backscatter ratio which is approximately 0.25.

5.3 Generalised Log Likelihood Change Statistic

The ROC curves considered here describe the performance of a clairvoyant detector
in which perfect knowledge of the unknown covariance matrices Q0 and Q1 has been
assumed. While such a detector is unrealisable, it gives an upper bound on the detection
performance of any practical detector implementation.

A Generalised Likelihood Ratio Test (GLRT) is an easily implemented practical de-
tector in which the unknown scene parameters, Q0 and Q1 in (113), are replaced with
their Maximum Likelihood Estimates (MLE) obtained from the observed data. The MLE
of the covariance matrices Q0 and Q1 are given by the corresponding sample covariance
matrices [50], i.e.,

Q̂0 =
1

M0

M0
∑

k=1

Xk0
XH

k0
and Q̂1 =

1

M1

M1
∑

k=1

Xk1
XH

k1
, (137)
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Figure 31: Theoretical and simulated ROC curves for equal channel powers and N = 4,
9, 16, 25 with a coherence of 0.6.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Probability of False Alarm

Likelihood Change Statistic
Sample Coherence
Backscatter Ratio

Figure 32: Theoretical and simulated ROC curves for a scene change scenario where the
mean backscatter ratio of the primary and repeat pass images is 1.04 dB under H0 and
3.77 under H1, N = 9 and γ = 0.45.
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where the pixel pairs Xk0
= [fk0

, gk0
]T , k = 1 · · ·M0 and Xk1

= [fk1
, gk1

]T , k = 1 · · ·M1

are realisations of the H0 and H1 hypotheses respectively. The quality of the sample
covariance estimates are dependent on obtaining a sufficient number of independent image
pixels, M0 and M1, that are characteristic of the H0 and H1 hypotheses associated with
the local N pixel area under test.

In the change detection scenarios considered in this paper, such as the detection of
vehicle tracks across an open field, the scene disturbances are typically localised and
isolated to specific regions in the scene. Furthermore the scene changes are also typically on
a significantly smaller spatial scale than variations in the underlying statistical properties
of the scene’s complex radar backscatter. Under these conditions large homogeneous
areas for estimating the unknown covariance matrices may be readily identified. Indeed
using a fine resolution sensor and processing a wide-angle collection aperture, estimation
windows consisting of a statistically significant number of samples, suitable for estimating
the unknown covariance matrices, may be readily obtained. Furthermore, prior knowledge
regarding the nature of the scene disturbances and the backscatter characteristics of the
region under test, eg: assuming σ2

g0 = σ2
g1, may be used to refine the sample covariance

estimates.

A mathematical derivation of the detection performance of the GRLT has not been
found. However, Monte-Carlo simulation techniques may be used to evaluate the average
change detection performance that may be expected for sample sizes M0 and M1 used in
the estimation of Q0 and Q1 respectively. Figure 33 shows the average ROC curves of the
log likelihood change statistic obtained via Monte-Carlo simulation for sample window sizes
of M0 = M1 = 25, 64, 121 and 400 and N = 7. The change detection scenario considered
in the simulation has σ2

f = σ2
g0 = σ2

g1 and γ0 = 0.62. From Figure 33 it is evident that to
achieve an average detection performance comparable to that of the clairvoyant detector
window sizes of the order of several hundred pixels are required.

6 Application to Experimental Data

Repeat pass collections have been acquired with the DSTO Ingara X-band SAR over
two different scenes in which various ground truthed scene changes have occurred in the
interval between collections. The first scene, shown in Figure 34, consists of an open,
lightly grassed field with a building located at the bottom of the image. A sealed road
runs along the right hand side of the image and an unsealed road runs along the top of
the scene. An open drainage trench is visible in the upper left hand corner of the image.
In this change detection experiment a 20 m by 20 m scene change was performed using a
rotary hoe and a long strip was modified using a lawn mower, as indicated in Figure 34.
The repeat pass collection was acquired at an incidence angle of 60 degrees with a repeat
pass interval of 24 hours.

The other repeat pass acquisition was also carried out in an open lightly grassed
field. The field, shown in the SAR intensity image of Figure 35, has drainage trenches
approximately 1.5 m wide and 0.8 m deep that are visible as lines of low backscatter
running through the field. The field is bordered by a line of trees on the right hand side
and by buildings and trees on the left hand side. Azimuthal smear evident in the imagery
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Figure 33: Average ROC curves for the log likelihood change statistic obtained using
Monte-Carlo simulation techniques. Sample window sizes of M0 = M1 = 25, 64, 121 and
400 have been used to estimate Q0 and Q1 and a window size of N = 7 has been used to
compute the log likelihood statistic. The unchanged scene coherence is γ = 0.62 and it has
been assumed that σ2

f = σ2
g0

= σ2
g1

.

of the trees is due to the effects of wind moving the leaves and branches during the coherent
processing interval of approximately 20 sec. The repeat pass collection was acquired at an
incidence angle of 75 degrees with a repeat pass interval of 2 hours. The scene changes,
shown in Figure 35, consist of a series of strips of varying lengths and widths carried out
using a rotary hoe and a lawn mower.

At the time of the repeat pass interferometry experiments detailed here the Ingara
airborne SAR was installed on a Beech 350 Super KingAir aircraft. (It has since been
upgraded to provide a fully polarimetric X-band capability and has been rehosted onto a
Beech 1900C [51].) The operating parameters for the radar, as configured for the repeat
pass interferometry experiments, are detailed in Table 1.

Table 1: System parameters for the Ingara airborne SAR as configured for the repeat pass
interferometry experiments.

Parameter Value

Transmit waveform LFM chirp, 400 MHz bandwidth
Transmitter power 8 kW
Polarization HH
Radar centre frequency 9.35 GHz
Range resolution 0.5 m slant range resolution in spotlight mode
Incidence angle range 45 to 89 degrees
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Figure 34: Intensity SAR image of the scene used for repeat pass interferometry experi-
ments. Superimposed on the image is a schematic showing the scene changes carried out
with the rotary hoe and lawn mower.
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Figure 35: Intensity SAR image of the scene used for repeat pass interferometry experi-
ments. Superimposed on the image is a schematic showing the scene changes carried out
with the rotary hoe and lawn mower.
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6.1 Repeat Pass Image Pair 1

Figures 36 and 37 show the primary and repeat pass intensity images for the first
interferometric pair having the changes illustrated in Figure 34. The 3 dB resolution of
the Single Look Complex (SLC) image pair generated by the SAR processor is 0.61 m
range by 0.15 m azimuth with a Hamming window applied and the pixel spacing is 0.3 m
by 0.1 m. The slant range offset and depression angle differences at the aperture midpoint
are 70.94 m and 0.182 degrees respectively. The 20 m by 20 m scene change carried out
using the rotary hoe is clearly observed in Figure 37 as an area of reduced mean backscatter
power and is also readily seen in the mean backscatter power ratio change map in Figure 38.
The mean backscatter power of the primary and repeat pass imagery has been estimated
by firstly upsampling the SLC imagery generated by the SAR processor by a factor of 2 in
range and azimuth (as described in Section 3.5.5) followed by application of a 6 (range) by
14 (azimuth) pixel sliding spatial estimation window. A final decimation stage by factors
of 3 pixels in range and 7 pixels in azimuth has been applied giving a pixel spacing of
0.45 by 0.34 m for the resulting mean backscatter power estimates. The point spread
function of the mean backscatter power imagery is determined by the autocorrelation of
the Hamming window used by the SAR processor as described in Section 3.5.5. The 3 dB
resolution of the mean backscatter power imagery has been evaluated numerically to be
0.64 m by 0.22 m.

Figures 39 and 40 show the coherence and interferometric phase images given by the
amplitude and phase of the complex sample cross correlation coefficient. The complex sam-
ple cross correlation coefficient has been estimated using the same 3 by 7 pixel window as
that used in computing the mean backscatter power. The coherence and interferometric
phase images thus have the same 3 dB resolution and pixel spacing as the mean backscat-
ter power. The modified ground truth area is clearly visible as an area of low coherence
in Figure 39 and is also discernible in the interferometric phase map as an area of rapid,
random phase fluctuations. Other areas of low coherence visible in the sample coherence
map are evident in the region between the building and the area modified with the rotary
hoe and also in the upper left corner below the unsealed road. From ground truth observa-
tions these regions correspond to areas of taller, denser, broad leaf grass cover, see Figure
41, that are more susceptible to temporal decorrelation over the 24 hr revisit period. The
remaining areas of the scene have also been subject to temporal decorrelation during the
revisit period. These areas are more sparsely covered (see Figure 41) and thus exhibit a
modest degree of coherence estimated to be 0.45 (see Section 6.1.1). It is interesting to
note that while the denser vegetation regions are clearly observed in the sample coherence
map the same areas are not readily discerned in the intensity imagery of Figure 36 indi-
cating that the coherence may be used as a statistic for scene classification applications.

6.1.1 Joint Statistics of the Repeat Pass Image Pair

For the purposes of applying the change detection statistics and measuring their de-
tection performance a small image subchip, as indicated in Figure 36, has been extracted
from both the primary and repeat pass SLC images. This image subchip contains the area
modified by the rotary hoe while the remaining unmodified areas are essentially homoge-
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Image Subchip

Figure 36: Intensity SAR image generated from the primary pass collection processed to
a 3 dB resolution of 0.61 m (range) by 0.15 m (azimuth) with a Hamming window ap-
plied. Also shown is the image subchip selected for further processing and change detection
analysis.
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Image Subchip

Figure 37: Intensity SAR image generated from the repeat pass collection processed to a 3
dB resolution of 0.61 m (range) by 0.15 m (azimuth) with a Hamming window applied. Also
shown is the image subchip selected for further processing and change detection analysis.
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Figure 38: Mean backscatter power ratio change statistic evaluated over the primary and
repeat pass image pair.
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0.00 0.25 0.50 0.75 1.00

Figure 39: Sample coherence evaluated over the repeat pass image pair using a 3 by 7
pixel spatial estimation window.
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Figure 40: Sample interferometric phase evaluated over the repeat pass image pair using
a 3 by 7 pixel spatial estimation window.
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Before Rotary Hoe Changes

After Rotary Hoe Changes

Figure 41: Ground truth observations of the scene disturbances.
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neous in terms of their vegetation cover. In order to estimate the underlying statistical
parameters of the image pair using spatial windows the extracted image subchips have
been subsampled by a factor of two in range and azimuth to reduce the correlation be-
tween neighbouring pixels. While this introduces a modest degree of spatial aliasing in the
imagery the sample estimates of the image statistics may then be compared to the theoret-
ical distributions in which averaging over independent pixels is assumed. In addition the
probability density functions of the change statistics described in Sections 4 and 5 were
derived under the assumption of independent pixels and thus validation of the theoretical
results requires independent pixels. (In the literature the presence of correlated pixels is
modelled by employing the notion of an Equivalent Number of Looks (ENL) [52]. How-
ever, while this appears to be consistent with experimental data a theoretical derivation of
the PDFs for the case of correlated pixels has not been derived.) The subsampled image
subchip is 230 by 100 pixels in size. Averaging the image pixel intensities over the entire
N = 23, 000 pixel subsampled primary and repeat pass image subchips gives the following
estimates for the mean backscatter powers,

Primary Image: σ̂2
f =

1

N

N
∑

k=1

|fk|2 = 2.2686 × 108, (138)

Repeat Image: σ̂2
g =

1

N

N
∑

k=1

|gk|2 = 1.5380 × 108. (139)

For images having Gaussian backscatter characteristics the pixel amplitude is Rayleigh
distributed while the phase is randomly distributed [12]. Figure 42 shows the amplitude
and phase histograms of each image subchip using all the pixels in each subchip as well
as the theoretical Rayleigh amplitude and uniform phase density functions. (In specifying
the Rayleigh distribution the estimates of the mean backscatter power σ̂2

f and σ̂2
f have

been used.) Also shown in the plots of Figure 42 is the likely range in variation of the
histogram estimates of the PDF that are to be expected assuming the Rayleigh amplitude
and uniform phase PDFs are accurate models. (The range of expected values shown are
the ± three standard deviations about the mean expected at each histogram sample bin,
see Appendix A.) The good agreement between the amplitude and phase histograms and
the theoretical density functions indicates the image subchips have a strongly Gaussian
behaviour. The mean backscatter power estimated over the 20 m x 20 m modified area of
the scene is σ̂2

g = 9.5070 × 107 while the mean backscatter power for the area outside the
modified region is 1.7847 × 108. The scene modifications have thus caused a reduction in
the mean backscatter power of 2.73 dB.

The complex sample cross correlation coefficient has been computed across the sub-
sampled subchip pair by averaging over a 3 by 3 pixel spatial estimation window. Figure
43 shows a histogram of the magnitude of the cross correlation coefficient, i.e., the coher-
ence, obtained using sample estimates from the entire image subchip pair. The histogram
consists of a mixture of modified, low coherence areas and unmodified, partial coherence
areas. Superimposed on the histogram of Figure 43 is the theoretical density of the sample
coherence obtained using equation (101) where a true coherence of γ = 0.45 and an ENL
of 7 have been found to provide the best fit to the experimental histogram. (Also shown in
Figure 43 is the likely range in variation (three standard deviations) of the histogram es-
timate of the PDF that is to be expected assuming the jointly Gaussian model is correct.)
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Figure 42: Amplitude and phase histograms for the primary and repeat pass image sub-
chips. Superimposed on the histograms are the theoretical Rayleigh amplitude and uniform
phase density functions that are associated with complex Gaussian scattering behaviour.

The histogram and theoretical density functions show reasonable agreement, and devia-
tions between the plots, outside the anticipated histogram deviation from the theoretical
PDF, may be attributed to the mixture of sample estimates obtained over both modified
and unmodified regions in the image subchips used to produce the histogram. It has been
found that the best theoretical fit for the observed sample coherence is obtained with an
ENL of 7. This is less than the number of pixels in the spatial estimation window indicat-
ing that some residual correlation exists between neighbouring pixels in the subsampled
imagery.

The interferometric phase of the repeat pass pair will vary across the scene depending
on the terrain topography and the interferometric baseline. Accordingly the interfero-
metric phase may be estimated from the phase of the complex sample cross correlation
coefficient by averaging over sufficiently small regions for which the interferometric phase
may be considered to be constant. For the repeat pass pair considered here it is found
the image subchip may be partitioned into four equally sized non-overlapping quadrants
over which the interferometric phase varies only slowly. Figure 44 shows histograms of the
interferometric phase recovered from the complex sample correlation coefficient. Superim-
posed onto the histograms are theoretical density functions calculated using a coherence
of γ = 0.45, ENL=7 and interferometric phase values of -0.25, 0.04, -0.02 and 0.25 radians
for the four quadrants. Also shown in the plots of Figure 44 is the likely range in variation
(three standard deviations) of the histogram estimate of the PDF that is to be expected
assuming the jointly Gaussian model is correct. The histograms and theoretical density
functions show reasonable agreement. Sources of deviation between the histograms and
the theoretical density functions include variations in the underlying phase across the
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Figure 43: Histogram and theoretical density function of the sample coherence. The
estimated true coherence and ENL used to calculate the theoretical fit are 0.45 and 7
respectively.

quadrants as well as variations in the underlying coherence across the quadrants which
include both changed (low coherence) and unchanged (high coherence) regions.

6.1.2 Change Detection Performance

Using the values for the mean backscatter power, coherence and interferometric phase
of the changed and unchanged pixels estimated in the previous section the repeat pass
image subchips can be described by a jointly Gaussian random process with covariance
matrix Q(x, y) given by,

Q0(x, y) = 1 × 108

[

2.2686 0.45 · 2.0121 · exp(jΦ(x, y))
0.45 · 2.0121 · exp(−jΦ(x, y)) 1.7847

]

,(140)

for the unmodified pixels and

Q1(x, y) = 1 × 108

[

2.2686 0
0 0.95070

]

, (141)

for the changed pixels, where Φ(x, y) is the mean interferometric phase estimates identified
in the previous section,

Φ(x, y) =



















−0.25 rad, (x, y) in Quadrant 1,
+0.04 rad, (x, y) in Quadrant 2,
−0.02 rad, (x, y) in Quadrant 3,
+0.25 rad, (x, y) in Quadrant 4.

(142)

For simplicity the interferometric phase will be modelled as being constant over each of
the four quadrants considered in the previous section with a step change in phase across
the quadrants.
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Figure 44: Histograms and theoretical density functions of the sample interferometric
phase obtained by partitioning the image subchips into four equally sized, non-overlapping
quadrants.

Using the covariance matrix estimates Q0 in (140) and Q1 in (141) and an ENL of 7
the detection performance of the mean backscatter power ratio, the sample coherence and
the log likelihood change statistic may be computed using theoretical expressions for the
probability of detection Pd and false alarm Pfa derived in Sections 4 and 5. Figure 45 shows
the theoretical and simulated ROC curves for the three change statistics. It is evident
that the log likelihood ratio statistic gives almost an order of magnitude improvement in
the false alarm rate over both the sample coherence and mean backscatter power ratio
statistics over a wide range of detection probabilities. The mean backscatter power ratio
and sample coherence change statistics both give somewhat similar detection performance
characteristics with the mean backscatter power ratio statistic showing a modest detection
improvement over the sample coherence at values of Pd less than 0.6.

The images on the left hand side of Figure 46 shows the three change statistics eval-
uated over the primary and repeat pass image pair using a 3 by 3 sliding computation
window. In the case of the mean backscatter power ratio and sample coherence change
statistic, areas subject to some form of disturbance are associated with low values for the
change statistics and thus are visible as dark pixels. On the other hand for the log like-
lihood change statistic scene disturbances are associated with large values of the change
statistic. In Figure 46 however, the negative of the log likelihood change statistic is dis-
played so that changed areas are visible as dark pixels. The area of the scene modified by
the rotary hoe is readily identified in the three change statistic maps however, the sample
coherence and mean backscatter power ratio maps appear somewhat noisier than the log
likelihood change map.
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Figure 45: Theoretical and simulated ROC curves of the three change statistics obtained
using the covariance matrix estimates given in equation (140) with an ENL=7.

On the right hand side of Figure 46 are the change detections obtained by applying
a threshold to the corresponding change statistic maps. The threshold has been adjusted
experimentally in each case, to achieve a fixed number of detections (false alarms) in the
2000 pixel area lying outside the modified region, thereby giving a fixed false alarm rate of
0.05. It can be readily seen that for the same total number of false detections in the region
surrounding the modified area the log likelihood change statistic has generated far more
detections within the modified area than either the mean backscatter power ratio map or
the sample coherence, i.e., the log likelihood change statistic has generated a significant
number of new detections that are not identified by either the sample coherence or the
mean backscatter power ratio statistic. Furthermore the mean backscatter power ratio
and sample coherence statistics do not necessarily generate false detections at the same
spatial locations. Therefore a simple fusion of the mean backscatter power ratio and
sample coherence detection results will not necessarily generate an improved detection
performance.

The probability of detection for each change statistic may be estimated experimentally
by assuming all pixels within the modified region are realisations of the H1 hypothesis,
i.e., changed, and counting the total number of detections in this area. The probability of
detection for each change statistic may then be compared to the theoretical performance
given in the ROC curve of Figure 45. Table 2 shows the theoretical and experimentally
determined detection performance and associated threshold required to achieve a false
alarm rate of 0.05. There appears to be reasonably good agreement between the
theoretical and experimentally determined results. The trends identified in the ROC
curve of Figure 45 are evident with the log likelihood giving significantly better detection
performance than both the mean backscatter power ratio and sample coherence change
statistics. A number of differences between the experimental and theoretical values do
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Figure 46: The images on the left hand side show, from top to bottom, the mean backscat-
ter power ratio, sample coherence and log likelihood change statistic maps evaluated over
the subsampled subchip image pair using a 3 by 3 pixel sliding estimation window. Scene
changes are identified as dark pixels. The images on the right hand size show the detec-
tions obtained by applying a threshold to the corresponding change maps. The threshold
has been experimentally selected to give a false alarm rate of 0.05.
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Change Statistic ROC threshold Theoretical Pd Expt. Threshold Expt. Pd

Log Likelihood -1.45 0.70 -0.45 0.71
Sample Corr. 0.19 0.21 0.18 0.23

Intensity Ratio 0.31 0.28 0.33 0.42

Table 2: Theoretical and experimental threshold levels and probability of detection values
of the three change statistics corresponding to a false alarm probability of 0.05 over the 20
m by 20 m modified area.

appear. The experimentally determined threshold for the log likelihood change statistic is
somewhat larger than predicted theoretically. The theoretically derived ROC performance
however is an upper bound as it fails to consider the impact of the estimates of Q0 and
Q1 which would tend to broaden the density functions of the change statistic under H0

and H1 leading higher false alarms for a given probability of detection. A higher detection
threshold might thus be anticipated in order to maintain a desired false alarm rate. The
mean backscatter power ratio statistic gives a somewhat better detection performance
than predicted theoretically, possibly indicating a greater mean backscatter power change
than the estimated 2.73 dB change.

6.2 Repeat Pass Image Pair 2

Figures 47 and 48 show the primary and repeat pass image pair selected for change
detection analysis. The 3 dB resolution of the SLC images generated by the SAR processor
is 0.52 m range by 0.15 m azimuth with a Hamming window applied and a pixel spacing of
0.34 m by 0.11 m. The slant range and depression angle offsets at aperture midpoint are
69.65 m and 0.035 degrees respectively. Local estimates of the mean backscatter power
and complex sample cross correlation coefficient have been obtained by firstly upsampling
the SLC imagery by a factor of 2, applying a 4 (range) by 12 (azimuth) pixel sliding
estimation window, then decimating by factors of 2 in range and 6 in azimuth yielding
pixel spacings of 0.343 m in range and 0.34 m in azimuth. The 3 dB resolution of the
mean backscatter power ratio change map and the coherence and interferometric phase
subsequently formed has been numerically evaluated to be 0.57 m in range and 0.22 m in
azimuth.

Figure 49 shows the mean backscatter power ratio change map for the image pair while
Figures 50 and 51 show the coherence and interferometric phase respectively. The scene
changes carried out with the rotary hoe and lawn mower outlined in Figure 35 are difficult
to discern in the mean backscatter power ratio change map however, they appear quite
clearly in the coherence map as areas of low coherence and as areas of rapid, random phase
fluctuations in the interferometric phase map. Other areas of low coherence (or rapid phase
fluctuations) include the shadowed areas as well as the road. In these areas there is little
backscattered signal evident in the transduced imagery and hence the coherence estimated
is dominated by the uncorrelated radar system noise. The tree returns in the image also
appear as areas of low coherence due to the movement of the leaves and branches that
occurs both during data collection and in the interval between collection.
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Image Subchip

Figure 47: Intensity SAR image generated from the primary pass imaging collection
processed to a resolution of 0.52 m (range) by 0.150 m (azimuth) with a Hamming window
applied.
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Image Subchip

Figure 48: Intensity SAR image generated from the repeat pass imaging collection pro-
cessed to a resolution of 0.52 m (range) by 0.150 m (azimuth) with a Hamming window
applied.

82



DSTO–TR–1851

-5.00 2.50 0.00 2.50 5.00    dB

Figure 49: Mean backscatter power ratio change statistic evaluated over the primary and
repeat pass image pair using a 2 (range) by 6 (azimuth) pixel spatial estimation window.
The resolution of the estimate is 0.57 m by 0.22 m with a pixel spacing of 0.343 m by 0.34
m.
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Figure 50: Sample coherence evaluated over the repeat pass image pair using a 2 by 7
pixel spatial estimation window. The resolution of the estimate is 0.57 m by 0.22 m with
a pixel spacing of 0.343 m by 0.34 m.
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Figure 51: Sample interferometric phase evaluated over the repeat pass image pair using
a 2 by 7 pixel spatial estimation window. The resolution of the estimate is 0.57 m by 0.22
m with a pixel spacing of 0.343 m by 0.34 m.
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Figure 52: Thin plate spline models describing the spatial variation of the mean backscat-
ter power of the primary pass image subchip, indicated on the left and repeat pass image
subchip indicated on the right.

6.2.1 Joint Statistics of the Repeat Pass Pair

For the purposes of applying the change detection algorithms, image subchips, as
indicated in Figure 47, have been extracted from the primary and repeat pass images.
This image subchip pair encompasses a large portion of the open field including the ground
truthed scene changes illustrated in Figure 35. The extracted image subchips have been
subsampled by a factor of two in range and azimuth to reduce the correlation between
neighbouring pixels and allow validation of the theoretical distributions of the change
statistics (see Section 6.1.1). The size of the subsampled image chips is 500 by 500 pixels.

To allow for possible variation in the mean backscatter power across the subchip pair
each subchip has been partitioned into 25 non-overlapping regions each 100 by 100 pixels
in size over which sample estimates of the backscatter power have been computed. A
thin plate spline has been fitted to both the primary and repeat pass sample estimates to
model the spatial variation of the backscatter power across the scene. Figure 52 shows
the thin plate spline models obtained for the mean backscatter power of the primary and
repeat pass image subchips. The models indicate that the mean backscatter power across
the image subchips varies by approximately 6 dB. This may possibly be due to an error in
the antenna pointing accuracy resulting in an antenna beampattern variation across the
scene.

The amplitude and phase statistics of one of the 100 by 100 pixel regions, having
approximately uniform mean backscatter power, have been computed and compared to
the Rayleigh amplitude model. Figure 53 shows the amplitude histograms of the primary
and repeat pass 100 by 100 pixel image region. Superimposed on the histograms are the
theoretical Rayleigh amplitude density functions that arise in the case when the scattering
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may be modelled by a complex Gaussian process. Figure 54 shows the phase histograms
associated with the 100 by 100 pixel regions computed for the primary and repeat pass
images as well as the theoretical uniform phase probability density function. Also shown in
the plots of Figures 53 and 54 are the likely ranges in variation of the histogram estimates
of the PDFs, that are to be expected assuming the Rayleigh amplitude and uniform phase
PDFs are accurate models. The range of expected values shown are the ± three standard
deviations about the mean expected at each histogram sample bin. The mean backscatter
power coefficients required to specify the theoretical amplitude distributions have been
estimated by averaging the image pixel intensities over the entire 100 by 100 pixel region,

Primary Image: σ̂2
f =

1

N

N
∑

k=1

|fk|2 = 1.0728 × 107, (143)

Repeat Image: σ̂2
g =

1

N

N
∑

k=1

|gk|2 = 9.6785 × 106, (144)

where N = 10,000.

The phase histograms of the primary and repeat pass image subchips in Figure 54
show good agreement with the theoretical uniform distribution. The amplitude histograms
shown in Figure 53 however, exhibit a statistically significant deviation from the Rayleigh
density function that is usually expected under Gaussian scattering conditions. Given that
the image pair considered here have been acquired with a grazing angle of 15 degrees radar
shadowing can give rise to a textural modulation across the image yielding non-Gaussian
statistics. The K distribution [12] can be used to describe textured scenes and a fit to the
image amplitude data is show in Figure 55. The K distribution appears to provide a much
better fit to the amplitude data. Computing the K distribution order parameter ν̂ using
spatial estimates of the second and fourth order moments gives ν̂ = 7.9 and ν̂ = 6.8 for
the primary and repeat pass images respectively. These values indicate that the statistics
of the image subchips lie in the transition region between Gaussian and markedly non-
Gaussian scattering behaviour, where non-Gaussian scattering is characterised by ν̂ < 1
and Gaussian scattering by ν̂ > 10. Assuming the textural modulation spatial
variation over the scene is on a scale greater than the image resolution cell then it has been
demonstrated [20], [53] that the sample correlation coefficient may be used to estimate the
underlying cross correlation of the image pair in the unchanged regions. Also the sample
estimate will have the same probability density function as in the Gaussian scattering case.

Ground truth observations indicate that the field in the imaged scene is relatively
homogeneous with respect to the type of vegetation, its coverage and size. Therefore the
scene coherence of the image subchips is expected to be constant and a histogram of sample
estimates computed over the entire image subchip pair may be obtained and compared
to the theoretical density function given in equation (101). Figure 56 shows the sample
coherence histogram obtained using a 3 by 3 sliding estimation window applied over the
entire image subchip pair. Also shown is the theoretical density function of the sample
coherence where a true coherence of 0.62 and and ENL of 7 have been found to provide
the best fit to the experimental histogram. Also shown in Figure 56 is the likely range in
variation (three standard deviations) of the histogram estimate of the PDF that is to be
expected assuming the sample estimate has the same PDF as the Gaussian scattering case.
The theoretical density function and experimental histogram are in excellent agreement
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Figure 53: Amplitude histograms for a 100 by 100 pixel primary and repeat pass image
region. Superposed on the histograms are the theoretical Rayleigh amplitude distributions
corresponding to Gaussian scattering.
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Figure 54: Phase histograms for a 100 by 100 pixel primary and repeat pass image region.
Superposed on the histograms is the theoretical uniform phase probability density function.
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Figure 55: Amplitude histograms for a 100 by 100 pixel primary and repeat pass image
region. Superposed on the histograms are the theoretical K amplitude distributions.

with only a slight deviation at low coherence values due to the inclusion of the modified
low coherence areas in the computation of the sample coherence.

The interferometric phase may vary across the scene depending on the terrain topogra-
phy and any uncompensated relative phase terms that remain after image formation. To
allow for this possible spatial variation, the sample estimates of the interferometric phase
obtained from the 3 by 3 pixel sliding estimation window have been used to generate a
thin plate spline model of the interferometric phase variation across the image subchip
pair. Figure 57 shows the sample estimates of the scene and the corresponding thin plate
spline model. From the model the phase varies by 134 degrees across the image subchip
scene.

6.2.2 Change Detection Performance

In the previous section it has been shown that the repeat pass image pair exhibit a
degree of textural modulation. However, the textural modulation is only modest and the
statistics of the image pair lie in the transition region between Gaussian and markedly non-
Gaussian. Therefore the sample coherence and log likelihood change statistics may still be
used to provide some measure of discrimination between the changed and unchanged areas
of the scene. It is noted though that the detection performance may be suboptimal as the
full, complete statistical description of the repeat pass pair is not being used. Describing
the unchanged and changed image subchips as jointly Gaussian random processes with
covariance matrices,

Unchanged Hypothesis:

Q0(x, y) =

[

σ2
f 0.62σfσgexp(jΦ)

0.62σfσgexp(−jΦ) σ2
g

]

, (145)
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Figure 56: Histogram and theoretical density functions for the sample coherence evaluated
from the primary and repeat pass image subchips. A true coherence of 0.62 and an ENL
= 7 have been used to specify the theoretical sample coherence density function.

Changed Hypothesis:

Q1(x, y) =

[

σ2
f 0

0 σ2
g

]

, (146)

respectively, the detection performance of the sample coherence and the log likelihood
change statistics may be computed using the theoretical Gaussian expressions for Pd and
Pfa derived in Sections 4 and 5. In (145) and (146) σ2

f and σ2
g are the mean backscatter

power models of the primary and repeat pass image subchips shown in Figure 52 and
the interferometric phase Φ is given by the model illustrated in Figure 57. Figure 58
shows the theoretical as well as simulated ROC curves for the two change statistics. It is
evident that, under the jointly Gaussian scattering assumption, the log likelihood change
statistic offers over an order of magnitude improvement in the detection performance over
the sample coherence change statistic.

Figure 59 shows the sample coherence and log likelihood change maps evaluated over
the scene using the covariance models Q0 and Q1 above. Also shown are the change
detections obtained by applying appropriate thresholds to the coherence and log likelihood
change maps. The thresholds applied in each case have been experimentally determined to
achieve a fixed number of false alarms in an area known to have no ground changes thereby
giving a Pfa = 0.018. It is clear that the log likelihood change statistic has a significantly
better detection performance allowing the scene disturbances to be more readily discerned.
While it is difficult to quantify the experimental Pd given the size and geometry of the
disturbances, an estimate based on one of the modified strips yields a Pd of 0.68 for the log
likelihood change statistic and 0.30 for the sample coherence. These compare favourably
with the theoretical values obtained from Figure 58 of 0.795 for the log likelihood and 0.31
for the sample coherence. The experimental probability of detection for the log likelihood
change statistic is slightly less than the theoretically predicted value. Possible reasons
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Figure 57: The image on the left hand side indicates sample estimates of the interfero-
metric phase obtained using a 3 by 3 pixel sliding estimation window. On the right hand
side is a thin plate spline fit to the sample estimates of the interferometric phase.

for this discrepancy include deviations from the theoretical density functions due to the
presence of texture in the scene imagery, small errors in the estimation of the covariance
matrices Q0 and Q1 and their spatial variation, as well as inaccuracies in the estimation
of the experimental Pd due to the small sample size.
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Figure 59: The images on the left hand side show, from top to bottom, the sample
coherence and log likelihood change statistic maps evaluated over the subchip image pair
using a 3 by 3 pixel spatial estimation window. The images on the right hand size show
the detections obtained by applying a threshold to the corresponding change maps. The
thresholds have been experimentally selected to give a false alarm rate of 0.018
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7 Summary and Future Work

In this report the problem of detecting fine scale scene changes using repeat pass syn-
thetic aperture radar interferometry has been examined. As SAR is a coherent imaging
system two forms of change detection may be considered, namely incoherent change detec-
tion and coherent change detection. Incoherent change detection identifies changes in the
mean backscatter power of a scene by comparing the average intensities of the image pair.
Coherent change detection on the other hand identifies changes in the scene by quantifying
changes in the transduced amplitude and phase of the image pair. Since the transduced
image amplitude and phase is dependent on the scene’s subresolution scattering structure,
CCD can potentially detect subtle changes to the location and distribution of scattering
centres within a resolution cell. In order to fully realise the potential of coherent change
detection however, the SAR image pairs must be acquired with very careful control of the
repeat pass imaging geometries. Furthermore additional processing steps are required to
estimate and compensate for mismatch between the SAR acquisition functions and image
formation processors employed to form the repeat pass images.

This report begins by describing the SAR acquisition and image formation process for
the spotlight SAR mode leading to a mathematical description of a SAR image. This
model for a SAR image is subsequently used in Section 3 as the basis for describing a
repeat pass interferometric image pair. The additional information made available by the
interferometric processing of a SAR image pair is given by the complex cross correlation
coefficient. The magnitude of the complex cross correlation coefficient, commonly referred
to as the coherence quantifies the similarity of the images while the phase is a function
of the offset in the imaging geometries and the terrain height. Sources of image domain
decorrelation in an interferometric image pair are identified and techniques for minimising
the decorrelation are discussed.

The problem of detecting scene changes is then addressed in Sections 4 and 5 by
considering three change statistics namely: the average image intensity ratio for detecting
changes in the mean backscatter power of the scene, the sample coherence for detecting
areas of interferometric decorrelation in the scene and the log likelihood change statistic in
which the problem is formulated in a rigorous hypothesis testing framework. Theoretical
expressions for the probability of detection versus false alarm as a function of detection
threshold were derived to quantify the detection performance of the three change statistics.
The log likelihood change statistic was shown to yield superior detection performance to
the commonly used averaged intensity ratio and sample coherence with approximately an
order of magnitude improvement in false alarm rate for a 0.7 probability of detection.
Finally in Section 6 the three change statistics were applied to experimental repeat pass
SAR data acquired with the DSTO Ingara X-band SAR. The detection performance of the
change statistics in detecting various deliberate scene changes was shown to be in good
agreement with the theoretical derivations.

7.1 Future Work

The detection of scene changes in this report is performed on a pixel-by-pixel basis. An
examination of the sample coherence maps for the experimental scene changes however,
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shows that a strong visual cue for detecting the low coherence scene changes is the spatial
correlation of the disturbances. Improvements in the detection of scene changes may possi-
bly be achieved by exploiting this spatial correlation either via a correlated neighbourhood
model in the scene change hypothesis or alternatively using the change detections as input
into a tracking algorithm.

Repeat pass SAR interferometric change detection uses multiple, multi-date images of a
scene to distinguish between the consistent and changed scattering contributions of a scene.
Improvements in resolving different scattering behaviour in a scene may be accomplished
by making additional observations at different wavelengths, incidence angles and different
polarisations. The potential for such additional observations to improve change detection
performance warrant further investigation.
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Appendix A Comparison of Theoretical PDFs

and Histogram Estimates

A number of statistical hypothesis tests are available in the literature to determine
whether a given sample data set is consistent with a particular known theoretical distri-
bution. For the case of binned data sets e.g. histogram data, the Chi-square test is the
generally accepted hypothesis test, while for continuous data sets the Kolmogorov-Smirnov
test is appropriate.

The Chi-square test computes the following test statistic,

χ2 =
N
∑

i=1

(ni −mi)
2

mi

, (A1)

where ni is the number of events observed in the ith bin, mi is the expected number of
events in the ith bin based on the hypothesized known distribution and the sum is over all
N histogram bins. A large value of χ2 indicates that the hypothesized distribution is not
a good fit to the sample data set. Indeed when the number of events ni in each bin is large
then the χ2 statistic has a Chi-square probability distribution and the decision to either
accept or reject the hypothesized distribution may be made with a specified confidence
level.

A simpler and somewhat less rigorous approach to determine whether a histogram of a
sample data set is consistent with a known distribution is to model the number of events
observed in the ith bin using a binomial distribution. Given the total sample data size,
NT the probability of obtaining ni samples in bin i is given by,

P (ni) =

(

NT

ni

)

pni

i (1 − pi)
NT−ni , (A2)

where pi is the probability of a sample occurring in the ith bin which may be computed
using the hypothesized known distribution. The mean number of samples and the variance
in the ith bin in the binomial model are given by,

µi = NT pi, (A3)

σ2
i = NT pi(1 − pi), (A4)

respectively. These values indicate the number samples that are to be anticipated in each
histogram bin as well as the likely range in the number of samples about the expected
value assuming that the sample data set is described by the hypothesized distribution. For
the case when the number of samples in a particular bin is large the central limit theorem
may be applied and the binomial distribution may be approximated by a Gaussian with
the same mean and variance. Therefore a histogram bin in which the number of samples
ni is greater than three standard deviations from the mean (|ni − mi| > 3σi) might be
considered statistically unlikely, suggesting the hypothesized known distribution is not
representative of the sample data set.
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Aperture Radar (SAR) imagery. As SAR is a coherent imaging system two forms of change detection
may be considered, namely incoherent and coherent change detection. Incoherent change detection
identifies changes in the mean backscatter power of a scene typically via an average intensity ratio
change statistic. Coherent change detection on the other hand, identifies changes in both the amplitude
and phase of the transduced imagery using the sample coherence change statistic. Coherent change
detection thus has the potential to detect very subtle scene changes to the sub-resolution cell scattering
structure that may be undetectable using incoherent techniques. The repeat pass SAR imagery however,
must be acquired and processed interferometrically. This report examines the processing steps required
to form a coherent image pair and describes an interferometric spotlight SAR processor for processing
repeat pass collections acquired with DSTO Ingara X-band SAR. The detection performance of the
commonly used average intensity ratio and sample coherence change statistics are provided as well as
the performance of a recently proposed log likelihood change statistic. The three change statistics are
applied to experimental repeat pass SAR data to demonstrate the relative performance of the change
statistics.
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